

�� EMBED Word.Document.6 \s ���		

ENGSIM

Engineering Simulation Library

for Microsoft Visual C++

CTI ENGSIM

		12 Mountain Ave., Montville, New Jersey, USA 07045		

		Tel: (201) 257­1912 Fax: (201) 257-9634			

email: continocean@webexpert.net

Copyright (ContinOceean Tech Inc. 1996. All rights reserved.

Version 1.0 (November 1996)

ENGSIM is a registered trade mark of ContinOcean Tech Inc.

CTI ENGSIM is a business unit wholly owned by ContinOcean Tech Inc.

�

INTRODUCTION

Why the Engineering Simulation Library for Microsoft Visual C++ (ENGSIM for MS VC++) Makes Your Engineering Simulation Simple and Efficient?

When you are conducting an engineering simulation or scientific computing, you may want to use a natural language to translate your engineering models and scientific equations into what can be easily understood by your computers, your readers and yourself. A few tools, for example MATLAB and Mathematica, have been widely used since they satisfy people's demand on this aspect. However, it is known that the tools like MATLAB and Mathematica are too slow for many applications.

On the other hand, most popular computer languages, such as C and Fortran, are not user-friendly for many engineering and scientific applications.

Microsoft Visual C++ (MS VC++) is becoming more and more popular in both engineering and scientific communities because of its fast speed, strong graphic capabilities and many valuable features. The Engineering Simulation Library for Microsoft Visual C++ (ENGSIM for MS VC++) made by ENGSIM Inc., a business unit wholly owned by ContinOcean Tech Inc., has greatly enhanced the engineering simulation and scientific computation capabilities of MS VC++ and has made it the most user-friendly, powerful and fast engineering simulation and scientific computation tool.

Table 1.1 lists major features of ENGSIM for MS VC++ compared to MATLAB.

Features�ENGSIM for MS VC++�MATLAB��Speed�100% Faster�Slow��Ease to Program �Very Easy. Use the same programming syntax as MATLAB, ANSI C and/or ANSI C++ �Easy for matrix computation ��Graphics� Very Good. Very Flexible�Good��Support Negative Indexing for Array and Matrix� Yes�No��Support Complex Array and Complex Matrix� Yes�Yes��Support User-Defined Classes � Yes�No��Support User-Graphics Development� Yes�No��Support Unix C and ANSI C Programming Style�Yes�No��Support Communications Engineering Simulation�Yes�Limited��Support Digital Signal Processing Simulation (General)�Yes�Yes��Support Fixed-Point Digital Signal Processing Simulation�Yes�No��

	Table 1.1

�

Consider the following example:

Example 1.1: If you want to compute a complex matrix calculation (A+B)/(A*B-A/B) with

 1.2+J*3.4 2.9-J*9.4 	4.3+J*3.8

A=[�	 2.2+J*1.4 	5.9+J*1.4 	0.3-J*10.8]

 	 10.6+J*2.1 	1.6-J*2.2 	1.2+J*1.1

and

	12.1+J*4.3 	9.2-J*4.9 	3.4+J*8.3

B=[2.2+J*4.1 	9.5+J*4.1 	3.0-J*8.1]

	6.1+J*1.2 	6.1-J*2.2 	2.1+J*1.1

using Fortran or C, you may have to call a long function like

	comp_matrix_div(comp_matrix_sum(A, B), comp_matrix_subtract(

					comp_matrix_multiply(A, B), comp_matrix_div(A, B)))

It is not surprising that you will often make mistakes when you write the above complicated function to implement a simple calculation (A+B)/(A*B-A/B), even though the implementation of the above computation using C or Fortran is much faster than using Matlab or Mathematica.

Fortunately, the above dilemma can be easily solved by using ENGSIM for MS VC++. You can write the above equation in your C++ program in the same way as you learnt in your elementary school mathematics course if you use ENGSIM for MS VC++:

(A+B)/(A*B-A/B)

Example 1.2: In the North American TDMA Wireless Communicatons Standard IS-136, each slot has 162 symbols and may be represented by a series of complex numbers x(0), x(1), ..., x(161). Since the modulation of the IS-136 is differential quadrantic phase shift keying (DQPSK) and the symbol x(0) is determined by x(-1) according to x(1)=a(1)*x(-1).

