
The Linux Network Administrators' Guide

Copyright c 1992,1993 Olaf Kirch

For Britta

Legal Notice

UNIX is a trademark of Unix System Laboratories.

Linux is not a trademark, and has no connection to UNIXTM or Unix System Laboratories.

Copyright c 1993 Olaf Kirch

Kattreinstr. 38, 64295 Darmstadt, Germany

okir@monad.swb.de

\The Linux Network Administrators' Guide" may be reproduced and distributed in whole

or in part, subject to the following conditions:

0. The copyright notice above and this permission notice must be preserved complete

on all complete or partial copies.

1. Any translation or derivative work of \The Linux Network Administrators' Guide"

must be approved by the author in writing before distribution.

2. If you distribute \The Linux Network Administrators' Guide" in part, instructions

for obtaining the complete version of \The Linux Network Administrators' Guide"

must be included, and a means for obtaining a complete version provided.

3. Small portions may be reproduced as illustrations for reviews or quotes in other

works without this permission notice if proper citation is given.

4. The GNU General Public License referenced below may be reproduced under the

conditions given within it.

Exceptions to these rules may be granted for academic purposes: Write to Olaf Kirch at

the above address, or email okir@monad.swb.de, and ask. These restrictions are here to

protect us as authors, not to restrict you as educators and learners.

All source code in \The Linux Network Administrators' Guide" is placed under the GNU

General Public License. See appendix B for a copy of the GNU \GPL."

The author is not liable for any damages, direct or indirect, resulting from the use of

information provided in this document.

Contents

List of Abbreviations 12

Foreword 15

Organization of this Book : 16

The Linux Documentation Project : 17

Typographical Conventions : 18

Thanks : 19

1 Introduction to Networking 20

1.1 History : 20

1.2 Two Examples : 22

1.3 The OSI Model : 23

1.3.1 The Phyiscal Layer : 24

1.3.2 The Data Link Layer : 25

1.3.3 The Networking Layer : 26

1.3.4 The Transport Layer : 28

1.3.5 The Upper Layers : 30

1.3.6 Internetworking : 31

2 Issues of TCP/IP Networking 33

2.1 IP Addresses : 33

2.2 IP Routing : 34

3

2.3 The Domain Name System : 39

3 Con�guring TCP/IP Networking 46

3.1 General Remarks : 46

3.2 Software Installation : 47

3.2.1 Installing the Binaries : 47

3.2.2 Setting up the proc �lesystem : 48

3.3 Hardware Con�guration : 49

3.3.1 A Tour of Linux IP interfaces : 49

3.3.2 The Ethernet Driver : 50

3.3.3 The SLIP Driver : 51

3.3.4 The PLIP Driver : 52

3.3.5 Using wdsetup : 53

3.4 Setting the hostname : 55

3.5 Assigning IP Addresses : 55

3.6 Interface Con�guration for IP : 56

3.6.1 Interface Con�guration with ifconfig : : : : : : : : : : : : : : : : : 56

3.7 Building IP Routing tables : 59

3.7.1 Route to the Subnet : 61

3.7.2 Routes through a Gateway : 62

3.8 Verifying your IP Setup : 63

3.8.1 ping : 64

3.8.2 netstat : 66

3.8.3 arp : 67

3.9 Name Service and Resolver Con�guraton : 68

3.9.0.1 The host.conf File : 69

3.9.0.2 Resolver Environment Variables : : : : : : : : : : : : : : : 70

3.9.1 What /etc/hosts looks like : 71

3.9.2 The /etc/networks �le : 72

3.9.3 Con�guring Name Server Lookups | resolv.conf : : : : : : : : : 72

3.9.4 Resolver Robustness : 73

3.10 Running named : 74

3.10.1 Verifying the Resolver Setup : 80

4 Various Network Applications 85

4.1 The /etc/services �le : 85

4.2 The /etc/protocols �le : 86

4.3 The inetd Super-Server : 86

4.4 The tcpd access control facility : 89

4.5 Con�guring the r commands : 92

4.6 Con�guring RPC : 94

4.7 Con�guring NIS : 95

4.8 Con�guring FTP : 95

4.8.1 Anonymous FTP : 96

4.8.2 ftpd Options : 98

5 Con�guring NFS 99

5.1 Mounting an NFS Volume : 100

5.2 The /etc/exports File : 102

5.3 The NFS daemon : 104

6 Setting up the Serial Hardware 105

6.1 Communication Software for Modem Links : : : : : : : : : : : : : : : : : : 105

6.2 Introduction to Serial Devices : 106

6.3 Accessing Serial Devices : 107

6.4 Serial Hardware : 108

6.5 Multiport Boards : 110

6.6 Setting up your Modem : 111

6.7 Setting up your System for Dialing in : 112

7 Managing Taylor UUCP 115

7.1 Preliminary Remarks : 115

7.2 Introduction : 116

7.2.1 History : 116

7.2.2 Commands of the UUCP Suite : 117

7.2.3 Command Line Options : 117

7.2.4 Layout of UUCP Transfers and Remote Execution : : : : : : : : : : 118

7.2.5 The inner workings of uucico : 119

7.2.6 What UUCP needs to know : 120

7.2.7 Site naming : 121

7.3 UUCP Con�guration �les : 122

7.3.1 How to tell UUCP about other Systems | the Systems File : : : : 123

7.3.2 Hiding dialcodes | the Dialcodes �le : : : : : : : : : : : : : : : : : 127

7.3.3 What devices there are | the Devices �le : : : : : : : : : : : : : : 127

7.3.4 How to dial a number | the Dialers �le : : : : : : : : : : : : : : : 129

7.3.5 The Do's and Dont's | The Permissions File : : : : : : : : : : : : 129

7.3.6 Be Paranoid | Call Sequence Checks : : : : : : : : : : : : : : : : : 131

7.3.7 How to Specify a Direct Connection : : : : : : : : : : : : : : : : : : 132

7.4 From System Name to Connect | How all this Works : : : : : : : : : : : : 132

7.4.1 Sample Files : 133

7.4.2 Building up the Connection : 133

7.4.3 Calling out via Modem : 136

7.4.4 Calling out via TCP : 137

7.5 Setting up your System for Dialing in : 137

7.5.1 Setting up uugetty : 137

7.5.2 Providing UUCP Accounts : 138

7.5.3 Accepting UUCP logins over TCP/IP : : : : : : : : : : : : : : : : : 139

7.6 Miscellaneous : 140

7.6.1 Troubleshooting : 140

7.6.2 Log �les : 141

7.6.3 Available line protocols : 142

7.6.4 Notes : 144

8 Electronic Mail 145

8.1 What is a Mail Message? : 145

8.2 How is Mail Delivered? : 147

8.3 Email Addresses : 148

8.3.1 Various Address Formats : 148

8.3.2 Bang Path Addresses : 150

8.3.3 Addresses in the Domain Name System : : : : : : : : : : : : : : : : 151

8.4 How does Mail Routing Work? : 152

8.4.1 Mail Routing in UUCP networks : 152

8.4.2 Mail Routing on the Internet : 153

8.5 Pathalias and Map File Format : 154

8.6 Message Grading : 157

8.7 Mail Software Con�guration : 157

8.8 Con�guring elm : 159

8.9 Global elm Options : 159

8.10 elm and National Character Sets : 160

9 Getting smail Up and Running 162

9.1 Introduction : 162

9.2 UUCP Setup : 163

9.3 Setup for a LAN : 164

9.4 Invocation and Command Line Options : 166

9.5 Miscellaneous config Options : 168

9.6 Mail Delivery : 169

9.7 Routing Messages : 170

9.8 The pathalias database : 171

9.9 Delivering Messages to Local Addresses : 172

9.9.1 Local Users : 173

9.9.2 Alias Files : 173

9.9.3 Mailing Lists : 174

9.9.4 Forward Files : 175

9.10 UUCP-based Transports : 175

9.11 SMTP-based Transports : 176

9.12 Hostname Quali�cation : 176

10 Installing and Using sendmail 178

10.1 Introduction : 178

10.2 Installing sendmail : 179

10.3 Creating sendmail.cf : 180

10.4 Invocation and Command Line Options : 181

10.5 Routing with sendmail : 182

10.6 Setting the Site Name : 184

10.7 Routing Options : 184

10.7.1 Alias Options : 184

10.7.2 Mailer Table Options : 184

10.7.3 Address Resolution : 184

10.7.4 UUCP Routing : 185

10.7.5 Smart Host Routing : 186

10.8 sendmail Support Files : 186

10.8.1 Creating dbm Databases : 186

10.8.2 The aliases �le : 187

10.8.3 The pathtable File : 188

10.8.4 Miscellaneous dbm Files : 188

10.9 sendmail Mailers : 189

10.9.1 Local Addresses : 189

10.9.2 SMTP Delivery : 189

10.9.3 UUCP-based mailers : 189

11 Netnews 191

11.1 Usenet History : 191

11.2 How Does Usenet Handle News? : 192

11.3 A Description of Cnews : 194

11.3.1 Delivering News : 194

11.3.2 Installation : 195

11.3.3 The sys �le : 197

11.3.4 The active �le : 200

11.3.5 Article Batching : 201

11.3.6 Expiring News : 203

11.3.7 Miscellaneous Files : 206

11.3.8 Control Messages : 209

11.3.9 Cnews in an NFS Environment : 210

11.3.10Maintenance Tools and Tasks : 211

11.4 A Description of NNTP : 212

11.4.1 nntpd : 214

11.4.2 NNTP Access. : 214

11.4.3 NNTP Authorization : 216

11.4.4 nntpd Interaction with Cnews : 216

11.4.5 nntpxmit : 217

11.4.6 nntpxfer : 217

12 Newsreader Con�guration 218

12.1 tin Con�guration : 219

12.2 trn Con�guration : 220

12.3 nn Con�guration : 221

A A Null Printer Cable for PLIP 223

B The GNU General Public License 224

B.1 Preamble : 224

B.2 Terms and Conditions : 225

B.3 How to Apply These Terms : 230

Annotated Bibliography 232

Books : 232

List of Figures

1.1 A sample SMTP session. : 31

2.1 A part of the net topology at Groucho Marx Univ. : : : : : : : : : : : : : 37

2.2 A part of the domain name space : 42

2.3 An excerpt from the named.hosts �le for the Physics Department. : : : : 43

2.4 An excerpt from the named.hosts �le for GMU. : : : : : : : : : : : : : : : 44

3.1 The named.boot �le for vlager. : 76

3.2 The named.ca �le. : 80

3.3 The named.hosts �le. : 81

3.4 The named.local �le. : 82

3.5 The named.rev �le. : 82

4.1 A sample /etc/services �le. : 87

4.2 A sample /etc/protocols �le. : 88

4.3 A sample /etc/inetd.conf �le. : 90

4.4 A sample /etc/rpc �le. : 95

7.1 The Systems �le : 133

7.2 The Devices �le : 134

7.3 The Dialers �le : 134

7.4 The Permissions �le : 135

11.1 News ow through relaynews. : 196

11

List of Abbreviations

The main task in Networking is to remember what all the abbreviations one encounters

really mean. Here's a list of those used frequently throughout the guide:

ACU Automatic Call Unit. A modem.1

ARP Address Resolution Protocol. Used to map IP addresses to Ethernet ad-

dresses.

ARPA Advanced Research Project Agency.

BBS Bulletin Board System. Dial-up mailbox system.

BGP Border Gateway Protocol. A protocol for exchanging routing information

between autonomous systems.

BIND Berkeley Interned Name Domain. An implementation of a DNS server.

BNU Basic Networking Utilities. A popular UUCP version (also called Honey-

DanBer UUCP).

BSD Berkeley Source Distribution. A Un?x avor.

CCITT International organization of postal services.

CSLIP Compressed Serial Line IP. An protocol for exchanging IP packets over a

serial line, using header compression.

DNS Domain name system. Internet standard for mapping of host names to

IP addresses.

EGP External Gateway Protocol. A protocol for exchanging routing information

between autonomous systems.

1
Alternatively: A teenager with a telephone.

12

FQDN Fully Quali�ed Domain Name. The hostname with the full domain name.

FTP File Transfer Protocol.

FYI \For Your Information." Series of documents with informal information on

Internet topics.

GMU Groucho Marx University. Fictitious University used throughout this book.

ICMP Internet Control Message Protocol. A networking protocol.

IETF Internet Engineering Task Force.

IP Internet Protocol. A networking protocol.

ISO International Standards Organization.

ISDN Integrated Services Digital Network. New telecommunications technology

using digital circuitry instead of analog.

MX Mail Exchanger. A DNS resource record type.

NFS Network File System. Standard for accessing data on remote disks trans-

parently.

NIS Network Information System. An RPC-based software for network-wide �le-

sharing.

NNTP Network News Transfer Protocol.

OSI Open Systems Interface. An ISO standard on network software.

PLIP Parallel Line IP. A protocol for exchanging IP packets over a parallel line or

a printer port.

TCP Transfer Control Protocol. A networking protocol.

TCP/IP Sloppy description of the Internet protocol suite as a whole.

RARP Reverse Address Resolution Protocol. Permits hosts to �nd out their IP ad-

dress at boot time.

RFC Request For Comments. Series of documents describing Internet standards.

RPC Remote Procedure Call. Protocol for executing procdures inside a process

on a remote host.

RIP Routing Information Protocol. Routing protocol used inside LANs (Au-

tonomous Systems).

SLIP Serial Line IP. A protocol for exchanging IP packets over a serial line.

SMTP Simple Mail Transfer Protocol.

SOA Start of Authority. A DNS resource record type.

UDP User Datagram Protocol. A networking protocol.

UUCP Unix to Unix Copy. A suite of network transport commands for dial-up

networks.

YP Yellow Pages. An older name for NIS.

Foreword

When I �rst heard rumors of Linux, I was struggling with Andrew Tanenbaum's Minix on

my old Atari. Running a multitasking system on a M 68000 is not wholly satisfactory, which

was not the fault of Minix but rather that of said architecture. I �nally �gured out that it

was the time to upgrade. I had already worked on Un?ces and was looking for a machine

which was not too expensive, but would allow me to run a Un?xoid operating system which

was not too expensive either. Although hedging a deep distrust of PC's (after all, aren't

they all DOS machines inside?), I decided to try Linux, and have not regretted it since.

After going through a number of ups and downs, like �le system crashes, occasional core

dumps, overwritten password �les, etc, my Linux setup has settled in the meanwhile and

has become a stable environment. The kernel and C library have become that good that

most standard software may be compiled with no more e�ort than is required on any other

mainstream Un?x system, and a broad assortment of packaged Linux distributions allows

you to almost drop it onto your hard disk and start playing.

The only thing that occasinally gets in the way of Linux enthusiasts is what may

be called the Great Information Void | a phenomenon that drags the knowledge-thirsty

user into a vortex README's, FAQ's and other �les spelt in capital letters which help you

solve many problems, but rarely give you the whole picture. What is lacking is some sort

of documentation that allows users to understand the mechanism behind everything, and

enables them to work things out themselves.

To this end, a couple of people formed the Linux Documentation Project (LDP) in

late 1992, which aims at putting together a coherent set of manuals. Stopping short of

answering questions like \How?", or \Why?', or \What's the meaning of life, universe, and

all the rest?", these manuals attempt to cover most aspects of running and using a Linux

system. This book is part of the LDP series and deals with network management and

administration.

Without networking, there wouldn't be any Linux today. One of the main factors in the

Linux experience | apart from the determination of its contributors | is that everything

can be made available quickly, and that developers and users may communicate with ease.

15

All this is made possible through the cooperation of unnumbered sites in networks, and

the cooperation of these networks among each other. (It also bears well remembering that

these services are often administered by people in their spare time.)

Thus, there has always been a special interest among the Linux community to bring

networking to Linux. From an early stage, UUCP-based software was available, which

allowed to connect your Linux machine to one of the networks using a dialup-connection.

Later came the drive to provide Linux with the necessary kernel functionality and user

software that allows participation in local TCP/IP-based networks, using Ethernet, etc,

which even allows to get your machine on the Internet. This e�ort is still under way, but is

rapidly evolving.

This manual tries to cover both types of networking, introducing you to the basics,

guiding you through the setup stages, and �nally describes how to set up and run a number

of applications, including NFS, electronic mail, and Usenet news.

Organization of this Book

This book is organized in the following way:

Chapter 1 gives you an introduction to networking in general, working out the concepts

and terminology. If you know what the OSI model is, you might want to skip this.

Chapter 2 discusses the issues involved in TCP/IP-based networking. This works out

the concepts introduced in Chapter 1.

Chapter 3 gets down to the very basics of TCP/IP-networking in Linux. It includes a

tour of the kernel's networking interfaces, and describes their con�guration. It also covers

setup of the resolving library, dealing with both simple hosts tables and setup of a name

server.

Chapter 4 introduces you to various network applications that can be found on most

Un?xish systems, like inetd and the \r" command suite (rlogin, rsh, etc.).

Chapter 5 deals with con�guring NFS, the Networking File System.

Chapter 6 describes how to set up your serial hardware for dialling out and in.

Chapter 7 shows you how to manage Taylor UUCP. For those who have never used

UUCP before, and know next to nothing on how it works, there is a short tour of its major

principles.

Chapter 8 gives an overview of electronic mail, and the ideas involved in it: address

formats, routing, and the whole lot of it. Part of the chapter is devoted to setting up elm,

a standard mail user interface included in almost every Un?x nowadays.

Chapter 9 guides you through the setup of smail on your system. If you want to echange

mail with other sites, you either have to run this, or sendmail.

Chapter 10 is a twin of chapter 9, in that it describes the setup of the sendmail mail

transport agent.

Chapter 11 covers the basic ideas of netnews, and the setup of Cnews. Also has a short

section on using NNTP.

Chapter 12 is a tour de force on newsreader con�guration. It tries to cover the basic

tasks needed in administering tin, trn, and nn.

Appendix A describes how to build a so-called \null printer cable" for use with the PLIP

parallel interface IP protocol decsribed in chapter 3.

Appendix B contains a copy of the GNU General Public License.

The book ends with a annotated bibliography that contains a list of books recommended

for further reading.

The Linux Documentation Project

The Linux Documentation Project, or LDP, is a loose team of writers, proofreaders, and

editors who are working together to provide complete documentation for the Linux oper-

ating system. The overall coordinator of the project is Matt Welsh, who is heavily aided

by Lars Wirzenius and Michael K. Johnson.

This manual is one in a set of several being distributed by the LDP, including

a Linux Users' Guide, System Administrators' Guide, Network Administrators' Guide,

and Kernel Hackers' Guide. These manuals are all available in LaTEX source format,

.dvi format, and postscript output by anonymous FTP from nic.funet.fi, in the di-

rectory /pub/OS/Linux/doc/doc-project, and from tsx-11.mit.edu, in the directory

/pub/linux/docs/guides.

We encourage anyone with a penchant for writing or editing to join us in improving

Linux documentation. If you have Internet e-mail access, you can join the DOC channel of

the Linux-Activists mailing list by sending mail to

linux-activists-request@niksula.hut.fi

with the line

X-Mn-Admin: join DOC

in the header or as the �rst line of the message body. To leave the channel, send a

message to the same address, including the line

X-Mn-Admin: leave DOC

Typographical Conventions

In writing this book, a number of typographical conventions were employed to mark shell

commands, variable arguments, etc. They are explained below.

Bold Font Used to mark new concepts,WARNINGS, and keywords in a language.

Italics Font Used for emphasis in text, and occasionally for quotes or introductions at

the beginning of a section.

Typewriter Font

Used to represent screen interaction, as in

ls -l /bin/cp

-rwxr-xr-x 1 root wheel 12104 Sep 25 15:53 /bin/cp

Also used for code examples, whether it is \C" code, a shell script, or some-

thing else, and to display general �les, such as con�guration �les. When

necessary for clarity's sake, these examples or �gures will be enclosed in thin

boxes.

Typewriter Slanted Font

Used to mark meta-variables in the text, especially in representations of

the command line. For example,

ls -l foo

where foo would \stand for" a �lename, such as /bin/cp.

Key Represents a key to press. You will often see it in this form:

Press return to continue.

3 A diamond in the margin, like a black diamond on a ski hill, marks \danger"

or \caution." Read paragraphs marked this way carefully.

$ and # When preceding a shell command to be typed, these denote the shell prompt.

The `$' symbol is used as when the command may be executed as a nomral

user; `#' means that the command requires super user privilieges.

Thanks

This book owes very much to the numerous people who took the time to proofread it and

helped iron out many mistakes, both grammatical and technical. The most vigorous among

them are Michael K. Johnson, Iain Lea, and Wolfgang Michaelis. I also wish to thank Ian

Taylor for sparing the time to read through the UUCP chapter and �ll in some of the gaps.

I would also like to thank Matt Welsh, who was the �rst to encourage me when I uttered

the idea \someone" might write a Networking Guide for Linux.

Extra praise goes to all the people who have contributed so much time and energy

through their work behind the scenes, especially to Ari Lemke, maintainer of the mailing

list at niskula, and of the FTP archive at funet; to Ted T'so, who is maintaining the FTP

archive at tsx-11; and the numerous FTP administrators at sunsite.

Although they are not directly involved in the writing of this guide, I would like to thank

all those who started the whole Linux business, and have kept the ball rolling for so long:

Linus Torvalds, Lars Wirzenius, Theodore T'so, H.J. Lu, Ross Biro, Peter MacDonald, Fred

van Kempen, Donald Becker,: : :

Of course, there are many more people involved in the shaping of Linux than this short

list can name; you know who you are!

Chapter 1

Introduction to Networking

1.1 History

The idea of networking is probably as old as telecommunications itself. Consider people

living in the stone age, where drums may have been used to transmit messages between

individuals. Suppose caveman A wants to invite caveman B for hurling rocks at each other,

but they live too far apart for B to hear A banging his drum. So what are A's options?

He could 1) walk over to B's place,1 2) get a bigger drum, or 3) ask C, who lives halfway

between them, to forward the message. The last is called networking.

Of course, we have come a long way from the primitive pursuits and devices of our

forebears. Nowadays, we have computers talk to each other over vast assemblages of wires,

satellites, and the like, to make an appointment for saturday's soccer match.2 However, in

the following, we will deal with the means and ways by which this is accomplished, and

leave out the wires, as well as the soccer part.

We will encounter two types of networks in this guide, those based on UUCP, and those

based on TCP/IP. These are protocol suites and software packages that supply means to

transport data between two computers. In a networking environment, anything that is able

to react reasonably to communication requests from the network is called a host. This is

very often a computer, but need not be; one can also think of X terminals or printers as

hosts. Small agglomerations of hosts are also called sites.3

1
This option is in fact so rarely chosen, that any occurence thereof inevitably leaves traces in history

books, like, for example, the Marathon run.

2
The original spirit of which (see above) still shows on some occasions in Europe.

3
In the UUCP world, most sites consist of one host, but it might also be a LAN with one computer

handling the UUCP link to the outside world. Such sites are most often managed in a way to appear as a

monolithic system to the outside world.

20

UUCP started out as a package of programs to transfer �les over serial lines, schedule

those transfers, and initiate execution of programs on remote sites. It has undergone major

changes since its �rst implementation in the late seventies, but is still rather spartan about

the service it o�ers. UUCP-based networks are of the store-and-forward variety, which

means that the physical links between forwarding hosts are activated at certain intervals

only (usually several times a day), so that any data has to be stored temporarily. The

�rst of these networks evolved soon after the initial release, with over 80 Unix-developing

sites already connected in mid-1978. They were running email as an application, as well

as remote printing. However, the system's central use was in distributing new software

and bug�xes.4,5 One year later, in 1979, after the release of UUCP with the new Unix V7,

three graduate students had the idea of a general information exchange within the Unix

community. They put together some scripts, which became the �rst netnews system. In

1980, this network connected duke, unc, and phs, at two Universities in North Carolina. Out

of this, Usenet �nally grew, which nowadays stretches across several continents, comprising

networks of all sorts.

TCP/IP traces its descent to a research project funded by the DARPA (Defense

Advanced Research Projects Agency) in 1969. This was an experimental network, the

ARPANET, which was converted into an operational one in 1975, after it had proven to

be a success. Its main di�erence from UUCP-based networks is that it is not a store-

and-forward network, but is based on packet switching. This means that permanent or

semi-permanent circuits are used to connect various sites, with data not being transferred

in �les, but in smaller chunks (packets) which are forwarded instantaneously. This type of

network is called a packet-switched network.

In 1983, the new protocol suite TCP/IP was adopted as a new standard, and all hosts

on the network were required to use it. When ARPANET �nally grew into the Internet

(with ARPANET itself passing out of existence in 1990), the use of TCP/IP had spread

to networks beyond the Internet itself. Most notable are local area networks used in Un?x

networks.

The networking software included in the various distributions of Linux comes from

many places. Many authors have contributed software packages to the net community,

often maintaining them for years and investing a lot of their work. Before you curse them

because something doesn't work the way you expect it to, imagine where you would be

without their e�ort.

Where single authors have written an application program, they are credited, sometimes

4
Not that the times had changed that much: : :

5
This is detailed in a report by D. A. Novitz and Mike E. Lesk, named \A simple dial-up network in a

Unix
TM

environment", published in August 1978. It is available at some FTP servers.

giving their addresses when they still maintain the particular package. Other software, such

as the majority of TCP/IP clients and daemons, comes from the BSD Networking Release 2.

Finally, we credit all those people who relentlessly keep hacking the Linux kernel, especially

Linus Torvalds, Ross Biro (who wrote much of the original kernel TCP/IP code), Fred N. van

Kempen (who has rewritten much of the network code and taken over further development),

and Theodore Ts'o (who maintains the serial drivers). There are many, many more of them.

We thank you!

1.2 Two Examples

To have realistic material for demonstration at hand during the following, we introduce two

examples:

Consider a University, complete with many, many departments, wars over funding, etc.

We call it Groucho Marx University (GMU), situated somewhere in Netland. Most depart-

ments run their own LANs, while some share one, and others run several of them. They

are all interconnected, and are hooked to the Internet through a single high-speed link.

The other example is more like what you may encounter when setting up your Linux

box: Let's assume we have a little company that's brewing, say, virtual beer.6 For this

purpose, they have some PCs in their o�ces, all running a bright and shiny Linux 1.0.

They are connected by an Ethernet. Name those machines vlager, vstout, and vale

(v standing for \virtual", of course). One day they acquire the virtual winery which is

located one oor above. The winery people have their own network, with machines named

vbeaujolais, vbardolino and vchianti. So they decide to join their respective networks,

and connect vlager to the winery's Ethernet. We will follow the brewers through their

plight in setting up an operational local network.

Someday they decide to get on the net to get into closer touch with their customers, so

they look for a UUCP site that might feed them mail and news. They �nd one, its name

being moria.orcnet.org. Not a pleasant bunch of neighbors, altogether, but you can't

help it, can you?

Now, our virtual brewers try to pick a name for their site. Their �rst idea is to call

themselves long-live-linus, but that's too long a name for UUCP transports, so they

settle for linus. In a later chapter we will peek over their shoulders while con�guring

UUCP, email, and netnews.

\Now, why two examples?" you might ask. Well, I thought I had to give one example

of a site with Internet access, and one of a site with a UUCP link. I hope this isn't getting

6
Hasn't that joke been beaten to death yet? Well, it hasn't :-)

too confusing. I will use the �rst example mainly to explain TCP/IP networking features

in this chapter; later chapters dwelling on Linux con�guration will only refer to the virtual

brewers. However, consider the large-scale examples for GMU with a sense of caution: I

am in no way an Internet \old hand"; my knowledge comes from books and RFCs only.

1.3 The OSI Model

One paradigm that has proven to be most useful is to view networking as consisting of a

number of tasks, organized in layers. They are thought to be built on top of each other,

with the hardware being the lowest, and the application program being the highest. Each

layer has a well de�ned interface through which it o�ers one or more services to the layer

above it; it executes requests by using the interface o�ered to it by the layer immediately

below it. The functions o�ered by an interface are also called service access points. Often,

layers are split into sublayers to o�er a clearer view of their functionality and requirements.

One description of the network software's layering is given by a model drawn up by

the International Standards Organization, ISO for short, and is called the Open Sytems

Interface (OSI) Reference Model. It consists of seven layers, which will be explained below

as far as they apply to the networks we discuss. Not all of the OSI layers are present in all

networks, as we will see. It is not very enlightning to apply the OSI model to UUCP-based

networks, since most of its features are absent. In this section, we will therefore refer to

UUCP networks only shortly.

At each level, the software performing the task is thought of as exchanging data with

the corresponding level on the destination machine. The drivers are therefore referred to

as peer processes. Peer processes are usually free to exchange data by whatever means they

choose, as long as they agree on it. For example, they may split up the data into chunks, or

choose from di�erent transport protocols and routes. Now, the service two peer processes

provide to the layer above them can be distinguished by whether it is reliable, and whether

a connection is thought to exist or not.

Reliable service requires thorough checks on the integrity of thee data transmitted7 and

acknowledgements sent back to the sender, containing positive or negative con�rmation on

the state of the data received.8 The usefullness of reliable service is obvious. Unreliable

service, on the other hand, might be desirable if the network user performs his own error

checking, or simply because it is only important a signi�cant portion of the data comes

through.

7
You all know those �zzles and crackles on long distance calls. You can image what they do to an electric

pulse less than a millisecond wide.

8
Well, it's actually not that simple. Ask Prof. Murphy.

The second criterion is whether actual connections are desired, or connectionless service

will su�ce. In real life, telephone conversations versus letters sent by postal mail give a

pretty good example of the di�erence between the two types of service. In the networking

world, UUCP de�nitely is connectionless, altough not necessarily unreliable (don't laugh!).

The other kind of service is, for example, a dialup session at your favorite BBS | where the

\application" connection coincides with the physical conection | or an FTP session to an

overseas server | providing for the illusion of a direct connection. The latter is therefore

also called a virtual connection.

Lower layers may well provide unreliable service, with a higher layer adding error check-

ing and thus providing a reliable service. Equally, a connection-oriented service may be

built upon a connectionless service by some layer making sure that any data sent arrives at

the destination host and is delivered to the upper layer in the order sent.

To perform its duty, peer processes may need to exchange administrative information

related to the data being passed, for example checksums, acknowledgements, or requests to

build up or release a connection. Therefore, each layer generally wraps up the data it is

handed from above, adding any information it wants to pass along to its peer. Generally,

this is done by adding a header (and possibly a trailer). This may be as little as a few bits

to separate packets from each other, and as much as a few dozen bytes. This combined

data is then passed to the software of the layer below, which processes the data according

to the service requested but is completely ignorant of the packet's contents. It may then

add its own header, and so on. When the packet arrives at the remote host, each layer in

turn unwraps the data it is handed from below, processing it according to the information

contained in the header, and passes it on to the layer above.

1.3.1 The Phyiscal Layer

The basic layer is the physical layer, which deals with the physical aspects of the equipment

used, like wiring, timing logic, etc. We leave that to the people in the soldering iron

department.

The most widely used equipment is what is commonly known as Ethernet. It consists ofa

single coaxial cable with hosts being attached to it through connectors, taps or transceivers.

Ethernets come in two avors, called thick and thin, respectively. Most people prefer thin

over thick Ethernet, because it is much cheaper: PC cards come for as little as US$ 80.

Together with a net transfer rate of 10 Megabit per second this accounts for much of its

popularity.

One of its drawbacks is that the cable length is usually limited to 200 meters, which

precludes any use of Ethernet technology other than for LANs. Several Ethernet segments

may be linked to each other using repeaters, bridges or routers. Repeaters simply copy the

signals between two or more segments, so that all segments together will act as if it was one

Ethernet. Due to timing requirements, there may not be more than four repeaters between

any two hosts on the network. Bridges and routers are more sophisticated. They analyze

incoming data and only forward it when the recipient host is not on the local Ethernet.

They will be covered in section 1.3.6.

1.3.2 The Data Link Layer

The next layer is the data link layer which utilizes the physical layer to exchange data

with hosts it is physically connected to. It is there to hide any idiosyncrasies of the hardware

and o�er a uniform interface to the upper layers, so that the network software need not

worry about di�erent types of hardware. For each type of equipment used, a di�erent driver

has to be implemented. For example, there are kernel drivers for handling I/O with your

Ethernet card, as well as a SLIP driver for sending network tra�c over a serial line. The

low-level protocol drivers UUCP uses to safely transfer data over telephone lines also belong

here.

The protocols involved in using an Ethernet are described in standard no. 802.3 is-

sued by the IEEE.9 The standard allows for an arbitrary number of hosts on an Ethernet.

To distinguish them, each host is assigned a unique 6-byte address, usually written as

aa:bb:cc:dd:ee:ff. Data is transported in chunks (so-called frames) of up to 1500 bytes

long, with a header and trailer being added that contain source and destination address

along with a checksum.

To send a frame, a host has to wait until the Ethernet is idle (no other tra�c) and

then may start sending its frame. All stations will receive this and compare the destination

address to their own address. All but the proper recipient will discard the frame, while the

recipient will hand the frame's data to the upper layers.

If two stations try to send a frame at the same time, there is a collision. Both will stop

transmitting and restart after a random time interval.

On serial lines a \de facto" standard is frequently used, which is SLIP, or serial line IP.

A modi�cation of this is known as CSLIP, or compressed SLIP, and performs compression

of IP headers to make better use of the relatively low bandwidth provided by serial links.10

An entirely di�erent serial protocol is PPP, or point-to-point protocol. It has many more

9
To be exact, IEEE 802.3 covers both the physical layer and the medium acess sublayer (MAC) speci�-

cations of an Ethernet. The medium access sublayer is the lower part of the data link layer. The upper part

is governed by the Logical Link Control (LLC) protocol, which is the same for token bus (IEEE 802.4) and

token ring (IEEE 802.5). LLC itself is described in IEEE 802.2.

10
SLIP and CSLIP are described in RFC 1055 and RFC 1144, respectively.

features than SLIP, including a link negotiation phase. Its main advantage over SLIP,

however, is that it isn't limited to IP datagrams, but was designed to allow for any type

of datagrams to be transmitted. It is assumed that it will one day replace SLIP.11 PPP is

an example of a data link protocol that may be used for more than one type of hardware.

Although its main use today is for serial lines, where are debates going on if it should one

day become the standard for ISDN-links.

In TCP/IP networks, the data link layer is also responsible for resolving IP addresses

to the hardware-dependent address. On Ethernets, for example, the Address Resolution

Protocol, or ARP, is used to �nd the Ethernet address corresponding to an IP address.12,13

ARP uses the broadcast feature of Ethernet to send a query with the unresolved IP address

to all stations on the local Ethernet. The host recognizing the address as its own returns a

message to the sender, containing its Ethernet address.

ARP, however, is not limited to Ethernets. It may be used over any hardware that

supports broadcasting, for example AX.25 (used for transmitting IP packets over packet

radios).

The results of ARP queries are stored in a kernel table from which the driver may look

them up. Entries in this table are discarded after a certain time to keep this table from

overowing.

1.3.3 The Networking Layer

On top of the data link layer lies the networking layer. It is responsible for transporting

data given to it to the destination host using the services provided by the data link layer.

In TCP/IP networking, this operation is generally performed using the Internet Protocol,

abbreviated IP. The destination host is given to it as a number 32 bits wide, called the

IP addresses. We will later see how they are made up (see section 2.1).

One of the networking layer's duties is interconnecting physically dissimilar networks

(like Ethernets, token rings, etc.) into one apparently homogeneous network. This is called

internetworking, and the resulting \meta-network" is called an internet. Note the subtle

di�erence between an internet and the Internet here. The latter is the o�cial name of one

particular internet.

11
The original description of PPP can be found in RFC 1134, however there are a number of ancillary

RFCs.

12
ARP uses the broadcast feature of Ethernet to probe for any host that recognizes the IP address as his.

See RFC 826 for a speci�cation of ARP.

13
To allow booting a diskless client via the network, there's a related protocol for mapping Ethernet to

IP addresses, named RARP (reverse ARP). This, however is not implemented in the data link layer, but is

provided by an independent server.

To achieve the illusion of a single (inter-) network, the data link layer hides the diversity

of the equipment used by de�ning an abstract \interface". This interface o�ers a set of

operations which is the same for all types of hardware.

In TCP/IP networking, interfaces are identi�ed by a name. For example, Ethernet

interfaces in Linux are called eth0, eth1, etc, and SLIP interfaces come as sl0, sl1, etc.

While the operations of the data link layer only involve hosts that may communicate

with each other directly | e.g. all hosts on an Ethernet |, the network layer's task of

delivering data to any destination requires cooperation between a possibly large number of

hosts: when the destination cannot be reached directly, the sender has to rely on one or

more other hosts to act as forwarders. The sequence of intermediate hosts the data has to

travel is usually referred to as a route.

Most networks implement some algorithm in the network layer to construct these routes.

In packet-switched networks, this algorithm often performs \dynamic" routing, which means

that routes are adjusted whenever necessary. The opposite, static routing, is often used for

mail routing in UUCP-based networks, where new routes are computed once every few days

or weeks.

Another, equally important duty of the network layer is congestion control. When

network tra�c increases, some links tend to congest quickly. To relieve these, some of the

sending hosts might be told to decrease the rate at which they emit data. Networks that

use a dynamic routing scheme also have the option to adapt their routing decisions to the

actual network load.

In TCP/IP networking, routing and congestion control are handled by IP, and a com-

panion protocol, the Internet Control Message Protocol (ICMP). Routing information in

the networking layer is usually static, but may be adapted dynamically from router daemons

(e.g. routed). These daemons regularly exchange local routing information, and update

the kernel's routing tables according to the information received.

The IP layer of remote hosts may also send an \ICMP Redirect Message" when it detects

that a sending host has chosen a bad route. This enables the sending host to augment its

routing table by the hint returned in the redirect message.

Another responsibility of ICMP is to return an indication to the sender in case an error

occurred. For example, if a host receives an IP packet for an address that it is unable to

reach, it returns an error message to the sender. The most widely known ICMP message,

however, is the \Echo" message, which simply causes the destination host to acknowledge

its receipt. This is used by the Un?x ping tool (see 3.8.1) to test the reachability of foreign

hosts and compute the delay in getting there.

The networking layer in UUCP is not as obvious as with IP. UUCP does not perform

any routing of its own, but expects to be handed the destination's address in form of a

route. UUCP's network layer only pushes around �les between hosts, establishing point-

point-connections to transfer them at certain times. Generation of the route has to be

performed by higher levels.

The entirety of the lower three layers is also often referred to as the subnet, because this

is where actual networking | in the terms of handing information from host to host |

takes place. The layers above only deal with the destination host, the service desired on

the remote host, and possibly a route to it.

The service IP o�ers to the upper layers is connectionless and unreliable. One reason

for this is that experience has shown that the subnet is inherently unreliable, even in the

presence of a reliable networking protocol: Gateways may fail, or packets might be routed

to the wrong destination, or take a long route only to pop up at the destination much later,

and so on. But then, connection-oriented service which is not reliable is not very useful.

Another reason is that one also wants to utilize the routing services provided by the IP level

for transports that don't need a connection to be established, so that this is best added in

a higher layer. This is done in the next layer, the so-called transport layer.

1.3.4 The Transport Layer

Its task is to provide the upper layers with access to a remote host's services. In TCP/IP

networks, di�erent types of transport may be provided. One is implemented using TCP,

or Transport Control Protocol. It builds a connection-oriented reliable service on top of IP.

There are many gory details to this which we will not discuss here.

Another protocol implemented nearly everywhere is UDP, or User Datagram Protocol,

which o�ers an unreliable connectionless service. It takes packets of data and hands them

to the IP layer for transport, caring little if they arrive at all, and even less if they do so in

the order sent. However, if a host �nds it cannot deliver a UDP packet properly, it returns

an error indication, so that the sender has some noti�cation of whether the datagram got

through.14

Finally, there's a protocol that doesn't perform any actions by itself, but simply hands

data on to the IP level. This is the RAW protocol.

Of course, networking requires a destination that the data should be delivered to once

it has arrived on the remote host. For example, you wouldn't want your love letters to be

14
This feature is used by a debugging tool, traceroute, to detect the route IP datagrams take to a given

destination. It sets the datagram's ttl (time-to-live) value such that it is discarded by the host that is exactly

n hops away from the sender, gradually increasing the ttl until it reaches the remote host. From the error

messages it can deduce the sequence of hosts the datagrams pass.

passed to the news subsystem, or all of comp.os.linux to the printer spooler. Thus, the

destination address needs to contain a description of the service to hand the message to.

On UUCP-based networks, this is solved by specifying a program to be invoked which

will process your data. For example, to print this book on hostA, you would issue the

following command at the prompt:

$ uux - hostA!lpr -Plaserjet < netguide.dvi

With TCP/IP networking, a more general scheme is used. Each service a site o�ers

de�nes a so-called service access point through which it may be contacted. These service

access points are assigned port numbers. Now, when a process wants to contact a service

on a remote host, it passes the data to be transferred to the networking software, alongside

with the remote host's address and the service's port.

One certainly wants the transport layer to support several concurrent connections to the

same service, like several remotely logged-in users. To distinguish these, the client always

has to specify a sender port number, which has been generated uniquely by the originating

host. Thus, a connection is determined uniquely by a host/port pair for each of the two

hosts involved.

In order for the client to know the proper port number to use for accessing a particular

service, an agreement has to be reached between the administrators of both systems on

the assignment of these numbers. For services that are only used within an organization,

this can be done privately. However, service numbers widely used (such as for the network

�lesystem, telnet, electronic mail, etc), have to be administered centrally. This is done

by the IETF (or Internet Engineering Task Force), which regularly releases a RFC titled

\Assigned Numbers".15 It describes, among many other things, the port numbers assigned

to well-known services. There is also generally a �le translating service names to numbers,

it is called /etc/services. It is described below in 4.1.

However, this is not yet the entire truth. Consider a datagram arriving on a host. Who

decides what transport protocol it is handed to? Of course, you may say, the transport layer

might decide from the port numbers of sender and destination which protocol is involved.

But, for some protocols, like RAW, there is no such thing as a connection established before-

hand, so there is no information on the protocol involved. Therefore, there is an IP header

�eld containing a protocol identi�cation which allows it to dispatch the datagram to the

appropriate driver in the transport layer. This identi�cation is a 16 bit number. The cor-

respondence between protocols and numbers is, of course, also a matter of standardization,

and is also laid down in the \Assigned Numbers" RFC. On your host, this information is

kept in the �le /etc/protocols.

15
Its most recent release is RFC 1060.

All layers up to the transport are generally located in the kernel, and so they are in

Linux. The user interface most common in the Un?x world is the Berkeley Socket Library.

Its name derives from a popular analogy for service access points that views ports as sockets,

and connecting to a port as plugging in. It provides calls to specify a remote host, a transport

protocol, and a service (bind(2)) to which to connect or to listen to (using connect(2),

listen(2) and accept(2)). The socket library is however somewhat more general, in that

it provides not only a class of network-based sockets (the AF INET sockets), but also another

class that handles connections local to a machine (the AF UNIX class). Some versions can

also handle other classes as well, for instance those that have a class of sockets for the XNS

(Xerox Networking System(?)) protocol, or for X.25.

1.3.5 The Upper Layers

The session layer usually deals with the way two communicating processes exchange status

information and service requests. For example, a FTP application somehow has to tell the

FTP service on the remote host which �le to retrieve, or which directory to change to.

In TCP/IP networking, no standard session layer is provided. Every application has

to de�ne and implement it separately. However, a common practice for applications using

TCP connections is to de�ne a set of messages transferred as lines of ASCII text, terminated

by carriage return and linefeed. A protocol de�nes the commands that may be issued by

the client, and a set of responses to be returned by the server. Responses most often consist

of a three-digit octal number that may be followed by a human-readable interpretation of

the message. Transmission of text is usually terminated by a line containing a single dot.

An example is SMTP, the Simple Mail Transfer Protocol.

Figure 1.1 shows a sample SMTP session. Lines beginning with a three-digit number

are messages from the server, all other lines are commands issued by the client.

The layer immediately above is the presentation layer, which provides for a system-

independent representation of data to be transferred. Again, in TCP/IP networks, every

application has to de�ne this for itself. For example, FTP de�nes a representation to transfer

text �les between any two machines, and TELNET has a virtual terminal to represent

terminal control sequences in a system-independent fashion.

Both of these layers are absent in UUCP networks.

The upmost layer is the application layer. This is the user program performing a

particular task, like ftp or the mail transport software.

220 monad.swb.de Smail 3.1.28.1 #6 ready at Tue, 29 Jun 93 10:45 MET DST

HELO fubar.swb.de

250 monad.swb.de Hello fubar.swb.de

MAIL FROM:okir@fubar.swb.de

250 <okir@fubar.swb.de> ... Sender Okay

RCPT TO:torvalds@niksula.hut.fi

250 <torvalds@niksula.hut.fi> ... Recipient Okay

DATA

354 Enter mail, end with "." on a line by itself

--- (sending mail message) ---

.

250 Mail accepted

quit

221 monad.swb.de closing connection

Figure 1.1: A sample SMTP session.

1.3.6 Internetworking

Above we stated that one of the networking layer's duties was to link physically dissimilar

networks to form an internet. But, of course, it would be rather limiting to allow linking

of networks only at this level of the protocol stack. For example, assume a LAN that

consists of several Ethernets. Linking them by just inserting a long piece of cable between

the segments does not work because of the electrical speci�cations. On the other hand,

inserting a gateway at each junction is forbidding because of the delay introduced. Imagine

some data of yours had to pass a dozen or so gateways just to travel a few hundred yards

distance, being constantly wrapped and unwrapped by Ethernet drivers!

A simple solution to this problem is the use of repeaters. These are electrical devices

used to connect two Ethernets, who do not perform any analysis of data passing through

it, but only copy bits to and fro. Now tra�c may oat freely between all Ethernets, and

there are no limitations.

Sadly, this is not so. For one, timing speci�cations require that a signal sent by one

station on an Ethernet reaches any other station within a certain amount of time. This

puts an upper boundary of four on the number of repeaters two stations may be apart.

Another drawback of repeaters is that instead of at most a few dozen machines on one

local segment, all machines from the linked segments compete for the right to transmit a

frame. When segments A and B are linked by a repeater, all stations on segment A have

to shut up when a station on segment B talks.

Another solution is the use of bridges. These are still Ethernet-speci�c devices, but

instead of simple bit-shu�ing, a bridge receives entire frames, analyzes the recipient, and

only copies it to one of the adjacent segments when the recipient is known to be on that

segment (or known to be reachable through this segment). A bridge does not su�er from

the limitations of a repeater, because the single Ethernets remain separate entities, and

frames only get copied to another segment if really needed. The drawback of bridges is that

they need to be con�gured properly.

Now, let's have a look at where these techniques �t in our protocol stack. A gateway,

as we said, is located in the networking layer. Repeaters are on the other end of the scale,

they operate entirely at the physical layer, while bridges are in the data link layer.

Of course, one can also think of internetworking schemes that reside in still higher levels.

For example, one could think of a program that accepts TCP connections for remote hosts,

multiplexes them onto a serial line, with a similar program demultiplexing the whole on

another machine and opening a separate TCP connection to the target host.16 Such a

program would de�nitely operate at the transport layer.