If you program in MATLAB, then you have to redefine x’(i)=x(i+1) to avoid negative indexing and keep tracking your index shifting. If you use Fortran or C, then you have to avoid negative indexing and have to call a long function to implement the above simple calculation.

By using ENGSIM for MS VC++, you can declare a complex array (one-dimentional complex matrix) with negative indexing

	cmatrixn	x(161), a(161);

and program your DQPSK as

	x(0)=a(0)*x(-1);

Notice that you have used a negative indexing for the complex array and your programming is as easy as writing a simple equaton.

If your work involves a lot of computations like the ones shown in the above examples, using ENGSIM for MS VC++ will make your work much more efficient.

The superior speed of ENGSIM for MS VC++ over other tools like MATLAB and Mathematica is guaranteed by the nature of C++. ENGSIM for MS VC++ is part of your C++ library. Therefore your engineering and scientific computation with ENGSIM for MS VC++ achieves almost the same speed as you are using C or Fortran. Benchmarking results have shown that using ENGSIM for MS VC++ for large engineering simulations achieves 100% improvement in speed over MATLAB.

MATLAB is known for its good graphic capability and is superior to traditional Fortran and C programming packages. ENGSIM for MS VC++ has changed the traditional view of Fortran and C programming, and uses a powerful set of MATLAB-like graphic instructions in your C++ routines to plot your curves. Furthermore, your graphic plotting is more flexible and you can further develop more graphic capabilities after you understand more about MS VC++ (or you may hire someone to develop your commercial graphic interface for your software using the MS VC ++).

The convenience and efficiency of ENGSIM for MS VC++ offers you much more than you paid.

How to Install ENGSIM for MS VC++

Before installing ENGSIM for MS VC++, you should make sure to have Windows NT or Windows 95 as the operating system of your PC and have Microsoft Visual C++ Version 4.0 (or higher) installed.

If you have ENGSIM for MS VC++ with two floppy disks, you can insert the first floppy into Drive A. Then click My Computer folder, click Drive A, click setup. Then follow the instructions on the screen to install ENGSIM for MS VC++.

If you downloaded ENGSIM for MS VC++ from www.webexpert.net/continocean/engsim.htm, you should copy the PKZIPed ENGSIM.ZIP to a temporary directory (folder) and use PKUNZIP to expand the files. Or you should copy the self-extracting file ENGSIM.EXE to a temporary directory (folder) and click ENGSIM.EXE to expand the file. Then you can open the temporary directory (folder) and click setup.

How to Run ENGSIM for MS VC++

After installing ENGSIM for MS VC++, you can click ENGSIM for MS VC++ icon to open Microsoft Development Studio. From Microsoft Development Studio, click File, click OpenWorkspace, click the ENGSIM folder, and finally click Sim to load the complete ENGSIM library and interface.

After loading the ENGSIM library and interface, click File, click Open, click main.cpp. The source code of main.cpp will be shown in the editing window of Microsoft Development Studio. The coding style of main.cpp is the same as Unix ANSI C. It includes several examples which can be called from main() routine. You can edit main.cpp to include your own C code files and call them from main().There are several examples under \engsim\examples which a
re included in main.cpp. You may want to
 edit main.cpp and the examples for exercises.

To compile and link the code, click Build in Microsoft Development Studio, click Build Sim.exe, then all the files are compiled and linked with necessary libraries and an executable code Sim.exe is built for you to execute.

If you encounter any warning messages, you should ignore them (sometimes you need to click OK).

To execute Sim.exe, click Build, click Execute Sim.exe.

To debug Sim.exe, set a breakpoint in the source code by clicking at the line of the source code, then click build, click debug, click go. Then follow the instructions to continue the debugging process.