16
In fact, there is a program for Linux that does roughly this. This is the term(1) program written by

Micheal O'Reilly, oreillym@tartarus.uwa.edu.au.

Chapter 2

Issues of TCP/IP Networking

2.1 IP Addresses

As mentioned in the previous chapter, the addresses understood by the IP network layer

are 32-bit numbers. Every machine must be assigned a number unique to the networking

environment. If you are running a local network that does not have TCP/IP tra�c with

other networks, you may assign these numbers according to your personal preferences.

However, for sites on the Internet, numbers are assigned by a central authority, the Network

Information Center, or NIC.1

For easier reading, IP addresses are split up into four 8 bit numbers called octets.2 For

example, uunet.uu.net has an IP address of 0xC0306002, which is written as 192.48.96.2.

This format is often referred to as the dotted quad notation.

Another reason for this notation is that IP addresses are split into a network number,

which is contained in the leading octets, and a host number, being the remainder. Depending

on the size of the network, the host part may need to be smaller or larger. To accomodate

di�erent needs, there are several classes of networks, de�ning di�erent splits of IP addresses.

A Class A networks have network numbers of 1.0.0.0 through 127.0.0.0.

This provides for a 24 bit host part, allowing roughly 1.6 million hosts.

B Class B networks have network numbers 128.0.0.0 through 191.255.0.0.

This allows for 16065 nets with 65534 hosts each.

1
To apply for an IP address for your network, send a mail to hostmaster@nic.ddn.mil. It is recommended

to obtain one even if you don't intend to get on the Internet yet; you may want to in the future.

2
They aren't called bytes because there are machines on the Internet with byte sizes other than eight

bits.

33

C Class C networks have network numbers 192.0.0.0

through 223.255.255.0. This allows for nearly 2 million networks with

up to 254 hosts.

D Addresses falling into the range 224 through 254 are reserved for future use

and don't speci�y any network.

This shows that uunet's address refers to host 2 on the class C network 192.48.96.0.

When applying to the NIC for IP addresses, you do not do so for each separate host you

plan to use. Instead, you are assigned a network number, and are allowed to assign all valid

IP addresses within this range to hosts on your network according to your preferences. The

network class you are assigned depends on the size of the network you are running.

You may have noticed that in the above list only 254 possible values were allowed for

octets in the host part. This is because host numbers with octets all 0 or all 255 are reserved

for special purpose. An address with all host part octets zero refers to the network, and

one with all host part octets 255 is called a broadcast address. This refers to all hosts on

the speci�ed network simultaneously. Thus, 192.48.96.255 is not a valid host address, but

refers to all hosts on network 192.48.96.0.

There are also two network addresses that are reserved, being 0.0.0.0 and 127.0.0.0.

The �rst is called the default route, the latter the loopback address. The default route has

something to do with the way IP routes datagrams.

The loopback network is a class A network reserved for testing and debugging purposes.

Usually, address 127.0.0.1 will be assigned to a special interface of your host. This is

called the loopback interface and acts like a closed circuit. Any packet handed to it from

TCP or UDP will be returned to them as if they had just arrived from some network. This

allows you to develop and test networking software without ever using a \real" network.

2.2 IP Routing

When you write a letter to someone, you will usually put a complete address on the envelope,3

specifying the country, state, zip code, etc. After putting it into the letter box, the postal

services will deliver it to its destination: they will send it to the country indicated, whose

national postal services will dispatch it to the proper state and region, etc. The advantage

of this hierarchical scheme is rather obvious: Wherever you send the letter from, the local

postmaster will know roughly the direction to forward the letter to.

IP networks are structured in a similar way. The whole Internet consists of a number

of proper networks, called autonomous systems. Each such system performs any routing

between its member networks internally, so that the task of delivering a datagram is reduced

to �nding a path to the destination host's system. This means, as soon as the datagram is

handed to any host that is on that particular network, further processing is done exclusively

by the network itself.

This structure is reected by splitting IP addresses into a host and network part, as

explained above. By default, the destination network is derived from the network part of

the IP address. Thus, hosts with identical IP network numbers should be found on the

same network, and vice versa.3

Now, of course, one would prefer a similar scheme inside the network, too, since it may

consist of a collection of hundreds of smaller networks itself, with the smallest units being

physical networks like Ethernets. Therefore, IP allows you to subdivide an IP network into

several subnets.

Note that this is di�erent from what \subnet" means in the OSI model: The OSI term

refers to the entirety of equipment and software that is responsible for getting data from

one host to another:4 The transport layer hands a packet to the subnet, which does lots of

\don't ask" things, and �nally it pops up at the destination host | if you're lucky, that is.

However, in IP-speak, a subnet is something very concrete. In fact, it's just one of

those things the OSI term wants to hide: it is a subordinate part of an IP network that

takes over responsibility for delivering datagrams to a certain range of IP addresses. Like

an autonomous system, a subnet is identi�ed by the network part of the IP addresses it

represents. However, the network part is now extended to include some bits from the host

part. The number of bits that are interpreted as the subnet number is given by the so-called

subnet mask. This is a 32 bit number, too, which speci�es the bit mask for the network

part of the IP address.

A class B network, for example 149.76.0.0, is identi�ed by the �rst two octets of its

IP address. Thus, its subnet mask is 255.255.0.0. For delivery inside this network, it

might be split up into 254 subnets, being 149.76.1.0 through 149.76.254.0. They all

share the same IP network number, while the third octet is used to distinguish between

them. Thus they will use a subnet mask of 255.255.255.0.5

It is worth noting that subnetting (as the technique of generating subnets is called) is

only an internal division of the network. Subnets are generated by the network owner (or

3
Autonomous systems are slightly more general, however. They may comprise more than one IP network.

4
Probably the pre�x \sub" was chosen to suggest that it denotes some low-level functionality.

5
These subnets may now be subdivided again by further extending the network part of the IP address.

Of course, di�erent \sub-subnets" may use di�erent subnet masks. However, hosts on the same subnet must

use the same subnet mask for this subnet.

the administrators). Frequently, subnets are created to reect existing boundaries, be they

physical (between two Ethernets), administrative (between two departments), or geograph-

ical, and authority over these subnets is delegated to some contact person. However, this

structure only a�ects the network's internal behavior, and is completely invisible to the

outside world.

At the lowest level, subnet boundaries usually coincide with hardware boundaries. The

viewpoint of a host on a given subnet is a very limited one: The only hosts it may talk to

directly are those of the subnet it is on. All other hosts belong to the Great Blue Yonder

which is accessed through so-called gateways. A gateway is a host that is connected to

two or more subnets or networks simultaneously. This may be a bridge (simply copying

datagrams from one Ethernet to another), a router (a special device that runs some sort

of IP routing software), or a computer. Therefore, hosts which are connected to more than

one subnet need one IP address per subnet. Consequently, IP addresses and subnet masks

are not considered host parameters, but interface parameters.

Frequently, tra�c between two subnets has to traverse more than one gateway. The

sequence of hosts to travel is called a route. The scheme by which datagrams are directed

to the proper host is called routing. Consider a datagram being handed to the IP layer of a

host on some Ethernet. It will check if the network portion of the IP address is the same has

the Ethernet's subnet number (as determined by the subnet mask), and if so, will deliver

it directly. Otherwise, it is passed to a gateway which is supposed to deliver the datagram

to the destination host. The gateway, having received a datagram, basically faces the same

options as the sender, namely local delivery to one of the adjacent Ethernets, or forwarding

to another gateway | but it is presumably one step closer to the destination. Thus, in the

presence of several gateways, the cunning in IP routing lies in guessing the \right" one to

hand the datagram to. The \right" one | apart from any quality critera one might wish to

consider | is a gateway that is able to forward the datagram to the destination network.

Thus, the routing information used by IP is basically an (incomplete) table linking

networks to gateways to reach them through. A catch-all entry (the \default gateway")

must generally be supplied, too; this is the gateway associated with network 0.0.0.0.6

Well, before you start collapsing or begin to wonder why you thought networking seemed

such a neat thing in the �rst place, we will provide you with an example. In �gure 2.1, a

part of the network topology at Groucho Marx University (GMU) is shown.

GMU has a class B network address of 149.76.0.0. The administrators at the Groucho

Computing Centre (GCC) have decided to use the third octet as a subnet number to address

6
Routing data through a default gateway is inherently ine�cient. To straighten out bad default routes, a

gateway may notify the sending gateway of a better alternative by sending it an \ICMP redirect" message.

ICMP is the Internet Control Message Protocol. It is described in RFC 792.

12.9

78.12.8.146

English & Old English Groucho Computing Centre (GCC)

Mathematics Groucho Marx Particle Collider Labs

12.0

2.0

1.0

4.0 14.0

5.0

5.1

1.4 1.12

1.5 1.2

2.15.1

12.1

12.74.4 12.6 14.2

Internet

2.9

Figure 2.1: A part of the net topology at Groucho Marx Univ.

LANs. Thus, the subnet mask is 255.255.255.0. The subnet numbers are shown at the

center of the circles, which represent LANs. For example, the Mathematics Department

runs a single LAN, which has been assigned 149.76.4.0, while the Collider Lab has two

LANs, having network addresses of 149.76.12.0 and 149.76.14.0, respectively. Most

LANs are connected to a Fiber Optics cable that runs across the campus. This is a network

by its own right, and has been given number 149.76.1.0.

In the above graphic, hosts which are on two networks at the same time are shown

with both addresses. For example, the machine that is the gateway between 12.0 and the

Fiber Optics cable has address 149.76.12.1 when talking to the Collider Lab LAN, and

149.76.1.12 when talking to network 149.76.1.0.

An example routing table for 149.76.12.1 might look like this:

Network Gateway

149.76.2.0 149.76.1.2

149.76.4.0 149.76.12.7

149.76.5.0 149.76.1.5

149.76.14.0 149.76.12.6

: : :

0.0.0.0.0 149.76.1.2

Routing tables may be built by various means. For LANs, it is usually most e�cient

to construct them by hand and feed them to IP using the route command at boot time

(see section 3.6). For larger internets (see section refintro.osi.subnet), they are built and

adjusted at run-time by routing daemons; these run on central hosts of the network and

exchange routing information to compute \optimal" routes between the member networks.

The intended scope of their arbitration determines the protocol employed. For routing

inside autonomous systems (such as Groucho Marx campus), the internal routing protocols

are used. The most prominent one is RIP, or Routing Information Protocol, which is, for

example, supported by the BSD routed daemon. For routing between autonomous systems,

external routing protocols like EGP (External Gateway Protocol), or BGP (Border Gateway

Protocol) have to be used; these (as well as RIP) have been implemented in the University

of Cornell's gated. We will not describe them in this document.7

7
For further information, please refer to RFC 1058 (RIP), RFC 827, RFC 904 (EGP), RFC 1163, and

RFC 1266 (BGP).

2.3 The Domain Name System

As described above, addressing in TCP/IP networking revolves around 32 bit numbers.3

However, you will have a hard time remembering more than a few of these. Therefore,

\ordinary" names are generally used to name hosts on a network. It is then the application's

duty to �nd the IP address corresponding to this name. This process is called address

resolution.

Now, on a small network like an Ethernet, or even a cluster of them, it is not very di�cult

to maintain tables mapping host names to addresses. On Un?x systems, this information

is usually kept in a �le named /etc/hosts. This is also the way address resolution was

initially handled on the Internet. However, since the beginning of the eighties, the number

of sites and computer networks has exploded, so that it is virtually impossible to keep

routing information up to date.

This is why a new address resolution scheme has been adopted, the Domain Name

System, or DNS for short. Host addresses have been organized in a hierarchy of domains.

A domain is a collection of sites that are related in some sense | be it because they form

a proper network (e.g. all machines on a campus, or all hosts on BITNET), because they

all belong to a certain organization (like the U.S. government), or because they're simply

geographically close. Such a domain may itself be part of a larger domain, which is in turn

part of a still larger domain. This relationship is described as being a subdomain of the

larger domain. To produce a unique address for each machine,8 names inside a domain must

be unique. Assume a machine in the mathematics department of Groucho Marx College is

named gauss. The Ethernet run by the maths department will then be called something

like maths, and the whole campus network might be named groucho. Thus, the machine's

address would be gauss.maths.groucho.edu. Such a name determines the site's place in

the domain hierarchy and is called its fully quali�ed domain name(FQDN).

There is also one pseudo-domain which encompasses all hostnames and domains. It

is called the root domain and denoted by a single dot. Therefore, fully quali�ed domain

names are sometimes written with a trailing dot to indicate that they are relative to the

root domain.

There are a number of major domains, which are split up into subdomains, which may

again be split up, etc. The US top-level domains are

.edu Educational institutions like universities, etc.

.com Commercial organizations, companies.

8
In fact, what's needed is only a scheme that maps a name to a host. It is perfectly legal for a machine

to have several names (i.e. aliases).

.org Non-commercial organizations. Often private UUCP networks are in this

domain.

.mil US military institutions.

.gov US Government agencies.

.net Gateways and other administrative host on a network.

.uucp O�cially, all site names formerly used as UUCP names without domain,

have been moved to this domain.

Outside the US, each country generally de�nes its own top domain, like .uk for the United

Kingdom, .fr for France, .de for Germany, or .au for Australia etc.

Now the idea behind DNS is that address data may be retrieved from so-called name

servers that do not hold the entire database, but only a fraction of the overall data in their

cache. In the beginning, a name server doesn't have much information than on the local

domain. The storage in which this data is kept is called the cache. This information may

be retrieved by anyone by simply sending a query to the name server, which returns the

desired information.

Usually, there will be only one name server (or at most a few) for any given domain.

Clients within this domain will have to query one of them to obtain addresses for a given

hostname. So, how can a client obtain the IP address from a host in a di�erent domain?

Assume the client queries the local name server for tsx-11.mit.edu, who fails to �nd

it in its cache. However, instead of returning an error, it checks if it �nds the address of the

mit.edu domain name server in its cache. If this still fails, it looks for edu, and �nally for

a name server for the root domain. Only if this fails, too, will it return an error. However,

if any name server address is found, a query for tsx-11.mit.edu will be sent to this server,

which will most probably produce the corresponding address. The local name server will

return the resulting address to the client, and store it in its cache for further use.

Now, DNS wouldn't buy us much if the root name server still had to know all addresses.

Therefore, the name space has been split up into zones of authority that maintain their part

of the name space independently. A zone of authority is roughly the same as a domain for

which an organization assumes responsibility. It has a topmost node, which is the (domain)

name, and comprises all (domain and host) names below that node unto the beginning of

a new zone. For these, it has to provide name service mapping hostnames in this zone

to IP addresses. Responsibility may be further delegated to subdomains, by creating new

zones at these domains, which then provide independent name service for themselves.

Now, when in the above example, the local name server queries the root name server,

this will look if it �nds any authoritative name server for the edu zone of authority. There

sure are name servers for edu, one of them being a.isi.edu. The root name server will

then return its IP address to the local name server, along with the indication that this is a

name server's address. The local name server will then continue and query a.isi.edu for

tsx-11.mit.edu, which will probably return a pointer to one of MIT's name servers, etc.

This looks like a lot of tra�c being generated for looking up one simple address, but is

really only miniscule compared to the amounts of data that would have to be transferred

with the old method.

We have seen in the example above that DNS does not only deal with IP addresses of

hosts, but also exchanges information on name servers. There are in fact a number of types

an entry in the DNS database may have.

Entries in the DNS database are called resource records, They have a certain type

associated with them, describing the sort of data contained, and a class, describing the sort

of network address associated. The latter accomodates the needs of di�erent addressing

schemes, like IP addresses (the IN class), or addresses of Hesiod networks9 (the HS class),

and many more. The prototypical resource record type is the A record which associates an

IP address with a fully quali�ed domain name. Another type of record, linking aliases for

a domain or host to its canonical name, is the CNAME resource record.

Now, each zone maintains at least two master name servers which are authoritative for

this particular zone. Authoritative information is stored in the SOA resource record (which

stands for \Start of Authority"). It is loaded into the master name server at boot time,

together with a list of A records describing the names and IP addresses of all hosts in the

zone.

Any query for an address in that zone will eventually be passed to one of them (unless,

of course, an intermediate server has cached the information). However, as we read above,

the root of a zone is part of the zone itself, whence the dilemma arises how to query a name

server whose address is the subject of the query itself. Therefore, authoritative data has to

be accompanied by information on the master name servers of the zones directly below. It

is kept in NS and A resource records, which give the nameserver's hostname and IP address

for the subordinate zone. Since this information is what holds the name space together,

they are also called glue records. Since nameservers belong to their respective zone, these

are never authoritative.

The master name servers for a zone are kept in sync by making one the primary name

server, and the others secondary. The primary server loads its zone information from so-

called zone �les at startup, while secondary servers transfer this information from the pri-

9
Anybody explain to me what they are?

mary server. To keep themselves fairly well synchronized, secondary servers expire this data

after a certain time, which means they query the primary server if the zone's authoritative

information has changed, and if so, reload it.

c

grouchocornell

gauss euler

physics

isi

com edu

.

mathsb

nukes theory

venera

collider

english

down strangeup

Figure 2.2: A part of the domain name space

Maybe an example to visualize this might be in order here. Consider the section of

the name space given in Fig. 2.2. Those domains marked by a fat dot de�ne the root of a

zone. You can see that the physics department of our �ctitious Groucho Marx University

have been given authority over their network. Thus, the zone of authority starting at the

node labelled groucho.edu. comprises all of the maths and English department, while the

physics department is a separate zone.

Assume that the master name server for the physics department is located at

149.76.12.1. Then the con�guration �le loaded into the nameserver might contain data

as shown in �gure 2.3, while the con�guration �le for the master name server for GMU will

have a line in it as shown in �gure 2.4.

In the two �gures, you may note that some names end with a dot, while others don't.

That is because the latter are only given relative to the domain groucho.edu, and the

others are given absolute. DNS software distinguishes this by a trailing dot.

Finally, there's one special domain that is used to �nd hostnames corresponding to

IP addresses and networks. This is called reverse mapping, and may be used by some

applications to �nd out the caller's hostname. For example, some FTP servers only al-

low you to log in when they are able to �nd your host name. The domain used for

;

; Authoritative Information on physics.groucho.edu

@ IN SOA {

up.collider.physics.groucho.edu.

hostmaster.up.collider.physics.groucho.edu.

1034 ; serial no

360000 ; refresh

3600 ; retry

3600000 ; expire

3600 ; default ttl

}

;

; Our secondary name server

IN NS gauss.maths.groucho.edu.

;

; Hosts in the physics Dept.

;

; Collider Lab

up.collider IN A 149.76.12.1

down.collider IN A 149.76.12.4

strange.collider IN A 149.76.12.6

boson.collider IN A 149.76.14.1

muon.collider IN A 149.76.14.7

...

;

; Nuclear Physics Dept.

bohr.nukes IN A 149.76.8.3

hahn.nukes IN A 149.76.8.77

...

Figure 2.3: An excerpt from the named.hosts �le for the Physics Department.

@ IN SOA {

vax12.gcc.groucho.edu.

hostmaster.vax12.gcc.groucho.edu.

233 ; serial no

360000 ; refresh

3600 ; retry

3600000 ; expire

3600 ; default ttl

}

....

;

; The zone of authority for the physics dept.

physics IN NS up.collider.physics.groucho.edu.

IN NS gauss.maths.groucho.edu.

;

; Glue record

up.collider.physics IN A 149.76.12.1

...

Figure 2.4: An excerpt from the named.hosts �le for GMU.

this is in-addr.arpa. To �nd out the name corresponding to, say 149.76.12.20, you

may query DNS for 20.12.76.149.in-addr.arpa. Equivalently, to �nd the name for

network 149.76.0.0, query DNS for 76.149.in-addr.arpa. Resource records linking

in-addr.arpa names to hostnames may be given using the PTR record type.

Now, it would be sort of unwieldy for user programs to query the name server directly,

putting together UDP datagramsmanually, and waiting for responses to come in. Therefore,

a library is used, the so-called resolver. Its con�guration is explained below in section 3.9.10

10
For more information on DNS and its implementation, refer to RFC 1034 and RFC 1035, as well as

RFC 1033, which describes the named con�guration �le format.

Chapter 3

Con�guring TCP/IP Networking

3.1 General Remarks

Due to the nature of TCP/IP development in Linux, there has not been a single standard

for networking applications and con�guration in the past. For example, until recently, all

con�guration �les as well as most daemons resided under /usr/etc/inet. Many moved

this to /etc/inet to have these �les on their root partition, making /usr/etc/inet a

symbolic link to /etc/inet. In release 4.1 of the C library, H.J. Lu changed the location of

all network con�guration �les to /etc, which is the common place for such things on other

Un?x systems. Fred van Kempen, in his distribution of networking binaries, reintroduces

/usr/etc and creates /etc/net. Until things settle a bit more, I have found it convenient

to move everything to /etc, and make the other directories point to /etc:

mv /usr/etc/* /etc

mv /etc/inet/* /etc

rmdir /usr/etc /etc

ln -s /etc /usr/etc

ln -s /etc /etc/net

Other di�erences in network software distributions include the client and server pro-

grams distributed, which sometimes expect �les in di�erent places, etc. If you can't get

something to work, don't yell; get the latest networking software and kernel release. Some-

thing that's wrong will probably have been discovered by others as well, so that a �x (or

at least a proposed workaround) is likely to be known. Or it may simply be that some

applications won't work very well together because they make false assumptions about the

location of some �le. After all, Linux is \work in progress".

A good place to look before starting to con�gure Linux networking is the NET-2-FAQ.

46

It is maintained by Matt Welsh1 and is co-authored by a number of other people. It contains

the most up-to-date information. You can get it (among others) from tsx-11.mit.edu, as

/pub/linux/doc/NET-FAQ.

3.2 Software Installation

3.2.1 Installing the Binaries

For those who have been running network applications on Linux kernels prior to release

0.99.10, note that the new kernel networking code obsoletes some commands from the NET-1

code (most notably the config command), and requires a number of new commands. Most

application software, however, should continue to work.

Fred van Kempen has put together a complete binary and source distribution of admin-

istration tools and application programs, together with a coherent set of con�guration �les

(not included in release 10 of the binary distribution, although the in the source package).

The TCP/IP networking software to be used with the NET-2 release is available by

anonymous FTP from tsx-11.mit.edu in /pub/linux/packages/net/net-2. There are

three packages below binaries/net:

net-base.tar.z

This contains the administration tools speci�c to the NET-2 release, such

as ifconfig, route, etc, together with con�guration �les and boot scripts.

Note that the paths used in these �les are not consistent with any binary

releases prior to NET-2.

net-std.tar.z

This has all basic network applications. It includes telnet, rlogin, ftp

and NFS clients and servers.

net-ext.tar.z

This currently contains nothing but a version of the tin newreader capable

of reading and posting news via NNTP.

You may unpack all of these from the root directory, issuing

zcat net-xxx.tar.z | tar xvvpoof -

at the shell prompt.

1
Matt can be reached at mdw@tc.cornell.edu.

Alternatively, if you are a cautious person,2 you can unpack them in some safe location

and move them to the appropriate places by hand.

Sources to all programs are available from the same location, to be found be-

low the source directory. The source of tools included in net-base.tar.z is in

source/net/net-020.tar.z (of course, the release number will change).

3.2.2 Setting up the proc �lesystem

Some of the con�guration tools of the NET-2 release rely on the proc �lesystem for com-

municating with the kernel. This is a kernel interface implemented by Michael K. Johnson

that permits access to kernel run-time information through a �lesystem-like mechanism.

When mounted, you can list its �les like any other �lesystem, too, or display their contents.

Typical items include the loadavg �le that contains the system load average, or meminfo,

which shows current core memory and swap usage.

To this, the NET-2 code adds a net directory. It contains a number of �les that show

things like the kernel ARP tables, the state of TCP connections, and the routing tables.

Most network administration tools get their information from these �les.

The proc �lesystem (or procfs as it is also known) is not in the kernel by default, you

have to make sure it has been con�gured in. The best way to �nd out if you have it, try to

mount it as described below. If the procfs is not in your kernel, you will get a message like

\mount: fs type procfs not supported by kernel". You will then have to recompile

the kernel and answer \yes" when asked for procfs support.

The procfs is usually mounted on /proc at system boot time. The best method is to

add the following line to /etc/fstab:

procfs mont point:

none /proc proc defaults

and execute \mount /proc" from your /etc/rc script.

2
Ever had a binary distribution overwrite your /etc/passwd �le? :-).

3.3 Hardware Con�guration

3.3.1 A Tour of Linux IP interfaces

The Linux networking software comes with a number of hardware drivers. This section

attempts to provide you with basic information on con�guring your hardware components

for TCP/IP networking.

Please note that due to the current pace of development, the infor-

mation of this section will be rapidly outdated, so you should always

check the kernel source READMEs, too.

As described in section 1.3.2, the device drivers for the network hardware are located

in the data link layer. For each type of hardware, a special driver must be provided, while

the functionality they o�er to the layer above (the IP networking layer) is uniform across

all hardware. There are a number of attributes pertaining to an interface, for example its

IP address, its broadcast address, and its MTU. The MTU is the Maximum Transfer Unit

and denotes the maximum number of bytes the device is capable of transferring in one

transaction.

These attributes are set when con�guring the system at boot time, e�ectively making

the hardware available to the IP networking layer.

Any hardware-speci�c con�guration options must be set by di�erent means. At the

moment, this usually involves changing kernel compile options, and making a new kernel

image. An alternative is to provide a number of ioctl(2) calls for each device driver

that allows to set the hardware parameters. An example of this is the driver for Western

Digital/SMC Elite cards that allows to con�gure a board from software.

Of course, you somehow have to be able to specify an interface to the IP layer. This

happens by means of names assigned to the interfaces, consisting of a part describing the

interface type, and a unit number. These are names de�ned internally in the kernel, and

are not proper device �les in the /dev directory. However, the NET-2 code supports device

�les for most drivers which may be used for con�guring the driver, but the names of the

device �les and the interface need not agree.

There are a number of standard names for IP interfaces in Linux.

ethn The n-th Ethernet card. The current kernel supports one Ethernet board

known as eth0.

lo The local loopback interface. This is used for testing purposes. It sim-

ply sends IP datagrams to your host. There's always one loopback device

con�gured into the kernel, and there's little sense in having more or less.

sln The n-th SLIP interface. SLIP interfaces are associated with serial lines in

the order in which they are allocated; i.e., the �rst serial line being con�gured

for SLIP becomes sl0, etc. The kernel supports up to four SLIP interfaces.

This number may be increased when recompiling the kernel (change the

SL NRUNIT macro in net/inet/slip.h to suit your needs.

plipn The n-th PLIP interface. PLIP transports IP datagrams over parallel lines.

Up to three PLIP interfaces are supported. They are allocated by the PLIP

driver at system boot time, and are mapped onto parallel ports as described

in section 3.3.4. PLIP interfaces are associated with parallel lines in the

order in which they are allocated.

For other interface drivers that may be added in the future, like PPP, ISDN, or X.25, other

names will be introduced.

3.3.2 The Ethernet Driver

The current Linux network code supports various brands of Ethernet cards, as well as a

driver of the D-Link pocket adapter. This adapter allows to access an Ethernet through a

parallel port. All drivers were written by Donald Becker (becker@super.org), except for

the D-Link driver which was written by Bjorn Ekwall.

Currently, the drivers are only able to handle one Ethernet board, but the code will be

extended to support several cards.

The following brands of boards are supported:

3Com Boards 3c503 EtherLink II and 3c503/16 EtherLink II.

Novell Eagle NE1000, NE2000. A wide variety of clones is reported to work with it.

Western Digital/SMC

WD8003 and WD8013.

Hewlett Packard

HP27245, HP27247, and HP27250.

\Supported" here means, that it should work according to the specs. Read

comp.os.linux or the NET channel of the mailing list to �nd out if particular cards are

troublesome. You might also want to check the README �les in the net/inet subdirectory

of the kernel source directory; they usually contain the latest list of working hardware.

To use one of these cards with Linux, you may use a precompiled kernel that contains

drivers for all of them. At boot time, the code will try to locate the board and determine

its type. Cards are probed for at the following addresses and in the following order:

WD80x3 0x300, 0x280, 0x380, 0x2403

3c503 0x300, 0x310, 0x330, 0x350, 0x250, 0x280, 0x2a0, 0x2e0

NEx000 0x300, 0x280, 0x320, 0x340, 0x360

HP 0x300, 0x320, 0x340, 0x280, 0x2C0, 0x200, 0x240

Alternatively, you may compile the kernel yourself, including the drivers you need. To do

so, go to your kernel source directory and edit net/inet/CONFIG, which contains extensive

comments on the compile-time options available.

Sometimes the autoprobing code may not detect your card. In this case you have to

`hard-wire' your card's con�guration into the kernel. You do this by re-compiling the kernel

and specifying the board's address and IRQ in the �le net/inet/CONFIG in the kernel source

directory. Especially WD80x3 cards are said to exhibit this behavior. The current net-2

release (as of Linux kernel 0.99.10) therefore disables autoprobing for WD80x3 cards and

only looks for a board at 0x280, IRQ 15.

If you're using 3Com's Etherlink card, the driver uses the AUI connector by default.

The connector type is not yet settable from software, so if you want the BNC connector,

you have to recompile the kernel, too.

3.3.3 The SLIP Driver

SLIP, or Serial Line IP, is a widely used protocol for sending IP packets over a serial link. A

number of institutions provide dialup SLIP access to machines that are on the Internet, thus

providing IP connectivity to private persons (something that's otherwise hardly a�ordable).

To use a serial port for SLIP, no hardware modi�cations are necessary. After connecting

to the SLIP server via, for example, kermit, the line discipline is changed to SLIPDISC.

With this setting, the serial interface cannot be accesses from user processes anymore, but

only by the SLIP driver.

Changing to SLIPDISC is usually performed using a tool named dip.4 In fact, dip is

3
This is disabled at the moment; the driver only probes for a board at 0x280 on IRQ 15.

4
dip apparently means Dialup IP. dip was written by Fred van Kempen.

much more versatile than this. It provides a simple script interpreter that can dial and

login for you, convert the line to SLIP, and con�gure the network interface. See the sample

script that comes with the dip sources, or the manual page for more information.

dip may as well be used set up your machine as a SLIP server.5 For this, you have to

set up an account, say slip, giving it dip -i as login shell.6 When invoked with the -i

switch, dip determines the user who invoked it and looks up the client host's IP address and

related information in /etc/diphosts. This is used to set up the SLIP interface after the

serial line has been converted to SLIPDISC. After the line is dropped, dip frees the interface

and exits.

3.3.4 The PLIP Driver

PLIP stands for Parallel Line IP and implements a protocol for exchanging packets between

two machines via their printer ports: the so-called Crynwr protocol.7 It uses �ve of the

port's outgoing data lines and all �ve of the port's incoming status lines. Four lines are used

to transport the low and high nibbles of the data bytes, respectively, while the �fth is used

as data strobe. This somewhat peculiar design enables it to even work with unidirectional

interfaces often used for printers. A packet driver for bidirectional ports which uses the full

eight bit path seems to be in preparation, but is not yet available.

For connecting two machines using PLIP, you need a special cable sold at some shops as

\Null Printer" or \Turbo Laplink" cable. You can, however, make one yourself fairly easy.

Appendix A shows you how.

The PLIP driver for Linux was developed by Donald Becker. If compiled into the

kernel, it sets up a network interface for each of the possible printer ports. The mapping is

as follows:

Interface IRQ Address

plip0 5 0x3BC

plip1 7 0x378

plip2 2 0x278

This mapping does however not mean that you cannot use these parallel ports as usual.

They are only accessed by the PLIP driver when the corresponding interface is con�gured

5
Just for kicks: how about a dialup FTP server instead of anonymous UUCP?

6
Currently, this fails because login does not support arguments to the shell command. A way around

this is to write a small C program that simply calls system("dip -i");.
7
Although Crynwr sounds pretty much like a tiny village in Wales, it is the name of a company.

up.

3.3.5 Using wdsetup

If you own an Ethernet card by Western Digital or SMC, you are lucky, because there is

now a tool that allows you to con�gure your board's hardware at run-time. It is called

wdsetup and was written by Gregg Weber.8 If your board is sophisticated enough, it will

allow you to view and change the board's con�guration.

There are three ways to con�gure an Ethernet board. Most cards come with a number of

jumpers on-board that allow to set parameters like the I/O base address. With the dumbest

ones, that's all there is. Smarter cards have a number of registers, whose values may be

changed at any time, taking e�ect immediately. There may also be an EEPROM with one

or more con�guration pages, with page 0 usually accessible for \soft" con�guration. This

means it contains values that are copied into the card's registers after a hard reset. Other

pages contain factory settings that may not be changed. Thus, in order for soft con�guration

to take e�ect, you have to make sure that your card's jumpers are set so that page 0 is used

after a reset, instead of one of the other pages.

wdsetup checks if your card is soft-con�gurable. If it is not, it displays a warning and

exits. Otherwise, it allows you to display and alter your card's registers both from the

command line and interactively. For wdsetup to locate the card, you should provide it with

its base address using the -a option (or --baseaddr, alternatively):

wdsetup -a baseaddr

This command runs wdsetup in interactive mode, accessing the card at baseaddr. This

address must be speci�ed as a 16 bit hex number, with the �rst (most signi�cant) and third

digit even, the second digit between 0 and 3, and the last one 0. Thus, 280 and E1C0 are

valid base addresses, while 14B2 is not.

When you invoke wdsetup to run in interactive mode, and you do not give it the card's

base address, it will try to locate it all by itself. If you have more than one card in your

computer, it will show all of them, and let you choose one. The author, however, cautions

that some cards (not necessarily Ethernet cards) may lock up when their registers are read

at the wrong time. If this happens to you, you will have to use the -a option to skip

auto-detection.

You may alter the base address by invoking wdsetup with the -p option. If, for example,

your card is at 380 by default, you move it to 280 by

wdsetup -a 380 -p 280

8
To be reached at gregg@netcom.com.

Note that the kernel expects the board on 280 by default. If you want to put it some-

where else, you have to change the con�guration �le net/inet/CONFIG and recompile the

kernel (see section 3.3.2 above).

The Ethernet cards produced by Western Digital and SMC have some dual-port RAM

to improve performance. The start of this RAM may be mapped into the PC's memory

space at di�erent addresses. You may move its start address using the -b option. The

card's IRQ may be changed using -i.

Some cards allow connecting di�erent media to them. This may be set by the -m option,

which takes one of the symbolic arguments aui, bnc, and twp. These stand for di�erent

connectors and media attached. twp denotes twisted pair, bnc stands for the BNC twist-on

connector that is used with 10base2 Ethernet, and AUI is the 15pin Dsub connector that

is used to connect to an Ethernet transceiver.

All settings may be viewed and altered in interactive mode, too. If any of the following

options is given, wdssetup will not enter interactive mode (Where available, alternative

option names are given as well):

-e Dump EEPROM contents.

-r Dump registers.

-v Be verbose when dumping registers.

-p newaddr or --newaddr newaddr

Move the card's base address to newaddr.

-b addr or --ramstart addr

Alter RAM start address to addr.

-i irq or --irq irq

Set new interrupt number.

-m media or --media media

Set new network media type. media may be one of aui, bnc, or twp.

These options only set the card's registers. If you want to write to the EEPROM soft

con�guration page, you have to use interactive mode.

.

3.4 Setting the hostname

The NET-2 binary release also provides a new hostname command. To set the hostname,

it is invoked as

/etc/hostname -S [name]

If the name argument is given, your machine's hostname is set to this name. You may

choose to use an unquali�ed hostname as well as with the domain name. Usually, one would

not use the unquali�ed name.

If you don't give the name argument on the command line, hostname looks for the �le

/etc/HOSTNAME, and sets the hostname to what it �nds in this �le.

3.5 Assigning IP Addresses

Before you can start out hacking away at your keyboard, you will have to make some

administrative decisions. One of them is what IP addresses to assign to your hosts. In

section 2.1 we saw that hosts within a local network should be part of the same logical

IP network. Hence you have to assign an IP network address. If you have several physical

networks, you either have to assign them di�erent network numbers, or use subnetting to

split your IP address range into several subnetworks.

If your LAN is not connected to the Internet, you're free to choose any (legal) network

address. However, you have to make sure to choose one from classes A, B, or C, else you

will most probably have severe di�culties in persuading TCP/IP to work. Maybe it would

be best to use one class C network for the whole of your LAN, because even if you don't

even dream of getting on the Internet today, things may look di�erent in a few years from

now. To operate several Ethernets (and other hardware, once a driver is available), you

have to use subnetting, of course.

However, if you intend to get on the Internet in the near future, you should obtain an

o�cial IP address now. The best way to proceed is to ask your network service provider to

help you. If you want to obtain a network number just in case you might get on the Internet

someday, request a Network Address Application Form from hostmaster@nic.ddn.mil.

For subnetting, assign a number to each network you manage. Note that the subnet

number may not be zero, hence you start with subnet number one. If you have a \backbone"

whose sole purpose is to connect the various subnets, remeber to also assign it a subnet

number. Then allocate a fraction of the IP address' host part su�cient to hold the subnet

numbers, plus a little room for future expansion. Make sure the remaining host part bits

are still su�cient to accomodate the maximum number of hosts you will have on any of the

subnets.

Then start assigning numbers to the hosts on each of the subnets, probably from di�erent

ranges for gateways and ordinary hosts, respectively. A gateway needs one IP address per

network it is on.

As an example, the brewery's network manager applies to the NIC for a class B network

number, and is given 192.72.0.0. To accomodate the two Ethernets, she decides to use

eight bits of the host part as additional subnet bits. This leaves another eight bits for the

host part, allowing for 254 hosts on each of the subnets. She then assigns subnet number

1 to the brewery, and gives the winery number 2. Their respective network addresses are

thus 192.72.1.0 and 192.72.2.0. The subnet mask is 255.255.255.0.

Note that in this example we are using a class B network to keep the example simple; a

class C network would be more realistic. With the new networking code, subnetting is not

limited to byte boundaries, so even a class C network may be split into several subnets.

vlager, which is the gateway between the two networks, is assigned a host number of 1

on both of them, which gives it the IP addresses 192.72.1.1 and 192.72.2.1, respectively.

3.6 Interface Con�guration for IP

Your next job is to con�gure the interfaces so the IP layer can use them. Usually, this is done

at system boot time by executing the rc.inet1 script from /etc/rc.d. The commands

used in this script will be explained below.

Another important topic being addressed in this chapter is con�guration of the hostname

resolver software. We will cover both static host tables (using the/etc/hosts �le) as well

as use of the BIND server. If you are only running an isolated Ethernet, you may safely

skip the section on named.

3.6.1 Interface Con�guration with ifconfig

After each system boot, the �rst step in con�guring your machine for TCP/IP networking

is to make your interfaces known to IP, along with the IP addresses you have assigned to

them. Remember from section 2.2 that the IP address is not really assigned to the host

itself, but to the network interface. This is because the network part of the address has to

agree for all hosts on a single physical network, hence a machine that is on several networks

has to have one IP address per network.

Since the early days of Linux networking, IP addresses have been used to be assigned

to interfaces using the config command. Fred van Kempen's recent NET-2 release uses a

command for that purpose which is more \standard", namely ifconfig. Since the config

command is obsolete, we will only cover the latter.

ifconfig's command line options are:

/etc/ifconfig interface [address] [parameters]

interface is the interface name as described above. address is the IP address to be

assigned to the interface. This may either be an IP address in dotted quad notation, or a

hostname. Note, however, that ifconfig tries to resolve the hostname by looking it up in

/etc/hosts. Thus, when giving the hostname as the address parameter to ifconfig, you

have to have this �le set up on the local host.

By default, the subnet accessible through the interface is deduced from the address

parameter, using the standard subnet mask pertaining to the address class. For a class B

address, the default subnet mask is 255.255.0.0, thus the network number of 192.71.1.1

is 192.71.0.0. If subnetting is used, as is the case with the Virtual Brewery, the network

number is however 192.1.1.0. Therefore, an alternative subnet mask has to be speci�ed

for this interface using the netmask option (see below). In our example, the correct netmask

is 255.255.255.0.

ifconfig recognizes the following parameters:

up This marks an interface \up", i.e. accessible to the IP layer. This option is

implied when an address is given on the command line. It may also be used

to re-eenable an interface that has been taken down temporarily using the

down option.

down This marks an interface \down", i.e. inaccessible to the IP layer. This

e�ectively disables any IP tra�c through the interface. Note, however, that

this does not automatically delete entries in the routing table that use this

interface.

netmask mask

This assigns a subnet mask to be used by the interface. It may be given as

either a 32-bit hexadecimal number preceded by 0x, or as a dotted quad of

decimal numbers.

broadcast address

IP allows for special addresses that may be used to broadcast a datagram

to all hosts on a logical network. This is usually the network address with

the host part bits all set to ones. Some IP implementations use a di�erent

scheme when this option is supplied, but Linux adheres to the standard.

metric number

This option may be used to assign a metric value to the routing table entry

created for the interface. This metric is used by the Routing Information

Protocol (RIP) to build routing tables for the network.9 The default metric

used by ifconfig is a value of zero. If you don't run a RIP daemon, you

don't need this option at all; if you do, you will rarely need to change the

metric value.

mtu This sets the Maximum Transmission Unit, which is the maximum number

of octets the interface is able to handle in one transaction. For Ethernets,

the MTU defaults to 1500; for SLIP interfaces, this is 296.

trailers This is an option speci�c to Ethernet interfaces. It enables so-called trailer

encapsulation, a technique to minimize the number of memory-to-memory

copies the receiving system needs to perform. This is enabled by specifying

trailers on the ifconfig command line. To disable it, precede it with a

dash (`-').

arp Like trailers, this is an Ethernet-speci�c option. It enables the use of ARP,

the Address Resolution Protocol used to detect the IP addresses of hosts

attached to the Ethernet. To enable it, specify arp on the command line; to

disable it, precede the option with a dash (`-'). This is rarely necessary.

pointopoint This option is used for point-to-point IP links that involve only two hosts.

This option is needed to con�gure, for example, SLIP or PLIP interfaces.

The IP address of the Ethernet board on vlager connecting it to the brewery subnet,

is 192.72.1.1. To bring this interface up, one would issue

/etc/ifconfig eth0 192.72.1.1 netmask 255.255.255.0 \

broadcast 192.72.1.255 arp up

To enable the second Ethernet board, which connects vlager to the winery's network,

one issues

9
RIP chooses the optimal route to a given host based on the \length" of the path. It is computed by

summing up the individual metric values of each host-to-host link. By default, a hop has length 1, but this

may be any positive integer less than 16. (A route length of 16 is equal to in�nity. Such routes are considered

unusable.) The metric parameter sets this hop cost, which is then broadcast by the routing daemon.

/etc/ifconfig eth1 192.72.2.1 netmask 255.255.255.0 \

broadcast 192.72.2.255 arp up

To enable the loopback interface, use

/etc/ifconfig lo 127.0.0.1

The commands to issue on vstout, which is host number 2 on the brewery net, are

/etc/ifconfig eth0 192.72.1.1 netmask 255.255.255.0 \

broadcast 192.72.1.255 arp up

This command brings up the Ethernet interface, telling IP that it is directly connected

to subnet 1. To be able to reach hosts on the winery's Ethernet, IP still needs to be given

a gateway to this subnet. This is explained below in section ??.

ifconfigmay also be used to con�gure an interface as point-to-point link, which means

that the medium used only connects two hosts. In rare cases, this might be applied to

Ethernet links, but usually, point-to-point links are used for SLIP or PLIP connections. To

con�gure an interface as point-to-point link, you invoke it using the pointopoint option:

ifconfig device address pointopoint remote

Here, remote is the remote host's address given either as dotted quad or as a hostname

to be resolved using /etc/hosts.

Without an address or any other parameters speci�ed, ifconfig will simply display the

interface's con�guration. This allows to check the setting of an interface:

/etc/ifconfig eth0

eth0 IP ADDR 192.72.1.1 BCAST 192.72.1.255 NETMASK 255.255.255.0

MTU 1500 METRIC 0 POINT-TO-POINT ADDR 0.0.0.0

FLAGS: 0x0043 (UP BROADCAST RUNNING)

Without any parameter at all, ifconfig displays the above type of information for all

interfaces marked up.

3.7 Building IP Routing tables

To enable TCP/IP to communicate with remote hosts across physical network boundaries,

IP must be provided with information on how to reach these hosts. Section 2.2 describes

how this is done: IP keeps a table that maps logical networks to the interface and gateway

they may be accessed through. This section describes several alternative ways this may be

done.

Routing tables may be created in several ways. The case of an isolated Ethernet is

the simplest one: the route to the network is entered into the table at boot time using a

command named route, and nothing more than this is needed. However, if you have more

than one physical network, you need gateways to switch packets between them, and you

have to create additonal routing table entries to direct tra�c to the proper gateway. These

routes have to be entered at boot time, too, and may optionally be monitored and adjusted

during service. To build static routing tables, the route command must be used. Dynamic

routing is performed by routing daemons like routed or gated, which exchange information

on network reachability, route lengths, etc. Some routing protocols provided by gated also

measure network load. Unless your network is really very large, or richly interconnected,

you will have no use for running any of these. For this reason, only static routing tables

will be discussed in this book.

In the preceding section, you have already seen that IP considers an interface as a special

kind of route to a network. Routing table entries, however, may also point to gateways,

or single hosts (for point-to-point links). Thus, there are a number of attributes a routing

table entry may have:

G This ag is set if the route uses a gateway.

U This ag is set if the interface to be used is up.

H This ag is set if only a single host can be reached through the route. For

example, this is the case for the loopback entry 127.0.0.1.

N This is the opposite of the H ag. It is set whenever the interfaces accesses

a subnet.

D This is set if the table entry has been generated by an ICMP redirect message

(see 1.3.4).

M This is set if the table entry was modi�ed by an ICMP redirect message.

These ags are also displayed by the netstat command, which is explained below in sec-

tion 3.8.

3.7.1 Route to the Subnet

Static routing tables are built by using route. A simple way of invoking it is

route add destination

destination speci�es the host or network the routing table entry points to. You may

either specify an IP address in dotted quad notation, or a symbolic host or network name.

Symbolic names are looked up in /etc/hosts and /etc/networks. If it is found in either

of them, the corresponding IP address is used as a host or network address, respectively.

For the Virtual Brewery, the administrator would put together the following

/etc/networks �le and install it on all hosts:

Virtual Brewery /etc/networks file

Maps symbolic network names to subnet numbers.

loop-net 127.0.0.0 # loopback network

brew-net 192.72.1.0 # subnet 1

wine-net 192.72.2.0 # subnet 2

We are now ready to set up the �rst entries in the routing tables at the Virtual Brewery.

First, we do so on vlager, the host that joins the two Ethernets, by executing

route add 127.0.0.1

route add brew-net

route add wine-net

The �rst command creates an entry for 127.0.0.1, while the following enter a route

to each of the subnets. At �rst glance, this looks pretty stupid: we already did specify

a subnet number when con�guring the Ethernet interfaces, the loopback device has been

assigned number 127.0.0.1, and anyway, why don't these commands specify the interfaces

the networks may be reached by?