Microsoft Development Studio's left-lower corner has three colorful small icons and the third one is called FileView. You may click FileView to open the list of all source files including Help.txt, ReadMe.txt, main.cpp and your source files. To open a file in the FileView list, for example, Help.txt, click Help.txt. By openning Help.txt, you can view the on-line help for ENGSIM instructions.

 It would be helpful if you have some basic knowledge of C/C++. However, if you do not, you can start from the simple examples in this manual. You do not have to read all chapters of any C/C++ book. You need only to check related sections if you encounter certain problems. You may use the classical C book as your reference:

B.W. Kernighan and D.M. Ritchie, The C Programming Language
, se
cond edition, Prentice Hall, 1988.

The following references are not necessary for learning the basics of ENGSIM for MS VC++, but are useful if you want to become an expert in C++:

M.A. Ellis and B.Stroustrup, The Annotated C++ Reference Manual, Reading: Addospm Wesley, 1990.

B. Stroustrup, The C++ Programming Language, 2ed Ed., Reading: Addison Wesley, 1991.

J. Kruglinski, Inside Visual C++, Microsoft Press, 1996.

Run Examples/Lab01

The source code of lab01.cpp is listed at the end of this section. You can compile/link and run this routine by editing main.cpp as

main.cpp:

#include “examples\lab01.cpp”

int main(void){

	lab01();

	return 0;

}

The file lab01.cpp is located in, for example, C:\engsim\examples\lab01.cpp and is included in the file main.cpp. Since the current directory is \engsim, it is not necessary to write \engsim here. If your source file is in a different directory, you may have to write down the complete directory starting from the root. It is noted that in Windows NT and Windows 95 directory names are separated by “\” when you try to include a file. On the other hand, if you try to separate directory names in fprintf() and fscanf() (I/O from/to files), you have to use “/”. See lab01.cpp, lab02.cpp, lab03.cpp for more detail.

In lab01.cpp, we print “Hello, World!” to window, not to the standard I/O (command window in Unix) since Windows NT and Windows 95 do not have the standard I/O. The standard I/O of DOS is not available to windows programs. Therefore printf() is not accepted in MS VC++ and printw() (print to window) is provided in ENGSIM library. The file I/O functions in C are still the same.

ENGSIM library also provides some extensions to the conventional C-style I/O. Particularly, you may use the conventional C-style I/O

	printw(“%g %d”, x,y);

	fprintf(fp,“%g %d”, x,y);

 you may also use ENGSIM extensions (x,y can be any data type including double, int, Complex, matrix, cmatrix, imatrix, etc.)

	printw(x);

 	printw(y);

	fprintf(fp,x);

	fprintf(fp,y);

lab01.cpp also demonstrates usage of matrix class in ENGSIM for MS VC++. It is seen that the coding style in your C source file is the same as MATLAB.

lab01.cpp:

void lab01(void){

 FILE *fp_in, *fp_out;

 double da;

 int ia;

 printw("Hello, World!\n");	

 //Windows NT and Windows 95 do not accept printf()

 //which prints to the Standard Output.

 //printw() is equivalent to printf() and prints to Windows

 printw();	 //same as printw("\n");

 fp_out=fopen("examples/lab01.dat","w");

 printw(0.5);	//a new style of printing a number.

 printw("\n%d",100);	//classical C approach to print a number

 fprintf(fp_out, 0.5);	//same as fprintf(fp_out,"%g",0.5)

 fprintf(fp_out);	//same as printw("\n")

 fprintf(fp_out,"%d", 100); //classical C style to print to a file

 fclose(fp_out);

 fp_in=fopen("examples/lab01.dat","r");

 fscanf(fp_in, da);

 fscanf(fp_in, ia);

 fclose(fp_in);

 printw();

 printw();

 printw(da);

 printw();

 printw(ia);

 matrix a(2,2),b(2,2);

 a=init(a,

 	 1.0,2.0,

	 1.1,2.2);

 b=a;

 if(a==b)	

	a=a+b;

 else	

	a=a;

 if(a!=b)	

	a=a;

 if(a==b)

 	a=b;

}

�

Complex Class

Complex numbers are frequently used in digital communications, signal processing, power

engineering, and many other scientific and engineering fields. We now use an example to show how to use ENGSIM for MS VC++.