The answer is this: After con�guring the interfaces, the routing table entry is completely

empty. Although the kernel may receive IP packets from these devices, it cannot send any.

To be able to, it has to be told exactly what subnet is accessible through the interface. For

example, the loopback device seems to o�er access to a class A network, because 127.0.0.1

is a class A address. IP has to be told explicitly that lo is an interface to a single host.

Analoguously, the routes to the two subnets have to be enabled explicitly.

Now, why don't we have to specify the interface to route? This is because after con�g-

uring eth0 with ifconfig, the IP layer knows that if there is a route to subnet 192.72.1.0,

it can only use eth0!

When giving route an IP address in dotted quad notation, it attempts to guess whether

it is a network or a hostname by looking at the host part bits. If the address' host part is

zero, route assumes it denotes a network, otherwise it takes it as a host address.

Of course, this heuristic fails when you use subnetting. To override this check, you may

precede the IP address with one of the modi�ers -net or -host, respectively. This forces

route into treating the address as a network or a host, respectively.

Thus, the Brewery's network administrator might alternatively have skipped putting

the network names into /etc/networks, and edited rc.inet1 directly:

route add 127.0.0.1 # local host

route add -net 192.72.1.0 # brewery subnet

route add -net 192.72.2.0 # winery subnet

3.7.2 Routes through a Gateway

In the presence of several subnets, the Linux IP layer has to be told what gateways to reach

them through. This is done using the route command, too. You invoke it as

route add destination gw gateway

When you are using your Linux box in a larger network environment,

destination is the destination subnet or host, while gateway is the gateway to reach it

through. They may be either given in dotted quad notation, or as a hostname listed in

/etc/hosts. The network argument may also be the keyword default, which creates a

routing table entry for the default route 0.0.0.0. The default route names the gateway all

datagrams to unknown networks are forwarded to.

Again, the route command does not take a command line option that specifes the

interface to use in accessing the gateway. Instead, it tries to determine it from the gateway's

address: the address is checked against the routing tables constructed so far, so you have

to make sure the address is on a subnet you have already speci�ed a route to.

For example, vstout has to use vlager as a gateway when communicating with a

host on the winery subnet. However, vlager has two addresses, being 194.72.1.1 and

194.72.2.1. Of course, when adding the route to the winery subnet, you have to use the

�rst IP address because this is on the subnet the kernel already knows how to route to.10

Thus, the sequence for enabling routing on vstout is

route add 127.0.0.1

route add brew-net

route add wine-net gw 194.72.1.1 metric 1

The metric argument is used to give some idea of the route's \cost", usually counting

the number of gateways. It is used by some routing protocols, like RIP, to choose between

di�erent routes if there is more than one way for routing to a given subnet. Although the

metric argument is not needed if you use static routing, there is a rule that says that routes

whose gateway is the local host should have a metric of zero, while those that use a remote

gateway should have a value greater than zero. If you don't run any routing daemon, it's

best to provide a metric of 1 for all routes to remote gateways. If you omit metric, it

defaults to zero.

To delete a route from the routing table, you invoke route like this:

route del destination

If invoked without any arguments, route displays the routing table, including some

interface statistics.11 On vstout, this produces:

route -n

Kernel routing table

Destination net/address Gateway address Flags RefCnt Use Iface

127.0.0.1 * UH 0 50 lo

192.72.1.0 * UN 0 478 eth0

192.72.2.0 192.72.1.1 UGH 0 250 eth0

The -n option makes route print host addresses as dotted quad IP addresses. Without

this option, it would attempt to resolve them to symbolic hostnames.

3.8 Verifying your IP Setup

There's a number of useful tools for verifying the operation of your TCP/IP network setup.

We will describe them below.
10
Note that the gateway need not be on a subnet you are directly attached to, but you may also specify

one that is itself only reached through one or more gateways. Routes with this property are called indirect.
11
In fact, it simply invokes netstat with the -r switch. netstat is explained below in section 3.8.2.

3.8.1 ping

ping is the networking equivalent of a sonar device.12 It measures the time a datagram

requires to travel from your host to a destination machine and back again. For this, it uses

a special feature of the ICMP protocol, the \echo" message. When a host's IP layer receives

an echo message, it returns a response bearing a time stamp, plus the sequence number of

the original packet.13 ping sends such ICMP messages to check for the reachability of a

host, as well as the delays encountered. A simple way to invoke it is thus:14

$ /etc/ping nic.funet.fi

PING nic.funet.fi: 64 byte packets

64 bytes from 128.214.6.100: icmp_seq=7. time=8998. ms

64 bytes from 128.214.6.100: icmp_seq=8. time=11530. ms

64 bytes from 128.214.6.100: icmp_seq=9. time=12368. ms

64 bytes from 128.214.6.100: icmp_seq=10. time=11762. ms

64 bytes from 128.214.6.100: icmp_seq=13. time=12172. ms

64 bytes from 128.214.6.100: icmp_seq=17. time=12326. ms

^C

----nic.funet.fi PING Statistics----

30 packets transmitted, 6 packets received, 80% packet loss

round-trip (ms) min/avg/max = 8998/11526/12368

By default, ping will go on emitting packets forever. To stop it, you have to interrupt

it by typing Ctrl-C. This causes ping to stop and compute the packet loss rate, which is

the ratio of outstanding responses to the total number of packets sent.

The above example shows very loaded lines, with many packets getting dropped. On

the Internet, it's not that uncommon for packets to disappear or to arrive unordered. This

is not so much due to technical de�ciencies as due to temporary excess loads on forwarding

hosts, which makes them delay or even drop incoming datagrams.15 On a LAN, you should

never see such a thing. The output of ping should rather be like this:16

$ /etc/ping vstout

PING vstout: 64 byte packets

12
Anyone remember Pink Floyd's \Echoes"?

13
There's more information in it, but we won't go into this.

14
Some ping programs will only say \foo is alive" when being invoked without any option. To obtain the

behavior shown in the example, you may have to add the -s switch on other operating systems.

15
A host has to drop packets, for example, when the bu�er space available does not su�ce to accomo-

date another incoming packet. Dropped packets simply disappear, they are not rescheduled by the host

immediately preceding the one that drops it. The reason for this is potential deadlock avoidance.

16
Note that you cannot give the destination host's name on the command line unless you have properly

set up address resolution.

64 bytes from 192.72.1.2: icmp_seq=0. time=11. ms

64 bytes from 192.72.1.2: icmp_seq=1. time=7. ms

64 bytes from 192.72.1.2: icmp_seq=2. time=12. ms

64 bytes from 192.72.1.2: icmp_seq=3. time=3. ms

^C

----vstout.linus.lxnet.org PING Statistics----

5 packets transmitted, 4 packets received, 20% packet loss

round-trip (ms) min/avg/max = 3/8/12

The packet loss in this example is due to us interrupting ping while waiting for vstout's

response to packet number 4.

If you encounter unusual packet loss rates, this hints at a hardware problem, like bad or

missing terminators, etc. If you don't receive any packets at all, or even see error messages,

this means there is a con�guration problem. You may probe for these problems using

wdsetup, described above in section 3.3.5, and netstat, and arp, described below.

You may also check for all reachable hosts on your LAN by specifying the broadcast

address17:

$ /etc/ping 192.72.1.255

PING 192.72.1.255: 64 byte packets

64 bytes from 192.71.1.1: icmp_seq=0. time=27. ms

64 bytes from 192.71.1.4: icmp_seq=0. time=34. ms

64 bytes from 192.71.1.2: icmp_seq=0. time=39. ms

64 bytes from 192.71.1.3: icmp_seq=0. time=44. ms

64 bytes from 192.71.1.4: icmp_seq=1. time=39. ms

64 bytes from 192.71.1.2: icmp_seq=1. time=68. ms

64 bytes from 192.71.1.1: icmp_seq=1. time=103. ms

64 bytes from 192.71.1.3: icmp_seq=1. time=129. ms

^C

----192.71.1.255 PING Statistics----

2 packets transmitted, 8 packets received, -400% packet loss

round-trip (ms) min/avg/max = 27/55/129

17
If you have Internet access, please, never do this with any network but your local subnet. This will clog

your (and others') networks for a while, and will surely get you visits by friendly people speaking softly and

carrying big sticks.

3.8.2 netstat

This is a versatile command for checking various aspects of your network interfaces' con�g-

uration, like viewing the routing tables, show interface statistics (this is not yet there), or

all connections active.

The -r option to netstat is used to display the kernel routing tables. When invoking

netstat on vstout, the output may look like this:

$ netstat -nr

Routing tables

Destination Gateway Flags Refs Use Interface

127.0.0.1 * UH 1527 66614 lo

192.72.1.0 * UN 556 7917876 eth0

192.72.2.0 192.72.1.1 UGN 0 76735 eth0

The �rst column is the destination network the entry applies to. The second is the

gateway to reach it through, and the last one is the interface to be used. The ags �eld

contains a combination of the letters U, G, H, N and D, which denote a route through an

operating (\up") interface, a route through a gateway, a route to a single host (i.e. a

point-to-point link), and a route generated by an ICMP redirect message.

Other options are those to show active connections. Using the -t, -u, -w and -x limits

the display to certain protocols only, namely TCP, UDP, RAW, and Unix domain sockets.

Invoking netstat -t on vlager produces

$ netstat -t

Active Internet connections

Proto Recv-Q Send-Q Local Address Foreign Address (State)

tcp 0 0 *:domain *:* LISTEN

tcp 0 0 *:time *:* LISTEN

tcp 0 0 *:smtp *:* LISTEN

tcp 0 0 vlager:smtp vstout:1040 ESTABLISHED

tcp 0 0 *:telnet *:* LISTEN

tcp 0 0 localhost:1046 vbardolino:telnet ESTABLISHED

tcp 0 0 *:chargen *:* LISTEN

tcp 0 0 *:daytime *:* LISTEN

tcp 0 0 *:discard *:* LISTEN

tcp 0 0 *:echo *:* LISTEN

tcp 0 0 *:shell *:* LISTEN

tcp 0 0 *:login *:* LISTEN

This shows most servers simply waiting for an incoming connection. However, the fourth

line shows an incoming SMTP connection from vstout, and the sixth line tells you there

is an outgoing telnet connection to vbardolino.18

Output for TCP and UDP sockets may be combined by invoking netstat with the -a

switch. For more information, please refer to the manual page.

3.8.3 arp

In section 1.3.2 we already mentioned that the Ethernet driver uses the ARP protocol to

query for the Ethernet address corresponding to a given IP address. However, there are

other types of equipment that also allow to use the ARP protocol; the ham-radio AX.25

hardware is an example of this. Although a driver for this is not yet there, arp already

provides support for this.

The arp tool may be used to view and alter the kernel ARP tables. Its command line

options are

/etc/arp [-v] [-t hwtype] -a [hostname]

/etc/arp [-v] [-t hwtype] -s hostname hwaddr

/etc/arp [-v] -d hostname [hostname: : :]

All hostname arguments are expected to be symbolic host names (no IP address), so

that using arp is only possible after having con�gured address resolution. It is, however,

also possible to specify an IP address.

The �rst invocation displays the ARP tables related to the speci�ed host, or all hosts

known. For example, invoking arp on vlager may yield

arp -a

IP address HW type HW address

192.72.1.3 10Mbps Ethernet 00:00:C0:5A:42:C1

192.72.1.2 10Mbps Ethernet 00:00:C0:90:B3:42

192.72.2.4 10Mbps Ethernet 00:00:C0:04:69:AA

When using the -a option together with a hostname only shows the ARP table entry

for that host if there is one. Using the -t option limits the display to the hardware type

speci�ed. This may be one of ether, ax25, or pronet, standing for 10Mbps Ethernet,

AMPR AX.25, and ProNet equipment,19 respectively.

18
You can tell wether a connection is outgoing or not from the port numbers involved. The port number

shown for the calling host will always be a simple number higher than 1024, while on the host being called, a

well-known service port will be in use, for which netstat uses the symbolic name found in /etc/services.
19
Can anybody tell me what this is?

The -s option is used to permanently add hostname's Ethernet address to the ARP

tables. The hwaddr argument speci�es the hardware address, which is by default expected

to be an Ethernet address, speci�ed as six hexadecimal bytes separated by colons (`:'). You

may also set the hardware address for other types of hardware, too, using the -t option.

One problem which may require you to use the -s option is when for some reasons ARP

queries for the remote host fail, whether its ARP driver is buggy or there is another host

in the network that erroneously identi�es itself with hostname's IP address.20

Invoking arp using the -d switch deletes all ARP entries relating to the given host.

This may be used to force the interface to re-attempt to obtain the Ethernet address for

the IP address in question.

3.9 Name Service and Resolver Con�guraton

As explained in section 2.3 above, TCP/IP networking may rely on di�erent schemes to

convert names into addresses. The simplest way, which takes no advantage of the way the

name space has been split up into zones, is a host table stored in a single �le. This is

only useful for small LANs that are run by one single administrator, and otherwise have no

IP tra�c with the outside world. This information is stored in a �le named /etc/hosts,

whose format is described below in 3.9.1.

Alternatively, one may use BIND for resolving host names to IP addresses. This may

be a real chore, but once you've done it, changes in the network topology are easily made.

On Linux, as on many other Un?xish systems, name service is provided through a program

called named. At startup, it loads a set of master �les into its cache, and waits for queries

from remote or local user processes. There are di�erent ways to set up BIND, and not all

require to run a name server on every host.

Whatever way you may choose, you have to con�gure your software to adapt to the

scheme used.

When talking of \the resolver", we do not mean any special application, but rather

refer to the resolver library, a collection of functions that can be found in the standard C

library. The central routines are gethostbyname(2) and gethostbyaddr(2) which look up

all IP addresses belonging to a host, and vice versa. They may be con�gured to simply look

up the information in /etc/hosts, query a number of name servers, or use NIS (Network

Information Service). Other applications, like smail, may include di�erent drivers for any

of these, and need special care taken of them.

20Author's Note: I'm wondering if this can also be used for proxy ARPing. Can anybody

help me with this?

3.9.0.1 The host.conf File

The central �le that controls your resolver setup is host.conf. It resides in /etc and

describes to the resolver which services to use, and in what order.

Options in host.conf must occur on separate lines. Fields may be separated by white

space (spaces or tabs). A hash sign (`#') instroduces a comment that extends to the next

newline.

The following options are available:

order This determines the order in which the resolving services are tried. Valid op-

tions are bind for queryig the name server, hosts for lookups in /etc/hosts,

and nis for NIS lookups. Any or all of them may be speci�ed. The order in

which they appear on the line detemines the order in which the respective

services are tried.

multi Takes on or off as options. This detemines if a host in /etc/hosts is allowed

to have several IP addresses. It has no e�ect on DNS or NIS queries.

nospoof As explained above in section 2.3, DNS allows to �nd the hostname belonging

to an IP address by using the in-addr.arpa domain. Attempts by name

servers to supply a false hostname are called \spoo�ng". To guard against

this, the resolver may be con�gured to check if the original IP address is in

fact associated with the hostname obtained. If not, the name is rejected and

an error returned. This behavior is turned on by setting nospoof on.

alert This option takes on or off as arguments. If it is turned on, any spoof

attempts (see above) will cause the resolver to log a message to the syslog

facility.

trim This option takes a domain name as an argument, which will be removed

from hostnames before lookup. This is useful for /etc/hosts entries, where

you might only want to specify hostnames sans local domain. A lookup of

a host with the local domain name appended will have this removed, thus

allowing the lookup in /etc/hosts to succeed.

trim options accumulate, making it possible to consider your host as being

local to several domains.

A sample �le for vlager is shown below:

/etc/host.conf

We have named running, but no NIS (yet)

order bind hosts

Allow multiple addrs

multi on

We have no one to spoof us

nospoof on

Trim local domain (not really necessary).

trim linus.lxnet.org.

3.9.0.2 Resolver Environment Variables

The settings from host.conf may be overridden using a number of environment variables.

These are

RESOLV HOST CONF

This speci�es a �le to be read instead of /etc/host.conf.

RESOLV SERV ORDER

Overrides the order option given in host.conf. Services are given as hosts,

bind, and nis, separated by a space, comma, colon, or semicolon.

RESOLV SPOOF CHECK

Determines the measures taken against spoo�ng. It is turned o� using off.

The values warn and warn off enable spoof checking, but turn logging on

and o�, respectively. A value of * turns on spoof checks, but leaves the

logging facility as de�ned in host.conf.

RESOLV MULTI

A value of on or off may be used to override the multi options from tt

host.conf.

RESOLV OVERRIDE TRIM DOMAINS

This environment speci�es a list of trim domains which override the one

given in host.conf.

RESOLV ADD TRIM DOMAINS

This environment speci�es a list of trim domains which are added to those

given in host.conf.

3.9.1 What /etc/hosts looks like

Originally, all resolving information on Internet hosts was kept in a HOSTS �le that was

generated regularly from a centrally maintained �le named HOSTS.TXT. For small Un?x

systems that are not on the Internet, using static host tables is still standard procedure.

Data linking IP addresses to hostnames is kept in a �le called /etc/hosts.

It contains one entry per line which consists of an IP address, a hostname, and an

optional list of aliases for the hostname. The hostname �eld must begin in column one.

The �elds are separated by spaces or tabs. Anything between a hash sign (`#') and the

next newline is regarded as a comment and is ignored. The numbers of the IP address may

be given using the standard C format for decimal, octal, or hexadecimal numbers. Octal

numbers are denoted by a pre�x of 0, hexadecimal numbers have a pre�x of 0x.

Hostnames may either be local (i.e. without any domain name quali�cation at all), or

fully quali�ed by a domain name. To enable the resolver to �nd local hosts independently

of whether their name is given fully quali�ed, or in its local form, one usually enters both

in the hosts �le. Alternatively, one might only enter the local name, and include \trim

localdomain" in host.conf (see section 3.9.3 below), where localdomain is the local do-

main name. Note that the domain statement in resolv.conf has no e�ect on lookups in

/etc/hosts.

This is an example how a hosts �le at the virtual Brewery might look:

#

Virtual Brewery Ethernet.

#

IP local fully qualified domain name

192.72.1.1 vlager vlager.linus.lxnet.org

192.72.1.2 vstout vstout.linus.lxnet.org

192.72.1.3 vale vale.linus.lxnet.org

#

Virtual Winery Ethernet

#

192.72.2.1 vlager vlager.linus.lxnet.org

192.72.2.2 vbeaujolais vbeaujolais.linus.lxnet.org

192.72.2.3 vbardolino vbardolino.linus.lxnet.org

192.72.2.4 vchianti vchianti.linus.lxnet.org

3.9.2 The /etc/networks �le

Analoguously to the hosts �le, there is a �le for mapping network names to IP network

addresses. It is called /etc/networks, and was already mentioned above.

Since the network names refer to the physical organization of the network, they are

generally not domain names, but anything like \brew-lan" or \loopback". Entries in

the �le begin in column one, and contain the network name, followed by the network's

IP address, and an optional list of aliases. The numbers of the IP address may be given

using either of decimal, octal, or hexadecimal numbers in the standard C format. The �elds

are separated by spaces or tabs. Comments are introduced by a hash sign (`#') and extend

to the next newline.

A sample �le for the Virtual Brewery is given below:

#

/etc/networks for the Virtual Brewery.

#

The loopback network

loopback 127

#

The brewery's Ethernet

brew-lan 192.72.1.0 brew-net

wine-lan 192.72.2.0 wine-net

3.9.3 Con�guring Name Server Lookups | resolv.conf

When con�guring the resolver library to use BIND name service for host lookups, you have

to tell it which name servers to use, etc. There is a separate �le for this, called resolv.conf.

If this �le does not exist or is empty, the resolver assumes the name server is on your local

host.

If you run a name server on your local host, you have to set it up separately, as will be

explained in section 3.10 below. If your are on a local network and have the opportunity to

use an existing nameserver, this shoud always be preferred.

You may set the following options in resolv.conf:

nameserver This gives the IP address of a name server to the resolver. nameserver

options accumulate. For BIND lookups, they are tried in the order in which

they appear in the con�guration �le. Currently, up to three name servers

are supported.

If no nameserver option is given, the resolver attempts to connect to the

name server on the local host.

domain This speci�es a domain name to be tacked onto all hostnames if BIND fails to

resolve it with the �rst query. This is to allow to resolve hostnames speci�ed

relative to the local domain.

If no domain option is present, the resolver obtains it from the local host-

name through gethostname(2). If no domain part is present in the local

hostname, the root domain is assumed.

search This is an alternative to the domain option: they are mutually exclusive.

searchmay be used to specify a list of domains to be tacked onto a hostname

after a query fails. The items in the list are separated by spaces or tabs.

By default, this list contains the local domain, followed by the list of all

parent domains up to the root. For any host at the brewery, this would

contain linus.lxnet.org, lxnet.org, and org. Any attempt to resolve foo

would result in the lookup of foo, foo.linus.lxnet.org, foo.lxnet.org,

and foo.org.

The following gives a sample resolv.conf �le for the Virtual Brewery:

/etc/resolv.conf

Our domain

domain linux.lxnet.org

#

If no nameserver is specified, the resolver will query

the local server.

To use vlager as central nameserver, uncomment the line below:

#nameserver 192.72.1.1

3.9.4 Resolver Robustness

If you are running a LAN inside a larger network, you will most certainly use central name

servers if they are available. The advantage of this is that these will develop rich caches,

since all queries are forwarded to them. This scheme, however has a drawback: when a �re

recently destroyed the backbone cable at our university, no more work was possible on our

department's LAN, because the resolver couldn't reach any of the name servers anymore.

There was no logging in on X terminals anymore, no printing, etc.

Although it is not very common for campus backbones to go down in ames, one might

want to take precautions against cases like these.

Three options deal with setting up a local name server. This may either be a caching-

only name server that has little but a cache and a forwarders statement in its boot �le,

or a secondary server for the campus zone. The drawback of these schemes are that the

local name server still needs the central servers at boot time. This can be circumvented by

creating a zone of authority for your domain. The administrative overhead involved with

setting up a zone may forbid this option.

A fourth option, which lies somewhere in the middle of all these, is to maintain a backup

host table for your domain or LAN in /etc/hosts. In /etc/host.conf you would then

include \order bind hosts" to make the resolver fall back to the hosts �le if the central

name server is down.

3.10 Running named

The program that provides domain name service on Un?x machines is usually called named

(pronounced name-dee). This is a server program originally developed for BSD, that pro-

vides name service to clients, and possibly to other name servers. It is usually started at

system boot time, and runs until the machine goes down again.

It takes its information from a con�guration �le called named.boot, and various �les

that contain data mapping domain names to addresses and the like. The latter are called

zone �les. The formats and semantics of these �les will be explained in the following section.

To run named, simply enter

/etc/named

at the prompt. named will come up, read the named.boot �le and any zone �les speci�ed

therein. It writes its process id to /etc/named.pid in ASCII, downloads any zone �les from

primary servers, if necessary, and starts listening on port 53 for DNS queries.

At startup, named reads a con�guration �le called /etc/named.boot. This �le is gener-

ally very small and contains little else but pointers to master �les containing zone informa-

tion, and pointers to other name servers. Comments in the boot �le start with a semicolon

(`;') and extend to the next newline.

The following options are available:

directory This speci�es a directory local to which the names of zone �les may be given.

Di�erent directories may be speci�ed by repeatedly using directory.

primary This takes a domain name and a �le name as an argument, declaring the

local server authoritative for the named domain. As a primary server, named

loads the zone's information from the given �le.

Generally, there will always be at least one primary entry in every boot

�le, namely for reverse mapping of network 127.0.0.0, which is the local

loopback network.

secondary This statement takes a domain name, an address list, and a �le name as

an argument. It declares the local server a secondary master server for the

domain speci�ed.

A secondary server holds authoritative data on the domain, too, but it

doesn't gather it from �les, but tries to download it from the primary server.

The IP address of at least one primary server must thus be given to named

in the address list. The local server will contact each of them in turn until it

successfully transfers the zone database. The data received is stored in the

�le given in the last argument and retrieved at the next nameserver boot.

This provides the nameserver with a complete (although probably outdated)

copy of the master �les, even if none of the primary servers could be reached.

cache This takes a domain and a �le name as arguments. The local server's cache

is initialized from this �le. Generally, this is used to load the information on

the name servers for the root domain, so the domain argument is generally

the root domain \.". The �le is generally called /etc/named.ca.

If this statement does not occur in the boot �le, named will not develop

a local cache at all. This will severely degrade performance and increase

network load if the next server queried is not on the local net.

forwarders This statement takes an address list as argument. The IP addresses in this

list specify a list of servers to named that may be queried if it fails to resolve

a query from its local cache. They are tried in order until one of them

responds to the query.

Two things have to be considered before adding a forwarder to the list.

Above all, you have to be sure all listed servers are willing and able to

perform recursive queries for you. Secondly, the more hosts use a name

server, the faster its cache grows. You should experiment with the number

of forwarders you install on your local network.

slave This statement makes the name server a slave server. That is, it will never

perform recursive queries itself, but only queries the forwarders speci�ed

with the forwarders statement.

Two more options are available whose use is no longer recommended. These are

sortlist and domain. We will not describe them here.

An example named.boot �le for vlager is given in �gure 3.1.

;

; /etc/named.boot file for vlager.linus.lxnet.org

;

directory /etc/domains

;

cache . named.ca

primary linus.lxnet.org. named.hosts

primary 0.0.127.in-addr.arpa. named.local

primary 72.192.in-addr.arpa. named.rev

Figure 3.1: The named.boot �le for vlager.

The commands cache and primarymentioned above load information into named. These

�les contain textual representations of DNS resource records, which we will look at be-

low. Additionally, there are two directives that may be used inside these �les. These are

$INCLUDE and $ORIGIN. Since they are rarely needed, we will not describe them here.

Files included by named, like named.hosts, always have a domain associated with them,

which is called the origin. This allows the administrator to specify domain and host names

relative to this domain. A name given in a con�guration �le is considered absolute if it ends

in a single dot, otherwise it is considered relative to the origin. The origin all by itself may

be referred to using \@".

The �rst resource record (RR for short) in most master �les is a SOA record. An exception

from this is the cache �le that contains the addresses of the root name servers.

Resource record representations in the master �les share a common format, which is

[domain] [ttl] [class] type rdata

Fields are separated by spaces or tabs. An entry may be continued across several lines if

an opening brace occurs before the �rst newline, and the last �eld is followed by a closing

brace. Anything between a semicolon and a newline is ignored.

domain This is the domain name to which the entry applies. If no domain name is

given, the RR is assumed to apply to the domain of the previous RR.

ttl In order to force resolvers to discard information after a certain time, each

RR is associated a \time to live", or ttl for short. The ttl �eld speci�es the

time in seconds the information is valid after it has been retrieved from the

server. It is a decimal number at most eight digits wide.

If no ttl value is given, it defaults to the value of the minimum �eld of the

preceding SOA record.

class This is an address class, like IN for IP addresses, or HS for objects in the

Hesiod class. For TCP/IP networking, you have to make this IN.

If no class �eld is given, the class of the preceding RR is assumed.

type This describes the type of the RR. The most common types are A, SOA, PTR,

and NS. The following sections describe the various types of RR's.

rdata This holds the data associated with the RR. The format of this �elds depends

on the type of the RR. Below, it will be described for each RR separately.

The following is an incomplete list of RRs to be used in DNS master �les. There are a

couple more of them, which we will not explain. They are experimental, and of little use

generally.

SOA This describes a zone of authority (SOA means \Start of Authority"). It sig-

nals that the records following the SOA RR contain authoritative information

for the domain. The resource data contains the following �elds:

origin This is the canonical hostname of the primary name server

for this domain. It is usually given as an absolute name.

contact This is the email address of the person responsible for main-

taining the domain, with the `@' sign replaced by a dot.

serial This is the version number of the zone �le, expressed as a

a single decimal number. Whenever data is changed in the

zone �le, this number should be incremented.

The serial number is used by secondary name servers to dis-

cern when zone information has changed. To stay up to date,

secondary servers request the primary server's SOA record at

certain intervals, and compare the serial number to that of

the cached SOA record. If the number has changed, the sec-

ondary servers transfers the whole zone database from the

primary server.

refresh This speci�es the interval in seconds that the secondary

servers should wait between checking the SOA record of the

primary server. Again, this is a decimal number at most eight

places wide.

Generally, the network topology doesn't change too often, so

that this number should specify an interval of roughly a day

for larger networks, and even more for smaller ones.

retry This number determines the intervals at which a secondary

server should retry contacting the primary server if a request

or a zone refresh fails. It must not be too low, or else a

temporary failure of the server or a network problem may

cause the secondary server to waste network resources. One

hour, or perhaps one half hour, might be a good choice.

expire This speci�es the time in seconds after which the server

should �nally discard all zone data if it hasn't been able to

contact the primary server. It should normally be very large.

Craig Hunt ([Hunt92]) recommends 42 days.

minimum This is the default ttl value for resource records that do not

explicitly specify one. This requires other name servers to

discard the RR after a certain amount of time. It has however

nothing to do with the time after which a secondary server

tries to update the zone information.

minimum should be a large value, especially for LANs where

the network topology almost never changes. A value of

around a week or a month is probably a good choice. In

the case that single RRs may change more frequently, you

can still assign them di�erent ttl's.

A This associates an IP address with a hostname. The resource data �eld

simply contains the address in dotted quad notation.

NS This points to a master name server of a subordinate zone. For an expla-

nation of the need to have NS records, see section 2.3. The resource data

�eld contains the hostname of the name server. To resolve the hostname, an

additional A record is needed, the so-called glue record which gives the name

server's IP address.

CNAME This associates an alias for a hostname with its canonical hostname. The

canonical hostname is the one the master �le provides an A record for; aliases

are simply linked to that name by a CNAME RR, but don't have any other

records of their own.

PTR This type of record is used to associate names in the in-addr.arpa do-

main with hostnames. This is used for reverse mapping of IP addresses to

hostnames.

MX This RR announces a mail exchanger for a domain. The reasons to have

mail exchangers are discussed in section 8.4.

The syntax of an MX record is

[domain] [ttl] [class] MX preference host

host names the mail exchanger for domain. Every mail exchanger has a

preference associated with it. A mail transport agent who desires to deliver

mail to domain will try all hosts who have an MX record for this domain until

it succeeds. The one with the lowest preference value is tried �rst, then the

others in order of increasing preference value.

WKS This RR advertises well known services o�ered by the host. The syntax is

[domain] [ttl] [class] WKS address protocol services

address is the host's IP address written in dotted quad notation. The pro-

tocol used by the service, which must either be TCP or UDP, is named in

the protocol �eld. There may be only one WKS record per protocol. Finally,

services is a list of service names as found in the /etc/services �le (see

section 4.1). The service names are separated by blanks or tabs, and may

be continued across newlines using braces.

HINFO This record provides information on the system's hardware and software. Its

syntax is

[domain] [ttl] [class] HINFO hardware software

The hardware �eld identi�es the hardware used by this host. There are spe-

cial conventions to specify this, a list of valid names is given in the \Assigned

Numbers" RFC1060. If the �eld contains any blanks, it must be enclosed in

quotes (`"'). The software �eld names the operating system software used by

the system. Again, a valid name from the \Assigned Numbers" RFC should

be chosen.

Figures 3.2, 3.3, 3.4, and 3.5 give sample �les for a name server at the brewery, located

on vlager. Owing to the nature of the network discussed (a single LAN), the example is

pretty straightforward. If your requirements are more complex, and you can't get named

going, get Craig Hunt's \TCP/IP Network Administration" ([Hunt92]). He has an extensive

example for setting up a network of a couple of LANs and an Internet link.

;

; /etc/domain/named.ca Cache file for the brewery.

; We're not on the Internet, so we don't need

; any root servers.

;

; Example entry (note loooong expiry interval)

; A.ISI.EDU. 99999999 IN A 26.3.0.103

; IN NS A.ISI.EDU.

Figure 3.2: The named.ca �le.

3.10.1 Verifying the Resolver Setup

There's a �ne tool for checking the operation of your name server setup. It is called

nslookup, and may be used both interactively and from the command line. In the lat-

ter case, you simply invoke it as

nslookup hostname

and it will query the name server speci�ed in /etc/resolv.conf. (If this �le names

more than one server, it will choose one at random).

The interactive mode, however, is much more exciting. Besides looking up individual

hosts, you may query for any type of DNS record, and transfer the entire zone information

for a domain.

When invoked without argument, nslookup will display the name server it uses, and

enter interactive mode. At the `>' prompt, you may type any domain name it should query

for. By default, it asks for class A records, those containing the IP address relating to the

domain name. You may change this type by issuing \set type=type", where type is one

of the resource record names described above in section 3.10, or ANY.

For example, you might have the following dialogue with it:

;

; /etc/domain/named.local Local hosts at the brewery

; Origin is linus.lxnet.org

;

@ IN SOA vlager.linus.lxnet.org. (

janet.linus.lxnet.org.

16 ; serial

86400 ; refresh: once per day

3600 ; retry: one hour

3600000 ; expire: 42 days

604800 ; minimum: 1 week

)

IN NS vlager.linus.lxnet.org.

;

; local mail is distributed on vlager

IN MX 10 vlager

;

; loopback address

localhost. IN A 127.0.0.1

; brewery Ethernet

vlager IN A 192.72.1.1

; vlager is also news server

news IN CNAME vlager

vstout IN A 192.72.1.2

vale IN A 192.72.1.3

; winery Ethernet

vbeaujolais IN A 192.72.2.1

vbardolino IN A 192.72.2.2

vchianti IN A 192.72.2.3

Figure 3.3: The named.hosts �le.

;

; /etc/domain/named.local Reverse mapping of 127.0.0

; Origin is 0.0.127.in-addr.arpa.

;

@ IN SOA vlager.linus.lxnet.org. (

joe.linus.lxnet.org.

1 ; serial

360000 ; refresh: 100 hrs

3600 ; retry: one hour

3600000 ; expire: 42 days

360000 ; minimum: 100 hrs

)

IN NS vlager.linus.lxnet.org.

1 IN PTR localhost.

Figure 3.4: The named.local �le.

;

; /etc/domain/named.rev Reverse mapping of our IP addresses

; Origin is 72.192.in-addr.arpa.

;

@ IN SOA vlager.linus.lxnet.org. (

joe.linus.lxnet.org.

16 ; serial

86400 ; refresh: once per day

3600 ; retry: one hour

3600000 ; expire: 42 days

604800 ; minimum: 1 week

)

IN NS vlager.linus.lxnet.org.

; brewery

1.1 IN PTR vlager.linus.lxnet.org.

1.2 IN PTR vstout.linus.lxnet.org.

1.3 IN PTR vale.linus.lxnet.org.

; winery

2.1 IN PTR vbeaujolais.linus.lxnet.org.

2.2 IN PTR vbardolino.linus.lxnet.org.

2.3 IN PTR vchianti.linus.lxnet.org.

Figure 3.5: The named.rev �le.

$ nslookup

Default Name Server: rs10.hrz.th-darmstadt.de

Address: 130.83.56.60

> sunsite.unc.edu

Name Server: rs10.hrz.th-darmstadt.de

Address: 130.83.56.60

Non-authoritative answer:

Name: sunsite.unc.edu

Address: 152.2.22.81

> unc.edu

*** No address (A) records available for unc.edu

Name Server: rs10.hrz.th-darmstadt.de

Address: 130.83.56.60

> set type=MX

> unc.edu

Name Server: rs10.hrz.th-darmstadt.de

Address: 130.83.56.60

Non-authoritative answer:

unc.edu preference = 10, mail exchanger = lambada.oit.unc.edu

Authoritative answers can be found from:

UNC.EDU nameserver = SAMBA.ACS.UNC.EDU

UNC.EDU nameserver = NS.BME.UNC.EDU

UNC.EDU nameserver = NCNOC.CONCERT.NET

lambada.oit.unc.edu internet address = 152.2.22.80

SAMBA.ACS.UNC.EDU internet address = 128.109.157.30

NS.BME.UNC.EDU internet address = 128.109.155.1

NS.BME.UNC.EDU internet address = 152.2.100.1

NCNOC.CONCERT.NET internet address = 192.101.21.1

NCNOC.CONCERT.NET internet address = 128.109.193.1

> set type=SOA

> unc.edu

Name Server: rs10.hrz.th-darmstadt.de

Address: 130.83.56.60

Non-authoritative answer:

unc.edu

origin = ns.unc.edu

mail addr = shava.ns.unc.edu

serial = 930408

refresh = 28800 (8 hours)

retry = 3600 (1 hour)

expire = 1209600 (14 days)

minimum ttl = 86400 (1 day)

Authoritative answers can be found from:

[same as above]

> exit

$

The complete set of commands available with nslookup may be obtained by the help

command.

Chapter 4

Various Network Applications

After successfully setting up IP and the resolver, you have to turn to the services you want

to provide over the network. This chapter lists the con�guration options and requirements

for several services. Some, however, require more space, and are thus explained in a separate

chapter. This certainly applies to electronic mail and netnews, which are also not speci�c

to TCP/IP networking.

There are other network applications as well, which only need little attendance when

setting them up; please refer to their respective manual pages for details.

Generally, services are performed by daemons. A daemon is a program that opens a

certain port, and waits for incoming connections. If one occurs, it creates a child process

which accepts the connection, while the parent continues to listen for further requests. The

daemon providing the service is generally called the server, and the program requesting it

is called the client.

Support of NIS (\Network Information System", a.k.a. \Yellow Pages") is under way.

Once it is released, I will add a section on its con�guration.

4.1 The /etc/services �le

As noted before in section 1.3.4, the port numbers on which certain \standard" services

are o�ered are laid down in the \Assigned Numbers" RFC. To enable server and client

programs to convert service names to these numbers, at least a part of the list is kept on

each host; it is stored in a �le called /etc/services.

It contains single lines, each describing a service. An entry is made like this:

service port/proto [aliases]

85

/ /

Here, service speci�es the service name, port and proto de�ne the port the service is

o�ered on, and which transport protocol is used. Commonly, this is either udp or tcp. It is

possible for a service to be o�ered for more than one protocol, as well as o�ering di�erent

services on the same port, as long as the protocols are di�erent. The aliases �eld allows to

specify alternative names for the same service.

Usually, you don't have to change the services �le that comes along with the network

software on your Linux system. Nevertheless, we will give a small excerpt from the �le in

�gure 4.1.

Note that, for example, the echo service is o�ered on port 7 for both TCP and UDP,

and that port 512 is used for two di�erent services, namely the COMSAT daemon (which

noti�es users of newly arrived mail, see xbiff(1x)), using UDP, and for remote execution

(rexec(1)), using TCP.

4.2 The /etc/protocols �le

Similar to the services �le, the networking library needs a way to translate protocol names |

for example, those used in the services �le | to protocol numbers understood by the IP

layer on other hosts. This is done by looking up the name in the /etc/protocols �le. It

contains one entry per line, each containing a protocol name, and the associated number.

Having to touch this �le is even more unlikely than having to muddle with /etc/services.

A sample �le is given in �gure 4.2.

4.3 The inetd Super-Server

The concept of servers and clients described above has one drawback: for every service

o�ered, a daemon has to run that listens on the port for a connection to occur. Since,

however, on many installation not all services are required at all times, this means a waste

of system resources (swap space).

Thus, almost all Un?x installations run a \super-server" that creates sockets for a num-

ber of services, and listens on all of them simultaneously. When a remote host requests one

of the services, the super-server notices this and spawns the server speci�ed for this port.

The super-server commonly used is inetd, the Internet Daemon. It is started at sys-

tem boot time, and takes the list of services it is to manage from a startup �le named

/etc/inetd.conf. In addition to those servers invoked, there are a number of trivial ser-

vices which are performed by inetd itself, these are called internal services. They include

The services file:

#

well-known services

echo 7/tcp # Echo

echo 7/udp #

discard 9/tcp sink null # Discard

discard 9/udp sink null #

systat 11/tcp users # Active Users

daytime 13/tcp # Daytime

daytime 13/udp #

chargen 19/tcp ttytst source # Character Generator

chargen 19/udp ttytst source #

ftp-data 20/tcp # File Transfer Protocol (Data)

ftp 21/tcp # File Transfer Protocol (Control)

telnet 23/tcp # Virtual Terminal Protocol

smtp 25/tcp # Simple Mail Transfer Protocol

domain 53/tcp nameserver # Domain Name Service

domain 53/udp nameserver #

nntp 119/tcp readnews # Network News Transfer Protocol

#

UNIX services

biff 512/udp comsat # mail notification

exec 512/tcp # remote execution, passwd required

login 513/tcp # remote login

who 513/udp whod # remote who and uptime

shell 514/tcp cmd # remote command, no passwd used

syslog 514/udp # remote system logging

printer 515/tcp spooler # remote print spooling

talk 517/udp # conversation

ntalk 518/udp # new talk, conversation

route 520/udp router routed # routing information protocol

Figure 4.1: A sample /etc/services �le.

#

Internet (IP) protocols

#

ip 0 IP # internet protocol, pseudo protocol number

icmp 1 ICMP # internet control message protocol

igmp 2 IGMP # internet group multicast protocol

ggp 3 GGP # gateway-gateway protocol

tcp 6 TCP # transmission control protocol

egp 8 EGP # exterior gateway protocol

pup 12 PUP # PARC universal packet protocol

udp 17 UDP # user datagram protocol

raw 255 RAW # RAW IP interface

Figure 4.2: A sample /etc/protocols �le.

chargen which simply generates a string of characters, daytime which returns the system's

idea of the time of day.

An entry in this �le consists of a single line in the following format:

service type proto wait user server cmdline

The meaning of the �elds is as follows:

service Gives a service name as speci�ed in /etc/services.

type Speci�es a socket type, either stream (for connection-oriented protocols) or

dgram (for datagram protocols). TCP-based services should therefore always

use stream, while UDP-based services should always use dgram.

proto The transport protocol used by the service. Must be a valid protocol name

found in /etc/protocols.

wait This option only applies to dgram sockets. It may be either wait or nowait.

If wait is speci�ed, inetd will only execute one server for the speci�ed port

at any time. Otherwise, it will immediately continue to listen on the port

after executing the server.

This is useful for \single-threaded" servers that read all incoming datagrams

until no more arrive, and then exit. Most RPC servers are of this type and

should therefore specify wait. The opposite type, \multi-threaded" servers,

allow an unlimited number of instances to run concurrently; named is of this

type. These servers should specify nowait.

stream sockets should always use nowait.

user This is the login id of the user the process is executed under. Generally, this

will be root, but some services may use di�erent accounts. For example, the

NNTP news server will run as news, while services that may pose a security

threat (such as tftp or finger) are often run as nobody.

server This gives the full path name of the server program to be executed. Internal

services are marked by the keyword internal.

cmdline This is the command line to be passed to the server. This includes argument

0, that is the command name. Usually, this will be the program name of the

server, unless the program behaves di�erently when invoked by a di�erent

name.

This �eld is empty for internal services.

A sample inetd.conf �le is shown in �gure 4.3. We see that tftp and finger are

commented out, so that they are not available. This is often done for security reasons,

because these services are prime targets for intruders.

4.4 The tcpd access control facility

Since opening a computer to network access involves many security risks, applications are

designed to guard against several types of attacks. Some of these, however, may be awed

(most drastically demonstrated by the RTM Internet worm), or do not allow to di�erentiate

between secure hosts from which requests for a particular service will be accepted, and inse-

cure hosts whose requests should be rejected. The finger and tftp services, for example,

pose such a risk because they allow potential intruders to gather login names from users

on the system. Thus, one would want to limit access to these services to \trusted hosts"

only, which is impossible with the usual setup, where inetd either provides this service to

all clients, or not at all.

The NET-2 release contains tcpd,1 a so-called daemon wrapper. For TCP services you

want to monitor or protect, it is invoked instead of the server program, logs the request

to the syslog daemon, performs optional host access control, and only if this succeeds,

executes the real server program. Note that is does not work with UDP-based services,

most notably not RPC.

1
Written by Wietse Venema, wietse@wzv.win.tue.nl.

#

inetd services

ftp stream tcp nowait root /etc/ftpd ftpd -l

telnet stream tcp nowait root /etc/telnetd telnetd -b/etc/issue

#tftp dgram udp wait root /etc/tftpd tftpd

#finger stream tcp nowait bin /etc/fingerd fingerd

login stream tcp nowait root /etc/rlogind rlogind

shell stream tcp nowait root /etc/remshd remshd

exec stream tcp nowait root /etc/rexecd rexecd

#

inetd internal services

#

daytime stream tcp nowait root internal

daytime dgram udp nowait root internal

time stream tcp nowait root internal

time dgram udp nowait root internal

echo stream tcp nowait root internal

echo dgram udp nowait root internal

discard stream tcp nowait root internal

discard dgram udp nowait root internal

chargen stream tcp nowait root internal

chargen dgram udp nowait root internal

Figure 4.3: A sample /etc/inetd.conf �le.

For example, to wrap the finger daemon, you have to change the corresponding line in

inetd.conf to

wrap finger daemon

finger stream tcp nowait root /usr/etc/tcpd in.fingerd

Without adding any access control, this will appear to the client just as a usual finger

setup, except that any requests are logged to syslog.

Access control is implemented by means of two �les located in the /etc directory;

these are hosts.allow and hosts.deny. They contain entries allowing and denying access,

respectively, to certain services and hosts. If tcpd has to handle a request for a service, say

finger, from a client host named biff.foobar.com, it scans hosts.allow and hosts.deny

(in this order) for an entry matching both the service and client host. If a matching entry

is found in hosts.allow, access is granted, regardless of any entry in hosts.deny. If a

match is found in hosts.deny, the request is rejected by closing down the connection. If

no match is found at all, the request is accepted, too.

Entries in the access �les look like this:

servicelist: hostlist [:shellcmd]

servicelist is a list of service names from /etc/services, or the keyword ALL. To match

all services except finger, use \ALL EXCEPT finger".

hostlist is a list of hostnames or IP addresses, or the keywords ALL, LOCAL, or UNKNOWN.

ALL matches any host, while LOCAL matches hostnames not containing a dot.2 UNKNOWN

matches any hosts whose name or address lookup failed. A name starting with a dot

matches all hosts whose domain is equal to this name. For example, .foobar.com matches

biff.foobar.com. There are also provisions for IP network addresses and subnet numbers.

Please refer to the hosts access(5) manual page for details.

To deny access to the finger and tfpd services to all but the local hosts, put the

following in /etc/hosts.deny, and leave /etc/hosts.allow empty:

in.ftpd, in.fingerd: ALL EXCEPT LOCAL, .your.domain

The optional shellcmd �eld may contain a shell command to be invoked when the entry

is matched. This is useful to set up traps that may expose the attacker:

2
Usually local hostnames obtained from lookups in /etc/hosts.

in.ftpd: ALL EXCEPT LOCAL, .your.domain : \

finger -l @%h | /usr/bin/mail -s %d-%h root

The %h and %d arguments are expanded by tcpd to the client host name and service

name, respectively. Please refer to the hosts access(5) manual page for details.

4.5 Con�guring the r commands

There are a number of commands for executing commands on remote hosts. These are

rlogin, rsh, rcp and rcmd. They all spawn a shell on the remote host and allow the

user to execute commands. Of course, the client needs to have an account on the host

where the commmand is to be executed, thus all these commands perform an authorization

procedure. Usually, the client will tell the user's login name to the server, which in turn

requests a password that is validated in the usual way.

However, for reasons of convenience, you may facilitate access to these services within

a network by overriding authorization checks. However, this is only advisable for a small

number of hosts whose password databases are synchronized, or for a small number of

privileged users who need to access many machines for administrative reasons. Whenever

you want to allow people to log into your host without having to specify a login id or

password, make sure that you don't accidentally grant access to anybody else.

There are two ways to disable authorization checks for the r commands. One is for the

super user to allow certain or all users on certain or all hosts (the latter de�nitely being a

bad idea) to log in without being asked for a password. This access is controlled by a �le

called /etc/hosts.equiv, which de�nes a list of equivalent hosts and users. The second

option is for a user to grant other users on certain hosts access to her account. These may

be listed in the �le .rhosts in the user's home directory. If this �le is not owned by the

user or the super user, or if it is a symbolic link, it is ignored.3

When a client requests an r service, her host and user name are searched in the

/etc/hosts.equiv �le, and then in the home directory of the local user with the same

name as the client, if one exists. Thus, if janet executes

$ rlogin -l joe euler

on gauss to login as joe on euler, the server will �rst search /etc/hosts.equiv4 for

3
In an NFS environment, you may need to give it a protection of 444, because the super user is often

very restricted in accessing �les on disks mounted via NFS.

4
Note that the hosts.equiv �le is not searched when someone attempts to log in as root.

an entry matching gauss and janet, and if this fails, try to look it up in .rhosts in joe's

home directory.

Both �les contain lines that describe accounts on remote hosts. They may be used

to allow or deny access to these users. However, their interpretation of the entries di�er

slightly.

An entry consists of a hostname, optionally followed by a login name. Each hostname in

turn is compared to the client's canonical hostname. If it matches, and if the entry contains

a user name, it is compared to the client's user name (on the system she is calling from).

If the entry does not give a user name, the client's name is checked against the login name

she tries to log in as.

Note that the client's hostname is obtained by reverse mapping the address to a name,

so that this feature will fail with hosts unknown to the resolver. The client's hostname is

considered to match the name in the hosts �les in one of the following cases:

� The client's canonical hostname (not an alias) literally matches the hostname in the

�le.

� If the client's hostname is a fully quali�ed domain name (such as returned by the

resolver when you have DNS running), and it doesn't literally match the hostname in

the hosts �le, it is compared to that hostname expanded with the local domain name.

Now, let's look what happens Janet's attempt to log into Joe's account on euler.

Suppose the /etc/hosts.equiv �le contains the following line

Allow access to users from gauss

gauss

This entry allows users on gauss to log into euler without specifying a password as

long as they log into their own account.5 That is, Janet would be allowed to log in as janet,

but not as joe. No luck so far. Now, assume that the .rhosts �le in joe's home directory

contains

Allow janet to log in from gauss

gauss janet

Finally, this entry matches, and rlogind lets Janet log in as Joe without asking for a

password.

5
Except for root.

4.6 Con�guring RPC

RPC, or remote procedure call, is a service that allows clients to access a network-based

service the same way they call a subroutine. It was originally developed by Sun Mircosys-

tems, Inc., but is now present on most Un?x systems.6 A RPC server registers a number

of routines with the so-called portmapper, which may be accessed over TCP/IP, with data

being passed in a system-independent fashion. The protocol it uses is called the external

data representation (XDR) protocol.7

The transport protocol used by most RPC services is the user datagram protocol, be-

cause most requests are simple queries and replies, with only small amounts of data being

transferred. However, some services also use TCP when transferring larger amounts of data

that do not �t into a single datagram.

Services that use RPC are the network �lesystem, NFS, and the network information

system, NIS.8 The naming convention used throughout the NET-2 release has it that RPC-

based server programs reside in /usr/etc, their name being pre�xed with \rpc.". In this

section, we will use the unadorned name (like nfsd) and supply the pre�x only when using

the full path name (as in /usr/etc/rpc.nfsd).

Each server is assigned a program number, and each procedure it o�ers is assigned a

procedure number. The program number is registered with the portmapper, together with

the port the server listens to for requests. (Thus the name portmapper, because it maps

program numbers to port numbers). Again, the program numbers for a list of standard

services may be found in the \Assigned Numbers" RFC. When a client wants to access a

procedure, it �rst inquires the portmapper on the remote host for the port it should direct

its request at, and then contacts the server. Alternatively, it may ask the portmapper to

forward its request to the appropriate server.

The portmapper is a program started at system boot time, namely /etc/rpc.portmap.

It must be invoked before the inetd super server, because some RPC servers are managed

by inetd.

The portmapper does not require any con�guration �les, because any RPC servers

will register themselves with portmap once they start up. The advantage of this is that

you may write distributed applications that use RPC without having to have access to a

con�guration �le. The drawback is that in case the portmapper should crash, all servers

have to be restarted.

However, there is an RPC con�guration �le that may be used by some clients to �nd

6
For a speci�cation of RPC, see RFC 1057.

7
XDR is a good example of a session layer protocol as described in section 1.3.5.

8
This is a successor to the yellow pages, or yp, service. However, yp is often used to refer to NIS now.

the program number corresponding to a certain service. This is the /etc/rpc �le, which is

very similar in function to the /etc/services �le. Each line has the following information:

name program number [aliases]

where name is the service name, program number is the service's program number, and

aliases is an optional list of alternative names for the service. An example �le is shown in

�gure 4.4.

#

rpc 88/08/01 4.0 RPCSRC; from 1.12 88/02/07 SMI

#

portmapper 100000 portmap sunrpc

rstatd 100001 rstat rstat_svc rup perfmeter

rusersd 100002 rusers

nfs 100003 nfsprog

ypserv 100004 ypprog

mountd 100005 mount showmount

ypbind 100007

walld 100008 rwall shutdown

yppasswdd 100009 yppasswd

bootparam 100026

ypupdated 100028 ypupdate

Figure 4.4: A sample /etc/rpc �le.

4.7 Con�guring NIS

Currently (as of July 2, 1993), there is no NIS support publicly available. Someone is

working on this, however.

4.8 Con�guring FTP

The most widely known use of FTP (File Transfer Protocol) is to provide users from any host

with access to publicly available data. This is generally called anonymous FTP. However, it

may be used for �le transfers from and to local user accounts as well. The FTP server, ftpd,

performs the usual authorization procedure using the /etc/passwd database.9 Accounts

9
The fptd in SLS was compiled to use the /etc/shadow �le.

without password are ignored.

After passing this procedure, a client is allowed access to any �les and directories ac-

cessible to the user she logged in as. Certain users may be denied access to FTP by listing

them in the �le /etc/ftpusers. This �le contains one user name per line, without any

white space allowed.

I am aware that there is another FTP daemon called ftpd-diku, which has enhanced

functionality.10 Since it is not part of the \o�cial" networking release, I do not describe it

here. Please refer to the documentation that comes with it.

4.8.1 Anonymous FTP

Anonymous FTP requires tough security measures to prevent clients from accessing any

important information on your system.

To set up an anonymous FTP account, you have to create a user named ftp. It should

be member of a group with very limited access only, for example guest, have a login shell

of /bin/false, and a password of *" to prevent anyone from actually logging in as ftp.

The home directory should be something like /usr/ftp, have proper ownership (namely

ftp and guest) and have a protection mode of 555.

If a client speci�es a user name of ftp or anonymous when asked by ftpd, the server

performs a chroot(2) to the home directory of the ftp account. The e�ect of this is that this

home directory appears to the client as the root of the directory hierarchy, thus denying

it access to any �les outside the home directory.11 Any �les (such as the ls command)

accessed after this chroot must thus be available beneath this directory.

In addition, you may allow sub-logins of users whom you have granted special access to

your FTP area. These �rst log in as an anonymous FTP user, and after that access the

sub-login by specifying a user name and password using the USER command of ftp. For

these, you have to set up a home directory, which is owned by the user and has mode 700.

Remember that the home directory's name has the ~ftp directory as its root.

The following �les directories need to be present:

~ftp/bin This directory should be owned by root and have mode 555. It should

contain a copy of the ls command, which is needed by ftpd to list directories.

10
Some people were wondering what the /etc/ftpaccess �le in the SLS release is good for. It is used by

ftpd-diku only.
11
When you merely change the working directory, you may access �les outside of it by either using absolute

pathnames or `..' to access �les not below the working directory. When doing a chroot, all absolute

pathnames are interpreted as starting from the new directory, and its parent directory is inaccessible.

It should be mode 111. If ~ftp is on the same �le system as /bin, this may

also be a hard link to /bin/ls; however, you can not make a symbolic link.

~ftp/lib This directory should be owned by root and have mode 555. It must contain

a copy of the current version of the libc jumptable image, /lib/libc.so.X.

This is needed for ls, which is linked with the jumptable libraries. As with

~ftp/bin/ls, this may be a hard link to the jumptable image, if possible,

but not a symbolic link. It should be owned by root and have mode 111.

~ftp/etc This directory should be owned by root and have mode 555. It should

contain versions of the passwd, group, and shadow �les from /etc. These

are needed to map user id's to login names when listing �les. They should

not be complete copies of the �les from /etc, nor should they be hard links,

since this would provide intruders with a list of all accounts on your system.

Accounts other than sub-logins should be denied access by specifying a pass-

word of \!" in ~ftp/etc/shadow.

~ftp/incoming

This directory should be owned by ftp. It either should have mode 733 to

allow users to deposit �les, but preventing others to retrieve them before

you have moved them to the proper location (or thrown them away, for that

matter), or should have mode 777 if you want to allow them to be retrieved.

~ftp/pub Under this directory, you keep all �les you want to make available to users

of your anonymous FTP service. The directory should be owned by ftp

and have mode 555. Files below this should have mode 444 to prevent FTP

users to remove or modify them.

If you allow sub-logins of people who have taken over responsibility for part

of your FTP area, you should make sure to set permissions properly for these

directories.

If your ~ftp/ directory is not on the same partition as your shared libraries, you will

almost assuredly be better o� to make staticly linked copies of your executables, as the

shared library is quite large, and would take up more disk space than simply making a few

staticly-linked executables. Another possibility is installing the \lite" shared library, which

is available in the GCC/library distribution, and is quite a bit smaller.

4.8.2 ftpd Options

Usually, ftpd is invoked by the inetd super-server. On the command line passed to ftpd,

you may specify the following options:

-l Enable logging of FTP sessions.

-d dbglvl Enable logging of debug messages.

-t timeout This causes ftpd to close down sessions after the client has been inactive for

the speci�ed amount of time. By default, this value is set to 15 minutes.

-u umask Sets the �le creation mask used by ftpd to umask. It defaults to 027.

When logging is enabled, ftpd logs messages to the daemon facility of syslogd. FTP

sessions are logged at the info level; debug messages are logged at the debug level. To send

these messages to a �le, enter the following line to /etc/syslogd.conf:

daemon.info: /usr/adm/daemon.log

Chapter 5

Con�guring NFS

NFS, the network �lesystem, is one of the most prominent network services using RPC.

Unlike conventional �le systems that write blocks to and read them from physical media,

NFS does not use any special device, or deals with block allocation, �le system consis-

tency, and the like. Instead, the basic unit of information with NFS is a �le. This �le

access is completely transparent to the client, and works across a variety of server and host

architectures.

This o�ers a number of advantages:

� Data accessed by all users can be kept on a central host, with clients mounting this

directory at boot time. For example, this may be the disk containing /home, so that

users don't have to remember the host where they keep the most up-to-date version

of their current project.

� Data consuming large amounts of disk space may be kept on a single host. For

example, all �les and program relating to LaTEX and METAFONT could be kept and

maintained in one place, reducing administrative overhead.

� Administrative data may be kept on a single host. No need to use rcp anymore to

install the same stupid �le on 20 di�erent machines.

However, before you start to weep with joy, let me tell you that the Linux implementation

of NFS is not yet perfect. Although it is now possible to run binaries from NFS-mounted

�le systems, it is still a bit slow. This is due to the fact that the kernel is currently lacking

a generalized form of the mmap(2) call, which allows a program to map �les to a process'

address space.

Let's have a look now at how NFS works: A client may request to mount a directory

from a remote host on a local directory, just the same way it does with physical devices.

99

However, the syntax used to specify the remote directory is di�erent. For example, to mount

/home from host vlager to /users on vale, the administrator would issue the following

command on vale:1

mount -t nfs vlager:/home /users

mount will then try to connect to the mountd mount daemon on vlager via RPC. The

server will check if vale is permitted to mount the directory in question, and if so, return it

a �le handle. This �le handle will be used in all subsequent requests to �les below /users.

When accessing �les over NFS, an RPC call is made to nfsd (the NFS daemon) on the

server machine, in which nfsd is passed the �le handle, the name of the �le to be accessed,

and the user's user and group id. These are used in determining access rights to the speci�ed

�le. In order to prevent unauthorized users from reading or modifying �les, user and group

ids on both hosts must be synchronized.

On most Un?x implementations, the RPC call is made by a daemon running on the

client host. This is the Block I/O Daemon, biod. It is used to improve throughput by

performing asynchronous I/O (read-ahead and write-behind). Linux NFS, however, does

not use biod; the kernel NFS layer places the RPC call itself instead. It is (currently)

lacking read-ahead and write-behind, so that performance comparisons with other NFS

clients are not favorable.

The biggest problem with the Linux NFS code is that the Linux UDP driver currently

does not support datagram fragmentation, and that it has a datagram size limit of 1K.

This means that for NFS mounts from systems that use large UDP datagrams (e.g., 8K on

SunOS) by default, it needs to be downsized arti�cially. This, of course, further decreases

transfer speed due to the increase in the RPC-imposed overhead.

The syntax for reducing both read and write transfer sizes to 1K varies among di�erent

operating systems, but to mount a volume from your Linux machine to SunOS or a BSD-

derived system you can use mount options like this:

mount -t nfs linux-host:remote-dir local-dir -o rsize=1024,wsize=1024

5.1 Mounting an NFS Volume

NFS volumes2 are mounted very much the way usual �le systems are mounted. You invoke

mount using the following syntax

1
Note that you can omit the -t nfs argument, because mount sees from the colon that this speci�es an

NFS volume.

2
One doesn't say �le system, because these are not proper �le systems.

mount -t nfs nfs volume local dir options

nfs volume is given as remote host:remote dir. Since this notation is unique to NFS �le

systems, you can leave out the -t nfs option.

There are a number of additional options that you may specify to mount upon mounting

an NFS volume. These may either be given following the -o switch on the command line, or

in the options �eld of the /etc/fstab entry for the volume. In both cases, multiple options

are separated from each other by commas.

A sample entry in /etc/fstab might be

news:/usr/spool/news /usr/spool/news nfs timeo=14,intr

This volume may then be mounted using

mount news:/usr/spool/news

An alternative command to be used in the absence of a fstab entry would be

mount -t nfs news:/usr/spool/news /usr/spool/news -o timeo=14,intr

There are a number of options that control the client's behavior when mounting an NFS

volume, as well as options that con�gure the way the server treats mount requests for a

certain directory.

Server options are given to the nfsd daemon in a �le called exports, which is described

in the following section. Client options are given to the mount command in one of the two

ways described above, i.e. either on the command line using the -o switch, or in the fstab

�le. Options speci�ed on the command line always override those given in the fstab �le.

The list of all valid options is described in its entirety in the nfs(5) manual page that

comes with Rick Sladkey's NFS server distribution. The following is an incomplete list of

those you would probably want to use:

rsize=n and wsize=n

These specify the datagram size used by the NFS clients on read and write

requests, respectively. They currently default to 1024 bytes, due to the limit

on UDP datagram size described above.

/ /

timeo=n This sets the time (in thenths of a second) the NFS client will wait for a

request to complete. The default values is 0.7 seconds. If no con�rmation

is received within this time, the client will retry the operation with the

timeout interval doubled. After reaching a maximum timeout of 60 seconds,

a major timeout occurs. By default, a major timeout will cause the client

to print a message to the console and start all over again, this time with

an initial timeout interval twice that of the previous cascade. Potentially,

this may go on forever. Volumes that show this kind of behaviour are called

hard-mounted.

hard Explicitly mark this volume as hard-mounted. This is on by default.

soft Soft-mount the driver (as opposed to hard-mount). This causes the client to

return an I/O error to the calling process whenever a major timeout occurs.

intr Allow signals to interrupt an NFS call. Useful for aborting when the server

doesn't respond.

Whether you hard- or soft-mount a volume is not simply a question of taste, but also

has to do what sort of information you want to access from this volume. For example, if you

mount your X11 programs by NFS, you sure would not want you X session to go berserk

just because someone brought the network to a grinding halt by �ring up seven copies of

xv at the same time, or by pulling out the Ethernet plug for a moment. By hard-mounting

these, you make sure that you computer will wait until it is able to re-establish contact with

you NFS-server. On the other hand, any data that is not that critical may as well be soft-

mounted, so it doesn't hang you session in case the remote machine should be temporarily

unreachable, or down. In case your network connection to the server is akey, you may

either increase the initial timeout using the timeo option, or hard-mount the volumes, but

allow for signals interrupting the NFS call so that you may still abort any hanging �le

access.

5.2 The /etc/exports File

By default, mountd will not allow anyone to mount direcories from the local host. The direc-

tories that may be mounted by remote hosts must be de�ned in a �le called /etc/exports

(because mountd views this as \exporting" them to the client). Entries take the following

form:

directory host[(ag,: : :)] host [(ag,: : :)] : : :

/ /

Each line de�nes a directory, and the hosts allowed to mount it. A host name is usually

a fully quali�ed domain name, but may additionally contain the `*' wildcard. For example,

lab*.foo.com will apply to lab01.foo.com as well as lab02.foo.com. An optional list

speci�es the ags pertaining to it. Blank lines are ignored, and a # introduces a comment

to the end of the line.

The NFS daemon honors a number of ags:

insecure Permit non-authenticated access from this machine.

unix-rpc Require UNIX-domain RPC authentication from this machine. This simply

requires that requests originate from a reserved internet port (i.e. the port

number has to be less than 1024). This option is on by default.

root squash This is a security feature that denies the super user on the speci�ed hosts

any special access rights by mapping requests from uid 0 on the client to

uid 65534 (-2) on the server. This uid should be associated with the user

nobody.

no root squash

Don't map requests from uid 0. This option is on by default.

ro Mount �le hierarchy read-only. This option is on by default.

rw Mount �le hierarchy read-write.

link relative

Convert absolute symbolic links (where the link contents start with a slash)

into relative links by prepending the necessary number of ../'s to get from

the directory containing the link to the root on the server. This has subtle,

perhaps questionable, semantics when the �le hierarchy is not mounted at

its root.

This option is on by default.

link absolute

Leave all symbolic link as they are (the normal behavior for Sun-supplied

NFS servers).

map identity and map daemon

The ownership information of �les a NFS daemon provides to its clients

usually only contains numerical user and group id's. If these numerical id's

have the same user and group names associated, client and server are said

to share the same uid/gid space. The map identity option tells the server

to assume this is the case. This option is on by default.

The map daemon option tells the NFS software to assume these are not iden-

tical. This may be the case if users on the two hosts have been assigned the

same user names, but numerical ids do not match. The NET-2 release in-

cludes a ugidd(8) daemon which performs mapping between the two uid/gid

spaces. The map daemon option tells nfsd to use this.

An error parsing the exports �le is reported to syslogd's DAEMON facility at level NOTICE

whenever nfsd or mountd is started up.

Note that host names are obtained from the client's IP address by reverse mapping, so

you have to have the resolver con�gured properly. If you use BIND and are very security-

conscious, you should use enable spoof checking in your /etc/host.conf �le (see sec-

tion 3.9.3).

5.3 The NFS daemon

Requests from client hosts to �les in a directory mounted via NFS are served by the NFS

daemon, nfsd, via RPC. You will not want to run nfsd on your host unless you export

directories to other hosts via NFS.

The server is generally not started by inetd, but at system boot time. It is a single-

threaded server, in that it does not create an arbitrary number of instances of itself, one

per request. Instead, a single process is started at sytem boot time, which listens on the

NFS port (usually port 2049) for UDP packets. Packets which cannot be served immedi-

ately because the server is busy will be queued by the kernel. Note that it is important

to start nfsd after portmap is running, because it has to register its RPC services. To

start and NFS server on you machine, include the following in your network boot script

(/etc/rc.d/rc.inet2):

/usr/etc/rpc.nfsd

Chapter 6

Setting up the Serial Hardware

There are rumors that there are some people out there in netland who only own one PC

and don't have the money to spend on an Internet link. To get their daily dose of news

and mail nevertheless, they are said to rely on bulletin board systems (BBS's) and UUCP

networks that utilize pblic telephone networks.

This chapter is intended to help all those people who rely on modems to maintain their

link.

6.1 Communication Software for Modem Links

There are a number of communction packages available for Linux. Many of them are termi-

nal programs which allow a user to dial into another comupter as if she was sitting in from

of a simple terminal. The traditional terminal program for Un?ces is kermit. It is, however,

slightly spartanic. There are more comfortable programs available that support a dictionary

of telephone numers, script languages for calling and logging into remote computer systems,

etc. One of them is minicom, which is close to some terminal programs former DOS users

might be accustomed to. There is also an X-based communications package called seyon.

For people that run a bulletin board system, there is also a BBS package available for

Linux. It is called XXX.

Apart from terminal programs, there is also software that uses a serial link non-

interactively to transport data to or from your computer. The advantage of this technique

is that it takes much less time to download a few dozen kilobyte automatically, than it

might take you to read your mail on-line in some mailbox, or browse a bulletin board for

interesting articles. On the other hand, this requires more disk storage because of the loads

of useless information you usually get.

105

The prototype of this sort of communications software is UUCP. It is a program suite

that allows to copy �le from one host to another, execute programs on a remote host, etc.

It is frequently used to transport mail or news in private networks. A port of Ian Taylor's

UUCP packages to Linux is described in the following chapter. Other non-interactive

communication software is, for example, used throughout Fidonet, although I haven't heard

of a Linux port yet.

6.2 Introduction to Serial Devices

The devices a Un?x kernel provides for accessing serial devices are typically called ttys.

This is an abbreviation for TeletypeTM,1, and is nowadays used for any character-based data

terminal. Throughout this chapter, we will use the term exclusively to refer to the kernel

devices.

Linux distinguishes three classes of ttys: (virtual) consoles, pseudo-terminals (similar

to a two-way pipe, used by application such as X11), and serial devices. The latter are also

counted as ttys, because they permit interactive sessions over a serial connection; be it from

a hard-wired terminal or a remote computer over a telephone line.

Ttys have a number of con�gurable parameters which can be set using the ioctl(2)

system call. Many of them only apply to serial devices, since they need a great deal more

exibility to handle varying types of connections.

Among the most prominent line parameters are the line speed, and parity. But there

are also ags for the conversion between upper and lower case characters, of carriage return

into line feed, etc. The tty driver may also support various line disciplines which make

the device driver behave completely di�erent. For example, the SLIP driver for Linux is

implemented by means of a special line discipline.

There is a bit ambiguity about how to measure a line's speed. Sometimes it is given

in Baud, and therefore called the Baud rate. You also frequently hear the term Bit rate,

which is related to the line's transfer speed measured in bits per second (or bps for short).

These two terms are however not interchangeable. The Baud rate refers to a physical

characteristic of some serial device, namely the clock rate at which it drives its port. The

bit rate rather denotes a current state of an existing serial connection between two points,

namely the average number of bits transferred per second. It is important to know that

these two values may deviate from each other.

For example, look at two computers communicating with each other over a telephone

1
Teletype used to be one of the major manufacturers of terminals in the early days of Unix. I don't know

if it still is.

line using two modems. Then each computer communicates with its modem at a given

Baud rate, as do the modems among themselves. If the modems now use a compression

technique, like V.42bis, the computers may send more data over the line, i.e. the bit rate

measured between them may increase by a factor of up to three. This of course requires

that the computers' Baud rates are high enough to handle this.

6.3 Accessing Serial Devices

Like all devices in Un?x system, serial ports are also accessed through device special �les,

located in the /dev directory. Until release 0.99.5 of the Linux kernel, all tty devices

used to have major number 4, and were named /dev/ttyS0, /dev/ttyS1, etc.2 At 0.99.5,

Theodore T'so added a second tty device type supporting modem control.3 These modem

devices have major number 5, and are called /dev/cua0, etc.

You may access a serial device both as a conventional tty, as well as a modem port,

depending on the major number you access it by. Identical minor numbers for both device

classes refer to the same port. If you have your modem on one of COM1 through COM4, its

minor number will be the COM port number plus 63. If your setup is di�erent from that,

for example when using a board supporting multiple serial lines, please refer to section 6.4

below.

For use with a modem, you have to use a modem device, while the `ordinary' serial

devices are for direct serial connections, for example between a terminal and a computer,

or between two computers. The latter is also called a direct connection.

Assume your modem is on COM2. Thus its minor number will be 65, while its major

number will be 5 for modem functionality. There should be a device /dev/cua0 which has

these numbers. List the serial ttys in the /dev directory. Columns 5 and 6 should show

major and minor numbers, respectively:

$ ls -l /dev/cua*

crw-rw-rw- 1 root root 5, 64 Nov 30 19:31 /dev/cua0

crw-rw-rw- 1 root root 5, 65 Nov 30 22:08 /dev/cua1

crw-rw-rw- 1 root root 5, 66 Oct 28 11:56 /dev/cua2

crw-rw-rw- 1 root root 5, 67 Mar 19 1992 /dev/cua3

If there is no such device, you will have to create one: become super-user and type

2
Or /dev/ttys0, etc, for earlier SLS releases.

3
That is, monitoring of modem control lines, as well as ioctl(2) calls for reading and manipulating

them.

mknod -m 666 /dev/cua1 c 4 65

chown root.root /dev/cua1

Some people suggest making /dev/modem a symbolic link to your modem device, so that

casual users don't have to remember the somewhat unintuitive /dev/cua1. This works well

with most terminal-based communication programs, like kermit or minicom. In UUCP

con�guration �les, however, you should always use the real device name, because Taylor

UUCP does not seem to follow symbolic links.

6.4 Serial Hardware

Linux currently supports a wide variety of serial boards which use the RS-232 standard.4

RS-232 is currently the most common standard for serial communcications in the PC world.

It uses a number of circuits for transmitting single bits as well as for synchronization.

Additional lines may be used for signaling the presence of a carrier (used by modems), and

handshake.

Although hardware handshake is optional, it is very useful. It allows either of the two

stations to signal whether it is ready to receive more data, or if the other station should

pause until the receiver is done processing the incoming data. The lines used for this are

called \Clear to Send" (CTS) and \Ready to Send" (RTS), respectively, which accounts for

the colloquial name of hardware handshake, namely \RTS/CTS".

In PCs, the RS-232 interface is usually driven by a UART chip derived from the National

Semiconductor 16540 chip, or newer versions thereof, the NSC 16550 or NSC 16550A.

Some brands (most notably internal modems equipped with the Rockwell chipset) also use

completely di�erent chips that have been programmed to behave as if they were 16550's.

The main di�erence between 16540's and 16550's that the latter have a FIFO bu�er of

16 Bytes, while the other only have a 1-Byte bu�er.5 This makes them suitable for speeds

up to 9600 Baud, while higher speeds require a 16550-compatible chip. Besides these chips,

Linux also supports the 8250 chip.6

In the defalt con�guration, the kernel looks for four standard serial boards on COM1

through COM4. These will be assigned minor numbers 64 through 67, as described above.

If you want to con�gure your serial ports properly, you should install Ted Tso's

4
This is the same as CCITT's V.24 standard. Well, nearly: : :

5
You wouldn't say FIFO here: : :

6What sort of a beast is this? Anybody please enlighten me.

setserial command along with the rc.serial script.7,8 This script should be invoked

from /etc/rc at system boot time. It uses setserial to con�gure the kernel serial devices.

A typical rc.serial script looks like this:

/etc/rc.d/rc.serial - serial line configuration script.

#

Do wild interrupt detection

/etc/setserial -W /dev/cua*

Configure serial devices

/etc/setserial /dev/cua0 auto_irq skip_test autoconfig

/etc/setserial /dev/cua1 auto_irq skip_test autoconfig

/etc/setserial /dev/cua2 auto_irq skip_test autoconfig

/etc/setserial /dev/cua3 auto_irq skip_test autoconfig

Display serial device configuration

/etc/setserial -bg /dev/cua*

If your serial card is not detected, or the setserial -bg command shows an incorrect

setting, you will have to force the con�guration by explicitly supplying the correct values.

Users with internal modems equipped with the Rockwell chipset are reported to experience

this problem. If, for example, a the UART chip is reported to be a NSC 16450, while in

fact it is NSC 16550-compatible, you have to change the con�guration command for the

o�ending port to

/etc/setserial /dev/cua1 auto_irq skip_test auto_config uart 16550

Similar options exist to force IRQ, COM port, and base address setting. Please refer to

the setserial(8) manual page.

If your modem supports hardware handshake, you should make sure to enable it. Sur-

prisingly as it is, communication progams do not attempt to enable this by default; you

have to set this manually instead. This is best performed in the rc.serial script, using

the stty command.

stty crtscts < /dev/cua1

7
You best install this script in /etc/rc.d. Make sure to add a line to /etc/rc that invokes this script.

8
To my knowledge, the setserial package is not yet part of the SLS release. You may have to obtain it

separately from tsx-11.mit.edu below /pub/linux/ALPHA/serial.

6.5 Multiport Boards

Beside the usual four serial ports, Linux supports a number of multiport cards. These may

be con�gured into the kernel by editing kernel/chr drv/serial.c in your kernel source

directory (look into this �le for which ags you might have to de�ne), and recompiling the

kernel. Note that this only means the kernel will attempt to locate them automatically at

boot time. You may, however, force auto con�guration after booting by using the setserial

command. For example, if you have an AST Fourport on address 0x1A0, you may do this

by executing

setserial /dev/cua4 auto_irq autoconfig

setserial /dev/cua5 auto_irq autoconfig

setserial /dev/cua6 auto_irq autoconfig

setserial /dev/cua7 auto_irq autoconfig

Alternatively, you may force the setting of ports and IRQ by using the following com-

mands:

setserial /dev/cua4 uart 16450 port 0x1A0 irq 9 fourport

setserial /dev/cua5 uart 16450 port 0x1A8 irq 9 fourport

setserial /dev/cua6 uart 16450 port 0x1B0 irq 9 fourport

setserial /dev/cua7 uart 16450 port 0x1B8 irq 9 fourport

A list of multiport boards and their default locations can always be found in the �le

serial.c and the documentation for the setserial package. Currently, the following

boards are supported, listed together with the minor numbers they may be found on:

64 COM1 (port 0x3F8)

65 COM2 (port 0x2F8)

66 COM3 (port 0x3E8)

67 COM4 (port 0x2E8)

68-71 An AST Fourport on port 0x1A0

72-75 Another AST Fourport on port 0x2A0

76-77 The third an fourth port of an Accent Async card on port 0x330.

78-79 Two spare ports.

80-95 16 ports starting at 0x100, for any of the following boards: Usenet Serial

Board II, Boca 1004, Boca 1008, Boca 2016, or Bell Technologies HUB16.

You may also use a combination of up to four Boca 1004, or two Boca 1008's.

Note that the port number given is the default port for that board. This may be changed

using the setserial command.

6.6 Setting up your Modem

Okay, there you sit, your modem hooked to your machine. By now you should have con�g-

ured your serial boards according to the previous sections.

Now you may try to access your modem using kermit (<Ctrl-\> means that you hold

down the Ctrl key and press \). Your input is marked like this:

$ kermit

C-Kermit 5A(188), 23 Nov 92, POSIX

Type ? or HELP for help

C-Kermit>set line /dev/cua1

C-Kermit>set speed 9600

/dev/cua1, 9600 bps

C-Kermit>connect

Connecting to /dev/cua1, speed 9600.

The escape character is Ctrl-\(ASCII 28, FS)

Type the escape character followed by C to get back,

or followed by ? to see other options.

ATZ

OK

: : :more chatting with the modem: : :

<Ctrl-\>C

(Back at local UNIX system)

C-Kermit>quit

$

Next, you may have to con�gure it speci�cally. There are a number of options you can

set with your modem,9 like whether it may answer the phone (you really should turn this

o� when you use the modem on the same line as your telephone :-)), what dialling mode

to use (touch-tone or pulse), or V.42bis error correction. These options are usually set by

9
Usually, there are some 40 switches or more that may be set, allowing three di�erent settings on the

average. This makes up for roughly 1.8 billion ways to set up your modem. The manual has 70 pages.

talking to the modem using special command sequences that are are listed in your modem's

manual. I usually con�gure my modem using kermit, and write the con�gured values to

the modem's non-volatile memory from where they are picked up when resetting it. Of

course you can use any other terminal program, like minicom, for example.

6.7 Setting up your System for Dialing in

When setting up a serial line for use as a dialin port, you have to enable getty on that line.

Its name stands for get tty.

There's a getty program available for Linux from the getty ps suite.10 Some older

SLS releases used to have another getty program that uses a somewhat di�erent command

line syntax, and does not use con�guration �les as described below. If you are not sure

which one you have, look for uugetty in your /etc directory. If there is no such command,

you are using the older version. getty ps may be obtained it from tsx-11.mit.edu as

either binary or source.

There are quite a number of parameters for tuning getty. I will not describe them in

detail here, but merely give sample con�guration �les.

Assume your modem is on /dev/cua1. You will then have to create a �le named

getty.ttyS1 in the /etc/default directory. For a Hayes compatible modem, it might

look as follows:

Sample getty configuration file for a Hayes compatible modem to allow

incoming modem connections.

Line to use to do initialization.

INITLINE=cua1

Timeout to disconnect if idle...

TIMEOUT=60

modem initialization string... Sets the modem to disable auto-answer

format: <expect> <send> ... (chat sequence)

INIT="" \d+++\dAT\r OK\r\n ATH0\r OK\r\n AT\sM0\sE1\sQ0\sV1\sX4\sS0=0\r OK\r\n

Waitfor string. If this sequence of characters is received over the line,

a call is detected.

10
Originally written by Paul Sutcli�e, and

currently maintained by Kris Gleason (gleasokr@rtt.colorado.edu). As of this writing, getty ps is at

version 2.07b.

WAITFOR=RING

This line is the connect chat sequence. This chat sequence is performed

after the WAITFOR string is found. The \A character automatically sets

the baudrate to the characters that are found, so if you get the message

CONNECT 2400, the baud rate is set to 2400 baud.

#

format: <expect> <send> ... (chat sequence)

CONNECT="" ATA\r CONNECT\s\A

this line sets the time to delay before sending the login banner

DELAY=1

Send short message instead of the whole /etc/issue file.

ISSUE=\t\tWelcome to @S!\nLogin as guest and retrieve README.\n

Basically, this makes getty initialize the modem, especially turning o� auto-answer

mode by setting S0 to zero. It then waits for the phone to ring, to which Hayes compatible

modems usually react by sending RING to the computer. getty will then pick up the phone

and wait for the CONNECT string generated by the modem when the connection has been

established. It is worth noting that with this setup, autobauding will be performed: the

CONNECT message always includes the speed at which the connection has been established,

and this value is used to set the line speed. However, this is a bit problematic with modems

that perform compression, since the CONNECT message usually contains the Baud rate, while

the e�ective line speed may be much higher. An alternative setup will be discussed below.

For direct serial lines, the setup is much simpler:

Sample getty configuration file for a direct line.

Timeout to disconnect if idle...

TIMEOUT=60

Waitchar: do not claim the line until a character has arrived.

WAITCHAR=yes

this line sets the time to delay before sending the login banner

DELAY=1

Send short message instead of the whole /etc/issue file.

ISSUE=\t\tWelcome to @S!\nLogin as guest and retrieve README.\n

The line speed used in initializing the serial line will be used as an index into the

/etc/gettydefs �le. This �le is used by getty and getty to set line parameters and the

like when displaying the login prompt.11 You should make sure that if you expect your

modem to operate at, say 19200bps, there has to be an entry like this:

Modem line locked at 19200 Baud

19200# B19200 CS8 CRTSCTS # B19200 SANE -ISTRIP CRTSCTS#@S login: #B19200

Finally, to enable getty on the serial line, add the following entry to your

/etc/sysvinittab �le:12

inittab entry for dialup line

s1:12:respawn:/etc/getty ttyS1 19200 vt100

A �nal word on autobauding (someone please correct me if I'm wrong): If you are

using a modem which performs compression, like MNP-5 or V.42bis, you should disable

autobauding, else the slow modem-computer link would throttle the connection to the

same speed achieved without any compression. A better way is to lock the modem at the

maximum speed that it may achieve (e.g. 9600bps for a V.42bis modem), and let the the

modem slow down the serial driver using hardware handshake. Of course, this requires to

enable hardware handshake with your modem.

11
For more information, please refer to the gettydefs(5)manual page.

12
Assuming that you are using Miquel van Smoorenburg's System V-compatible init. Other init pro-

grams may use a di�erent format.

Chapter 7

Managing Taylor UUCP

7.1 Preliminary Remarks

UUCP was designed in the late seventies by Mike Lesk at AT&T Bell Laboratories to provide

a simple dial-up network over public telephone lines. Since serial connections through

modems are still the main electronic transport medium for private sites, UUCP has become

a standard for networking software. Although there are many implementations running on

a wide variety of hardware platforms and operating systems, they are compatible to a high

degree.

The implementation of UUCP currently distributed with Linux is Taylor UUCP Version

1.03.1 It is included in SLS as well as Ed Carp's mailpak, which can be obtained separately

from most Linux FTP sites.

The purpose of this chapter is not to give you an exhaustive description of what the

command line options for the UUCP commands are and what they do, but to give you an

introduction on how to set up a working UUCP node. The �rst section gives a hopefully

gentle introduction into how UUCP implements remote execution and �le transfers. If you

are not entirely new to UUCP, you might want to skip this and move on to section 7.3, on

page 122, which explains the various �les used to set up UUCP.

During the following chapter we will however assume that you are familiar with the user

programs of the UUCP suite. These are uucp and uux. For a description, please refer to

the on-line manual pages.

For those who don't �nd everything they need in this chapter, there is a very good book,

\Managing UUCP and Usenet", written by Tim O'Reilly and Grace Todino.2 I �nd it very

1
Written and copyrighted by Ian Taylor, 1992.

2
O'Reilly & Associates, Inc., 10th ed, 1992. Email nuts@ora.com for more information, or to order.

115

useful.

The latest package of UUCP binaries compiled by Vince Skahan (also included in SLS)

understands the new-style | a.k.a. \Taylor" | con�guration �les as well as BNU con-

�guration �les. If you want to use them, you should read the documentation that comes

along with the package. This is a set of texinfo �les that may be converted to GNU info

�les. However, they are quite readable without any further processing, too. Depending on

popular demand, I may one day add a description of Taylor con�guration options to this

chapter.

7.2 Introduction

7.2.1 History

As with most software that has somehow become \standard" over the years, there is no

UUCP which one would call the UUCP. It has undergone a steady process of evolution since

the �rst version which was implemented in 1976. Currently, there are two major species

which di�er mainly in their support of hardware and their con�guration. Of these, various

implementations exist, each varying slightly from its siblings.

One species is the so-called \Version 2 UUCP", which dates back to a 1977 implemen-

tation by Mike Lesk, David A. Novitz, and Greg Chesson. Although it is fairly old, it is

still in frequent use. Recent implementations of Version 2 provide much of the comfort of

the newer UUCP species.

The second species was developed in 1983, and is commonly referred to as either BNU

(Basic Networking Utilities), HoneyDanBer UUCP (being a combination of the authors'

names3), or HDB for short. It was conceived to eliminate some of Version 2 UUCP's

de�ciencies, for example new transfer protocols were added, and the spool directory was

split so that now there is one directory for each site you have UUCP tra�c with.

Taylor UUCP Version 1.03 was released in March 1992. As distributed with Linux, it

is con�gured to be BNU compatible. Therefore, this document describes the setup of a

UUCP node running BNU. Most of what is said throughout the document applies to BNU

in general; features speci�c to Taylor UUCP will be marked accordingly.

Taylor UUCP 1.03 supports serial connections (either direct or via modem) and TCP/IP

connections, and has drivers for protocols g, e, f, and t, which will be discussed later in

this chapter.

3
P. Honeyman, D. A. Novitz, and B. E. Redman.

7.2.2 Commands of the UUCP Suite

Besides the publicly accessible programs, uux and uucp, the UUCP suite contains a number

of commands used for administrative purposes only. They are used to monitor UUCP tra�c

across your node, remove old log �les, or compile statistics. None of these will be described.

Also, Taylor UUCP 1.03 as distributed with Linux doesn't have many of these, and they're

fairly easy to understand. However, there is a third category, which comprises the actual

UUCP \work horses". They are called uucico (where cico stands for copy-in copy-out),

and uuxqt, which executes jobs sent from remote systems. Their command line options are

described below.

7.2.3 Command Line Options

Below the command line options are listed as supported by uucico. Many may not be

perfectly clear to you before reading the next section about how everything works.

-s system Call the named system.

-f Causes uucico to override access and retry time restrictions.

-c Don't log an error message when a call is not permitted at the current time.

-S system Same as -fs system.

-r1 Start uucico in master mode. This is the default when -s or -S is given. All

by itself, the -r1 option causes uucico to try to call all systems in Systems,

unless prohibited by call or retry time restrictions.

-q After calling out, do not start uuxqt.

-w After calling out, enter an endless loop accepting calls. See -e.

-p port Speci�es a port to call out or listen to. In slave mode, this implies use of -e.

-r0 Start uucico in slave mode. This is the default when no -s or -S is given.

In slave mode, either standard input/output are assumed to be connected

to a serial port, or the TCP port speci�ed by -p is used.

-l Perform own authorization. uucico displays a login and password

prompt to either standard output or the port speci�ed by -p. Login

ids and passwords are not checked against the usual /etc/passwd but

/usr/local/lib/uucp/passwd.

-e Given this option, uucico enters an in�nite loop waiting for connections,

either on standard input, or a TCP port speci�ed by the -p option. With

this option, uucico executes its own authorization procedures.

-I �le Use �le as con�guration �le. This option is only available when it is compiled

to use Taylor con�guration �les.

-u login A no-op included for compatibility with some versions of uucpd.

-D Do not detach from the controlling terminal. Normally, uucico detaches

from the terminal and runs in the background.

-x type, -X type

Turn on debugging of the speci�ed type. Several types may be given as a

comma-separated list. The following types are valid: abnormal, chat, hand-

shake, uucp-proto, proto, port, con�g, spooldir, execute, incoming, outgoing.

Using all turns on all options.

For compatibility with other UUCP implementations, a number may be

speci�ed instead, which turns on debugging for the �rst n items in the above

list.

Debugging messages will be logged to .Admin/audit.local below

/usr/spool/uucp.

The following options are recognized by uuxqt.

-s system Only execute requests originating from system.

-c command Only execute requests for the given command.

-x type Same as for uucico.

-I �le Same as for uucico.

7.2.4 Layout of UUCP Transfers and Remote Execution

Vital to the understanding of UUCP is the concept of jobs. Every transfer a user initiates

with uucp or uux is called a job. It is made up of a command to be executed on a remote

system, and a collection of �les to be transferred between sites. One of both parts may be

missing.

Since UUCP does not generally call the remote system immediately to execute a job

(else you could make do with kermit), it temporarily stores the job description away. This is

called spooling. The directory tree under which jobs are stored is therefore called the spool

directory. It is generally located in /usr/spool/uucp. In addition to the job description,

UUCP might have to store input �les.

Likewise, incoming jobs will not be executed immediately, but only after the connection

terminates.

The exact location and naming of spool �les may vary, depending on some compile-

time options. HDB-compatible UUCP's generally store spool �les in a directory named

/usr/spool/uucp/site, where site is the name of the remote site.

When a connection to the remote machine is established, UUCP transfers the �les

describing the job, plus any input �les. On the remote machine, UUCP forwards or executes

the job, depending on whether it is designated for another site or not.

To di�erentiate between important and less important jobs, UUCP associates a grade

with each job. This is a single letter, ranging from 0 through 9, A though Z, and a through z,

in decreasing precedence. Mail is customarily spooled with grade C, while news are spooled

with grade N. However, this may vary. During connections to a remote site, jobs with higher

grade are transferred earlier. Grades are assigned using the -g ag when invoking uucp or

uux.

It is also possible to disallow transfer of jobs below a given grade at certain times. This

is also called the maximum spool grade allowed during a conversation and defaults to z.

Note the terminological ambiguity here | a �le is only transferred if it is equal or above

the maximum spool grade.4

7.2.5 The inner workings of uucico

To understand why uucico needs to know certain things, a quick description of how it3

actually connects to a remote system might be in order here.

When you execute uucico -s system from the command line, it �rst has to connect

physically. The actions taken depend on the type of connection to open | e.g. when using

a modem, it has to �nd a modem, and dial out. Over TCP, it has to call gethostbyname()

to convert the name to a network address, �nd out which port to open, and bind the address

to the corresponding socket.

After this connection has been established, an authorization procedure has to be passed.

It generally consists of the remote system asking for a login name, and possibly a password.

This is commonly called the chat. The authorization procedure is either performed by

4
I can hear you: "He's a mathematician, right?" :-)

the usual getty/login suite, or | on TCP sockets | by uucico itself.5 If authorization

succeeds, the remote end �res up a uucico. The local copy of uucico which initiated the

connection is referred to as master, the remote copy as slave.

Next follows the handshake phase: The master now sends its hostname, plus several

ags. The hostname is usually what hostname() returns, although you can override this

(see section 7.3.5). The slave checks this hostname for permission to log in, send and

receive �les, etc. The ags describe (among other things) the maximum grade of spool �les

to transfer. If enabled, a conversation count, or call sequence number check takes place

here. With this feature, both sites maintain a count of successful connections, which are

compared. If they do not match, the handshake fails. See section 7.3.6 on enabling this.

Finally, the two uucico's try to agree on a common transfer protocol. This protocol

governs the way �les are transferred, checked for consitency, and retransmitted in case of

an error. There is a need for di�erent protocols because of the di�ering types of connections

supported. For example, telephone lines require a \safe" protocol which is pessimistic about

errors, while TCP transmission is inherently reliable and does not need this.

After the handshake is complete, the actual transmission phase begins. Both ends turn

on the selected protocol driver. The drivers possibly perform a protocol-speci�c initialization

sequence.

First, the master sends all �les queued for the remote system whose spool grade is high

enough. When it has �nished, it informs the slave that it it is done, and that the slave may

now hang up. The slave now can either agree to hang up, or take over the conversation.

This is a change of roles: now the remote system becomes master, and the local one becomes

slave. The new master now sends its �les. When done, both uucico's exchange termination

messages, and close the connection.

We will not go into this in greater detail: please refer to either the sources or any good

book on UUCP for this. There is also a really antique article oating around the net,

written by David A. Novitz, which gives a detailed description of the UUCP protocol.

7.2.6 What UUCP needs to know

After setting up your hardware as explained in chapter 6, you have to gather the information

UUCP needs to know.

First, you will have to �gure out at what speed your modem and Linux will communi-

cate. Note that although your modem may only have a Baud rate of say 2400 Baud, various

compressions done by your modem may result in e�ective transfer rate of up to 9600 Baud

5
Taylor UUCP does it this way. There are many implementations of the uucpd service.

on the computer-modem link. In the following, your transfer rate will be referred to as the

line's speed, measured in bits per seconds (bps).

Of course, if UUCP is to do anything, you will need the phone number of a system to

call. Also, you will need a valid login id and possibly a password for the remote machine.6

You will also have to know exactly how to log into the system. E.g., do you have to

press the BREAK key before the login prompt appears? Does it display login: or user:?

This is necessary for composing the chat script, which is a recipe telling uucico how to

log in. If you don't know, or if the usual chat script fails, try to call the system with a

terminal program like kermit, and write down exactly what you have to do. Of course you

can use any other terminal program, like minicom, for example, which many former DOS

users might �nd more comfortable.

7.2.7 Site naming

In order to identify a machine in a network | be it local, in a given domain, or even world-

wide | it has to have a name 7. As long as you simply want to use UUCP for �le transfers

to or from sites you dial up directly, or on a local network, this name does not have to

meet any standards. However, if you want to be able to send and receive mail or news, you

will have to participate in a domain. Within this domain, you will have to coordinate your

sitename with the domain administrator. For a discussion of domain and site naming, see

chapter 8.

Note that name here refers to your site's UUCP name as opposed to your domain

address. Suppose your mail address is finn@swim.two.birds, then your site's domain

address will be swim.two.birds, while your UUCP host name is only swim. Think of

UUCP sites as knowing each other on a �rst-name basis.

Your �rst task as UUCP administrator is to set your site's name. You do this by logging

in as root and executing

hostname sitename

A convenient (and customary) way to do this is from the /etc/rc.local script.

6
If you're just going to try out UUCP, get the number of an archive site near you. Write down the login

and password | they're public to make anonymous downloads possible. In most cases, they're something

like uucp/uucp or nuucp/uucp.
7
Due to limitations in some implementations of UUCP, the length of your your host name should not

exceed 7 characters. The fully quali�ed domain name, of course, may be longer. Thus, minas-tirith is too

long, but minas.tirith.me is OK.

7.3 UUCP Con�guration �les

All by itself, UUCP won't know anything about how to call a remote system. In contrast

to a terminal program, UUCP was made to be able to do all jobs automatically. Once it

is set up properly, interference by the administrator should not be necessary during daily

routine.

In order to make the necessary information easily con�gurable, it is kept in a couple of

con�guration �les. They all reside in the directory /usr/local/lib/uucp. Most of these

�les are only used when dialling out.

The Taylor UUCP package shipped with Linux, con�gured to be BNU compatible, gets

its information from the following �les:

Systems This �le describes all sites known to you. For each site, it speci�es its name,

at what times to call it, which number to dial (if any), what type of device

to use, and how to log on.

Devices Contains entries describing each device available, together with baud rate

and initialization strings.

Dialcodes Contains expansions for symbolic dialcodes.

Dialers Describes dialers used to establish a telephone connection.

Permissions This �le controls permissions for �le access and command execution on a

per-system basis.

Poll On systems that run uupoll or the uudemon.poll script from cron, this �le

controls when systems should be polled. However, this script is currently

not part of Linux UUCP.

Maxuuxqts This �le contains a decimal number, specifying how many copies of uuxqt

may run at the same time.

UUCP con�guration �les are generally made up of one entry per line. An entry always

has to begin in column 1 of the line. It may be continued across newlines with a backslash

(`\'); the continuation need not begin in column 1. Fields within an entry are separated by

white space (either spaces or tabs). A hash sign (`#') starts a comment, which extends to

the next line feed. Lines that begin with white space and that are not continuation lines

are ignored, too.

7.3.1 How to tell UUCP about other Systems | the Systems File

The Systems �le describes the systems your machine knows about, one per line. It consists

of the following �elds:

sysname This is the UUCP name of the remote system this entry describes.

schedule This �eld lays out a timetable when the remote system may be called, how

long to wait before retrying after a failure, and which jobs may be trans-

ferred.

device type This describes the type of device to be used for placing the call. This is a

keyword naming an entry in the Devices �le. It may be followed directly

by a protocol selection, separated from it with a comma.

speed The speed at which to connect to the remote system. This is the serial line

speed as described above in 7.2.6. It is measured in bits per second (bps for

short).

phone Speci�es the telephone number to use if the system is called via an automatic

dialing unit. Otherwise, a hyphen (`-').

chat script This �eld contains a sequence of tokens, separated by white space. They

contain text expected from and sent to the remote machine in order to log

in.

Below, we will discuss each of these �elds in somewhat greater detail.

Sysname This must be the name of the remote system. You should not specify an

alias you invented, because uucico will check it against the remote system's

name when it logs on.8 A system name may appear more than once. To

call this system, the entries are tried in the order given; if one fails, uucico

moves on to the next.

schedule The schedule �eld contains a string which describes at what times it is al-

lowed to call the remote system. This may be either due to limitations the

remote host places on its services during business hours, or simply a question

of telephone cost.

8
Older Version 2 UUCP's don't broadcast their name when being called; however, newer implementations

often do, and so does Taylor UUCP.

The �eld consists of a string made up of a day and a time sub�eld. Day

may be any of Mo, Tu, We, Th, Fr, Sa, Su combined, or Any, Never,

Wk. Time consists of a pair of clock values, separated by a dash (`-').

They specify the range within calls may be placed. Any combination of

these tokens is written without white space inbetween. Any number of

day/time speci�cations may be grouped together with commas. For exam-

ple, MoWe0300-0730,Fr1805-2000 allows calls on Monday and Wednesdays

from 3 a.m. to 7.30, and on Fridays between 18.05 and 20.00. When a time

�eld spans midnight, say Mo1830-0600, it actually means Monday, the time

between midnight and 6 a.m., and the time between 6.30 p.m. and midnight.

The special day �elds Any and Never mean what they say: Calls may be

placed at any or no time, respectively. Any may be modi�ed by a time

sub�eld. Wk is a shorthand for MoTuWeThFr.

Taylor UUCP also has two special schedule tokens, namely NonPeak and

Night. They are shorthand for Any2300-0800,SaSu0800-1700 and

Any1800-0700,SaSu, respectively.

In Taylor UUCP, one can also attach a maximum spool grade to a schedule.

This is done by appending a slash (`/') and the spool grade character to

the schedule �eld. This determines the maximum grade of spool �les to be

transferred during a connection initiated by your UUCP. For example, you

can use the following schedule �eld to allow only transfer of mail during peak

hours, while news and UUCP transfers are deferred until the evening:

swim Any/C,NonPeak ACU 9600 : : :

However, a caveat is in order here: First, the grade ag is not checked when

a remote system calls in, so any jobs queued for the calling system will be

sent.9 It is also possible that the remote site runs some version of UUCP

that ignores your request only to transfer �les of certain grade, even when

you call in. So, before relying on this feature, check if the neighboring site

supports this. If it does, check with the administrator to attach appropriate

spool grade speci�cations to his schedule.

You may also give a retry interval to uucico. This determines how long

uucico should wait before calling this host again after a failed connection.

The time is given in minutes and is o�set by a semicolon. By default, Taylor

UUCP uses a retry time which increases exponentially with each failure.

9
This is probably a feature; you normally don't have to pay for incoming calls.

device type The device type is a name of a device speci�ed in the Devices �le. It may

be immediately followed by a comma and a protocol speci�cation. This is

a list of letters, each naming a protocol to be o�ered the remote site in the

order given. It is expected that the remote site selects from this list the �rst

protocol known to it. If no protocols are speci�ed, uucico chooses from a

set of protocols suitable for the device.

For a discussion of protocols available, see section 7.6.3.

speed The speed �eld speci�es a speed or a range of speeds at which we want to

connect to the remote system. A speed is given as a decimal number, a range

as two numbers separated by a dash. The entries \-" and Any match any

speed.

You can also combine this with a modem class. This may be any alpha-

betic string preceding the speed speci�cation. For example, some modems

only support the HST protocol for high-speed connections, while others only

understand V32.bis. Their greatest common denominator is 9600 bps. As-

sume you own both a HST and a V32.bis modem, and poll a machine being

equipped with one HST modem. Then you sure would want uucico to use

the HST modem. Therefore, your Systems entry for this site should contain

HST38400 in the speed �eld, and the HST modem would have a Devices

entry with a speed �eld of HST19200-38400.

For TCP connections, the speed �eld should contain a dash.

phone number

If the remote system is to be reached over a telephone line, the phone number

�eld contains the number the modem should dial. It may contain several to-

kens interpreted by uucico's dialing procedure. An equals sign (`=') means

to wait for a secondary dial tone, and a dash generates a one-second pause.

Any embedded alphabetic string may be used to hide site-dependent infor-

mation like area codes. Any such string is translated to a dialcode using the

Dialcodes �le.

If the remote system is connected directly, the phone number �eld should

contain a dash (`-'). If this is a TCP connection, this �eld should contain a

hostname that can be resolved by the name server, or an IP address.

chat script The chat script occupies the remainder of the line. It is a list of tokens, spec-

ifying strings expected and sent by the local uucico process. The intention

is to make uucico wait until the remote machine sends a login prompt, then

return the login id, wait for the remote system to send the password prompt,

and send the password. Expect and send strings are given in alternation.

Note that uucico automatically appends a carriage return character (`\r')

to any send string. Thus, a simple chat script would look like

ogin: pablo ssword: catch22

You may note that the expect �elds don't contain the whole prompts. This

is to make sure that the login succeeds even if the remote system broadcasts

Login: instead of login:.

However, uucico also allows for the case that the remote machine's getty

needs to be reset before sending a prompt. For this, you can specify a sub-

string, separated from the expect �eld by dashes. This is a list of send/expect

pairs executed only if the main expect fails (i.e. a timeout occurs). One use

of this feature is to send a BREAK if the remote site doesn't send a login

prompt. The following example gives an allround chat script that should

also work in case you have to hit return before the login appears. "" desig-

nates the empty expect string.

"" \n\r\d\r\n\c ogin:-BREAK-ogin: pablo ssword: catch22

There are a couple of special strings and escape characters which may occur

in the chat script. Note that not all characters are recognized by all BNU

UUCP's. The following are legal characters in expect strings:

"" A pair of double qoutes designates the empty string (expect

nothing).

\b Backspace character.

\t Tab character.

\N NUL character.

\r Carriage return character.

\s Space character (` ').

\n Newline character.

\\ Backslash character (`\').

\ddd Character in octal digits ddd.

\xdd Character in hexadecimal digits dd.

On send strings, the following escape characters and strings are legal in

addition to the above:

EOT End of transmission character (`^D').

BREAK End of transmission character (may not work on all systems).

\c Suppress sending of carriage return at end of string.

\d Delay sending for 1 second.

\e Disable echo checking.

\E Enable echo checking (wait for echo before continuing).

\K Same as BREAK.

\p Pause for fraction of a second.

7.3.2 Hiding dialcodes | the Dialcodes �le

To make the phone numbers given in the Systems �le more legible, as well as easier to

maintain within large communities, you may replace parts of it with alphabetic strings.

When dialing the number, the string is translated back to numbers. Common practice is to

replace area codes with names.

The Dialcodes �le is for translating these strings back into telephone numbers. An

entry in this �le consists of two �elds: The �rst is the alphabetic string, the second is the

phone number to substitute.

7.3.3 What devices there are | the Devices �le

This section describes the Devices �le. It contains information about the devices available

to UUCP.

An entry consists of the following �elds:

type The device type. It must be one of the following keywords:

ACU The device is a modem. ACU stands for \automatic call unit".

Direct This speci�es a direct line.

TCP The connection is established via a TCP/IP socket.

It may be followed by a comma-separated list of protocols supported. It

overrides those possibly speci�ed in the Systems �le.

port This is the device name. For direct serial links or modems, this will be

the name of the special �le in the /dev directory. Note that you should

specify the real device �le (i.e. /dev/cuan), and not a symbolic link like

/dev/modem.

For a TCP/IP connection, either use a service name to be looked up in

/etc/services, or a services number. The service name will usually be

uucpd or uucp. If uucico cannot determine a service number, port 540 is

used.

dialer This names a dialer device �le. This is primarily useful for modems. For

other connections, you should use a dash (`-'). In case of several direct con-

nections, you may have to use this �eld for some sort of trickery (see 7.3.7).

speed The speed the device supports (direct or a phone lines only). This entry is

matched against the speed �eld from the Systems �le.

The string may be either a number, or two numbers separated by a dash

(`-'), specifying a speed or a speed range in bits per second, respectively. A

single dash or the keyword Any matches any speed.

You can also precede this with a modem class. See the explanation of the

speed �eld in 7.3.1 for an example why one would want to use this.

In conjunction with a TCP connection, use a dash.

If the entry describes a direct line (type is Direct), you may not specify a

speed range.

dialer-token pairs

A dialer-token pair is a dialer type, followed by a token to be sent to the

dialer. The token may either be \D or \T. Both denote the phone number

as speci�ed in the Systems �le, where \T implies dialcode translation, and

\D doesn't.

The dialer type is matched against an entry in the Dialers �le.

Under normal circumstances, you will only have one modem wired to the

device directly. Then, you should give only one dialer-token pair. However,

if you access several modems over a switch, you will have a dialer-token pair

for each. In this case, the token will be the string given to the switch in

order to access the modem.

If the entry describes a direct line (type is Direct), this �eld is not used.

The device type speci�ed in the Systems �le is matched against the device types in the

Devices �le. The same device type may be used several times. If you have several modems

connected to your machine, you will give at least one entry named ACU for each of them.

You may even give several entries for the same modem, each at a di�erent speed or with a

di�erent modem initialization.

7.3.4 How to dial a number | the Dialers �le

The Dialers �le describes the way dialers are used. Each modem or dialer type has exactly

one entry.

Any entry consists of the following �elds:

dialer This is the name of the dialer. It must match the dialer part of a dialer-token

pair in the Devices �le entry.

subst String of character translations. The �rst of each pair of characters is trans-

lated into the second when dialling the telephone number. This is generally

used to substitute the `=' and `-' characters in the phone number.

modem-chat Organized simliarily to the chat script in the Systems �le, it consists of pairs

of expect/send strings used to initialize the dialer (or modem) and dial the

phone number.

The following ecape characters are understood:

\D Send phone number without dialcode translation.

\T Send phone number with dialcode translation.

\M Do not require carrier.

\m Require carrier and fail if not present.

Apart from these, all escape characters speci�ed for the Systems �le chat

script are understood.

7.3.5 The Do's and Dont's | The Permissions File

The Permissions �le controls access you grant to other systems. Each entry is one line,

possibly continued across a newline using a backslash (\\"). It consists of a list of assign-

ments, separated by white space. An assignment is a token-value pair, separated by an

equals sign (=), and should not contain white space. They may occur in any order. Any

but the LOGNAME and MACHINE options have default values.

You may give di�erent permissions to remote systems, based on whether they call you, or

you call them. The �rst type is described by an entry containing LOGNAME=login which speci-

�es the login id under which the remote system logs in. An entry containing MACHINE=system

describes permissions for the remote system when we call it. You may also merge both en-

tries for system into one entry by specifying both LOGNAME and MACHINE.

An entry specifying MACHINE=other applies to any machine calling in. This can be used

to set permissions for any machine not explicitly mentioned.

Some options only apply when calling out, others only when a remote system calls in.

The following entries may be used with both LOGNAME and MACHINE entries:

REQUEST If set to yes, the remote system may request �les from you. Defaults to no.

PUBDIR The directory for public local access. Defaults to /usr/spool/uucppublic.

READ A colon-separated list of directories the remote system may request �les

from, and any subdirectories thereof. Defaults to PUBDIR.

WRITE A colon-separated list of directories the remote system may send �les to, and

any subdirectories thereof. Defaults to PUBDIR.

NOREAD A colon-separated list of directories excepted from READ.

NOWRITE A colon-separated list of directories excepted from WRITE.

SENDFILES If set to yes, jobs are transferred to the remote system when it calls. Other-

wise, when set to call, your system will only transfer queued jobs when it

calls out. If set to no, no jobs will be transferred at all.10 Defaults to call.

MYNAME If you want to hide your system name when calling another machine, set

MYNAME to your alias.

This option is very useful. Assume your machine is the gateway to a net

called daveg, but its hostname is cuxE91. However, the site you call expects

your name to be daveg. Instead of ripping apart your whole net, you can

put MYNAME=daveg in your Permissions �le, and uucico will report your

hostname as daveg to the remote machine.

10
This is speci�c to Taylor UUCP 1.03. In version 1.04, no is equivalent to call.

The following options are available for LOGNAME entries only:

VALIDATE This �eld is interpreted di�erently under versions 1.03 and 1.04. In

UUCP 1.03, it speci�es a colon-separated list of systems allowed to log in

under this logname.11 If this list is empty, any system name is valid.

In version 1.04, however, if a site is listed in the VALIDATE �eld, then it is

required to use the corresponding LOGNAME. Other systems are still permitted

to use this login. If you set up your system for dialup and allow anonymous

UUCP, this option will come very handy. See section 7.5.

CALLBACK If set to yes, your system will hang up when the remote system calls you,

and return the call. Defaults to no.

The following option is available for MACHINE entries only:

COMMANDS A colon-separated list of commands the remote system may execute on our

machine. Defaults to rnews:rmail.

7.3.6 Be Paranoid | Call Sequence Checks

Call sequence checks are used to prevent and detect impostors. Imagine somebody else

�nds out the password you use to log into your mail feed. He or she could now call your

feed, posing as you, and receive all your mail.

To guard against this, you can enable call sequence checks. For this, both machines

keep track of the number of connections established so far. It is incremented with each

connection. At login, the caller sends its call sequence number, and the callee checks it

against its own number. If they don't match, the connection attempt will be rejected.

Even if some very clever person should detect your call sequence number as well as

your password, you will �nd this out: the next time you try to log in, the remote uucico

will refuse you, because the numbers don't match anymore! However, depending on the

implementation of the remote uucico, it may still be possible for the impostor to log in.

With BNU-compatible UUCP's, this number is kept in the �le .Sequence in the remote

site's spool directory. It must be owned by uucp, and must be mode 600 (i.e. readable and

writeable only by its owner). Call sequence checks are enabled by creating this �le:

cd /usr/spool/uucp/sitename # echo "4316" > .Sequence # chmod 600

.Sequence # chown uucp.uucp .Sequence

11
This is also the way the O'Reilly book has it. According to Ian Taylor, this is wrong.

It is best to initialize this �le with an arbitrary, agreed-upon start value. Otherwise,

someone might manage to guess the number by trying out all smaller than, say, 20.

7.3.7 How to Specify a Direct Connection

Assume you use a direct line connecting your system pablo to tiny. How would you sepcify

the device to use? Having read the above, you would certainly think: \Why, I use Direct

in Devices, and: : :". But wait, what if you have another direct line, the second connecting

you to walt? Which line is uucico assumed to pick? There is no way for it to see from an

entry in Devices what system it is connected to.

There are several ways around this dilemma.

The �rst is to use a di�erent name for each direct entry in Devices, e.g. one could

take the name of the site at the other end of the wire instead of Direct. This method is

widely used. However, this has a disadvantage: uucico decides by the entry's name if it is

a direct line (Direct), a TCP connection (TCP), or a modem (anything else). Thus, using a

name other than Direct causes uucico to assume that the line has a modem dangling o�

it. Since it might handle direct lines and modems di�erently, this could get you in trouble.

However, you should do it this way if the connection is over a leased line (for which one

generally uses modems on both ends).

Note, that since the line is not recognized as being direct, uucico will expect a dialer-

token pair at the end of the entry. It is best to add a do-nothing entry named direct to

the Dialers �le, if the connection is a simple wire. When using a leased line, you will need

a separate entry to access the modem, anyway.

The second way is to prepend any system identi�cation to the speed, in e�ect de�ning a

\modem class". You can now use Direct as the entry's name, making sure that the device

is recognized as a direct line indeed. Since modem classes may not be implemented in all

UUCP's, you may have problems using this method with uucico's other than Ian Taylor's.

An example for both methods is given in the section below.

7.4 From System Name to Connect | How all this Works

After giving you an overview of what �les UUCP uses, we now explain the process of

accessing a system in greater detail, giving an extensive example.

7.4.1 Sample Files

Assume the sample �les given in Fig. 7.1 through 7.4.

/usr/local/lib/uucp/Systems

#

This is our news/mail feed.

swim Any/C,NonPeak ACU,g 9600 Town=123456 ogin: joe ssword: Jabba

alternate number, slow modem.

swim Any/C,NonPeak ACU,g 2400 Town=555555 ogin: joe ssword: Jabba

#

The server for local distribution

server Any TCP,e - srv.abc.com ogin: joe ssword: ScrBlX

#

A local machine with direct connection: using method #1

pablo Any pablo,g 38400 - ogin: joe ssword: Catch22

#

A local machine with direct connection: using method #2

tiny Any Direct,g tiny38400 - ogin: joe ssword: iTsMe

Figure 7.1: The Systems �le

7.4.2 Building up the Connection

If uucico is called with the -s sysname option, it will check the Systems �le for sysname.3

All entries for sysname are tried in the order given, until either a call succeeds, or there are

no entries left.12 First, the entry's schedule �eld is checked whether the call may be placed

at the current time. No check of the maximum spool grade is done.

However, if uucico is invoked with ag -r1, it will loop over all entries in the Systems

�le. For each entry, the spool directory is scanned for jobs queued for this system. If there

are no jobs, the respective system will not be called. If there are, the maximum grade of

all jobs is compared against the spool grade speci�cation in the schedule �eld. If there is

no matching time/grade combination for the current entry, uucico continues scanning the

system �le; otherwise it tries to call the system.

12
Alternate entries are also retried when the failure occured during the chat script, the handshake, or even

during the transfer phase.

/usr/local/lib/uucp/Devices

#

TCP. Use service 'uucp' in /etc/services

TCP uucp - -

#

Hayes Modem on /dev/cua1

ACU /dev/cua1 - 2400 hayes \T

ACU /dev/cua1 - 9600 hayesv42 \T

#

The direct connection to pablo, using dialer 'direct'

pablo /dev/cua2 - 38400 direct

#

The direct connection to tiny, no dialer

Direct /dev/cua3 - tiny38400

Figure 7.2: The Devices �le

/usr/local/lib/uucp/Dialers

#

Hayes Modem at 2400 Baud, no compression

hayes =,-, "" AT OK ATZ OK AT\\N0M3E0Q1 OK \EATDT\T CONNECT

Hayes Modem at 2400 Baud, V42bis

hayesv42 =,-, "" AT OK ATZ OK AT\\N6M3E0Q1 OK \EATDT\T CONNECT

Do-nothing dialer for direct lines

direct

Figure 7.3: The Dialers �le

/usr/local/lib/uucp/Permissions

#

server: may do almost everything

LOGNAME=server MACHINE=server VALIDATE=server\

READ=/ SEND=/ \

REQUEST=yes SEND=yes\

COMMANDS=rnews:rmail:rsmtp:lpr:uux

Ordinary mail and news accounts

LOGNAME=swim MACHINE=swim VALIDATE=swim\

REQUEST=yes SEND=yes\

COMMANDS=rnews:rmail

LOGNAME=pablo MACHINE=pablo VALIDATE=pablo\

REQUEST=yes SEND=yes\

COMMANDS=rnews:rmail

mail-only link

LOGNAME=tiny MACHINE=tiny VALIDATE=tiny\

REQUEST=yes SEND=yes\

COMMANDS=rmail

anon UUCP account.

LOGNAME=uucp MACHINE=other\

COMMANDS=rmail REQUEST=yes SENDFILES=no

Figure 7.4: The Permissions �le

If the entry matches, uucico will �rst check if there's already a connection open to this

machine. This is signalled by a lock �le in the spool directory. If there is one, the call fails.

Otherwise, uucico will proceed and create a lock �le itself.

Next, the device type is extracted from �eld 4 of the Systems �le, and the Devices

�le is searched for a device matching the desired type. If it �nds one, the speed �elds are

checked against each other, too. If the speed ranges speci�ed in the Systems �le entry and

the Dialers �le entry overlap, the highest common speed is selected. An entry containing

Any or \-" matches any speed.

Then, uucico will open the device �le or the TCP/IP socket. If the device is a modem,

the dialer chat script speci�ed in the Dialers �le is executed �rst. Following this, the chat

script from the Systems �le is executed.

7.4.3 Calling out via Modem

Assume that you issued the command

$uucico -sswim

on the command line to connect to swim. Since uucico has been invoked with -s, it is

satisi�ed by the �rst entry which speci�es Any as call time. If no lock �le for swim exists, it

will create one.

Then, uucico searches Devices for entries of type ACU at 9600 bps. It �nds the modem

on /dev/cua1, one entry using it at 2400 bps, and another at 9600 bps. The �rst entry

doesn't match the transfer rate, but the second does. If cua1 is not locked, a lock �le is

created, and the call proceeds.

Next, uucico extracts the dialer-token pair from the entry. Since the token is \T, Town

in the phone number will be substituted, using the Dialcodes �le.

The dialer type, hayesv42, is matched against the dialer names in the Dialers �le. A

matching entry is found, and the \=" from the phone number is translated to the HayesTM-

speci�c pause command \,".

Next, the modem is initialized using the modem chat script, and dials out. After receiv-

ing CONNECT from the modem, uucico executes the login chat script given in Systems: it

waits for ogin:, then sends joe, waits for ssword: and sends Jabba. The remote end should

now �re up its own uucico, and initial handshake between the two takes place (see 7.2.5).

Note that in this example, a single modem is set up so that it can be used at di�erent

speeds.13

13
This is done by the \\N0 and \\N6 command in the modem chat script, respectively. I don't know if

7.4.4 Calling out via TCP

Assume that you issued the command

$ uucico -sserver

Exactly as in the above example, uucico searches Systems, now �nding an entry de-

scribing server. The device �eld now speci�es a TCP connection, and the phone number

�eld contains the name the remote site responds to.

For TCP/IP connections, any TCP type device matches. Hence, you will only need one

entry in your Devices �le, just like in the example above.

uucico will now resolve the host name into an IP address using gethostbyname(). For

this to work, you either have to have a namedDomain Name Server installed, or resolv.conf

and hosts.equiv set up correctly. Please refer to the networking FAQ.

Then the port number through which to reach the UUCP daemon on the remote host is

determined from the second �eld in the Devices entry. This can either contain the port

number itself, or a service name that is translated using getservbyname().

Finally, the socket is bound to the address, and the login chat script is executed.

7.5 Setting up your System for Dialing in

If you want to set up your site for dialing in, you have to permit logins on your serial

port, and customize some system �les to provide UUCP accounts. This will be explained

throughout this section.

7.5.1 Setting up uugetty

When setting up a serial line for use as a dialin port, you have to enable some getty

program on this port. However, for ports you wantto use for both dialling in and out, the

usual getty program is not enough, because it does not allow other programs to access the

device. Instead, you have to use a companion program called uugetty that implements line

sharing.

There's a uugetty program available for Linux from the getty ps suite. If you are

running a recent SLS release, you will already have it | check this out in your /etc

directory. Otherwise, you may obtain it from tsx-11.mit.edu as either binary or source.

that's standard Hayes, but my modem does it that way.

Line sharing between uugetty and other programs like uucico, kermit or seyon is

implemented using UUCP lock �les. When being invoked on serial line, say /dev/ttyS1,

uugetty checks if there is a lock �le named LCK..cua1 in /usr/spool/uucp. If there is

one, it puts itself to sleep for a minute. Otherwise, it initializes the line, and waits for

an incoming connection. When accepting an incoming connection, it creates the lock �le

LCK..cua1 itself, thus barring any other program from accessing the line. When another

program tries to call out while uugetty is still waiting for an incoming connection, uugetty

recognizes this and puts itself to sleep.

uugetty may be set up just the way you would con�gure getty for a serial port, except

that the con�guration �le should now be called uugetty.ttyS1 instead of getty.ttyS1.

Everything else should go as described in section 6.7.

7.5.2 Providing UUCP Accounts

Next, you need one or more login names under which people may log into your system to

do UUCP. Generally, this will be something like uucp for anonymous downloads, and a

separate login for every site that polls you.

You should give all UUCP accounts a distinct group which has no special rights, for ex-

ample guest. As shell, you enter /usr/local/lib/uucp/uucico. For example, if you have

the shadow password suite installed, you may do this by invoking the useradd command

with the following arguments:

useradd -d /usr/spool/uucppublic -G guest \

-s /usr/local/lib/uucp/uucico monad

useradd -d /usr/spool/uucppublic -G guest \

-s /usr/local/lib/uucp/uucico uucp

Afterwards, set the passwords for these accounts using the passwd command.

For UUCP, you should put the following lines into Permissions:

LOGNAME=uucp\

READ=/usr/spool/uucppublic\

NOREAD=/usr/spool/uucppublic/incoming\

WRITE=/usr/spool/uucppublic/incoming\

COMMANDS=rmail REQUEST=yes SENDFILES=yes

LOGNAME=monad MACHINE=monad VALIDATE=monad\

READ=/usr/spool/uucppublic WRITE=/usr/spool/uucppublic\

COMMANDS=rnews:rmail:rsmtp REQUEST=yes SENDFILES=yes

The VALIDATE entry is necessary to prevent intruders from sneaking on monad's mail:

Assume a system logs in as uucp and pretends its name is monad. If validation is not in

e�ect, it is sent all jobs that are queued for monad!14

Directories for any UUCP accounts are created by uucico as needed.

If you wish to prohibit interactive logins from the dialup port, possibly for security

reasons, or because this would disrupt mail and news services, you may use the porttime

feature of the shadow login suite. In /etc/login.defs, you set PORTTIME CHECKS ENAB to

yes, and put the following into your /etc/porttime �le:

/etc/porttime

Allow registered UUCP users, but throw out everybody else

ttyS1:uucp,monad:Al0000-2400

ttyS1:*:

This only allows the UUCP accounts monad and uucp to be accessed over the serial port,

while everyone else will fail to log in. Details on the portttime �le can be found in the

corresponding section 4 manual page.

Note that anonymous UUCP in Taylor UUCP is currently somewhat broken. If you

have enabled support for both HDB and Taylor-style con�guration �les | as is the case

with the SLS UUCP |, uucico will fail to allow unkown systems to log in. This seems to

be a deliberate lack of feature. If you want to provide anonymous UUCP, you either have

to use Taylor-style con�guration �les, or recompile uucico with HDB support exclusively.

7.5.3 Accepting UUCP logins over TCP/IP

If you want to use Taylor UUCP to service requests over TCP/IP, you have to add the

following to the �le /etc/services:

uucpd 540/tcp

To make inetd service requests for it, add the following to /etc/inetd.conf:

uucpd stream tcp nowait root /usr/local/lib/uucp/uucico uucico -l

Instead of using inetd, you may also start uucico at boot time with the -e Option. This

makes uucico sit in a loop, listen to the port speci�ed, and wait for requests.

14
This also seems to be a problem with various version 2 implementations. Amiga-UUCP is one of them.

If a connection via TCP occurs, uucico will prompt for login and password.

However, it will not use /etc/passwd for authorization, but rather its private

/usr/local/lib/uucp/passwd �le.

Of course you can select any other port number than 540, although this is the default

used by uucico.

7.6 Miscellaneous

7.6.1 Troubleshooting

This section describes what may go wrong with your UUCP connection, and makes sugges-

tions where to look for the error.15 However, the questions were compiled by the author o�

the top of his head. There's much more that can go wrong.

In any case, enable debugging with -xall, and take a look at the output in

.Admin/audit.local in the spool directory. It helps you quickly recognize where the prob-

lem lies. Also, I have always found it helpful to turn on my modem's speaker when it didn't

connect. With HayesTM-compatible modems, this is accomplished by adding \ATL1M1 OK"

to the modem chat in the Dialers �le.

Something is wrong: The �rst check always should be if all �le permissions are

set correctly. uucico should be setuid uucp, and all �les in /usr/local/lib/uucp,

/usr/spool/uucp and /usr/spool/uucppublic should be owned by uucp. Remember

to check the hidden �les in the spool directory.

I can connect to the remote site, but the chat script fails: Look at the text

you receive from the remote site. If it's garbled, this might be a speed-related problem.

Otherwise, con�rm if it really agrees with what your chat script expects. Remember the

chat script starts with an expect string. If you receive the login prompt, then send your

name, but never get the password prompt, insert some delays before sending it, or even

in-between the letters. You might be too fast for your modem.

My modem does not dial: If your modem doesn't indicate that the DTR line has been

raised when uucico calls out, you possibly haven't given the right device to uucico. Check

Devices. Also, see 6.4 on how to �nd out the device. If your modems recognizes DTR, check

with kermit that you can write to it. If this works, turn on echoing with \E at the start of

the modem chat. If it doesn't echo your commands during the modem chat, check if your

line speed is too high or low for your modem. If you see the echo, check if you have disabled

15
This amounts to a short UUCP-FAQ. I would be glad if someone took this as a basis for a real FAQ.

modem responses, or set them to number codes. Verify that the chat script itself is correct.

Remember that you have to write two backslashes to send one to the modem.

My modem tries to dial, but doesn't get out: Insert a delay into the phone

number. This is especially useful when dialling out from a company's internal telephone

net. For people in Europe, who usually dial pulse-tone: try touch-tone. In some countries,

postal services have been upgrading their nets recently. Touch-tone sometimes helps.

I have extremely high packet loss rates: This looks like a speed problem. Maybe

the link between computer and modem is too slow (remember to adapt it to the highest

e�ective rate possible)? Or it is your hardware that is too slow to service interrupts in time.

With a NSC 16550 chipset on your serial port, 38kbps are said to work reasonably well;

however, without FIFOs (like 16450 chips), 9600 bps is the limit.

I can log in, but handshake fails: Well, there can be a number of problems. The

output in the log �le should tell you a lot. Look at what protocols the remote site o�ers

(It sends a string Pprotlist during handshake). Maybe they don't have any in common (did

you select any protocols in Systems or Devices?).

If the remote system sends RLCK, there is a stale lock�le for you on the remote system.

If it's not because you're already connected to the remote system on a di�erent line, ask to

have it removed.

If it sends RBADSEQ, the other site has conversation count checks enabled for you, but

numbers didn't match. If it sends RLOGIN, you were not permitted to login under this id.

(Possibly you forgot to set MYNAME in Permissions?)

7.6.2 Log �les

When compiling the UUCP suite to be HDB-compatible, there are several places where

log �les may go. Most commands will always generate some amount of informational in-

formation. This is logged to �les below /usr/spool/uucp/.Log. This directory contains

three more directories, named uucico, uuxqt, and uux. They contain the logging output

generated by each of the corresponding commands, sorted into di�erent �les for each site.

Thus, output from uucico when calling site swim will go into .Log/uucico/swim, while the

subsequent uuxqt run will write to .Log/uuxqt/swim.

When enabling debugging output, this will go to the .Admin directory be-

low /usr/spool/uucp. When calling out, debugging information will be sent to

.Admin/audit.local, while the output from uucico when someone calls in will go to

.Admin/audit.

7.6.3 Available line protocols

To negotiate session control and �le transfers with the remote end, uucico uses a set of

standardized messages. This is often referred to as the high-level protocol. During the

initialization phase and the hangup phase these are simply sent across as strings. However,

during the real transfer phase, a low-level protocol is employed which is mostly transparent

to the higher levels. This is to make error checks possible when using telephone lines, among

other things.

This low-level protocol can be chosen from among a set of protocols, depending on the

nature of the connection used. However, not every implementation of uucico knows every

protocol, so during initialization phase, both processes have to agree on a common protocol.

As described in section 7.2.5, you can select a list of protocols to be o�ered to the remote

uucico when your UUCP calls out. You can do this by appending a string of protocol names

to the device �eld in Systems, o�set by a comma. A protocol name is a single letter.16

The following protocols are available with Taylor UUCP 1.03:

g This is the most common protocol and should be understood by virtually

all uucico's. It does thorough error checking and is therefore well-suited for

noisy telephone links. g requires an eight-bit clean connection.

It is a packet-oriented protocol which uses a slide-window technique (See

below for an explanation of these verbal monsters).

Because of the overhead involved, g is not considered e�cient for reliable

links such as TCP connections.

t This is a protocol intended for use over a TCP connection. It is only for use

with truly error-free networks. It uses packets of 1024 bytes and requires an

eight-bit clean connection.

e This should basically do the same as t. The main di�erence is that e is a

streaming protocol.

f It is intended for use with reliable X.25 connections.17 It is a streaming

protocol and expects a seven-bit data path; eight-bit characters are quoted,

which can make it very ine�cient.

16
Note that protocol names are case-sensitive. Some implementations of uucico have a G protocol, for

example, which is a slightly modi�ed g protocol.
17
X.25 is a standard issued by CCITT, describing the lower three layers (i.e. physical, data link, and

networking) for digital connections over public phone lines. Special equipment is needed for X.25, namely a

so-called PAD, meaning Packet-Assembler-Disassembler.

Protocols can be divided into two categories: streaming and packet-oriented protocols.

The �rst type transfers a �le as a whole, possibly computing a checksum over it. This is

nearly free of any overhead, but requires a reliable connection, because any error will cause

the whole �le to be retransmitted. These protocols are not suitable for use over telephone

lines. Although modern modems do quite a good job at error checking, there is no such

thing as error detection between your computer and the modem.

On the other hand, packet protocols split up the �le into several chunks of equal size.

Each packet is sent and received separately. With the g protocol, a checksum is calculated

for each packet, and the recipient has to acknowledge its correct transmission. To make this

more e�cient, sliding-window protocols were invented, which allow for a limited number (a

window) of outstanding acknoledgements at any time. This greatly reduces the amount of

time uucico has to wait during a transmission.

Packet sizes are generally powers of 2. The g protocol has a maximum window size of

7, and packet sizes ranging from 64 through 4096. With BNU con�guration �les, these

parameters cannot be set by the user.18 Taylor UUCP currently comes with a pre-compiled

default of 7 windows and 64 byte packets.19

The width of the data path also makes a di�erence. When transmitting eight-bit char-

acters over a seven-bit connection, they have to be quoted. Under worst-case assumptions,

this doubles the amount of data to be transmitted, although compression done by the hard-

ware may compensate for this. On the other hand, if you use a modem, an eight-bit clean

connection forbids software handshake between modem and computer. In this case, make

sure that both modems perform hardware handshaking.

Taylor UUCP version 1.04 adds a couple of new protocols. These are

i This is a bidirectional protocol which can send and receive �les at the same

time. It requires a full-duplex connection and an eight bit data path. You

will only recognize an advantage over the g protocol if you are sending about

as much as you are receiving.

G This is the System V Release 4 version of the g protocol. It is also understood

by some other versions of UUCP.

a Similiar to ZMODEM. Requires an eight bit connection, but quotes certain

control characters like XON and XOFF.

18
This is possible when compiling Taylor UUCP to use \Taylor con�guration �les". You are basically on

your own doing this. However, the sources contain texinfo �les describing their format.

19
You can't get above this. During the g protocol startup, both processes exchange their preferred packet

and window sizes, and settle for the smaller of each.

All these are also packet protocols with many parameters. When using Taylor con�guration

�les, they can be tuned by the user. With HDB, defaults are provided.

7.6.4 Notes

Taylor UUCP is covered by the GNU public license, which is reproduced in appendix B.

The latest version is always available as prep.ai.mit.edu:/pub/gnu/COPYING.

There is a mailing list for users of Taylor UUCP. To subscribe (or leave), send mail to

taylor-uucp-request@gnu.ai.mit.edu

Please note that this mail is handled by a human being. To write a message to the list,

simply send it to taylor-uucp@gnu.ai.mit.edu. Bug reports should also be directed to

this list.

Chapter 8

Electronic Mail

One of the most prominent uses of networking is electronic mail, and has been so since the

�rst networks were devised. It started as a simple service that copied a �le from one machine

to another, and appended it to the recipient's mailbox �le. Basically, this is still what email

is all about, although an ever growing net with its complex routing requirements and its

ever increasing load of messages transported has made a more elaborate scheme necessary.

Various standards of mail exchange have been devised. Sites on the Internet adhere to

one laid out in RFC 822, augmented by some RFCs that describe a machine-independent

way of transferring special characters, and the like. Much thought has also been given

recently to \multi-media mail", which deals with including pictures and sound in mail

messages. Another standard, X.400, has been laid down by CCITT.

In this chapter, we will deal with what email is and what issues you as an administrator

will have to deal with. Actual con�guration details are covered throughout the next chapter.

8.1 What is a Mail Message?

A Mail message generally consists of a message body, which is the text the sender wrote,

and special data specifying recipients, transport medium, etc., very much like what you see

when you look at a letter's envelope.

This administrative data falls into two categories; in the �rst category is any data that is

speci�c to the transport medium, and which may be regenerated by the transport software

as the message is passed along. In UUCP networks, the route belongs here. In its entirety,

this data is generally referred to as the envelope.

The second variety is any data necessary for handling the mail message, which is not

145

particular to any transport mechanism. It is often used to generate the envelope data, or

to determine the message's sender. In most networks, it has become standard to prepend

this data to the mail message. This is the so-called mail header. It is o�set from the mail

body by an empty line.1

Most mail transport software in the Un?x world uses a header format outlined in a

document named RFC 822.2 Its original purpose was to specify a standard for use in the

ARPA Internet, but since it was designed to be independent from any environment, it has

been easily adapted to other networks, including many UUCP-based networks.

RFC 822 however is only the greatest common denominator. More recent standards have

been conceived to cope with growing needs as, for example, data encryption, international

character support, and \multi-media mail".

All these standards have in common that the header consists of several lines, separated

by newline characters. A line is made up of a �eld name, beginning in column one, and the

�eld itself, o�set by a colon and white space. The format and semantics of each �eld vary

depending on the �eld name. A header �eld may be continued across a newline, if the next

line begins with a TAB. They may appear in any order.

Usually, all necessary header �elds are generated by the mailer interface you use, like

elm, mush, or mailx. Some however are optional, and may be added by the user. Elm, for

example, allows to edit part of the message header. Others are added by the mail transport

software.

Typical header �eld names and their meaning are:

From: This contains the sender's email address, and possibly the \real name". A

complete zoo of formats is used here.

To: This is the recipient's email address.

Subject: Describes the content of the mail in a few words. At least that's what it

should do.

Date: The date the mail was sent.

Reply-To: Speci�es the address the sender wants the recipient's reply directed to. This

may be useful if you have several accounts, but want to receive the bulk of

mail only on the one you use most frequently. This �eld is optional.

1
It is customary to append signature or .sig to a mail message, usually containing information on the

author, along with a joke or a motto. It is o�set from the mail message by a line containing \-- ".

2
There are other standards, of course. One more I know of is X.400, which was issued by the CCITT.

Organization:

The organization that owns the machine from which the mail originates. If

your machine is owned by you privately, either leave this out, insert \private"

or some complete nonsense. This �eld is optional.

Message-ID: A string generated by mail transport on the originating system. It is unique

to this message. An example is <199301111938.AA08057@jti.com>.

Received: Every site that processes your mail (including the machines of sender and

recipient) inserts such a �eld into the header, giving its site name, a message

id, time and date it received the message, from which site and using which

transport software. This is so that you can trace which route the message

took, and can complain to the person responsible if something went wrong.

X-anything: No mail-related programs should complain about any header which starts

with X-. It is used to implement additional features that have not yet made

it into an RFC, or never will. This is used by the linux-activists mailing

list, for example, where the channel is selected by the X-Mn-Key: header

�eld.

The one exception to this structure is the very �rst line. It starts with the keyword

From which is followed by a blank instead of a colon. It contains the route the message has

taken in UUCP bang-path style, time and date when it was received by the last machine

having processed it, and an optional part specifying which host it was received from. This

�eld is there for backward compatibilty with some older mailers, but is not used very much

anymore, except by mail user interfaces that rely on it to mark the beginning of a message

in the user's mailbox. To avoid potential trouble with lines in the message body that begin

with \From ", too, it has become standard procedure to escape any such occurence by

preceding it with \>".

8.2 How is Mail Delivered?

Generally, you will compose mail using a mailer interface like mail or mailx; or more

sophisticated ones like elm, mush, or zmailer. These programs are called mail user agents,

or MUA's for short. If you send a mail message, the interface program will in most cases

hand it to another program for delivery. This is called the mail transport agent, or MTA.

On some systems, there are di�erent mail transport agents for local and remote delivery;

on others, there is only one. The command for remote delivery is usually called rmail, the

other lmail.3

The transport software used depends on the nature of the link. If the mail must be

delivered over a network using TCP, SMTP is commonly used. SMTP stands for Simple

Mail Transfer Protocol. It is de�ned in RFC 788 and RFC 821.

Over UUCP links, one will generally invoke uux to execute rmail on the remote system.

However, it is also possible to produce a batch �le that contains the SMTP commands that

would normally be issued when a direct SMTP connection was used. This is called BSMTP,

or batched SMTP. Then, uux is invoked to execute a command named rsmtp or bsmtp on

the remote system, giving it this data as input. This program will process the input as if a

normal SMTP connection had occurred.

The bene�t of the latter method is that rmail takes the envelope on the command line,

while rsmtp takes it from the mail batch. This e�ectively keeps the shell from misinterpret-

ing characters as special shell characters when invoking uux or rmail.4

8.3 Email Addresses

To send a message to another person, you have to have some way to identify her to the

person or organization delivering the message. This identi�cation is commonly called an

address. For electronic mail, an address is made up of at least the name of a machine

handling the person's mail, and a user identi�cation recognized by this system. This may

be the recipient's login name, but may also be anything else. Other mail addressing schemes,

like X.400, use a more general set of \attributes" which are used to look up the recipient's

host in an X.500 directory server.

8.3.1 Various Address Formats

The way a machine name is interpreted, i.e. at which site your message will �nally wind up,

and how to combine this name with the recipient's user name greatly depends on the network

you are on. In the original UUCP environment, the prevalent form was path!host!user,

where path described a sequence of hosts the message had to travel before reaching the

destination host. This construct is called the bang path notation.

3
The local mail transfer agent in the SLS distributions of Linux is Fred van Kempen's wmail.

4
Some may recall that this was exactly the problem with smail-2.5, which used the system() library

call to execute uux. On Linux systems, this caused big trouble since bash's history mechanism tried to

expand any occurences of !user, so that exclamation marks had to be escaped before sending them to the

shell.

Internet sites adhere to the RFC 822 standard, which uses a notation of

user@host.domain, where host.domain is the host's fully quali�ed domain name. The middle

thing is called an \at" sign. Because this notation does not involve a route to the desti-

nation host, but gives the (unique) hostname instead, this is called an absolute address.

Today, many UUCP-based networks have adopted RFC 822, and will understand this type

of address.

Now, these two types of addressing don't mix too well. Assume an address of

hostA!user@hostB. It is not clear whether the `@' sign takes precedence over the path,

or vice versa: Do we have to send the hostB, which mails it to hostA!user, or should it be

sent to message to hostA, which fowards it to user@hostB?

Addresses that mix di�erent types of address operators are called hybrid addresses. Most

notorious is the above example. It is usually resolved by giving the path precedence over

the `@' sign. In the above example, this means sending the message to hostA �rst.

However, there is a way to specify routes in RFC 822-conformant ways:

<@hostA,@hostB:user@hostC> denotes the address of user on hostC, where hostC is to

be reached through hostA and hostB (in that order). This type of address is freqeuently

called a route-addr address.

Then, there is the `%' address operator: user%hostB@hostA will �rst be sent to hostA,

which expands the rightmost (in this case, only) percent sign to an `@' sign. The address is

now user@hostB, and the mailer will happily forward your message to hostB which delivers

it to user. This type of address is sometimes referred to as \Ye Olde ARPANET Kludge".

It was used on the ARPANET to reach hosts who were not registered o�cially with the

Network Information Center, so that messages had to be sent via a mail relay that was

known to handle mail for these \hidden" sites.

Other networks have still di�erent means of addressing. DECnet-based networks, for

example, use two colons as an address separator, yielding an address of host::user.5 Lastly,

the X.400 standard uses an entirely di�erent scheme, by describing a recipient's by a set of

attribute-value pairs, like country and organization. On FidoNet, each user is identi�ed by

a code consisting of four numbers, denoting country, node, point, and user.6

There are some implications to using these di�erent types of addressing which will be

described throughout the following sections. In a RFC 822 environment, however, you will

rarely use anything else than absolute addresses like user@host.domain.

5
When trying to reach a DECnet address from an RFC 822-environment, you may use "host::user"@relay,

where relay is a known Internet-DECnet relay.

6
Is this correct?

8.3.2 Bang Path Addresses

When sending mail to a host in a UUCP environment, simply knowing the user and host-

name might not be enough: When you are in Europe and want to send a message to a

person in the United States | how should the intermediate sites know where to forward

the message to? In earlier times, the solution was the so-called bang path, being a list of

hosts through which to forward the message, separated by exclamation marks (`!') and

followed by the user's name. To send a letter to Janet User on a machine named moria,

you would have used the path eek!foo!bar!swim!moria!janet. This would have sent the

mail from your host to eek, from there on to foo, and so on, until it �nally reached moria.

The number of machines to traverse before reaching the destination host is usually referred

to as the number of network hops.

This technique is called source routing, because it leaves the responsibility of �nding a

route to the recipient with the sender.7 This is very di�erent from the way we have seen IP

handle routing, where the actual routing decisions are made by the forwarding host.

The obvious drawback of source routing is that it requires you to remember much about

the network topology, fast links, etc. Second, changes in the network topology | like links

being deleted or hosts being removed | may cause messages to fail simply because you

weren't aware of the change. And �nally, in case you move to a di�erent place, you will

most likely have to update all these routes. One thing, however, that made the use of source

routing necessary was the presence of ambiguous hostnames: For example, if there are two

sites named moria, one in the U.S., and one in France. Which site now does moria!janet

refer to? This can be made clear by specifying what path to reach moria through.

The �rst step in disambiguating hostnames was the founding of The UUCP Mapping

Project. It is located at Rutgers University, and registers all o�cial UUCP hostnames, along

with information on their UUCP neighbors and their geographic location, making sure no

hostname is used twice. The information gathered by the Mapping Project is published as

the Usenet Maps, which are distributed regularly through Usenet.

Using the connectivity information provided in the maps, smart mail software relieves

the sender of the message from �nding a path to the recipient host. You only give it the

destination address as moria!janet or janet@moria.uucp, and using the maps, it is able

to construct a path from your site to moria.

This is only a slight variation of source routing, and is sometimes called system routing.

7
Actually, the term source routing is a bit ambiguous. A di�erent use of it is to denote a routing scheme

that takes the sender address into account when determining how to process a message. For example, a mail

hub might handle mail for several domains, some of which have bought IP service, while others have not.

Messages originating from a host in one of the latter domains should not be forwarded over the Internet,

while the others de�nitely should.

Now, the only e�ect of changes in the network is that the host's mail routing databases have

to be updated. Usually, they are kept up-to-date by rebuilding them every time updated

UUCP maps are published.

It is important to know that the bang path routes used by the mail software do not

have to be strict, that is eek and foo from the above example are not required to be

direct UUCP neighbors. This is called loose source routing, and only requires that the mail

transport software on eek is able to �nd a route to foo. For example, eek might have a

UUCP neighbor, ernie, which has a link to bert, which in turn is a neighbor of foo. The

mailer on eek will then amend the path, so that after processing on eek, the message would

be sent to ernie with a new recipient address of bert!foo!bar!swim!moria!janet.

A bene�t of loose routing is that instead of complete paths, a path from a well-known

site to the recipient site su�ces. Well-known means, of course, that all hosts know how

to route messages to this site. For example, uunet is frequently given as a starting point

of routes. When you specify a path starting with uunet, the mail software will try to get

the message to uunet, which will then route your message (or probably no-one will). For

example, you could send your mail to uunet!moria!janet, and leave it to uunet to �nd a

route to moria. Unnecessary to say that this method is highly ine�cient.

8.3.3 Addresses in the Domain Name System

However, the scheme described above is not really perfect. Since the beginning of the

eighties, the numbers of sites and computer networks have exploded, so that it is virtually

impossible to keep routing information up to date. Also, many of the central sites are on

the Internet now, where routing is completely di�erent from a UUCP network. Last but

not least, site names on UUCP networks are generally limited to seven, or at most eight

characters, so there is some shortage of names.8

Therefore, host names have been organized in a hierarchy of domains, as described in

section 2.3: A domain is a collection of sites that are related in some sense | be it because

they form a proper network (e.g. all machines on a campus, or all hosts on BITNET), be-

cause they all belong to a certain organization (like the U.S. government), or because they're

simply geographically close. Such a domain may itself be part of a larger domain, which is

in turn part of an even larger domain. This relationship is described as being a subdomain

of the larger domain. To produce a unique address for each machine, names inside a domain

must be unique. Assume the owners of moria join a small non-pro�t organization, say Orcs

And Thugs Association, running a network of UUCP sites and paying to other organizations

8
For example, forget about any names from `folklore' books, like The Lord of the Rings, or The Hitch-

hiker's Guide to the Galaxy.

for access to internation mail services. The network run by them may be called orcnet,

and because they are a some unspeci�ed sort of organization, they are located below the

org top-level domain. Thus, moria's proper name would be moria.orcnet.org. This is

called its fully quali�ed domain name, and uniquely determines the site.

Now, Janet's address would be janet@moria.orcnet.org. However, most

sites also understand it when you use domain names in bang paths, like

swim.two.birds!moria.orcnet.org!janet. Note that there are still UUCP sites that

are not part of any domain. These are considered part of the pseudo-domain .uucp.

The domain name system brings another type of routing to UUCP-based networks. A

domain, say foobar.com, may decide to publish only a number of its UUCP sites, and

hide the internal network. Now these public sites may be used as gateways to the internal

network: any message to an unknown site below the domain .foobar.com will be sent to

one of the gateways, which is assumed to forward the message properly.

This method is called domain-based routing. It is primarily useful for large domains,

because this allows it to change its internal routing strategy without updating any map

entry at the UUCP Mapping Project. New routing information only has to be propagated

to the member sites of the domain, which makes it much more exible. Inside the domain,

any routing scheme may be used: through maps distributed inside the domain, a routing

scheme based on the subdomain name, or some sort of geographically based routing.

8.4 How does Mail Routing Work?

The process of directing a message to the recipient's host is called routing. Apart from

�nding a path from the sending site to the destination, it involves error checking as well as

speed and cost optimization.

There is a big di�erence between the way a UUCP site handles routing, and the way

an Internet site does. On the Internet, the main job of directing data to the recipient host

(once it is known by it's IP address) is done by the networking layer (usually running the

IP protocol), while in the UUCP zone, it has to be supplied by the user, or must generated

by the mail transfer agent.

8.4.1 Mail Routing in UUCP networks

Compared to the Internet, routing in UUCP-based networks is rather static. It generally

happens by means of a so-called paths �le. This is a �le that translates host or domain

names to UUCP bang paths.

On larger systems, this database is often generated from the UUCP maps distributed

through Usenet.9 There is a tool for converting these maps, called pathalias. For this

reason, the paths �le is also sometimes referred to as the pathalias database.

A map is simply a �le containing a list of UUCP systems, for each site listing its location,

any aliases or fully quali�ed domain names, and the sites it is linked to. Links are weighted

with a certain cost. This is a symbolic cost computed from the speed and frequency of the

connection (see section 8.5). From the map �les, a program called pathalias creates a list

of paths from your site to each system in the maps.

If you are a small leaf site and you're only connected to one site that provides you with

mail and news, no paths �le will be necessary at all. That is, the only routing you do is

to accept any mail that is destined for you, and send anything else to your feed, which

will route it for you. Therefore, there is no need to maintain any routing information from

UUCP maps, because your feed will take care of that.

But even on most sites that do routing, not all addresses can be known. Therefore,

messages to an unknown address are passed on to a site that is supposedly \smarter" and

might know how to get the message to the recipient. This is called smart host routing.10 Of

course this does not apply to addresses you know you should be able to resolve. For example,

if your site has complete routing information on the domain orcnet.org, and there is no

site named bush.orcnet.org, you will certainly return any mail for that address instead

of routing it to the smart host. One says that your site is authoritative for the domain

orcnet.org.

Therefore, if you need to do routing for a small number of sites, a hand-written paths

�le (or one generated from a hand-written maps �le) that handles mail for them but sends

everything else to a smart host, may still be a safe bet.

8.4.2 Mail Routing on the Internet

On the Internet, little static routing information is available locally because of the overhead

distributing this information would involve. Instead, the Internet Domain Name Service

(or DNS for short) is used, which is a distributed database describing the net topology.11 A

host name is resolved (i.e. converted to an IP address) by a query to the local name server,

usually called named on Un?x systems. Given a fully quali�ed domain name, it tries to �nd

9
Maps for sites registered with The UUCP Mapping Project are distributed through the newsgroup

comp.mail.maps; other organizations may publish separate maps for their network.

10
One can view smart host routing as a variant of domain-based routing, namely for the root domain \.".

In fact, this is the way it is implemented in some mailers, e.g. Fred van Kempen's umail.
11
This is described in section 2.3. For more information on the Internet domain name system, refer to

RFC 1034 and RFC 1035, and documentation on named.

the corresponding IP address using the information it has in its cache. If it doesn't, it may

pass on the query to another name server that may have more information.

Many Internet service providers also o�er mail and news transport services to sites and

networks that are not on the Internet. To make this fact known, they publish a so-called MX

record for these sites or domains.12 It basically states that this site is willing to act as a mail

forwarder for these sites. MX records may also be used by large organizations that want to

have all their mail tra�c handled by a limited number of special hosts only (i.e. gateways).

These will have MX records for the whole domain.

An organization, say Foobar Inc., won't allow most of their machines to be on the

Internet directly because of security reasons. Hence a message from janet@groucho.edu to

joe@missile-lab.foobar.com cannot be delivered directly, because the host missile-lab

may be shut o� from any IP-tra�c to outside of foobar.com. But another of Foobar's

hosts, say gateway.foobar.com, will be on the Internet, and it will have an MX record set

for the domain foobar.com. A mail transport agent on groucho.edu will therefore send the

message to the gateway, which will deliver it to joe@missile-lab.13 MX records also have a

preference associated with them. This is a positive integer. If several mail exchangers exist

for one host, the mailer will try to transfer the message to the exchanger with the lowest

precedence value, and only if this fails will it try a host with a higher value.

Another type of resource record that is of interest to mail routing is the WKS, or well-

known service record. On TCP/IP-based networks, peer processes generally connect to each

other by attaching to a port on the remote host. The default port14 for SMTP connection

is port 25. If however a site is using a di�erent port number for SMTP, it may make this

(as well as other ports to well-known services) known using the WKS record.15

8.5 Pathalias and Map File Format

A pathalias database is used to map site names to UUCP bang paths. This provides the

main routing information in UUCP-based networks. A typical entry qould look like this

12
MX stands for Mail Exchanger. It is a resource record type in the DNS database.

13
Note that the mailer might generate an envelope address that speci�es the route the message should

take. In our example it would look something like <@gateway.foobar.com:joe@missile-lab.foobar.com>.

Specifying a path in this syntax is called source routing, or route-addr address. These expressions can be

made arbitrarily complex.

14
There are a number of widely-used Internet services that have default numbers; they are called well-

known services. The assignment of numbers is regularly relased as an RFC, titled \Assigned Numbers". The

latest release is RFC 1060. The assignment of serives to port numbers on your machine is stored in a �le

name /etc/services.
15
For more information on the way mail routing in the Internet works, please refer to RFC 974.

(site name and path are separated by a TAB):

uunet moria!ernie!bert!%s

uunet.uu.net moria!ernie!bert!%s

This makes any message to uunet be delivered via moria, ernie and bert. Both uunet's

fully quali�ed name and its UUCP name have to be given if the mailer does not have a

seperate way to map between these name spaces.

If you want to direct all messages to hostnames below a certain domain to a given relay,

you may also specify a path in the pathalias database, giving the domain name as target,

preceded by a dot. For example, if Fidonet may be reached through swim!fidogate, a

pathalias entry might look like this:

.fidonet swim!fidogate!%s

Writing a pathalias �le is only acceptable when you are running a very small site that

does not have to do much routing. A better way is to create a pathalias �le from so-called

map �les using the pathalias tool.

A map �le mainly consists of a list of systems, for each of them listing the sites it polls or

is polled by. The system name begins in column one, and is followed by a comma-separated

list of links. The list may be continued across newlines if the next line begins with a tab.

Each link consists of the name of the site, followed by a cost given in brackets. The cost is

an arithmetic expression, made up of numbers and symbolic costs. Lines beginning with a

hash sign (`#') are ignored.

Routing information for all sites registered with the UUCP Mapping Project is regularly

posted to comp.mail.maps, and allows you to produce a pathalias database for all systems

listed therein. However, this information is rarely accurate or complete, so that you should

either leave routing to major sites, or rely on special maps distributed by your network

providers.

As an example, consider the site moria. It polls site swim.two.birds twice a day,

mordor.orcnet.org hourly, and once per week snorkel.com. Moreover, the link to

snorkel only uses a slow 2400 Baud modem, while the link to mordor is at 14400. Then

its map entry would be something like

moria.orcnet.org

swim.two.birds(DAILY/2),

mordor.orcnet.org(HOURLY+FAST),

snorkel.com(WEEKLY+LOW)

moria.orcnet.org = moria

The last line would make it known under its UUCP name, too. Note that it must be

DAILY/2, because calling twice a day actually halves the cost for this link.

Using the information from such map �les, pathalias is able to calculate \optimal"

routes to any destination site listed in the paths �le, and produce a pathalias database from

this which can then be used for routing to these sites.

pathalias provides a couple of other features like site-hiding (i.e. making sites only

accessible through a gateway) etc. See the manual page for pathalias for details, as well

as a complete list of link costs.

The comments in the map �le generally contain additional information on the sites

described in it. There is a rigid format in which to specify this, so that it can be retrieved

from the maps. E.g., there is a program called uuwho, which uses a database created from

the map �les to display this information nicely formatted.

When you register your site with an organization that distributes map �les to its mem-

bers, you generally have to �ll out such a map entry.

Below is given an example for a map entry (in fact, it's the one for my site):

#N monad, monad.swb.de, monad.swb.sub.org

#S AT 486DX50; Linux 0.99

#O private

#C Olaf Kirch

#E okir@monad.swb.de

#P Kattreinstr. 38, D-64295 Darmstadt, FRG

#L 49 52 03 N / 08 38 40 E

#U brewhq

#W okir@monad.swb.de (Olaf Kirch); Sun Jul 25 16:59:32 MET DST 1993

#

monad brewhq(DAILY)

Domains

monad = monad.swb.de

monad = monad.swb.sub.org

The white space after the �rst two characters is a TAB. The meaning of most of the

�elds is pretty obvious; you will receive a detailed description from whichever domain you

register with. The L �eld is the most fun to �nd out: it gives your geographical position

in latitude/logitude and is used to draw the postscript maps that show all sites for each

country, as well as world-wide.16

8.6 Message Grading

To distinguish between important and less important mail, it is possible to assign a grade

to the message. The mail transport software may (or may not) evaluate this information,

and probably use di�erent transports depending on its value. For example, very urgent mail

might be forwarded immediately, while ordinary mail is queued until the next regular contact

is established. Also, treatment in case of an error may vary: normally, an undeliverable

message will \bounce" and be returned to the sender in its entirety. Junk mail, on the other

hand, could be thrown away without notice.

Normally, the message grade is extracted from a header �eld named Precedence:. It

may contain a number of prede�ned tokens; if it doesn't exist, or contains an unknown

token, the mailer will generally assume a default grade.

The tokens most widely used (because sendmail understands them) are, in decreasing

order: special-delivery, first-class, and junk. Other mailers, like smail, add more

tokens, or even allow for the de�nition of your own set of tokens. However, it is up to the

administrator's whim what treatment she assigns to these tokens. She may even decide to

give all of them equal precedence.

In the UUCP zone, message grades may be used easily to assign di�erent service quality,

by mapping them onto UUCP spool grades (see section 7.2.4). The UUCP spool grade

determines at what times the message may be transferred, and hence how fast it travels to

the next node. It is, however, up to the next node what level of service it assigns to the

message's precedence.

8.7 Mail Software Con�guration

There are a number of mail transport agents that have been implemented for Un?x systems.

One of the best-known is the University of Berkeley's sendmail, which is used on a number

of platforms. The list of people having contributed to it is very long, and there isn't one

16
They are posted regularly in news.lists.ps-maps. Beware. They're HUGE.

single author. There are two ports of sendmail-5.56c to Linux available, one of which

will be described below.

The mail agent commonly used with Linux is smail-3.1.28, written and copyright by

Curt Landon Noll and Ronald S. Karr. This is the one included in the SLS release and

Ed Carp's mailpak package. In the following, we will refer to it simply as smail, although

there are other versions of it which we don't describe here.17

Compared to sendmail, smail is rather young. When handling mail for a small site

without complicated routing requirements (say, between networks using di�erent addressing

schemes), their capabilities are pretty close. For large sites, however, sendmail always wins,

because it supports addressing formats like DECnet, etc.

Both smail and sendmail support a set of con�guration �les that have to be customized.

Apart from the information that is required to make the mail subsystem run (such as the

local hostname), there are many more parameters that may be tuned.

sendmail's main con�guration �le is sendmail.cf. It looks as if your cat had taken

a nap on you keyboard while pressing the shift key.18 However, there's an extension to

sendmail, called IDA, that provides for easier con�guration. This is a tool based on the

m4 macro processor that turns simple con�guration �les into complex sendmail.cf �les.

One of the sendmail ports comes with support of IDA con�guration �les, which is why

I describe it here. smail con�guration �les are more structured and easier to understand

than sendmail's, but don't give the user as much power in tuning the mailer's behavior.

However, for small UUCP sites the work required in setting up any of them is roughly the

same.

The next two chapters will describe a simple setup for both mailers. It will however not

give a full treatment of all options, but will focus on the options the \average" Linux site

will need. These will be sites running UUCP as transport software, as well as sites on a

LAN. There are many more options, and you can spend many happy hours in front of your

computer con�guring the fanciest features.

In chapters 9 and 10, we will give instructions on setting up smail and sendmail for

the �rst time. The information provided there should su�ce to get a UUCP-only leaf site

operational.19 The remainder of the current chapter will give you a short introduction to

setting up elm, the common mail user agent on many Un?xish systems, including Linux.

17
Most noticeably, version 2.5 has been in Ian Taylor's o�cial distribution of the source code of Taylor

UUCP 1.03. The only thing it has in common with smail-3.1.28 is the name.

18
There's a saying that you aren't a real programmer if you haven't hacked a sendmail.cf �le once; but

if you've done it twice, you must be crazy.

19
A leaf site is a site having only one link, without any foreign mail being routed through it.

8.8 Con�guring elm

elm apparently stands for \electronic mail" and is one of the more reasonably named Un?x

tools. It provides a full-screen interface with a good help feature, so we won't discuss here

how to use elm, but will only dwell on its con�guration options.

Theoretically, you can run elm uncon�gured, and everything works well | if you are

lucky. There are however a few options that must be set, although only required on occa-

sions.

When started, elm reads a set of con�guration variables from the elm.rc �le in

/usr/local/lib/elm/. Then, it will attempt to read the �le .elm/elmrc in your home

directory. This �le usually does not exist, but is created when you choose \save options"

from elm's options menu.

In both �les, the same The set of options for the private elmrc �le is also available in

the global elm.rc �le. Settings in your private elmrc �le override those of the global �le.

8.9 Global elm Options

In the global elm.rc �le, you must set the options that pertain to your host's name. For

example, at the Virtual Brewery, the �le for vlager would contain the following:

#

The local hostname

hostname = vlager

#

Domain name

hostdomain = .linus.lxnet.org

#

Fully qualified domain name

hostfullname = vlager.linus.lxnet.org

These options set elm's idea of the local hostname. Although this information is rarely

used, you should set these opzions nevertheless. Note that these options only take e�ect

when giving them in the global con�guration �le; when found in your private elmrc, they

will be ignored.

8.10 elm and National Character Sets

Recently, there have been proposals to amend the RFC 822 standard to support various

types of messages, such as plain text, binary data, Postscript �les, etc.20 This also allows to

notify the recipient if a character set other than standard ASCII has been used when writing

the document, for example using French accents, or German umlauts. This is supported by

elm to some extent.

The character set used by Linux internally to represent characters is usually referred to

ISO-8859-1, although this is the name of the corresponding standard. Any message using

characters from this character set should have the following line in its header:

Content-Type: text/plain; charset=iso-8859-1

The receiving system should recognize this �eld and take appropriate measures when dis-

playing the message. The default for text/plain messages is a charset value of us-ascii.

To be able to display messages with character sets other than ASCII, elm must know

how to print these characters. By default, when elm receives a message with a charset �eld

other than us-ascii21, it tries to display the message using a command called metamail.

Messages that require metamail to be displayed are shown with an `M' in the very �rst

column in the overview screen.

Since Linux' native character set is ISO-8859-1, however, calling metamail is not neces-

sary to display messages using this character set. If elm is told that the display understands

ISO-8859-1, it will not use metamail and display the message directly instead. This can be

done by setting the following option in the global elm.rc:

displaycharset = iso-8859-1

Note that you should set this option even when you are never going to send or receive

any messages that actually contain characters other than ASCII. This is because people

who do send such messages usually con�gure their mailer to put the proper Content-Type:

�eld into the mail header by default, whether or not sending ASCII-only messages.

Secondly, please note that this does not work. Tough luck, isn't it? The problem is

that when dislaying the message with its builtin pager, elm calls a library function for

each character to be printed to determine whether it is printable or not. By default, this

function will only recognize ASCII characters as printable, and display all other characters as

\^?". Usually, this function's behavior can be changed by setting the LC TYPE environment

20
Detailed in RFC 1049 (Content-Type: header �eld) and RFC 1154 (Encoding header �eld).

21
Or a content type other than text/plain, for that matter.

variable to your national language. E.g. setting it to french will cause the function to

recognize all french special characters as printable. This feature, however, has not been

implemented in the standard C library yet.22

When sending messages that contain special characters from ISO-8859-1, you should

make sure to set some more variables in the elm.rc �le:

charset = iso-8859-1 textencoding = 8bit

This makes elm report the character set as ISO-8859-1 in the mail header, and send it

as an 8 bit value (the default is 7 bit).

Of course, any of these options can also be set in the private elmrc �le instead of the

global one.

22
As of this writing, libc is at release 4.4.1.

Chapter 9

Getting smail Up and Running

9.1 Introduction

This chapter will give you a quick introduction to setting up smail, and an overview of

the functionality it provides. Being mainly compatible to �sendmail in its behaviour, its

con�guration �les are completely di�erent.

The main con�guration �le is the /usr/local/lib/smail//config. You always have

to edit this �le to reect values speci�c to your site. If you are only a UUCP leaf site, you

will have relatively little else to do, ever.

Other con�guration �les that allow to con�gure routing and transport options may also

be used; section 9.6 below will shortly dwell on this.

smail is able to handle both UUCP-based mail as well as delivery over SMTP using

TCP/IP services. Depending on the amount of tra�c you expect to have, you may also

consider to queue all incoming mail and process it at regular intervals, or always deliver it

immediately. If you choose to queue messages, smail will store away incoming mails below

/usr/spool/smail/ and not process them until you explicitly tell it to. Refer to section 9.5

on how to enable spooling.

Even when delivering immediately, smail will occasionally put messages into the queue

when it �nds immediate delivery fails for a transient reason. For SMTP connections, this

may be an unreachable host; but messages may also be deferred when the �le system is

found to be full.

If you want to further dig into this topic, please refer to the manual page smail(5). If

it isn't included in the SLS or the mailpak distribution, get the source to smail.1

1
Maybe I will also release an earlier version of this chapter as a stand-alone reference to smail that has

162

9.2 UUCP Setup

In the SLS smail distribution, you will �nd a �le named config.sample in

/usr/local/lib/smail/. Make a copy called config and edit it. It contains three state-

ments:

#

visible_domain list the domains (primary first) we say we're in

#

visible_domain=sea.wa.us:uucp

#

next is the name in our headers

#

visible_name=victrola.sea.wa.us

#

this is the path to our smarthost (this could be sysa!sysb!sysc etc.)

#

smart_path=quick

This is a sample �le from Vince Skahan's site. You must change these values, or else

Vince will receive all replies to your mail.

The �rst statement tells smail about the domains your site belongs to. Insert their

names here, separated by colons. If your site name is registered in the UUCP maps, you

should also add uucp. When being handed a mail message, smail determines your host's

name using the hostname(2) system call, and checks the recipient's address against this

hostname, tacking on all names from this list in turn. If the address matches either one of

these names, or the unadorned hostname, the recipient is considered local. Otherwise, the

recipient is considered remote.

visible name should contain a single, fully quali�ed domain name of your site that you

want to use on outgoing mails. This name is used when generating the sender's address on

all outgoing mail. You must make sure to use a name that smail recognizes as local (e.g.

the hostname with one of the domains listed in the visible domain attribute). Otherwise,

replies to your mails will bounce o� your site.

The last statement sets the path used for smart-host routing (described in 8.4). With

this sample setup, smail will forward any mail for remote addresses to the smart host.

The path speci�ed in the smart path attribute will be used as a route to the smart host.

Messages will be delivered via UUCP, therefore the attribute must specify a system known

detailed information on writing the routers, directors and transports con�guration �les.

to your UUCP software. Please refer to chapter 7 on making a site known to UUCP.

Assume your site is named swim.two.birds, and is registered with the maps as swim.

Your smarthost is ulysses. Then your con�g �le should look like this:

Our domain names

visible_domain=two.birds:uucp

Our name on outgoing mails

visible_name=swim.two.birds

Use this as uucp-name as well

uucp_name=swim.two.birds

Our smarthost

smart_host=ulysses

There's one option used in the above �le that we haven't explained yet; this is uucp name.

The reason to use this option is this: By default, smail uses the value returned by

hostname(2) for UUCP-speci�c things such as the return path given in the \From " header

line. If your hostname is not registered with the UUCP mapping project, you should tell

smail to use your fully quali�ed domain name instead.2 This can be done by adding the

uucp name option to the config �le.

There is another �le in /usr/local/lib/smail/, called paths.sample. It is an example

what a paths �le might look like. However, you will not need one unless you have a mail link

to more than one site. If you do, however, you will have to write one yourself, or generate

one from the Usenet maps (see section 8.5). Please refer to section 9.8 for an explanation

of the paths �le.

9.3 Setup for a LAN

If you are running a site with two or more hosts connected by a LAN, you will have to select

one host that handles your UUCP connection with the outside world. Between the hosts on

your LAN, you will most probably want to exchange mail via SMTP. Assume we're back at

the Virtual Brewery again, and vstout is set up as the UUCP gateway. This section will

show you an example how to set up the con�guration �les. To make your setup work, you

should also read the following section 9.4.

The con�guration �les used for the di�erent hosts are as follows: on all hosts except

2
The reason is this: Assume your hostname is monad, but is not registered in the maps. However, there

is a site in the maps called monad, so every mail to monad!root, even sent from a direct UUCP neighbor of

yours, will wind up on the other monad. This is a nuisance for everybody.

for the UUCP gateway (vstout), the smart path attribute should point to vstout. On

vstout itself, it should point to the real smart host that routes the Brewery's mail, moria.

In a networked environment, it is best to keep all user mailboxes on a single �le system,

which is NFS-mounted on all other hosts. This allows users to move from machine to ma-

chine, without having to move their mail around (or even worse, check some three or four ma-

chines for newly-arrived mail each morning). Therefore, one might also want to make sender

addresses independent from the machine the mail was written on. Janet User, for example,

could now specify janet@linus.lxnet.org instead of janet@vale.linus.lxnet.org. To

achieve this, all hosts use the domain name as visible name attribute, instead of their

proper hostnames. Of course, one of the machines on linus.lxnet.org will have to rec-

ognize the domain's name as one of its own names. One will naturally choose the UUCP

gateway for this.

The standard config �le for hosts other than vstout looks like this:

Our domain:

visible_domain=linus.lxnet.org

What we name ourselves

visible_name=linus.lxnet.org

Smart-host routing: via SMTP to vstout

smart_path=vstout

smart_transport=smtp

On the UUCP mail gateway vstout, the config �le would look like this:

Our hostnames:

hostnames=linus.lxnet.org:vstout.linus.lxnet.org:vstout

What we name ourselves

visible_name=linus.lxnet.org

in the uucp world, we're known as linus.lxnet.org

uucp_name=linus.lxnet.org

Smart transport: via uucp to moria

smart_path=moria

smart_transport=uux

we're authoritative for our domain

auth_domains=linus.lxnet.org

This config �le uses a di�erent scheme to tell smail the list of local hostnames. Instead

of giving it a list of domains and letting it �nd the hostname with a system call, it gives

an explicit list. This is because we want to include the domain name in the list. Now,

janet@linus.lxnet.org is a valid address, provided there is a user account for janet (or

an alias).

The auth domains variable names the domains for which vstout is considered to be

authoritative. That is, if smail receives any mail addressed to host.linus.lxnet.org, but

host is not a local machine, it rejects the message and returns it to the sender. If this entry

isn't present, any such message will be sent to the smart-host, who will return it to vstout,

and so on until it is discarded for exceeding the maximum hop count.

9.4 Invocation and Command Line Options

To be able to send and receive mails, you should �rst make sure you have a command named

rmail. When using smail, you should make this a link to the smail binary. For example,

if you keep the latter in /usr/local/bin, go to the /bin directory and type

ln /usr/local/bin/smail rmail

When composing and sending a mail message with a user agent like elm, the message

will be piped into rmail for delivery, with the recipient list on the command line. The same

happens with mail coming in viaa UUCP link.

There are, however, a number of other names smail may be linked to. Among them are

rsmtp, which is analoguous to rmail, but is for receiving SMTP batches, and smtpd which

makes it act as SMTP server when invoked from the inetd server.

For queue operation, it may also be invoked as mailq, which displays the mail queue,

and runq, which makes it process the queue.

Finally, it may be linked to sendmail, which makes it behave in a way compatible to

the original Berkeley sendmail.

All of these commands accept a common set of command line options; only rmail and

rsmtp are restricted in what they accept. The list below does not attempt to be complete.

-bd Run in daemon mode. With this option, mail will put itself in the back-

ground, and wait for a connection to occur on the smtp/tcp port. When

a connection occurs, it forks and conducts an SMTP conversation with the

peer process.

-bp List information about the messages currently in smail's queue directories.

This option is on by default for mailq.

-bS Accept SMTP commands on standard input, but don't produce SMTP

replies. This option is on by default for rsmtp.

-v Be verbose. The option may be followed by a number, indicating the level

of verbosity. This option is equivalent to -d.

-qinterval When running smail in daemon mode (-bd option), this speci�es the inter-

vals at which smail will run the queue.

If interval is a single number, it is taken to be the interval in seconds. You

may, however, also use values like 2h30m, which denotes 2 and a half hours.

If interval is omitted altogether, a single queue run is performed, which is

equivalent to invokig runq.

-bR The manpage says on this option: \Enter the hostile domain of giant mail

messages, and RFC standard scrolls. Attempt to make it down to protocol

level 26 and back." If you know what Rogue is, this will probably sound

familiar to you.

For delivering mail over UUCP link, the above is almost enough. You should only make

sure to run the queue once or twice a day to ush out any deferred messages. For example,

you may add an invocation of runq to the super-user's crontab.

For SMTP to work, you should make sure you have the following entry in your

/etc/services �le:

smtp 25/tcp # Simple Mail Transfer Protocol

To serve incoming SMPT requests, you either need to set up inetd to manage the smtp

port, or run smail in daemon mode. If you want to use inetd, your /etc/inetd.conf �le

should contain

smtp stream tcp nowait root /usr/bin/smtpd smtpd

Remember you have to make inetd re-read this �le by sending a HUP signal to inetd

after making these changes.

If mail tra�c inside your LAN is high, you may instead start smail in daemon mode

(you should then make sure any smtp entry in /etc/inetd.conf is commented out). To

start a smail daemon, you invoke it from /etc/rc.d/rc.inet2 by

/usr/local/bin/smail -bd -q15m

Note that you have to con�gure SMTP on each system one way or other; you may also

mix these two methods for di�erent hosts.

9.5 Miscellaneous config Options

There are quite a number of options you may set in the config �le, which, although useful,

are not essential to running smail, and which we will not discuss here. Instead, we will

only mention a few that might be especially useful:

error copy postmaster

If this boolean variable is set, any error will generate a message to the

postmaster. Usually, this is only done for errors that are considered to be

due to a faulted con�guration. The variable can be turned on by putting it

in the config �le, preceded by a plus (`+').

max hop count

If the hop count for a message (i.e. the number of hosts already traversed)

equals or exceeds this number, attempts to remote delivery will result in an

error message being returned to the sender. This is used to prevent messages

from looping forever. The hop count is generally computed from the number

of Received: �elds in the mail header, but may also be set manually using

the -h option on the command line.

The variable defaults to 20.

delivery mode

smail knows of three di�erent modes of delivery; being in the foreground

(immediate processing of incoming messages), in the background, (message

is delivered by a child of the receiving process, with the parent process

exiting immediately after forking), and queued. In this mode, the message

is moved to the queue directory (generaly /usr/spool/smail//messages),

from where it is picked up and processed further during a later queue run.

This behavior can be determined by setting the variable delivery mode to

one of foreground, background, or queued. Incoming mail will always be

queued regardless of this option if the boolean variable queue only is set.

If you turn on queuing, you have to make sure the queues are checked reg-

ularly; probably every 10 or 15 minutes. If you run smail as daemon, you

have to add the option -q10m.

There is also a tool for checking the queue; this is called mailq and is a link

to smail, too.

9.6 Mail Delivery

smail splits up mail delivery into three di�erent tasks:

router This is the task that resolves anything looking like an address into something

else looking like an address. The di�erence is that after the router does its

job, it is known to which host the message must be sent and which transport

must be used. The destination may also be the local host.

director Local addresses are given to directors which resolve any forwarding or alias-

ing. For example, the address might be an alias, a mailing list, or the user

might want to forward her mail to another address. This may require addi-

tional routing.

transport If a router has decided that a given address is remote, the message must

be forwarded to the respective site. Depending on the nature of the links,

di�erent kinds of transport software are needed.

Local addresses have to be delivered accordingly.

With smail, one can con�gure these tasks in many ways. For each of them, a number

of drivers are available, from which you can choose those you need. You describe them

to smail in a couple of �les, namely routers, directors, and transports located in

/usr/local/lib/smail/. If these �les do not exist, reasonable defaults are assumed that

should be suitable for many sites that either use SMTP or UUCP for transport. If you

want to change smail's routing policy, or modify a transport, you should get the sample

�les from the smail source distribution,3 copy the sample �les to /usr/local/lib/smail/,

and modify them according to your needs. Possibly, some future releases of smail binaries

may include these �les.

3
The default con�guration �les can be found in samples/generic below the source directory.

9.7 Routing Messages

To �nd out which host to forward a message to, smail hands the destination address to a

number of router drivers. These may be speci�ed using the routers �le; if this �le does

not exist, a set of default routers are used.

Before giving the address to the routers, it is split up into a target, which is the machine

to send the message to, and the remainder. For an address like foo!bar!user, the target

would be foo, and bar!user the remainder.

If a match is found by a router, a new target and remainder are generated, which are

given to the transport. The target (also next host) is the address the transport is to deliver

the message to, and the rmainder (also next address) is the envelope address to be given to

the mail software on the remote host. In the above example, smail might �nd out that foo

is to be reached through the path ernie!bert, using UUCP. It will then generate a target

of ernie, and a remainder of bert!foo!bar!user.

When using the default setup, smail performs the following actions to determine how

to deliver a message:

� If the target host address is one of the local hostnames recognized by smail, the

message is handed to the director module, see section 9.9.

� Next, the router module checks if it can resolve the destination host address using the

gethostbyname(3) or gethostbyaddr(3) library call. This will match any hostnames

found by the resolving routines, either through lookups in /etc/hosts, or by querying

the nameserver. (Refer to section 3.9 on how to con�gure the resolver.)

IP addresses matched may be written as either a dotted quad, or enclosed in square

brackets (e.g. [192.72.2.1]).

If a host address is matched by this router, the message will be delivered over SMTP,

unless the address is found to refer to the local host (for example 127.0.0.1). In this

case, it is handed to the director module.

If your machine is on the Internet, these routers are not what you are looking for,

because they do not support MX records.

� Next, smail will try to look up the target host (minus any trailing .uucp) in

the pathalias database, if this exists. smail expects this in the paths �le in

/usr/local/lib/smail/.

Mail to an address matched by this router will be delivered using UUCP, using the

path found in the database.

� The host address (minus any trailing .uucp) will be compared to the output of the

uuname command to check if the target host is in fact a UUCP neighbor. If this is

the case, the message will be delivered using the UUCP transport.

For two reasons, however, it is not generally a good idea to use this driver. For one,

this used to fail occasionally with an error message that uuname returned a result code

of 255. I do not know the reason for this. The second is that you may have more sites

listed in your Systems �le than you actually have mail links with. These may be sites

you only exchange news with, but even more likely is that it contains information on

sites you occasinally download �les from via anonymous UUCP, but have no tra�c

with otherwise.

To work around this, you may add speci�c paths for these sites to your paths �le,

or, if you have a routers �le in /usr/local/lib/smail/, comment out this driver

altogether.

� If the address has not been matched by any of the above routers, it will be delivered

to the smart host. The path to the smart host as well as the transport to be used are

set in the config �le.

As described above, the default settings of smail are not really suitable for use on the

Internet. You might want to use sendmail instead, but if you do want to use smail, you have

to recompile it yourself. You may use the con�guration �les from Vince Skahan's newspak

distribution. To compile in the BIND driver, you have to set the DRIVER CONFIGURATION

macro in the EDITME �le to arpa-network. To make use of this driver, edit the routers

�le, commenting out the inet hosts router that uses the gethostbyname(3) driver, and

uncomment the one that uses the BIND driver instead.

9.8 The pathalias database

smail

expects to �nd the pathalias database in the paths �le below /usr/local/lib/smail/.

This must be a sorted ASCII �le that contains entries which map destination site names to

UUCP bang paths. The �le has to be sorted because smail uses binary search for looking

up a site. You may not insert comments in this �le, and the site name must be separated

from the path using a TAB. Pathalias databases are discussed in somewhat greater detail

in section8.5.

If you generate this �le by hand, you should make sure that you include all legal names

for a site. For example, if a site is known by both a plain UUCP name and a fully quali�ed

domain name, you have to add an entry for each of them. You best sort this �le by piping

it through the sort(1) command.

If your site is only a leaf site, however, then no paths �le should be necessary at all:

just set up the smart host attributes in your config �le, and leave routing to your mail

feed.

9.9 Delivering Messages to Local Addresses

This section covers the addressing modes available for local addresses.

The standard case is where a local address names a user on the machine to whose

mailbox the message is to be delivered. But a local address may also be resolved to one

or more remote ones if the user wants to have his mail forwarded to another site, or if the

address was that of a mailing list.

Apart from \normal" addresses of local users, smail can handle other types of local

message destinations, which will also be called addresses. For example, some directors will

produce �le names, pipe commands, and �le inclusions.

The local driver Messages for local users that have not been redirected otherwise (for ex-

ample through forwarding) will be appended to the user's mailbox, /var/spool/mail/user.

This �le must be writable by group mail. If it does not exist, it is created with mode 660,

owned by the user with a group of mail.

A �le name is anything that begins with a slash (`/') or a tilde (`~)'. The latter, of

course, is only possible if the �lename was taken from a .forward �le, or a forwarding entry

in the mailbox. When delivering to a �le, smail appends the messages to the �le, creating

it if necessary.

A pipe command may be any Un?x command, preceeded by the pipe symbol (`|'). This

causes the message to be piped into the command. If the invocation contains white space, it

has to be enclosed in double quotes (`"'). Due to the security issues involved, care is taken

not to execute the command if the address has been obtained in a somewhat dubious way

(for example, if the alias �le from which the address was taken was writable by everyone).

When delivering to a pipe command, smail gives the command along with the arguments

to the shell (minus the leading `|'), and passes it the message on standard input.

The environment passed to the child process consists of the TZ variable as obtained from

the calling process, and the following variables de�ned by smail:

SENDER contains the sender's address.

BASENAME and SPOOL FILE

contain the base and �le name of the spool �le.

GRADE amd MESSAGE ID

contain the message grade and the message id, respectively.

PATH and SHELL

contain \/usr/bin" and \/bin/sh", respectively.

PRIMARY NAME, UUCP NAME, and VISIBLE NAME

contain the values of the corresponding variables as de�ned in the config

�le.

A �le inclusion is an address of the form :include:�lename, and may be used in the

aliases database and mailing list. A �le inclusion will cause smail to take the contents

of the �le as a comma-separated list of addresses to deliver the message to. The �le may

contain comments wherever white space is allowed; a comment starts with a hash sign (`#')

and is terminated by the next new-line.

9.9.1 Local Users

The most common case for a local address is to denote a user's mailbox. This mailbox is

located in /var/spool/mail/ and has the name of the user. It is owned by her, with a

group of mail, and is mode 660.

She may, however, redirect her mail by having it forwarded to an alternative address

(see below). To skip these checks, the user name may be pre�xed with real-, in which case

the message is delivered to the mailbox directly.

There are two addresses smail relies on to exist. These are MAILER-DAEMON and

Postmaster. To secure delivery to these addresses, smail contains two implicit aliases which

are used as a last resort. These map MAILER-DAEMON to Postmaster, and Postmaster to

root, respectively. You may override this by supplying aliases for them in the aliases �le.

9.9.2 Alias Files

smail is able to handle alias �les compatible to those known by Berkeley's sendmail.

Entries in the alias �le may have the form

alias: recipient,: : :

recipients is a comma-separated list of addresses. These may be local and remote ad-

dresses, as well as those described above. A recipient list may be continued across newlines

if the next line begins with a TAB.

There is a special feature that allows to handle mailing lists from the alias �le: if you

specify \:include:�lename" as recipient, smail will read the �le speci�ed, and substitute

its contents as a list of recipients.

The main aliases �le is /usr/lib/aliases. If you choose to make this �le world-

writable, smail wil not deliver any messages to shell commands given in this �le. A sample

�le is given below:

linus.lxnet.org Aliases file

usenet: phil

netadmin: janet

postmaster: janet

mailer-daemon: janet

The development mailing list.

development: joe, sue, mark, biff

/usr/local/lib/log/development

owner-development: joe

Announcements of general interest are mailed to all

of the staff

announce: :include: /usr/local/lib/smail/staff,

/usr/local/lib/log/announce

owner-announce: root

Send facsimiles

fax: "|/usr/local/bin/sendfax"

If an error occurs while delivering to an address generated from the aliases �le, smail

will attempt to send a copy of the error message to the \alias owner". For example, if deliv-

ery to biff fails when delivering a message to the developmentmailing list, a copy of the er-

ror message will be mailed to the sender, as well as to postmaster and owner-development.

If the address does not exist, no additional error message will be generated.

9.9.3 Mailing Lists

Instead of using the aliases �le, mailing lists may also be managed by means of �les

in the lists directory below /usr/local/lib/smail/. A mailing list named nag-bugs

is described by the �le lists/nag-bugs, which should contain the member's addresses,

separated by commas. The list may be given on multiple lines, with comments being

introduced by a hash sign (`#').

For each mailing list, a user (or alias) named owner-mlist should exist; any errors

occurring when resolving an address are reported to this user. Also, it is used as the

sender's address on the outgoing messages. (In the Sender: header �eld.)

9.9.4 Forward Files

smail supports two ways a user may request to have her mail forwarded to a di�erent

address. This may be done by putting

Forward to recipient,: : :

in her mailbox �le (i.e. /var/spool/mail/user). Of this �le, only the �rst line will

be inspected. Alternatively, she might create a .forward �le in her home directory which

contains a comma-separated list of recipients, too. Unlike the �rst variety, all lines are read

and interpreted.

Note that any type of address may be used. Thus, a practical example of a .forward

�le for vacations might be

real-janet, "|vacationreply"

The address real-janet delivers the incoming message to janet's mailbox nevertheless,

while the vacationreply command may return a short noti�cation to the sender (taking

the sender's address from the SENDER environment variable).

9.10 UUCP-based Transports

There are a number of transports compiled into smail that utilize the UUCP suite. Usually,

this results in an invocation of rmail on the next host in the path giving it the message on

standard input and the envelope address on the command line.

When handing a message to the UUCP transport, smail converts the target address to

a UUCP bang path. For example, user@host will be transformed to host!user. Use of the

`%' address operator is preserved, so user%host@gateway will become gateway!user%host.

However, smail will never generate such addresses itself.

Alternatively, smail can produce SMTP batches to be fed to the rsmtp command on

the remote site. These contain the commands the local mailer would issue if a real SMTP

connection had be established. It is used in store-and-forward (e.g. UUCP-based) networks

to protect the mail envelope from being garbled by the shell (see footnote 4 in section 8.2).

The BSMTP transport is not available by default, but may be enabled for some UUCP

links using so-called method �les (please refer to the smail(5) manual page for details). If

you only have one UUCP link, and use the smart host router to get your mail over this link,

you enable sending SMTP batches by setting the smart transport con�guration variable

to uusmtp instead of uux.

To receive SMTP batches over UUCP, you must make sure that you have the unbatching

command the remote site sends its batches to. If the remote site uses smail, too, you need

to make rsmtp a link to smail. If the remote site runs sendmail, you should additionally

have a shell script named bsmtp that does a simple \exec rsmtp".

9.11 SMTP-based Transports

smail currently supports a SMTP driver to deliver mail over TCP connections.4 It is

capable of delivering a message to any number of addresses to one single host, with the

hostname being speci�ed as either a fully quali�ed domain name that can be resolved by

the networking software, or in dotted quad notation enclosed in square brackets. Generally,

addresses resolved by the gethostbyname and gethostbyaddr router drivers, respectively,

will be delivered to the TCPSMTP transport.

The SMTP driver will attempt to connect to the remote host immediately through the

smtp port as listed in /etc/services. If it cannot be reached, or the connection times out,

delivery will be reattempted at a later time.

Delivery on the Internet requires that routes to the destination host be speci�ed in the

source routing format described in 8.4, rather than as a bang path.5 smail will therefore

transform user%host@gateway, where gateway is reached via host1!host2!host3, into

the source-route address <@host2,@host3:user%host@gateway> which will be sent as the

message's envelope address to host1.

9.12 Hostname Quali�cation

Sometimes it is desirable to catch unquali�ed hostnames (i.e. those that don't have a domain

name) speci�ed in sender or recipient addresses, for example when gatewaying between two

networks, where one requires use of fully quali�ed domain names. This is necessary on the

Internet (where unqualifed hostnames should be mapped to the .uucp domain by default),

4
The authors call this support \simple". For a future version of smail, they advertise a complete backend

which will handle this more e�ciently.

5
However, the use of routes in the Internet is discouraged altogether.

Q

but may also be also useful in the UUCP zone when users are known to use the bare

hostname, although the site in question is only known by a quali�ed name.

The qualify �le contains information used by smail to convert any addresses contain-

ing bare hostnames to fully quali�ed domain names by mapping host names onto their

default domain. Quali�cation is performed on all addresses of the form user@host and

user%host@gateway for locally generated mail.

Entries in the qualify �le are single lines, consisting of

hostname domain

where hostname begins in column one. Such an entries states that hostname should

be considered part of domain. A line containing a hash sign (`#') as its �rst non-white

character is considered a comment line. Entries are searched in the order they appear in.

A special hostname of *" matches any hostnames, thus enabling to map all hosts not

mentioned before into a default domain. It should only be used as the last entry.

The virtual brewery will not have a very big qualify �le. It quali�es their local hosts,

and maps any remaining hostnames to the .uucp domain. This is to make sure no mailer

rejects their mail on the ground that the recipient's address contain an unquali�ed name.

The Virtual Brewery

/usr/local/lib/smail/qualify, last changed Feb 12, 1993 by okir

#

vstout .linus.lxnet.org

lager .linus.lxnet.org

vale .linus.lxnet.org

vchianti .linus.lxnet.org

vbardolino .linus.lxnet.org

...

* .uucp

Chapter 10

Installing and Using sendmail

10.1 Introduction

As already described above, sendmail relies on a con�guration �le named sendmail.cf,

which is located in /etc. Writing such a �le, or even adapting such a �le by hand, is

not really easy. To levitate the situation for sites that want to run sendmail but don't

have a real sendmail bu� handy, there have been various solutions that supply a set of

con�guration �les for several standard setups, which may be modi�ed more or less easily.

In 1998, Lennard Lovstrand developed a kit to produce sendmail.cf using the m4

macro processor, and added a few features to sendmail. This has become known as the

IDA sendmail enhancement kit, named after the Linkoping University's Computer Science

Institute he was working at then.

There is a sendmail port available for Linux that includes IDA support. This port is

due to Rich Braun.1 and can be found at tsx-11.mit.edu as

sendmail-5.56c+IDA-1.4.4-beta.tar.Z

Another sendmail port is available, too, which uses a di�erent setup procedure than

IDA.

IDA is a very sophisticated con�guration package that provides a variety of mail routing

and gatewaying facilities. It is not the intention of this book to cover all aspects of IDA,

let alone sendmail itself. If you are interested in details, please refer to the original IDA

documentation. A good place to look is also the sendmail.cf �le itself. Extra comments

may be included into the �le by de�ning M4COMMENTS in the IDA �le (see below). There is

1
To be reached at richb@jti.com.

178

also a Postscript description included, which describes all options and extensions. A good

place to start if you are interested in sendmail itself is probably Craig Hunt's \TCP/IP

Network Administration" (see [Hunt92]); it has a separate chapter on sendmail.

10.2 Installing sendmail

To install sendmail, unpack the tar �le in some safe place, and move the �les to their

proper places. To preserve ownership and mode, which is critical for most �les, do this as

root, and either use the mv(1) command, or give the -p option to cp(1). Do not throw

awawy the source tree (usr/local/src), because you will still need it.

Then create the directories /usr/spool/mqueue, which is to hold the mail queue, and

/usr/local/lib/mail, which we will refer to as the \lib" directory below. Both should

be owned by root, and should have a mode of 755. Go to the ida/lib below the source

directory, and copy sendmail.hf to the lib directory. The other �les serve as examples of

IDA support �les, which will be explained below.

If you want your sendmail installation to act as SMTP server, too, you have to decide

whether you want it to be managed by inetd, or run as a separate daemon. The latter is

ony advisable in case of considerable tra�c.

To run sendmail as a daemon, put the following into /etc/rc.d/rc.inet2:

if [-x /usr/lib/sendmail]; then

/usr/lib/sendmail -bd -bq15m

fi

This will start sendmail as a daemon process, which processes the mail queue every 15

minutes. Make sure you do not have any smtp service de�ned in your inetd.conf �le.

If you want sendmail to be managed by inetd instead, you have to make sure to de�ne

a smtp service in inetd.conf:

smtp stream tcp nowait daemon /usr/lib/sendmail sendmail -bs

With this setup, you still have to make sure the mail queue is processed periodically.

This can be done by adding the following line to root's crontab:

10 * * * * /usr/lib/sendmail -q >/dev/null

The next step is the most important one: creating the sendmail con�guration �le, which

is explained in the following section.

10.3 Creating sendmail.cf

The IDA con�guration set consists of a bunch of master �les, located in ida/cf below the

sendmail source directory. (When untarring the distribution from the root directory, this

should go somewhere below /usr/local/src).

To produce a con�guration �le for your site, you have to go to this directory, and create a

m4 macro �le that sets a few macros to reect your site's requirement. The best way to start

is to copy the �le local.m4 to yoursite.m4, where you replace yoursite with you site's name

(what else), and edit it. Below, a sample IDA �le is shown for the site swim.two.birds,

which has a single link to a host named ulysses:

Sendmail configuration file for swim.two.birds

define(ALIASES, LIBDIR/aliases)

define(LOCAL_MAILER_DEF, mailers.sco)

dnl ### Postmaster gets copy of bounced mail. ###

define(POSTMASTERBOUNCE)

define(PSEUDODOMAINS, BITNET UUCP)

define(PSEUDONYMS, swim.two.birds localhost.two.birds)

define(DEFAULT_HOST, swim.two.birds)

dnl ############# Local UUCP names ##############

define(UUCPNAME, swim)

define(UUCPNODES, |uuname|sort|uniq)

define(BANGIMPLIESUUCP)

define(BANGONLYUUCP)

dnl ########## Our smart relay system ###########

define(RELAY_HOST, ulysses)

define(RELAY_MAILER, UUCP-A)

dnl ######### Define dbm lookup tables ##########

dnl ## pathalias database

dnl define(PATHTABLE, LIBDIR/pathtable)dnl

dnl ## target-transport mapping

dnl define(MAILERTABLE, LIBDIR/mailertable)dnl

dnl ## Mapping between DNS and UUCP zone

dnl define(DOMAINTABLE, LIBDIR/domaintable)dnl

dnl define(UUCPXTABLE, LIBDIR/uucpxtable)dnl

dnl ########## Define this for verbose #########

dnl ########## comments in sendmail.cf #########

dnl # define(M4COMMENTS)dnl

include(Sendmail.mc)

The �le mainly consists of a number of define statements. These do what they say:

They de�ne a macro (the �rst argument), giving it the optional second argument as value.

Note that, depending on the version of m4 you are using, the macro processor might issue

wrnings about define statements with only one argument. The second important command

is dnl, which means \delete to new line", and starts a comment. Thus, hash signs have no

special meaning to m4, so that they will also appear in the output �le. The last statement

in the IDA �le must be the include statement, which includes the sendmail master �le.

Looking at the �le, you may �nd that a macro named LIBDIR is used in �lename

de�nitions, without the macro itself being de�ned anywhere. This macro is passed to m4

on the command line when being invoked from the Makefile, and is given a value of

/usr/local/lib/mail. If you feed the IDA �le to m4 manually, you should either pass it a

value for LIBDIR, else the Sendmail.mc �le will assume a default value.

The meaning of most of the other macros will be discussed below. If you need more

information about the facilities o�ered by IDA, either refer to the Poscript documentation

enclosed in the package, or read the comments in the Sendmail.mc.

Once you have adapted all macros to reect the settings of your system, you build the

sendmail.cf �le from it by doing

make yoursite.cf

install -o root -g root -m 644 yousite.cf /etc/sendmail.cf

This creates the �le yoursite.cf, which you then copy to /etc/sendmail.cf. For per-

formance reasons, sendmail processes this �le only once, and then stores an internal rep-

resentation in a �le called sendmail.fc in the /etc directory. This is called the frozen

con�guration �le. It is built by issuing

sendmail -bz

10.4 Invocation and Command Line Options

Unlike smail, sendmail comes along with a couple of binaries required for it to work. One

of these is the lmail binary, the local mailer used to deliver messages to a user's mailbox. It

is located in /usr/bin. Another is rmail, which is needed when receiving mail via UUCP.

It does little more than executing sendmail itself. You can �nd it in /bin.

The sendmail binary itself is located in /usr/lib. Which may seem a bit odd, but this

has been the standard for roughly the last few million years or so.

In the sections above, you have already come across the most important command line

options you need for day-to-day operations. We will sum them up here again. There are

also a number of \alias" names sendmail may be linked to, which turn on some speci�c

mode of operation. They will be mentioned alongside with the equivalent command line

options.

-bd Start up in daemon mode. This puts sendmail in the background, where it

listens to the SMTP port, and periodically runs the mail queue when given

the -q option.

-bqinterval Run the mail queue every interval. The argument is made up of a number

and a unit: h for hour, and m for minute. You may also combine this to

1h30m.

-bq If speci�ed all by itself, sendmail will unconditionally run the mail queue

once and exit. This is equivalent to invoking sendmail as runq.

-bs Perform an SMTP session over standard input.

-bb Process standard input as a BSMTP batch. This is equivalent to invoking

sendmail as bsmtp.

-bi Build the aliases dbm database. See section 10.8.2 below. This is equivalent

to invoking sendmail as newaliases.

-bz Build the frozen con�guration �le, /etc/sendmail.fc.

-bp Print all jobs currently in the mail queue and exit. This is equivalent to

invoking sendmail as mailq.

10.5 Routing with sendmail

To be able to con�gure sendmail properly, you �rst have to know a little about how it

routes a message.

Routing in sendmail is essentially performed by a set of rewriting rules in the

sendmail.cf �le. These rules perform some sort of text matching on the recipient ad-

dress, look up the address in various tables, and try to associate a suitable mailer with it.

\Mailer" is the generic term for a delivery or forwarding service in all sendmail documen-

tation, analogous to \transport" for smail. There's some wizardry involved in parsing the

address etc., but we will nevertheless explain what it basically does. The various tables be-

ing used will be explained in detail below, as are the di�erent mailers chosen by the routing

alogrithm.

Please note that the description only applies to IDA 1.4.4 included in the sendmail

distribution by Rich Braun; other sendmail or IDA versions may have entirely di�erent

con�guration �les, and hence might have a completely di�erent approach to address resolu-

tion. Also note that this does not discuss the various resolving procedures for DECnet and

XNS, which are also supported.

When resolving an address sendmail takes the following steps:

1. If the target hostname is a name of the local host, the user name is checked against

the aliases �le. If it is aliased to one or more other addresses, the process is repeated

with these new addresses. Otherwise it is delivered locally.

2. If the entire address, including the remote hostname, is found in the aliases �le, it

is replaced by the aliased address, and the whole process is repeated with the new

address.

3. The target host is now de�nitely remote. sendmail will look it up in the mailer table,

a �le that maps domain names to mailer-host pairs. If a match is found, the message

is delivered to the host speci�ed, using the associated mailer.

4. The resolver library will then be called to resolve the hostname, unless it is in one of

the pseudo-domains .uucp or .BITNET. This may be con�gured to either look up the

name in /etc/hosts, or query the name server, taking MX records into account. For

details, please refer to section 10.7.3.

If the hostname could be resolved to an IP address, the message will be delivered via

the TCP mailer, using the canonical hostname as returned by the name server as the

envelope address.

5. Failing this, the target name is looked up in the UUCP translation table that maps

fully quali�ed domain names to (possibly di�erent) UUCP names. If the resulting

UUCP name (or the original name if no match was found) is a direct UUCP neighbor,

it will be sent through the UUCP mailer.

6. If the target is found in the pathalias database, the message will be sent to the �rst

node in the path. The mailer to be used will be determined by repeating the whole

process with the new target host.

7. If the message could not be routed using one of the above schemes, it is sent to the

smart host, if de�ned.

10.6 Setting the Site Name

First, let's start with the macros that set your site's names: DEFAULT HOST gives your host's

site name, as should be used as the sender host name on all outgoing mail. Any other names

your site is known by | except your UUCP name | should be given in the PSEUDONYMS

macro. Host names are separated by space or tabs. Note that this list should also include

localhost, possibly quali�ed by your site's domain.

If your site is registered in the UUCP maps, set UUCPNAME to its o�cial UUCP name

(sans trailing .uucp domain). If you are not a registered UUCP site, uncomment the define

statement by preceding it with dnl.

10.7 Routing Options

IDA o�ers a number of options to control the di�erent routing schemes described above in

section 10.5. We will describe them below, each in a di�erent subsection.

10.7.1 Alias Options

Alias lookups are enabled by giving setting the ALIASES macro to the aliases �le name.

Please refer to section below for information of the �le format.

10.7.2 Mailer Table Options

Mapping of target hostnames to mailers is enabled by de�ning the MAILERTABLE macro in

the IDA con�guration �le. It must be set to the name of the mailer table �le. We will

not describe the use of mailer tables in this document; please refer to the original IDA

documentation.

10.7.3 Address Resolution

If you want to deliver mail over a TCP/IP network, be it on the Internet, or in an isolated

network, you have to make sure the resolver library is set up properly. You may have done

this already when setting up services like the printer daemon, but we will go through the

necessary steps nevertheless.

When trying to resolve a hostname to an IP address, sendmail uses the

gethostbyname(3) and res search(3) library calls. Depending on the options selected

in the �les host.conf and resolv.conf,2 they get their information from either one or

more name servers, or from the local /etc/hosts �le.

When a name server is in use at your network, or even on your local machine, you should

enable DNS lookups in host.conf using the option

order bind hosts

The IP address of the name server(s) to be queried must be given in resolv.conf,

using the nameserver statement. For example, assuming a name server has been installed

on vlager at the Virtual Brewery, this �le would read

/etc/resolv.conf for the Virtual Brewery

domain linus.lxnet.org

nameserver 192.72.1.1

If your machine is a standalone site in terms of TCP/IP networking, or you are in an

isolated network without Internet connectivity, you may probably not run a name server. To

be able to run sendmail nevertheless, you must con�gure the resolver library accordingly.

First, the order statement in /etc/host.conf should only use the /etc/hosts �le:

order hosts

Second, to keep sendmail from searching for unknown name servers when looking for

MX records, you also have to make sure there is no nameserver statement in resolv.conf.

10.7.4 UUCP Routing

If your site has several UUCP links, you should con�gure the appropriate UUCP options.

To enable pathalias routing, the location of the pathalias database must be given using the

PATHTABLE macro. If this macro is not set, no pathalias routing will be used.

To give sendmail a list of all your neigboring UUCP sites, use the UUCPNODES macro.

The default value in the sample �le, \|uuname|sort|uniq", uses the sorted output of the

uuname command to obtain this list. Note that if you use this setting, you have to update

2
Described in section 3.9.

sendmail's frozen con�guration �le every time you add or delete system from your UUCP

con�guration �les (see section 10.3).

As said before in section 9.7, use of the uuname output is debatable, so you might either

hard-code a list of all your UUCP neighbors here, or de�ne the macro to the (absolute)

name of a �le where you keep a list of all UUCP neighbors you exchange mail with.

There are a couple of other options that control mapping of UUCP names to the .uucp

domain (BANGONLYUUCP and BANGIMPLIESUUCP), as well as the treatment of hybrid addresses

mixing `!' and `@'. We will not discuss them here; please refer to the IDA documentation

for details.

By default, any messages routed using the pathalias database will be delivered using the

UUCP mailer. If you prefer to use a di�erent mailer, for example UUCP-A, you may change

this by setting the UUCPMAILER macro to UUCP-A3 or any other UUCP-based mailer.

10.7.5 Smart Host Routing

To enable smart host routing, you have to set the macros RELAY HOST and RELAY MAILER,

respectively. RELAY HOST speci�es the name of the mail relay you use for smart host routing.

This may either be a fully quali�ed domain name or a UUCP name, depending on the

transport you use. The transport is selected using the RELAY MAILER macro. For a UUCP

link, you should enter UUCP-A here, and TCP for a TCP/IP link.

10.8 sendmail Support Files

This section describes the various tables used by the sendmail con�guration described

above. These �les reside in /usr/local/lib/mail, and all of them are so-called dbm

databases.

All these �les are optional, except for the alias database. Some of them will rarely be

used by minor sites, so we will only mention them shortly.

10.8.1 Creating dbm Databases

dbm is a database format that allows fast lookups due to hashing techniques.4 It consists of

a list of key-value pairs, both usually being ASCII strings.

3
See section 10.9.3 below.

4
In fact, there is not one single dbm format, but every implementation | and there are several | use a

slightly incompatible variant.

A dbm database is created from some master �le, usually a human-readable ASCII �le,

and stored in two �les, one for the data, the other for hashing information. They are usually

called dbase.pag and dbase.dir, respectively.

It is very important to remember that whenever you edit the master database, the

changes do not take e�ect unless you update the dbm �les as well. For easier maintenance,

you should keep a small Makefile around that updates the the databases.

The dbm �les are built using the dbm(1) command, except for the aliases database,

which is given special treatment. For example, to build the mailertable database from

the master �le, issue the command:

dbm -d mailertable load mailertable

This reads the �le mailertable and produces both mailertable.pag and

mailertable.dir.

10.8.2 The aliases �le

Most important among the sendmail support �les is the aliases �le. It is used to map

addresses to a list of other addresses, which allows for mailing lists, mail forwarding, etc.

Unlike smail, sendmail not only allows to introduce aliases for local users, but also for

addresses of users on other sites.

A sample aliases �le might look like this:

linus.lxnet.org alias file

set of standard addresses

MAILER-DAEMON: postmaster

postmaster: root

disallow mail to ftpmailer@decwrl.dec.com

ftpmailer@decwrl.dec.com: /dev/null

local echo of Linux-Activists

linux-activists: sue, mark, al, anne,

jeff@ziggy.uucp, /v/pub/linux/maillog

owner-linux-activists: al

When setting up a mail site, you should make sure the addresses postmaster and

MAILER-DAEMON are de�ned. The easiest way to do so is using an aliases entry as above.

The third alias is a rather drastic way to prevent users from using the ftpmailer service,

which allows you to conduct FTP sessions by sending the list of commands to decwrl, which

will connect to the target server for you. In small UUCP networks, having people use such

services can be a real nuisance. However, I'm not sure if the alias really prevents this; it's

just an example.

For more e�ective use, the aliases �le must be converted to a dbm database for

sendmail to be able to use it. However, this is not done using the standard dbm(1) com-

mand, but by invoking sendmail with the -bi option:

sendmail -bi

This is due to the fact that a slightly di�erent dbm format is used for the aliases

database. While the dbm �les are rebuilt, sendmail will notice this and wait for the update

to complete.

10.8.3 The pathtable File

sendmail's pathalias database is usually called pathtable. The plain-text �le has the usual

format produced by the pathalias(1) tool. A sample �le is given in section 8.5.

10.8.4 Miscellaneous dbm Files

There are a couple of support �les we will not discuss in this book. The one you probably

would want to use is the mailertable database, which maps destination sites or domains

onto a gateway and a transport (mailer). For example, to be able to send mail to hosts on

BITNET, you either have to rely on a smart host, or explicitly name a BITNET gateway

to send all messages for BITNET addresses to.

There is also a pair of databases to map UUCP site names onto fully quali�ed domain

names and vice versa. These are uucpxtable and domaintable. Closely related to this

is the list of well-known UUCP relays, which may be given to sendmail in yet another

dbm database (The database name is given in the IDA con�guration �le in the UUCPRELAYS

macro). Paths through any of these relays will have the path leading up to the relay

removed, and have it replaced by the \optimal" path.

For use with other networks, like XNS or DECnet, there are also a couple of databases

that may be used. If you do need these options, please refer to the original documentation.

10.9 sendmail Mailers

10.9.1 Local Addresses

When sendmail receives a message for a local address, and the user name is not found in

the aliases �le, it goes on to check if there is a local user matching this name.

First, it checks if the recipient name is indeed a valid account name on the local system.

If it is, the user's home directory is extracted from the /etc/passwd password �le and

checked for a .forward �le. If one exists, the message is delivered to the list of comma-

separated addresses speci�ed in this �le.

Messages to local users which have not been aliased to some other address are delivered

by invoking the lmail program. Note that an lmail program is part of the sendmail

package, which does little more than appending the message to the recipient's mailbox �le.

sendmail allows you to deliver mail to programs and �les as well. Any address beginning

with a slash (`/') is assumed to be a �le name, and the message is appended to this �le.

The address syntax for delivering to a command is

|command or |"command arguments"

The second form is needed whenever the command takes arguments. Note that opposed

to smail, sendmail will not pass on any environment variables to the program invoked.

10.9.2 SMTP Delivery

There are also a number of SMTP-based mail services. The generic SMTP mailer is TCP,

which is automatically chosen when the target hostname has been resolved by the name

server.

Some variations of this exist, which may be used to appease mailers that need special

address formatting of, for example, relative UUCP addresses. For these, some additional

rewriting of the recipient's envelope address is done, which is described in the sendmail.cf

�le. To use any of these mailers, you should speci�y them explicitly in the mailertable

�le.

10.9.3 UUCP-based mailers

As con�gured, sendmail o�ers support for three varieties of mailer delivery over UUCP.

The �rst two, UUCP and UUCP-A, both deliver messages to the rmail command on the remote

site. The only di�erence is that UUCP-A is a bit smarter in that it tries to format addresses

as close to RFC 822 as possible.

The UUCP-B mailer may be used to deliver messages using batched SMTP. It produces a

BSMTP �le (as explained in section 8.2) and sends it to the bsmtp program on the remote

host. In this respect it is di�erent from smail, who sends the �les to the rsmtp program. If

you expect to receive mail in BSMTP batches, make sure to link sendmail to bsmtp; when

invoked as bsmtp, it will eat the batch and process it accordingly.

Note that for sendmail to receive BSMTP batches created by smail, you have to have

a rsmtp program. However, a shell script like the following might do:

#!/bin/bash

exec /usr/local/bin/bsmtp

The default to use for delivering mail over a UUCP link is to use the dumb UUCP mailer.

If you want to override this for speci�c mail links, you have to do so in the mailertable �le.

For example, if you want to use the UUCP-A mailer for mail forwarded to swim.two.birds

because you know their mailer speaks RFC 822, while for your link to moria.orcnet.org,

you prefer BSMTP, your mailertable would contain lines like these:

swim.two.birds UUCP-A!swim

moria.orcnet.org UUCP-B!moria

Chapter 11

Netnews

11.1 Usenet History

The idea of network news was born in 1979 when two graduate students, Tom Truscott

and Jim Ellis, thought of using UUCP to connect machines for the purpose of information

exchange among Un?x users. They set up a small network of three machines in North

Carolina.

Initially, tra�c was handled by a number of shell scripts (later rewritten in C), but they

were never released to the public. They were quickly replaced by \A" news, the �rst public

release of news software.

It was however not designed to handle more than a few articles per group and day. When

volume continued to grow, it was rewritten by Mark Horton and Matt Glickman, who called

it the \B" release (a.k.a. Bnews). The �rst public release of Bnews was version 2.1 in 1982.

It was expanded continuously, with several new features being added. Its current version is

Bnews 2.11.

Another rewrite was done and released in 1987 by Geo� Collyer and Henry Spencer;

this is release \C", or Cnews. In the meanwhile there have been a number of patches to

Cnews, the most prominent being the Cnews Performance Release. On sites that carry

a large number of groups, the overhead involved in frequently invoking the relaynews

command is signi�cant. (relaynews is responsible for dispatching incoming articles to the

hosts that request news from the speci�ed groups.) The performance release adds an option

to relaynews that allows to run it in daemon mode, in which the program puts itself in the

background once and for all times.1

1
Until the system is brought down, that is.

191

The Performance Release is the Cnews version currently included in SLS and newspak.

All news releases up to \C" are primarily targeted for UUCP networks, although they

may be used in other environments as well. Though, e�cient news transfer over networks

like TCP/IP, DECNet, or related requires a new scheme. This was the reason why, in 1986,

the \Network News Transfer Protocol", NNTP, was introduced. It is based on network

connections, and speci�es a number of commands to interactively transfer and retrieve

articles.

11.2 How Does Usenet Handle News?

Today, Usenet has grown to enormous proportions. Sites that carry the whole of netnews

usually transfer something like a trie fourty megabytes a day.2 Of course this requires

much more than pushing around �les. So let's take a look at the way most Un?x systems

handle Usenet news.

The basic unit of Usenet news is the article. This is a message a user writes and

\posts" to the net. In order to enable news sytems to deal with it, it is prepended with

administrative information, the so-called article header. It is very similar to the mail header

format laid down in RFC 822, in that it consists of several lines of text, each beginning

with a �eld name terminated by a colon, which is followed by the �eld's value.3

Articles are submitted to one or more newsgroups. One may view a newsgroup as a

forum for articles relating to a common topic. All newsgroups are organized in a hierarchy,

with each group's name indicating its place in the hierarchy. This often makes it easy to see

what a group is all about. For example, anybody can see from the name comp.os.linux

that it refers to a computer operating system named Linux.

News are distributed through the net by various transports. The historical medium used

to be UUCP, but today the main tra�c is carried by Internet sites. The algorithm used

is ooding: Each site maintains a number of links (news feeds) to other sites. Any article

received by the local news system is forwarded to them, unless it has already been seen at

the local site, in which case it is discarded. The same applies to articles injected into the

news stream by a local user.

To distinguish articles and recognize duplicates, Usenet articles have to carry a message

id (speci�ed in the Message-Id: header �eld), which combines the posting site's name and

2
Wait a moment: 40 Megs at 2400 bps, that's 40 million by 300, that is: : :mutter, mutter,: : :Hey! That's

37 hours!

3
The format of Usenet news messages is speci�ed in RFC 1036, \Standard for interchange of USENET

messages".

a serial number into \<serial@site>". For each article processed, the news system logs this

id into a history �le against which all newly arrived articles are checked.4

This algorithm is modi�ed in that the ow between any two sites may be limited by

two criteria: for one, an article is assigned a distribution (in the Distribution: header

�eld) which may be used to con�ne it to a certain group of sites. On the other hand, the

newsgroups transmitted may be limited by either the sending or receiving system, depending

on the transport used. The set of newsgroups and distributions allowed for transmission to

a site are usually kept in the sys �le.

The sheer number of articles usually requires that improvements be made to the above

scheme. On UUCP networks, the natural thing to do is to collect articles over a period of

time, and combine them into a single �le, which is compressed and sent to the remote site.

This is called batching.5

An alternative technique is the ihave/sendme protocol that prevents duplicate articles

from being transferred in the �rst place, thus saving net bandwidth. Instead of putting all

articles in batch �les and sending them along, only the message ids of all articles that would

otherwise be batched are combined into a giant \ihave" message and sent to the remote

site. It reads this message, compares it to its history �le, and returns the list of articles it

wants in a \sendme" message. Only these articles are then sent. Of course, ihave/sendme

only makes sense if it involves two big sites that receive news from several independent feeds

each, and who poll each other often enough for an e�cient ow of news.

Sites that are on the Internet generally rely on TCP/IP-based software that uses the

Network News Transfer Protocol, NNTP.6 It allows to transfer news between feeds and

provides Usenet access to single users on remote hosts.

NNTP knows three di�erent ways to transfer news. One is ihave/sendme, also referred

to as pushing news. The second technique is called pulling news, in which the client requests

a list of articles in a given newsgroup or hierarchy that have arrived at the server's site after

a speci�ed date, and chooses those it cannot �nd in its history �le. The third mode is for

interactive newsreading, and allows to retrieve articles from speci�ed newgroups, as well as

posting article with incomplete header information.

At each site, news are kept in a directory hierarchy below /usr/spool/news, each

article in a separate �le, and each newsgroup in a separate directory. The directory name is

made up of the newsgroup name, with the components being the path components. Thus,

4
This used to be one of the worst problems with B news, because it searched the history �le linearly.

The time required for this is proportional to the square of the number of articles. C news generally uses dbm

databases which support hash tables.

5
The golden rule of netnews, according to Geo� Collyer: \Thou shalt batch thine articles."

6
Described in RFC 977.

comp.os.linux articles are kept in /usr/spool/news/comp/os/linux. The articles in a

newsgroup are assigned numbers in the order they arrive. This number serves as the �le's

name. The range of numbers of articles currently online is kept in a �le called active.

Since disk space is a �nite resource only,7 one has to start throwing away articles after

some time. This is called expiring. Usually, articles from certain groups and hierarchies are

expired at a �xed number of days after they arrive. This may be overridden by the poster

by specifying a date of expiry in the Expires: �eld of the article header.

11.3 A Description of Cnews

One of the most popular software packages for Netnews is Cnews. It was designed for sites

that carry news over UUCP links. Its main component is relaynews, which takes incoming

articles, stores it on the local host, and forwards it to the appropriate sites.

Cnews stores its con�guration �les in /usr/local/lib/news, and most of its binaries in

the /usr/local/lib/news/bin directory. Articles are kept below /usr/spool/news. You

should make sure virtually all �les in these directories are owned by user news, group news.

Most problems arise from �les inaccessible to Cnews. Make it a rule for you to become user

news using su before you touch anything in there.8

In the following, we describe all Cnews con�guration �les in detail, and show you what

you need to do to keep your site running.

11.3.1 Delivering News

Articles may be fed to Cnews in several ways. When a local user posts an article, the

newsreader usually hands it to the inews command, which completes the header informa-

tion. News from remote sites, be it a single article or a whole batch, is given to the rnews

command, which stores it in the /usr/spool/newsin.coming direcotry, from where it will

be picked up at a later time by newsrun. With any of these two techniques, however, the

article will eventually be handed to the relaynews command.

For each article, relaynews �rst checks if the article has already been seen at the local

site by looking up the message id in the history �le. Duplicate articles will be dropped.

Next, relaynews looks at the Newsgroups: header line to �nd out if the local site requests

articles from any of these groups. If it does, relaynews tries to store the article in the

7
Some people claim that Usenet is a conspiracy by modem and hard disk vendors. This is of course

ridiculous.

8
The only exceptions is setnewsids, which is used to set the real user id of some news programs. It must

be owned by root and must have the setuid bit set.

corresponding directory in the news spool area, and the article's message id will be logged

to the history �le. Otherwise, it drops the article.

If relaynews fails to store an incoming article because a group it has been posted might

not exist, the article will be moved to the junk group.9 relaynews will also check for stale

or misdated articles and reject them. Incoming batches that fail for any other reason are

moved to /usr/spool/news/in.coming/bad, and an error message is logged.

After this, the article will be relayed to all other sites that request news from these

groups, using the transport speci�ed for each particular site. To make sure it isn't sent to

a site that already has seen it, each destination site is checked against the article's Path:

header �eld, which contains the list of sites the article has traversed so far.10 Only if the

destination site's name does not appear in this list will the article be sent to it.

Cnews is commonly used to relay news between UUCP sites, altough it is also possible

to use it in a NNTP environment. To deliver news to a remote site | either single articles

or whole batches | uux is used to execute the rnews command on the remote site, and

feed the article or batch to it on standard input.

When batching is enabled for a given site, Cnews does not send any incoming article

immediately, but appends its path name to a �le, usually out.going/site/togo. Periodi-

cally, a batching program is executed from a crontab entry,11 which puts the articles in one

or more �les, optionally compresses them, and sends them to rnews at the remote site. The

con�guration options that apply to batching are described below in section 11.3.5

Figure 11.1 shows the news ow through relaynews. Articles may be relayed to the

local site (denoted by ME), to some site named ponderosa via email, and a site named

moria, for which batching is enabled.

11.3.2 Installation

To install Cnews, untar the �les into their proper places if you haven't done so yet, and edit

the con�guration �les listed below. They are all located in /usr/local/lib/news. Their

formats will be described in the following sections.

9
Note that there may be a di�erence between the groups that exist at your site, and those that your site

is willing to receive. For example, the subscription list may specify comp.all, which means all newsgroups

below the comp hierarchy, but at your site, you have only created spool directories for a number of comp

groups.

10
It is in fact a bang path style return address of the poster. It is not wise to use this, though, since not

all systems that exchange news do exchange mail. Better use the address given in From:.
11
Note that this should be the crontab of news, in order not to mangle �le permissions.

relaynews

ME ponderosa moria

mail

history

active spooldir out.going/

moria/togo

article

Figure 11.1: News ow through relaynews.

sys You probably have to modify the ME line that describes your system, although

using all/all is always a safe bet. You also have to add a line for each site

you feed news to.

If you are a leaf site, only a line that returns any locally generated articles

to your feed is needed. Assume your feed is moria, then your sys �le should

look like this:

ME:all/all::

moria/moria.orcnet.org:all/all:f:

organization

Put your organization's name here. For example, \Virtual Brewery,

Inc.".

mailname Your site's mail name, e.g. linus.lxnet.org.

whoami Your site's name for news purposes. Quite often, the UUCP site name is

used, for example linus.

explist You should probably edit this �le to reect your preferred expiry times for

some special newsgroups. Space considerations may play an important role

in it.

To create an initial hierarchy of newsgroups, proceed as follows: Create the following

newsgroups using the addgroup command: to.mysite, to.feedsite, junk, and control.

You should create the to.* groups regardless of whether you plan to use ihave/sendme or

not.

Then ask the site that feeds you to send you a checkgroups message. They can do

this by composing an article that contains their newsgroups �le, and has a header line of

\Control: checkgroups". They should then post it to to.mysite (and make sure no other

site gets it). When this article arrives at your site, Cnews will put the article's contents

in its newsgroups �le, and compose a shell script that contains the necessary addgroup

commands to create all groups, which it sends to the newsmaster. You should then save

this to a �le, remove the mail header, and feed it to a shell. Voil�a!

Cnews requires a user to send error messages and status reports to. By default, this is

usenet. If you use the default, you have to set up an account for it, probably forwarding

all of its mail to one or more responsible persons. (Chapters 9 and 10 explain how to do so

for smail and sendmail). You may also override this behavior by setting the environment

variable NEWSMASTER to the appropriate name. You have to do so in news' crontab �le, as

well as every time you invoke an administrative tool manually.

While you're hacking /etc/passwd, make sure that every user has her real name in

the pw gecos �eld of the password �le (this is the fourth �eld). It is a question of Usenet

netiquette that the sender's real name appears in the From: �eld of the article. Of course,

you will want to do so anyway when you use mail.

11.3.3 The sys �le

The sys �le, located in /usr/local/lib/news, controls which hierarchies you receive and

forward to other sites. Although there are a maintenance tools named addfeed and delfeed,

I think it's better to maintain these �les by hand.

The �le contains entries for each site you forward news to, as well as a description of

the groups you will accept. An entry looks as follows:

site[/exclusions]:grouplist[/distlist][:ags[:cmds]]

Entries may be continued across newlines using a backslash (`\'). A hash sign (`#')

denotes a comment.

site This is the name of the site the entry applies to. One usually chooses the

site's UUCP name for this. There has to be an entry for your site in the

sys �le, too, else you will not receive any articles yourself. The special site

name ME denotes your site.

Since Cnews checks site against the site names in the Path: header �eld,

you have to make sure they really match. Some sites use their fully quali�ed

domain name in this �eld, or an alias like news.site.domain. To prevent

any articles from being returned to these sites, you have to add these to the

exlusion list, separated by commas.

grouplist This is a comma-separated subscription list of groups and hierarchies for that

particular site. A hierarchy may be speci�ed by giving either the hierarchy's

pre�x (such as comp.os for all groups whose name starts with this pre�x),

or by giving the pre�x with all appended (e.g. comp.os.all). A hierarchy

or group is excluded from forwarding by preceding it with an exclamation

mark (`!'). If a newsgroup is checked against the list, the longest match

applies. For example, if grouplist contains

!comp,comp.os.linux,comp.folklore.computers

no groups from the comp hierarchy except comp.folklore.computers and

all groups below comp.os.linux will be fed to that site.

If the site requests to be forwarded all news you receive yourself, enter

all.all as grouplist.

distlist is o�set from the grouplist by a slash, and contains a list of distributions to be

forwarded. Again, you may exclude certain distributions by preceding them

with an exclamation mark. All distributions are denoted by all. Omitting

distlist implies a list of all.

For example, you may use a distribution list of all,!local to prevent news

for local use only from being sent to remote sites.

There are usually at least two distributions: world, which is often the default

distribution used when none is speci�ed by the user, and local. There may

be other distributions that apply to a certain region, state, country, etc.

Finally, there are two distributions used by Cnews only; these are sendme

and ihave, and are used for the sendme/ihave protocol.

The use of distributions is a subject of debate. For one, some newsreaders

(most notorius is a Mac newsreader) create bogus distributions by simply us-

ing the top level hierarchy, for example comp when using to comp.os.linux.

Distributions that apply to regions are often questionable, too, because news

may travel outside of your region when sent across the Internet.12 Dis-

tributions applying to an organization, however, are very well meaningful,

12
It is not impossible for an article posted in, say Hamburg, to go to Frankfurt via reston.ans.net.

for example to prevent con�dential information from leaving the company

network. This purpose, however, is generally served better by creating a

separate newsgroup or hierarchy.

ags This describes certain parameters for the feed. It may be empty, or a com-

bination of the following:

F This ag is used to enable batching of articles. The cmds

�eld contains a pathname for placing the article lists.

f This is almost identical to the F ag, but allows Cnews to

calculate the size of outgoing batches more precisely.

L This tells Cnews only to transmit articles posted at your site.

This ag may be followed by a decimal number n, which

makes Cnews only transfer articles posted within n hops from

your site. Cnews determines the number of hops from the

length of the Path: �eld.

I This ag makes Cnews produce an article list suitable for use

by ihave/sendme.

n This creates batch �les for use with the active NNTP transfer

client, nntpxmit (see section 11.4.5). The batch �les contain

the articles �lename along with its message id.

u This tells Cnews only to batch articles from unmoderated

groups.

m This tells Cnews only to batch articles from moderated

groups.

You may use at most one of F, f, I, or n.

cmds This �eld contains a command to be executed for each article, unless batching

is enabled. This should only be used for very small feeds; otherwise the load

on both systems will be too high.

If batching is enabled using either of the F or f ags, Cnews expects to �nd

a directory name in this �eld rather than a command. The same applies

when using NNTP or ihave/sendme. (For batching and delivery, it uses the

batcher and transport speci�ed in the batchparms �le, see section 11.3.5).

This directory is used to create various batching-related �les in it, among

other the list of all articles queued for this site.13

The directory must be given as relative to /usr/spool/newsout.going. If

the �eld is empty, the directory name defaults to the site name.

When setting up Cnews, you will most probably have to write your own sys �le. To

help you with it, we give a sample �le for linus.lxnet.org below, from which you might

copy what you need.

We take whatever they give us.

ME:all/all::

We send everything we receive to moria, except for local and

brewery-related articles.

moria/moria.orcnet.org:all,!to,to.moria/all,!local,!brewery:f:

We mail comp.security to jack@ponderosa.uucp

ponderosa:comp.security/all::rmail jack@ponderosa.uucp

swim gets a minor feed

swim/swim.two.birds:comp.os.linux,rec.humor.oracle/all,!local:f:

11.3.4 The active �le

The active �le is also located in /usr/local/lib/news and lists all groups known at your

site, and the articles currently online. You will rarely have to touch it, but we explain it

nevertheless for sake of completeness. Entries take the following form:

newsgroup: high low perm

newsgroup is, of course, the group's name. low and high are the lowest and highest

numbers of articles currently available. These are 6-digit decimal numbers. If no articles

are currently available, they take the values 1 and 0, respectively.

perm is a parameter detailing the access users are granted to the group. It takes one of

the following values:

y Users are allowed to post to this group.

n Users are not allowed to post to this group. However, the group may still

be read.

13
This list is kept in the �le togo.

x This group has been disabled locally. This happens sometimes when news

admininistrators (or their superiors) take o�ense in articles posted to certain

groups.

Articles received for this group are not stored locally, although they are

forwarded to the sites that request them.

m This denotes a moderated group. When a user tries to post to this group,

an intelligent newsreader will notify her of this, and send the article to the

moderator instead. The moderator's address is taken from the moderators

�le in /usr/local/lib/news.

=real-group This marks newsgroup as being a local alias for another group, namely real-

group. All articles posted to newsgroup will be redirected to it.

In Cnews, you will generally not have to access this �le directly. Groups may be added or

deleted locally using addgroup and delgroup (see below in section 11.3.10). When groups

are added or deleted for the whole of Usenet, this is usually done by sending a newgroup or

rmgroup control message, respectively. Never send such a message yourself! For instructions

on how to create a newsgroup, read the monthly postings in news.announce.newusers.

A �le closely related to active is active.times. Whenever a group is created, Cnews

logs a message to this �le, containing the name of the group created, the date of creation,

whether it was done by a newgroup control message or locally, and who did it. This is for

the convenience of newsreaders who may notify the user of any recently created groups. It

is also used by the NEWGROUPS command of NNTP.

11.3.5 Article Batching

Article batching is performed by

sendbatches, located in /usr/local/lib/news/bin/batch. It should be executed once

per hour or even more frequently, depending on the volume of tra�c.

Its operation is controlled by the batchparms �le in /usr/local/lib/news. This �le

describes the maximum batch size allowed for each site, the batching and optional compres-

sion program to be used, and the transport for delivering it to the remote site. Unless you

have special requirements for one of your feeds, you will not have to touch this �le. Entries

take the following format:

site size max batcher muncher transport

The meaning of these �elds is as follows:

site This is the name of the site the entry applies to. A default entry may be

given, using the special site name /default/.

sendbatches extracts the site name from the entry, and checks the

out.going/site/togo �le for any batched articles.

size This is the maximum size of article batches created (before compression).

An exception from this are articles whose size exceeds size; these are put in

a single batch nevertheless.

max is the maximum number of batches created and scheduled for transfer be-

fore batching stalls for this particular site. This is useful in case the re-

mote site should be down for a longer time, because it prevents Cnews

from cluttering your UUCP spool directories with zillions of newsbatches.

Cnews determines the number of queued batches using the queulen script in

/usr/local/lib/news/bin. Vince Skahan's newspak release should contain

a script for BNU-compatible UUCPs. If you use a di�erent avor of spool

directories, for example, Taylor UUCP, you might have to get a di�erent

script from the Cnews source, or write your own.14,15

batcher This �eld contains the command used for producing a batch from the list

of articles in the togo �le. For regular feeds, this is usually batcher. For

other purposes, alternative batchers may be provided. For example, the

ihave/sendme protocol requires to turn the article list into ihave or sendme

control messages, which are posted to the newsgroup to.site. This is per-

formed by batchih and batchsm.

muncher The muncher �eld speci�es the command used for compression. Usually,

this is compcun, a script that produces a compressed batch.16 Alternatively,

you might provide a muncher that uses gzip, say gzipcun (to be clear: you

have to write it yourself). You have to make sure that uncompress on the

remote site is patched to recognize �les compressed with gzip.

If the remote site is not have an uncompress command, you may specify

nocomp which does not do any compression.

14
The current source of Cnews does not contain a queuelen script for a Taylor-style spool hierarchy.

15
If you don't care about the number of spool �les (because you're the only person using your computer,

and you don't write articles by the megabyte), you may replace the script's content by a simple exit 0

statement.

16
As shipped with Cnews, compcun uses compress with the 12 bit option, since this is the least common

denominator for most Un?x sites. You may produce a copy of it, say compcun16, where you use 16 bit

compression. The improvement is not too impressive, though.

transport The last �eld describes the transport to be used. A number of standard

commands for di�erent transports are available whose names begin with

via. They are given the site name as an argument on the command line.

This is derived from the site �eld by stripping of anything after and including

the �rst dot or slash.

There are two commands for use of uux to execute rnews on the remote sys-

tem; viauux and viauuxz. The latter sets the -z ag for (older versions of)

uux to keep it from returning success messages for each article delivered. An-

other two commands are for mail transport; both send the article to the user

enews on the remote system, they are called viaemail and viapmail, with

the latter protecting the article against stupid mailers by prepending `N' to

each line. For a complete list of these transports, refer to the newsbatch(8)

manual page.

All commands from the last three �elds must be located

in /usr/local/lib/news/bin/batch. Most of them are scripts, so that you may easily

tailor new tools for your personal needs. They are invoked as a pipe, with the list of articles

fed to the batcher on standard input, which produces the batch on standard output. This

piped into the muncher, and so on.

When sendbatches is invoked without an argument, it handles all batch queues. The

interpretation of \all" depends on the presence of a /default/ entry in batchparms. If one

is found, all directories in /usr/spool/news/out.going are checked, otherwise, it cycles

through all entries in batchparms.

A sample �le is given below.

batchparms file for the brewery

site | size |max |batcher |muncher |transport

#-------------+--------+-------+---------+-----------+-----------

/default/ 100000 22 batcher compcun viauux

swim 10000 10 batcher nocomp viauux

11.3.6 Expiring News

In Bnews, expiring used to be performed by a program called expire, which took a list of

newsgroups as argument, together with a time speci�cation after which articles had to be

expired. To have di�erent hierarchies expired at di�erent times, you had to write a script

that invoked expire for each of them separately. Cnews o�ers a more convenient solution

to this: in a �le called explist, you may specify newsgroups and expiration intervals. A

command called doexpire is usually run once a day from cron, which processes all groups

according to this list.

Additionally, you may want to retain articles from certain groups even after they have

been expired; for example, you might want to keep programs posted to comp.sources.unix.

This is called archiving. explist permits to mark groups for archiving.

An entry in explist looks like this:

grouplist perm times archive

grouplist grouplist is a comma-separated list of newsgroups to which the entry applies.

Hierarchies may be speci�ed by giving the group name pre�x, optionally

appended with all. For example, for an entry applying to all groups below

comp.os, you might either enter comp.os or comp.os.all in grouplist.

When expiring news from a group, the name is checked against all entries

in explist in the order given. The �rst matching entry applies. For ex-

ample, to throw away the majority of comp after four days, except for

comp.os.linux.announce which you want to keep for a week, you sim-

ply have an entry for the latter, which speci�es a seven-day expiry period,

followed by that for comp, which speci�es four days.

perm The perm �eld details if the entry applies to moderated, unmoderated, or

any groups. It may take the values m, u, or x, which denote moderated,

unmoderated, or any type.

perm The third �eld, times, usually only contains a single number, being the

number of days after which articles will be expired if not assigned an arti�cial

expiry date due to an Expires: �eld in the article header. Note that this

is the number of days counting from its arrival at your site, not the date of

posting.

The times �eld may, however, be more complex than that. It may be a

combination of up to three numbers, separated from each other by a dash.

The �rst denotes the number of days that have to pass before the article

is considered a candidate for expiry. It is rarely useful to use a value other

than zero. The second �eld is the above-mentioned default number of days

after which it will be expired. The third is the number of days after which

an article will be expired unconditionally, regardless of whether it has an

Expires: �eld or not. If only the middle number is given, the other two

take default values. They may be speci�ed using the special entry /bounds/,

which is described below.

perm The fourth �eld, archive, denotes whether the newsgroup is to be archived,

and where. If no archiving is intended, a dash should be used. Otherwise,

either a full path name (pointing to a directory) is used, or an at sign (`@').

The at sign denotes the default archive directory which must then be given

to doexpire by using the -a ag on the command line. An archive directory

should be owned by news. When doexpire archives an article from, say

comp.sources.unix, it stores it in the directory comp/sources/unix below

the archive directory, creating it if not existent. The archive directory itself,

however, will not be created.

There are two special entries in your explist �le that doexpire relies on to exist.

Instead of a list of newsgroups, they have the keywords /bounds/ and /expired/. The

/bounds/ entry contains the default values for the three values of the times �eld described

above.

The /expired/ �eld determines how long Cnews will hold on to lines in the history

�le. This is needed because Cnews will not remove a line from the history �le once the

corresponding article(s) have been expired, but hold on to it in case a duplicate should

arrive after this date. If you are fed by only one site, you can keep this value small,

otherwise a couple of weeks is advisable on UUCP networks, depending on the delays you

experience with articles from these sites.

A sample explist �le is reproduced below:

keep history lines for two weeks. Nobody gets more than three months

/expired/ x 14 -

/bounds/ x 0-1-90 -

groups we want to keep longer than the rest

comp.os.linux.announce m 10 -

comp.os.linux x 5 -

alt.religion.kibology u 10 -

rec.humor.oracle m 10 -

soc.feminism m 10 -

Archive *.sources groups

comp.sources,alt.sources x 5 @

defaults for tech groups

comp,sci x 7 -

enough for a long weekend

misc,talk x 4 -

throw away junk quickly

junk x 1 -

control messages are of scant interest, too

control x 1 -

catch-all entry for the rest of it

all x 2 -

With expiring in Cnews, there are a number of potential troubles looming. One is that

your newsreader might rely on the third �eld of the active �le, which contains the number

of the lowest article on-line. When expiring articles, Cnews does not update this �eld. If

you need (or want) to have this �eld represent the real situation, you need to run a script

called upact regularly.

Second, Cnews does not expire by scanning the newsgroup's directory, but simply checks

the history �le if the article is due for expiry.17 If your history �le somehow gets out of sync,

articles may be around on your disk in�nitely, because Cnews has literally forgotten them.18

You can repair this using the addmissing script in /usr/local/lib/news/bin/maint,

which will add missing articles to the history �le, or mkhistory, which re-builds the �le

from scratch. Don't forget to become news before invoking it, else you will wind up with a

history �le unreadable by Cnews.

11.3.7 Miscellaneous Files

There are a number of �les that control Cnews' behavior, but are not essential to its

functioning. All of them reside in /usr/local/lib/news. We will describe them shortly.

organization

This �le contains a single line that identi�es your organization. If the ma-

chine is owned by Foobar, Inc., put this name in the �le. If it is privately

owned, enter \private site", or anything else you like. Most people will not

call your site properly con�gured if you haven't customized this �le.

newsgroups This is a companion �le of active which contains a list of newsgroups names,

along with a one-line description of its charter. This �le is automatically up-

17
The article's date of arrival is kept in the middle �eld of the history line, given in seconds since January 1,

1970.

18
I don't know why this happens, but it does from time to time.

dated when Cnews receives a checknews control message (see section 11.3.8).

localgroups If you have a number of local groups that you don't want Cnews to complain

about every time you receive a checknews message, put their names and

descriptions in this �le, just like they shall appear in newsgroups.

mailpaths This �le contains the moderator's address for each moderated group. Each

line contains the group name, followed by the moderator's email address

(o�set by a tab).

Two special entries are provided as default. These are backbone and

internet. Both provide | in bang-path notation | the path to the near-

est backbone site, and the site that understands RFC 822-style addresses

(user@host). The default entries are

internet %s

backbone %s

You will not have to change the internet entry if you have smail or

sendmail installed, because they understand RFC 822-addressing.

The backbone entry is used whenever a user posts to a moderated group

whose moderator is not listed explicitly. If the newsgroup's name is

alt.sewer, and the backbone entry contains path!%s, Cnews will mail the

article to path!alt-sewer, hoping that the backbone machine is able to

forward the article.

whoami and mailname

These �les contain the site's name as used in locally generated articles

(whoami) and mail sent by Cnews (mailname), respectively. Cnews may

send mail to the news gurus, indicating errors, or in reply to a sendsys

control message.

If these �les do not exist, Cnews tries to obtain the hostname from various

sources, with hostname(1) being the last resort.

These �les are provided in case you want to use a host alias instead of your

(canonical) host name. This is useful to hide the physical location of your

news system, so that you may move it easily from one machine to another.

server You need this �le if you are running a cluster of machines, with articles kept

on a central node, whose spool area is mounted by the other hosts via NFS.

It contains the name of the machine that acts as the \news server", in that

every article may only be posted by this machine. Cnews takes care of this

in the following way: When posting an article through inews, it checks if

server exists, and if the name contained in it is its own hostname. If so,

it proceeds by giving the article to relaynews; otherwise, it passes it on to

inews on the central host by executing rsh.

Note that this requires that you have an equivalent account on the server

machine that lets you in without asking for a password. You therefore have

to have an .rhosts �le set up properly in news' home directory, or an entry

in /etc/hosts.equiv on the server. Please refer to section 11.3.9 for details.

distributions

This �le is not really a Cnews �le, but it is used by some newsreaders, and

nntpd. It contains the list of distributions recognized by your site, and a

desciption of its (intended) e�ect. For example, my site has the following

�le:

world evrywhere in the world

local Only local to this site

nl Netherlands only

mugnet MUGNET only

fr France only

de Germany only

orcnet All *.orcnet.org sites

brewery Virtual Brewery only

log This �le contains a log of all Cnews activities. It is culled regularly by

running newsdaily; copies of the old log�les are kept in log.o, log.oo, etc.

errlog This is a log of all error messages created by Cnews. These do not include

articles junked due to wrong group, etc. This �le is mailed to the newsmaster

(usenet by default) automatically by newsdaily if it is found to be non-

empty.

errlog is cleared by newsdaily, old copies are kept in errlog.o and com-

panions.

batchlog This logs all runs of sendbatches. It is usually of scant interest only. It is

also maintained by newsdaily.

watchtime This is an empty �le created each time newswatch is run.

11.3.8 Control Messages

The Usenet news protocol knows a special category of articles which evoke certain responses

or actions by the news system. These are called control messages. They are recognized by

the presence of a Control: �eld in the article header. There are several types of them,

all of which are dealt with by shell scripts located in /usr/local/lib/news/ctl. Most of

these will perform their action automatically at the time the article is processed by Cnews,

without notifying the newsmaster. By default, only checkgroups messages will be handed

to the newsmaster,19 but you may change this by editing the scripts.

The one most widely known is the cancel message, with which a user may cancel an

article sent by her earlier. This e�ectively removes the article from the spool directories, if

it exists. The cancel message is forwarded to all sites that receive news from the groups

a�ected, regardless of whether the article has been seen already or not. This is to take into

account that the original article has been delayed over the cancellation message. Some news

systems allow users to cancel other person's messages; this is of course a de�nite no-no.

Two messages dealing with creation or removal of newsgroups are the newgroup and

rmgroup message. Newsgroups below the \usual" hierarchies may only be created after

a discussion and voting has been held among Usenet readers. The rules applying to the

alt hierarchy allow for something close to anarchy. For more information, see the regular

postings in news.announce.newusers. Never send a newgroup ar rmgroupmessage yourself

unless you de�nitely know that you are allowed to.

The checkgroupsmessage mentioned above is sent by \central authority" (a non-entity

on Usenet) to synchronize a site's active �le with the realities of Usenet. When Cnews

receives a checkgroups message, it rewrites the newsgroups �le, adding the groups in

localgroups. If there are mismatches between the checkgroups list and the active �le,

it sends a message to the netnews administrator (usually usenet) that contains a list of

control commands to bring your site up to date.20

Finally, there are three messages that may be used to �nd out something about the

network's topology. These are sendsys, version, and senduuname. They cause Cnews to

return to the sender the sys �le, a software version string, and the output of uuname(1),

respectively. Cnews is very laconic about version messages, it returns a simple, unadorned

19
There's a lovely typo in RFC 1036 (p.12):

3. Control Messages

[: : :] Implementors and administrators may choose to allow control messages to be carried out

automatically, or to queue them for annual processing.

20
Note that the message, depending on the organization that expedits it, need not contain all Usenet

newsgroups. Make sure you don't remove any groups accidentally by believing the message blindly.

\C".

Again, you should never issue such a message, unless you have made sure that it cannot

leave a your (regional) network. Replies to sendsys messages can quickly bring down a

UUCP network.21

11.3.9 Cnews in an NFS Environment

A simple way to distribute news within a local network is to keep all news on a central

host, and export the relevant directories via NFS, so that newsreaders may scan the articles

directly.

The advantage of this method over NNTP is that the overhead involved in retrieving and

threading articles is signi�cantly lower. NNTP, on the other hand, wins in a heterogeneous

network where equipment varies widely among hosts, or where users don't have equivalent

accounts on the server machine.

When using NFS, of course, articles posted on a host have to be forwarded to the

central machine, because accessing adminstrative �les (like active) might otherwise expose

the system to race-conditions. Also, you might want to protect your news spool area by

exporting it read-only, which necessitates forwarding to the central machine, too.

Cnews handles this transparently. When posting an article, the newsreader software

usually invokes inews. This is a script which runs a number of checks on the article,

completes the header, and checks the �le server in /usr/local/lib/news if the host it's

running on is indeed the server. Otherwise, it invokes inews on the server host via rsh. Note

that this setup requires that the client hosts have a standard Un?x environment (including

a working awk, sed, and Bourne shell). The inews script also uses a number of binary

commands from the Cnews distribution (e.g. getdate), so that you have to have di�erent

sets of binaries for di�erent architectures.

For the rsh invocation to work properly, the user needs to have an equivalent account

on the remote system, i.e. one to which she can login without being asked for a password.

How this can be achieved is explained in section 4.5.

Make sure that the hostname given in server literally matches the output of the

hostname(1) command on the server machine, else Cnews will be looping forever when

trying to deliver the article.

21
I wouldn't try this on the Internet, either.

11.3.10 Maintenance Tools and Tasks

Despite of the complexity of Cnews, a news administrator's life can be fairly easy, because

Cnews provides you with a wide variety of maintenance tools. Unless stated otherwise,

they are located in /usr/local/lib/news/bin/maint. Note that you must become user

news before invoking these commands. Running them as super-user may render these �les

inaccessible to Cnews.

adddirs Creates directories for all groups in the active �le which do not yet have a

spool directory.

addfeed Add a feed to your sys �le. It is invoked as follows:

addfeed [-L] [-f feedtype] site grouplist

site is the name of the site to be added; -L signals if the L ag should be set

on the feed | that is, only locally generated news is returned. The -f option

may be used to specify a batching ag (f or F); it defaults to f. grouplist is

the list of newsgroups you are willing to send to site, optionally followed by

a list of distributions. If none are given, addfeed assumes all distributions

are sent to that site.

A special grouplist of =othersite may be used to copy another feed's group

list.

addgroup Adds a group to your site locally. The proper invocation is

addgroup groupname y|n|m|=realgroup

The second argument has the same meaning as the ag in the active �le,

meaning that anyone may post to the group (y), no-one (n), that it is mod-

erated (m), or that it is an alias for another group (=realgroup).

You might also want to use addgroup when the �rst articles in a newly cre-

ated group arrive earlier than the newgroup control message that is intended

to create it.

delgroup Allows you to delete a group locally. Invoke it as

delgroup groupname

You still have to delete the articles that still reside in the newsgroup's spool

directory. Alternatively, you might leave it to the natural course of events

(a.k.a. expire) to make them go away.

addmissing Adds missing articles to the history �le. Run this script when there are

articles that seem to hang around forever.22

newsdaily The name already says it: runs this once a day. It is an important script that

helps you keep log �les small, retaining copies of each from the last three

runs. It also tries to sense any anomalies, like stale batches in the incoming

and outgoing directories, postings to unkown or moderated newsgroups, etc.

Resulting error messages will be mailed to the newsmaster.

newswatch This is a script that may be run regularly to look for anomalies in the news

system. It is intended to detect problems that will have immediate e�ect

on the operability of your news system, like stale lock �les that don't get

removed, unattended input batches, and disk space shortage. It is invoked

as

newswatch minfree maxbatch

newsboot This script should be run at system boot time. It removes any lock �les left

over when news processes were killed at shutdown, and closes and executes

any batches left over from NNTP connections that were terminated.

newsrunning This resides in /usr/local/lib/news/bin/input, and may be used to dis-

able unbatching of incoming news. This may be desirable during work hours.

You may turn o� unbatching by invoking

/usr/local/lib/news/bin/input/newsrunning off

It is turned on by using on instead of off.

11.4 A Description of NNTP

Due to the di�erent network transport used, NNTP provides for a vastly di�erent approach

to news exchange. NNTP stands for \Network News Transfer Protocol", and is not a

particular software package, but an Internet Standard.23 It is based on a stream-oriented

connection | usually over TCP | between a client anywhere in the network, and a server

on a host that keeps netnews on disk storage. The stream connection allows to interactively

negotiate article transfer with nearly no turnaround delay, thus keeping the number of

duplicate articles low. Together with the Internet's high transfer rates, this adds up to a

news transport that surpasses the original UUCP networks by far. While some years ago

it was not uncommon for an article to take two weeks or more before it arrived in the last

22
Ever wondered how to get rid of that \Help! I can't get X11 to work with 0.97.2!!!" article?

23
Formally speci�ed in RFC 977.

corner of Usenet, this is now often less than two days; on the Internet itself, it is even within

the range of minutes.

Various commands allow clients to retrieve, send and post articles. The di�erence be-

tween sending and posting is that the latter may involve articles with incomplete header

information.24 Article retrieval may be used by news transfer clients as well as newsreaders.

NNTP provides for an active and a passive way of news transfer, colloquially called

\pushing" and \pulling". Pushing is basically the same as the Cnews ihave/sendme proto-

col. The client o�ers an article to the server through the \IHAVE <msgid>" command, and

the server returns a response code that indicates whether it already has the article, or if it

wants it. If so, the client sends the article, terminated by a single dot on a separate line.

Pushing news has the single disadvantage that it places a heavy load on the server

system, since it has to search its history database for every single article.

The opposite technique is pulling news, in which the client requests a list of all (available)

articles from a group that have arrived after a speci�ed date. This query is performed by the

NEWNEWS command. From the returned list of message ids, the client selects those articles

it does not yet have, using the ARTICLE command for each of them in turn.

The problem with pulling news is that it needs tight control by the server over which

groups and distributions it allows a client to request. For example, it has to make sure that

no con�dential material from newsgroups local to the site are sent to unauthorized clients.

There is also a number of convenience commands for newsreaders that permit to retrieve

the article header and body separately, or even single header lines from a range of articles.

This allows to keep all news on a central host, with all users on the (presumably local)

network using NNTP-based client programs for reading and posting. (Alternatively, you

could export the news directories to the clients, so that they may directly access the spool

area. This eliminates the overhead introduced by the NNTP session layer.

An overall problem of NNTP is that it allows the knowledgeable to insert articles into

the news stream with false sender speci�cation. This is called news faking.25 An extension

to NNTP allows to require a user authenticication for certain commands.

There are a number of NNTP packages available. One of the more widely known is the

NNTP daemon by Brian Barber and Phil Lapsley. It's most recent version is nntpd-1.5.11,

which will be described below. You may either get the sources and compile it yourself, or use

the nntpd from Fred van Kempen's net-std binary package, which as it as /etc/in.nntpd.

There is also a package called \Internet News", or INN for short. It provides both

24
NNTP always adds at least one header �eld, which is Nntp-Posting-Host:. It contains the client's host

name.

25
The same problem exists with SMTP.

NNTP and UUCP-based news transport, and is said to be more suitable for large news

hubs. It is currently at version 1.4. Since I don't know much about it, there won't be a

section on this (yet). It is said to compile with some patches, which should be available

from sunsite.unc.edu.

The nntpd package consists of a server and two clients for pulling and pushing news,

respectively, as well as an inews replacement. They live in a Bnews environment, but with

a little tweaking, they will be happy with a Cnews environment, too. We will have a look

at these components and their interaction with Cnews below.

11.4.1 nntpd

The NNTP server is called nntpd, and may be compiled in two ways, depending on the

expected load on the news system. It may be con�gured as either a standalone server

that is started at system boot time from /etc/rc.d/rc.net2, or as a daemon managed by

inetd.26 In the latter case you have to have the following entry in /etc/inetd.conf:

nntp stream tcp nowait news /etc/in.nntpd nntpd

If you con�gure nntpd as standalone, make sure there's no such line in inetd.conf, and

if there is, comment it out. In both cases, you have to make sure there's the following line

in /etc/services:

nntp 119/tcp readnews untp # Network News Transfer Protocol

11.4.2 NNTP Access.

Access to NNTP resources is governed by the �le nntp access in /usr/local/lib/news.

Lines in the �le describe the access rights granted to systems. They have the following

format:

site read|xfer|both|no post|no [!exceptgroups]

If a client connects to the NNTP port, nntpd attempts to obtain the host's fully quali�ed

domain name through reverse mapping (see section 2.3 on 39). Note that this returns the

host's canonical name. The client's hostname and IP address are checked against the site

�eld. Matches may be partial or exact. If an entry matches exactly, the entry's information

26
The nntpd from Fred van Kempen's net-std package is con�gured for inetd service.

applies; if it is partial, it only applies if there is no other match following which is at least

as good. site may be one of the following:

hostname This is a fully quali�ed domain name of a host. If this matches the client's

canonical hostname literally, the entry applies, and all following entries are

ignored.

IP address This is an IP address in dotted quad notation. If the client's IP address

matches this, the entry applies, and all following entries are ignored.

domain name This is a domain name, speci�ed as *.domain. If the client's hostname

matches the domain name, the entry matches.

network name

This is the name of a network as speci�ed in /etc/networks. If the network

number of the client's IP address matches the network number associated

with the network name, the entry matches.

subnet name This is the name of a subnet of the local network as speci�ed in the

/etc/networks �le. The subnet mask is obtained by querying the network

interfaces.27 If the network number of the client's IP address matches the

network number associated with the network name, the entry matches.

default If the entry's name is default, it matches any client.

Entries with more general site speci�cation should be speci�ed earlier, because any

matches by these will be overridden by later, more exact matches.

The tokens from the second and third �eld describe the access rights granted to the client.

The �rst details the permissions the read news, and transmit news (using ihave/sendme).

A value of both enables both, no denies access altogether. The third �eld grants the client

posting rights (the di�erence between sending articles and postiong was described above).

If the second �eld contains no, the third �eld is ignored.

Capitalization of these tokens causes nntpd to require authenticication for read, transfer,

and post commands.

The fourth �eld is optional, and contains a comma-separated list of groups the client

matched by this entry may is denied access to.

27
This option is only enabled if -DSUBNET has been de�ned as compile-time option.

11.4.3 NNTP Authorization

As described above, nntpd allows for authorization procedures for certain clients. This is

implemented by means of a new NNTP command named AUTHINFO. Using this command,

the client may transmit a user name and a password to the NNTP server, which will validate

these.

nntpd will check user name and password against the /etc/passwd database, and verify

that the user belongs to the nntp group.

The NNTP clients included in the nntpd package expect to �nd the authorization data in

a �le called /etc/nntp.sys which contains triples of hostnames, user names, and passwords.

These describe the user name and password to be used on a per-server basis. Note that

the passwords are not encrypted, so that you must set the �le's modes to 600 and make it

owned by news.

A sample nntp.sys �le might look like this:

news.fubar.edu nntpclnt Fr0b0zz

flap.jack.cookie.com intnews hurz

This tells the NNTP clients to identify themselves as user nntpclnt when, for example,

connecting to news.fubar.edu, and to provide Fr0b0zz as password.

Note that the current implementation of NNTP authorization is only experimental, and

has therefore not been implemented very portably. The result of this is that it only works

with plain-style password databases; shadow passwords will not be recognized.

11.4.4 nntpd Interaction with Cnews

When receiving an article, nntpd has to deliver it to the news subsystem. Depending

on whether it was received as a result of an IHAVE or POST command, the article is

handed to rnews or inews, respectively. Instead of invoking rnews, you may also con-

�gure it (at compile time) to batch the incoming articles and move the resulting batches to

/usr/spool/news/in.coming, where they are left for relaynews to pick them up at the

next queue run.

When you compile nntpd, make sure it is compatible with your Cnews con�guration.

Beside the correct paths, this includes making sure they agree on the format of your history

�le. For example, some people link Cnews with a replacement for the dbm library, called dbz.

For nntpd to work properly, it thus has to be linked with dbz, too.28 A typical symptom of

28
I don't know if this is true for newspak.

nntp and Cnews disagreeing on the database format are error messages in the system log

that nntpd could not open it properly, as well as duplicate articles received via NNTP. A

good test is to pick some articles from your spool area and batch them for NNTP transfer

to your own site. When being o�ered them by nntpxmit, nntpd should reject them.

11.4.5 nntpxmit

The nntpd packages also contains sources for two NNTP clients for pushing and pulling,

respectively. The �rst is performed by nntpxmit. It takes a list of articles and tries to

transfer them to the remote host via ihave/sendme. The list of articles may be composed

using a sys �le entry with the n ag. (See section 11.3.3 above).

There is a nntpsend script in the nntpd sources which takes this list and feeds it to the

pushing client. However, this script leans heavily on the Bnews side, so you might have to

do some tweaking.

11.4.6 nntpxfer

nntpxfer is a client for pulling news. It is invoked as

nntpxfer site [grouplist YYMMDD HHMMSS [<distlist>]]

where site is the site you want to receive articles from. For each site, it keeps a �le

named nntp.site in the newsspool directory that contains the date of the last connect, the

list of groups it is to request, and an optional list of distributions. If you specify these on

the command line, this �le will be ignored.

grouplist and distlist must be given as a comma-separated list without intermedi-

ate blanks. Negation of news hierarchies and distributions using an exclamation mark is

permitted.

nntpxfer connects to site on the nntp port, and queries it for news having arrived

in the listed groups after the last connection. The server responds by returning a list of

message ids, which nntpxfer checks against the local history �le. Articles not yet seen

are requested. However, nntpxfer will never transfer more than 500 articles at once. If

there are more articles than it can transfer, it will not update the time and date �elds in

the nntp.site �le.

Like nntpd, nntpxfer may be con�gured to either batch incoming articles, or directly

hand them to rnews.

Chapter 12

Newsreader Con�guration

Newsreaders are intended to o�er the user functionality that allows her to easily acess the

functions of the news system, like posting articles, or skimming the contents of a newsgroup

in a comfortable way. The quality of this interface is subject of endless ame wars.

There are a couple of newsreaders available which have been ported to Linux. Below I

will describe the basic setup for the three most popular ones, namely tin, trn, and nn.

One of the most e�ective newsreaders is

find /usr/spool/news -name '[0-9]*' -exec cat {} \; | more

This is the way Un?x die-hards read their news.

The majority of newsreaders, however, is much more sophisticated. They usually o�er

a full-screen interface with separate levels for displaying all groups the user has subscribed

to, for displaying an overview of all articles in one group. and for individual articles.

At the newsgroup level, most newsreaders display a list of articles, showing their subject

line, and the author. In big groups, it is impossible for the user to keep track of articles

relating to each other, although it is possible to identify responses to earlier articles.

A response usually repeats the original article's subject, prepending it with \Re: ".

Additionally, the message id of the article it is a direct follow-up to may be given in the

References: header line. Sorting articles by these two criteria generates small clusters (in

fact, trees) of articles, which are called threads. One of the tasks in writing a newsreader is

devising an e�cient scheme of threading, because the time required for this is proportional

to the square of the number of articles.

Here, we will not dig any further into how the user interfaces are built. All newsreaders

218

currently available for Linux have a good help function, so you ought to get along.

In the following, we will only deal with administrative tasks. Most of these relate to

creation of the threads databases and accounting.

12.1 tin Con�guration

The most versatile newsreader with respect to threading is tin. It was written by Iain Lea

and is loosely modeled on an older newsreader named tass.1 It does its threading when

the user enters the newsgroup, and it is pretty fast at this unless you're doing this via

NNTP.2 You may improve this by cyclically updating your index �le with the -u option, or

by invoking it with the -U option.

Usually, tin dumps its threading databases in the user's home directory below

.tin/index. This may however be costly in terms of resources, so that you should want

to keep a single copy of them in a central location. This may be achieved by making tin

setuid to news, for example, or some entirely unprivileged account.3 tin will then keep all

thread databases below /usr/spool/news/.index. For any �le access or shell escape, it

will reset its e�ective uid to the real uid of the user who invoked it.4

A better solution is to install the tind indexing daemon that runs as a daemon and

regularly updates the index �les. This daemon is however not included in any release of

Linux, so you would have to compile it yourself. If you are running a LAN with a central

news server, you may even run tind on the server and have all clients retrieve the index

�les via NNTP. This, of course, requires an extension to NNTP. Patches for nntpd that

implement this extension are included in the tin source.

The current version of tin included in SLS has no NNTP support compiled in. If

however, you compile it yourself, or there should be a release with NNTP support one day,

here's how: When invoked as rtin or the -r option, alternatively, tin tries to connect to

the NNTP server speci�ed in the �le /etc/nntpserver or in the NNTPSERVER environment

variable. The nntpserver �le simply contains the server's name on a single line.

1
Written by Rich Skrenta.

2
On my 486DX50, it takes roughly 30 seconds to thread 1000 articles on comp.os.linux. Over NNTP

to a loaded news server, this would be somewhere above 5 minutes.

3
However, do not use nobody for this. As a rule, no �les or commands whatsoever should be associated

with this user.

4
This is the reason why you will get ugly error messages when invoking it as super user. But then, you

shouldn't work as root, anyway.

12.2 trn Con�guration

trn is the successor to an older newsreader, too, namely rn (which means read news). The

\t" in its name stands for \threaded". It was written by Wayne Davidson.

Unlike tin, trn has no provision for generating its threading database at run-time, but

uses those prepared by a program called mthreads. It has to be invoked regularly from cron

to update the index �les. If you're receiving news during the night, you will customarily

run it once in the morning, else you might want to do so more frequently.

Not running mthreads, however, doesn't mean you cannot access new articles, it only

means you will have all those lovely \Is 386BSD better than Linix??!?!" articles scattered

across your article selection menu, instead of a single thread you can wipe out in one

keystroke (harharhar).

mthreads is invoked with a list of newsgroups you want it to thread. The list is made

up in exactly the same fashion as the one in the sys �le:

mthreads comp,rec,!rec.games.go

will thread all of comp and rec, except for rec.games.go (people who play Go don't

need fancy threads). You perform threading of all groups found in your active �le by

specifying a group list of all, or none at all.

Sites that have very heavy tra�c may also run mthreads in daemon mode. If it is

started at boot time using the -d option, it puts itself in the background, and wakes up

every 10 minutes to check if there are any newly-arrived articles. To do so, put the following

line in your /etc/rc.d/rc.local script:

trn also needs to have old articles removed from the index �les. By default, only articles

whose number is below the low water mark will be removed from the index �les.5 Articles

above this number who have been expired nevertheless (because the oldest article has been

assigned an long expiry date by an Expires: header �eld) may be removed by giving

mthreads the -e option. When running in daemon mode, it will put in such an \enhanced"

expiry run once a day. By default, this is the �rst run after 12:30am.

5
Note that Cnews doesn't update this low water mark automatically; you have to run upact to do so.

Please refer to section 11.3.6.

12.3 nn Con�guration

nn, written by Kim F. Storm, claims to be a newsreader whose ultimate goal is not to read

news. It's name stands for \No News", and its motto is \No news is good news. nn is

better."

To achieve this ambitious goal, nn comes along with a large assortment of maintenance

tools that not only allow generation of threads, but also extensive checks on the consistency

of these databases, accounting, gathering of usage statistics, and access restrictions. There

is also an administration program called nnadmin, which allows you to perform these tasks

interactively. It is very intuitive, hence we will not dwell on these aspects, and only deal

with the generation of the index �les.

The nn database manager is called nnmaster. It is usually run as a daemon, started

from the rc.local script. It is invoked as

/usr/local/lib/nn/nnmaster -l -r -C

This enables threading for all newsgroups present in your active �le.

Equivalently, you may invoke nnmaster periodically from cron, giving it a list of groups

to act upon. This list is very similar to the subscription list in the sys �le, except that it

uses blanks instead of commas. Instead of the fake group name all, an empty argument of

"" should be used to denote all groups. A sample invocation is

/usr/local/lib/nn/nnmaster !rec.games.go rec comp

Note that the order is signi�cant here: The leftmost group speci�cation that matches

always wins. Thus, if we had put !rec.games.go after rec, all articles from this group had

been threaded nevertheless.

nn o�ers several methods to remove expired articles from its databases. The �rst is

to update the database by scanning the news group directories and discarding the entries

whose corresponding article is no longer available. This is the default operation obtained

by invoking nnmaster with the -E option. It is reasonably fast unless you're doing this via

NNTP. Method 2 behaves exactly like a default expiry run of mthreads, in that it only

removes those entries that refer to articles whose number is below the low water mark in

the active �le. It may be enabled using the -e option. Finally, a third strategy is to

discard the entire database and recollect all articles. This may be done by giving -E3 to

nnmaster. The list of groups to be expired is given by the -F option in the same fashion

as above. However, if you have nnmaster running as daemon, you must kill it (using -k)

before expiry can take place. However, since this kills the nnmaster daemon, you have to

re-start it with the original options afterwards. Thus the proper command to run expire on

all groups using method 1 is:

/usr/local/lib/nn/nnmaster -kF ""; /usr/local/lib/nn/nnmaster -lrC

There are many more ags that may be used to �ne-tune the behavior of nn. If you are

concerned about removing bad articles or digestifying article digests, read the nnmaster

manual page.

nnmaster relies on a �le named GROUPS, which is located in /usr/local/lib/nn. If it

does not exist initally, it is created. For each newsgroup, it contains a line that begins with

the group's name, optionally followed by a time stamp, and ags. You may edit these ags

to enable certain behavior for the group in question, but you may not change the order in

which the groups appear.6 The ags allowed and their e�ects are detailed in the nnmaster

manual page, too.

6
This is because their order has to agree with that of the entries in the (binary) MASTER �le.

Appendix A

A Null Printer Cable for PLIP

To make a Null Printer Cable for use with a PLIP connection, you need two 25-pin con-

nectors (called DB-25) and some 12-conductor cable. The cable must be at most 15 meters

long.

If you look at the connector, you should be able to read tiny numbers at the base of each

pin, from 1 for the pin top left (if you hold the broader side up) to 25 for the pin bottom

right. For the Null Printer cable, you have to connect the following pins of both connectors

with each other:

D0 2|15 ERROR

D1 3|13 SLCT

D2 4|12 PAPOUT

D3 5|10 ACK

D4 6|11 BUSY

SLCTIN 17|17 SLCTIN

GROUND 25|25 GROUND

ERROR 15| 2 D0

SLCT 13| 3 D1

PAPOUT 12| 4 D2

ACK 10| 5 D3

BUSY 11| 6 D4

All remaining pins remain unconnected. If the cable is shielded, the shield should be

connected to the DB-25's metallic shell on one end only.

223

Appendix B

The GNU General Public License

Printed below is the GNU General Public License (the GPL or copyleft), under which Linux

is licensed. It is reproduced here to clear up some of the confusion about Linux's copyright

status|Linux is not shareware, and it is not in the public domain. The bulk of the Linux

kernel is copyright c1993 by Linus Torvalds, and other software and parts of the kernel are

copyrighted by their authors. Thus, Linux is copyrighted, however, you may redistribute it

under the terms of the GPL printed below.

GNU GENERAL PUBLIC LICENSE

Version 2, June 1991

Copyright (C) 1989, 1991 Free Software Foundation, Inc. 675 Mass Ave, Cambridge,

MA 02139, USA Everyone is permitted to copy and distribute verbatim copies of this license

document, but changing it is not allowed.

B.1 Preamble

The licenses for most software are designed to take away your freedom to share and change

it. By contrast, the GNU General Public License is intended to guarantee your freedom

to share and change free software{to make sure the software is free for all its users. This

General Public License applies to most of the Free Software Foundation's software and to

any other programwhose authors commit to using it. (Some other Free Software Foundation

software is covered by the GNU Library General Public License instead.) You can apply it

to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General

Public Licenses are designed to make sure that you have the freedom to distribute copies

224

of free software (and charge for this service if you wish), that you receive source code or

can get it if you want it, that you can change the software or use pieces of it in new free

programs; and that you know you can do these things.

To protect your rights, we need to make restrictions that forbid anyone to deny you

these rights or to ask you to surrender the rights. These restrictions translate to certain

responsibilities for you if you distribute copies of the software, or if you modify it.

For example, if you distribute copies of such a program, whether gratis or for a fee, you

must give the recipients all the rights that you have. You must make sure that they, too,

receive or can get the source code. And you must show them these terms so they know

their rights.

We protect your rights with two steps: (1) copyright the software, and (2) o�er you this

license which gives you legal permission to copy, distribute and/or modify the software.

Also, for each author's protection and ours, we want to make certain that everyone

understands that there is no warranty for this free software. If the software is modi�ed by

someone else and passed on, we want its recipients to know that what they have is not the

original, so that any problems introduced by others will not reect on the original authors'

reputations.

Finally, any free program is threatened constantly by software patents. We wish to avoid

the danger that redistributors of a free program will individually obtain patent licenses, in

e�ect making the program proprietary. To prevent this, we have made it clear that any

patent must be licensed for everyone's free use or not licensed at all.

The precise terms and conditions for copying, distribution and modi�cation follow.

B.2 Terms and Conditions for Copying, Distribution, and

Modi�cation

0. This License applies to any program or other work which contains a notice placed

by the copyright holder saying it may be distributed under the terms of this General

Public License. The \Program", below, refers to any such program or work, and a

\work based on the Program" means either the Program or any derivative work under

copyright law: that is to say, a work containing the Program or a portion of it, either

verbatim or with modi�cations and/or translated into another language. (Hereinafter,

translation is included without limitation in the term \modi�cation".) Each licensee

is addressed as \you".

Activities other than copying, distribution and modi�cation are not covered by this

License; they are outside its scope. The act of running the Program is not restricted,

and the output from the Program is covered only if its contents constitute a work

based on the Program (independent of having been made by running the Program).

Whether that is true depends on what the Program does.

1. You may copy and distribute verbatim copies of the Program's source code as you

receive it, in any medium, provided that you conspicuously and appropriately publish

on each copy an appropriate copyright notice and disclaimer of warranty; keep intact

all the notices that refer to this License and to the absence of any warranty; and give

any other recipients of the Program a copy of this License along with the Program.

You may charge a fee for the physical act of transferring a copy, and you may at your

option o�er warranty protection in exchange for a fee.

2. You may modify your copy or copies of the Program or any portion of it, thus forming

a work based on the Program, and copy and distribute such modi�cations or work

under the terms of Section 1 above, provided that you also meet all of these conditions:

a. You must cause the modi�ed �les to carry prominent notices stating that you

changed the �les and the date of any change.

b. You must cause any work that you distribute or publish, that in whole or in part

contains or is derived from the Program or any part thereof, to be licensed as a

whole at no charge to all third parties under the terms of this License.

c. If the modi�ed program normally reads commands interactively when run, you

must cause it, when started running for such interactive use in the most ordinary

way, to print or display an announcement including an appropriate copyright

notice and a notice that there is no warranty (or else, saying that you provide a

warranty) and that users may redistribute the program under these conditions,

and telling the user how to view a copy of this License. (Exception: if the

Program itself is interactive but does not normally print such an announcement,

your work based on the Program is not required to print an announcement.)

These requirements apply to the modi�ed work as a whole. If identi�able sections

of that work are not derived from the Program, and can be reasonably considered

independent and separate works in themselves, then this License, and its terms, do

not apply to those sections when you distribute them as separate works. But when

you distribute the same sections as part of a whole which is a work based on the

Program, the distribution of the whole must be on the terms of this License, whose

permissions for other licensees extend to the entire whole, and thus to each and every

part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your rights to

work written entirely by you; rather, the intent is to exercise the right to control the

distribution of derivative or collective works based on the Program.

In addition, mere aggregation of another work not based on the Program with the Pro-

gram (or with a work based on the Program) on a volume of a storage or distribution

medium does not bring the other work under the scope of this License.

3. You may copy and distribute the Program (or a work based on it, under Section 2)

in object code or executable form under the terms of Sections 1 and 2 above provided

that you also do one of the following:

a. Accompany it with the complete corresponding machine-readable source code,

which must be distributed under the terms of Sections 1 and 2 above on a medium

customarily used for software interchange; or,

b. Accompany it with a written o�er, valid for at least three years, to give any third

party, for a charge no more than your cost of physically performing source distri-

bution, a complete machine-readable copy of the corresponding source code, to be

distributed under the terms of Sections 1 and 2 above on a medium customarily

used for software interchange; or,

c. Accompany it with the information you received as to the o�er to distribute

corresponding source code. (This alternative is allowed only for noncommercial

distribution and only if you received the program in object code or executable

form with such an o�er, in accord with Subsection b above.)

The source code for a work means the preferred form of the work for making mod-

i�cations to it. For an executable work, complete source code means all the source

code for all modules it contains, plus any associated interface de�nition �les, plus

the scripts used to control compilation and installation of the executable. However,

as a special exception, the source code distributed need not include anything that is

normally distributed (in either source or binary form) with the major components

(compiler, kernel, and so on) of the operating system on which the executable runs,

unless that component itself accompanies the executable.

If distribution of executable or object code is made by o�ering access to copy from

a designated place, then o�ering equivalent access to copy the source code from the

same place counts as distribution of the source code, even though third parties are

not compelled to copy the source along with the object code.

4. You may not copy, modify, sublicense, or distribute the Program except as expressly

provided under this License. Any attempt otherwise to copy, modify, sublicense or

distribute the Program is void, and will automatically terminate your rights under

this License. However, parties who have received copies, or rights, from you under

this License will not have their licenses terminated so long as such parties remain in

full compliance.

5. You are not required to accept this License, since you have not signed it. However,

nothing else grants you permission to modify or distribute the Program or its deriva-

tive works. These actions are prohibited by law if you do not accept this License.

Therefore, by modifying or distributing the Program (or any work based on the Pro-

gram), you indicate your acceptance of this License to do so, and all its terms and

conditions for copying, distributing or modifying the Program or works based on it.

6. Each time you redistribute the Program (or any work based on the Program), the

recipient automatically receives a license from the original licensor to copy, distribute

or modify the Program subject to these terms and conditions. You may not impose

any further restrictions on the recipients' exercise of the rights granted herein. You

are not responsible for enforcing compliance by third parties to this License.

7. If, as a consequence of a court judgment or allegation of patent infringement or for any

other reason (not limited to patent issues), conditions are imposed on you (whether

by court order, agreement or otherwise) that contradict the conditions of this License,

they do not excuse you from the conditions of this License. If you cannot distribute

so as to satisfy simultaneously your obligations under this License and any other

pertinent obligations, then as a consequence you may not distribute the Program at

all. For example, if a patent license would not permit royalty-free redistribution of

the Program by all those who receive copies directly or indirectly through you, then

the only way you could satisfy both it and this License would be to refrain entirely

from distribution of the Program.

If any portion of this section is held invalid or unenforceable under any particular

circumstance, the balance of the section is intended to apply and the section as a

whole is intended to apply in other circumstances.

It is not the purpose of this section to induce you to infringe any patents or other

property right claims or to contest validity of any such claims; this section has the

sole purpose of protecting the integrity of the free software distribution system, which

is implemented by public license practices. Many people have made generous contri-

butions to the wide range of software distributed through that system in reliance on

consistent application of that system; it is up to the author/donor to decide if he or

she is willing to distribute software through any other system and a licensee cannot

impose that choice.

This section is intended to make thoroughly clear what is believed to be a consequence

of the rest of this License.

8. If the distribution and/or use of the Program is restricted in certain countries either

by patents or by copyrighted interfaces, the original copyright holder who places the

Program under this License may add an explicit geographical distribution limitation

excluding those countries, so that distribution is permitted only in or among countries

not thus excluded. In such case, this License incorporates the limitation as if written

in the body of this License.

9. The Free Software Foundation may publish revised and/or new versions of the General

Public License from time to time. Such new versions will be similar in spirit to the

present version, but may di�er in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Program speci�es a

version number of this License which applies to it and \any later version", you have

the option of following the terms and conditions either of that version or of any later

version published by the Free Software Foundation. If the Program does not specify

a version number of this License, you may choose any version ever published by the

Free Software Foundation.

10. If you wish to incorporate parts of the Program into other free programs whose dis-

tribution conditions are di�erent, write to the author to ask for permission. For

software which is copyrighted by the Free Software Foundation, write to the Free

Software Foundation; we sometimes make exceptions for this. Our decision will be

guided by the two goals of preserving the free status of all derivatives of our free

software and of promoting the sharing and reuse of software generally.

NO WARRANTY

11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO

WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY AP-

PLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE

COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE PRO-

GRAM \AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED

OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WAR-

RANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PUR-

POSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF

THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE DEFEC-

TIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR

OR CORRECTION.

12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAWOR AGREED TO IN

WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO

MAY MODIFY AND/OR REDISTRIBUTE THE PROGRAM AS PERMITTED

ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL,

SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF

THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT

LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR

LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE

PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH

HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF

SUCH DAMAGES.

END OF TERMS AND CONDITIONS

B.3 Appendix: How to Apply These Terms to Your New

Programs

If you develop a new program, and you want it to be of the greatest possible use to the public,

the best way to achieve this is to make it free software which everyone can redistribute and

change under these terms.

To do so, attach the following notices to the program. It is safest to attach them to the

start of each source �le to most e�ectively convey the exclusion of warranty; and each �le

should have at least the \copyright" line and a pointer to where the full notice is found.

hone line to give the program's name and a brief idea of what it does.i Copyright

c19yy hname of authori

This program is free software; you can redistribute it and/or modify it under

the terms of the GNU General Public License as published by the Free Software

Foundation; either version 2 of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT

ANY WARRANTY; without even the implied warranty of MERCHANTABIL-

ITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General

Public License for more details.

You should have received a copy of the GNU General Public License along with

this program; if not, write to the Free Software Foundation, Inc., 675 Mass Ave,

Cambridge, MA 02139, USA.

Also add information on how to contact you by electronic and paper mail.

If the program is interactive, make it output a short notice like this when it starts in an

interactive mode:

Gnomovision version 69, Copyright (C) 19yy name of author Gnomovision

comes with ABSOLUTELY NO WARRANTY; for details type `show w'. This is

free software, and you are welcome to redistribute it under certain

conditions; type `show c' for details.

The hypothetical commands `show w' and `show c' should show the appropriate parts

of the General Public License. Of course, the commands you use may be called something

other than `show w' and `show c'; they could even be mouse-clicks or menu items{whatever

suits your program.

You should also get your employer (if you work as a programmer) or your school, if any,

to sign a \copyright disclaimer" for the program, if necessary. Here is a sample; alter the

names:

Yoyodyne, Inc., hereby disclaims all copyright interest in the program `Gnomo-

vision' (which makes passes at compilers) written by James Hacker.

hsignature of Ty Cooni, 1 April 1989 Ty Coon, President of Vice

This General Public License does not permit incorporating your program into propri-

etary programs. If your program is a subroutine library, you may consider it more useful

to permit linking proprietary applications with the library. If this is what you want to do,

use the GNU Library General Public License instead of this License.

Annotated Bibliography

Books

Meta: Well, maybe this doesn't look very neat yet. Any suggestions for improvement

welcome. Also, the list below is a very quick shot. So anybody who would like to amend it

or \enhance" the abstracts is invited to do so.

[Hunt92] Craig Hunt: TCP/IP Network Administration. O'Reilly and Associates,

1992.

If the Linux Network Administration Guide is not enough for for you,

get this book. It deals with everything from obtaining an IP address to

troubleshooting your network to security issues.

Its focus is on setting up TCP/IP, that is, interface con�guration, the

setup of routing, and name resolution. It includes a detailed description

of the facilities o�ered by the routing daemons routed and gated, which

supply dynamic routing.

It also describes the con�guration of application programs and network

daemons, such as inetd, the r commands, NIS, and NFS.

The appendix has a detailed reference of the gated, named, and a de-

scription of Berkeley's sendmail con�guration.

[Stern92] Hal Stern: Managing NIS and NFS. O'Reilly and Associates, 19xx.

This is a companion book to Craig Hunt's \TCP/IP Network Adminis-

tration" book. It covers the use of NIS, the Network Information System,

and NFS, the Network File System, in extenso.

232

[OReilly89] Tim O'Reilly and Grace Todino, 10th ed: Managing UUCP and Usenet.

O'Reilly and Associates, 1992. ISBN 0-93717593-5.

This is the standard book on UUCP networking. It covers Version 2

UUCP as well as BNU. It helps you setting up your UUCP node from the

start, giving practical tips and solutions for many problems, like testing

the connection, or writing good chat scripts. It also deals with more

exotic topics, like how to set up a travelling UUCP node, or the subtleties

present in di�erent avors of UUCP.

The second part of the book deals with Usenet and netnews software. It

explains the con�guration of both Bnews (version 2.11) and Cnews, and

introduces you to netnews maintenance tasks.

[Tanen89] Andrew S. Tanenbaum: Computer Networks. Prentice Hall International,

1989. ISBN 0-13-166836-61.

This book gives you a very good insight into general networking issues.

Using the OSI Reference Model, it explains the design issues of each layer,

and the algorithms that may be used to achieve these. At each layer,

the implementations of several networks, among them the Arpanet, are

compared to each other.

The only drawback this book has is the abundance of abbreviations, which

sometimes makes it hard to follow what the author says. But this is

probably inherent to networking.

[Feit93] Sidnie Feit: TCP/IP | Architecture, Protocol, and Implementation.

McGraw-Hill, 1993. ISBN 0-07-020346-6.

This is an all-singing-all-dancing book on TCP/IP networking. In fact,

its more like an encyclopedia than like a book. It describes the major

protocols, like IP, TCP, and UDP in great detail, and works its way up to

the application programs. It explains everything quite exhaustively. For

example, the chapter on telnet includes a tour of the telnet network

terminal.

1
The ISBN under which it is available in North America might me di�erent.

This book is for people who want to know more about how TCP/IP and

its applications work, but don't want to read RFCs.