Declare, Initialize and Assign Complex Numbers

�

Matrix and Complex Matrix Class

�

Matrix and Complex Matrix with Negative Indexing

�

Graphics

�

Communications Engineering Simulation

�

Digital Signal Processing Simulation

�

Fixed-Point Digital Signal Processing Simulation

�

Usage of ENGSIM Instructions

 COMPLEX, MATRIX, COMPLEX MATRIX, INTEGER MATRIX AND STRING MATRIX

Complex declare a complex number

e.g. Complex a;

matrix	 		declare a matrix

			matrix a(2,2), h(10,20), p(200);

			//a(1,1)...... a(2,2)

			//p(1) p(200)

matrixn			declare a matrix with negative indexing

			matrixn a(2,2); //a(-2,-2) a(2,2)

			matrixn p(100); //p(-100)p(100)

cmatrix	 	 declare a complex matrix

			cmatrix a(2,2),b(2,2),p(100);

cmatrixn	 declare a complex matrix with negative indexing

			cmatrixn a(2,2),b(2,2),p(100);

			//a(-2,-2)......a(2,2), p(-100)......p(100)

imatrix	 		declare an integer matrix

			imatrix a(2,2), b(2,2), p(100);

			//a(1,1) a(2,2)

			//p(1) p(100)

imatrixn		declare an integer matrix with negative indexing

			imatrixn a(2,2),b(2,2),p(100);

			//a(-2,-2) ... a(2,2)

			//p(-100) ... p(100)

smatrix	 		declare a string matrix

			smatrix a(2,2),p(100);

			//a(1,1) ... a(2,2)

			//p(1) ... p(100)

J 			pure unit imaginary for Complex

 			a= 1.0+2.0*J;

identity			identity matrix (diagonal elements are all 1's, others all 0's)

		 	(for matrix only)

		 	a=identity(10);	 //10x10 identity matrix

unitary			unitary matrix (all elements are all 1's)

		 	(for matrix only)

		 	a=unitary(10);	 //10x10 unitary matrix

identityn		identity matrix with negative indexing

		 	(for matrixn with negative indexing only)

		 	a=identityn(10);	 //21x21 identity matrixn

unitaryn		unitary matrix with negative indexing

		 	(for matrixn with negative indexing only)

		 	a=unitaryn(10);	 //21x21 unitary matrixn

real() 		real of a complex number

		 	double da;

 			da=real(a);

			real of Complex matrix

			matrix mc(2,2);

			mc=real(a);

			matrixn mc(2,2);

			mc=real(a);

imag() 		imaginary of a complex number

 			double da;

 			da=imag(a);

		 	imaginary of Complex matrix

			matrix mc(2,2);

			mc=imag(a);

			matrixn mc(2,2);

			mc=imag(a);

= 			equal operator for complex, matrix, matrixn,

		 	cmatrix, cmatrixn, imatrix, imatrixn

 			b= 1.0+2.0*J;

		 	b=a;

+ 			plus operator for complex, matrix, matrixn,

		 	cmatrix, cmatrixn, imatrix, imatrixn

 			c= a+b;

- 			minus operator for complex, matrix, matrixn,

		 	cmatrix, cmatrixn, imatrix, imatrixn

 			c= a-b;

 			c=-b;

* 			multiplication operator for complex, matrix, matrixn,

		 	cmatrix, cmatrixn, imatrix, imatrixn

 			c= a*b;

/		 	division operator for complex, matrix, matrixn,

		 	cmatrix, cmatrixn

		 	c=a/b;

~ 			conjugate operator for complex, cmatrix, cmatrixn

 			c= (~a);

==		 	logic equal operator for complex, matrix, matrixn,

		 	cmatrix, cmatrixn, imatrix, imatrixn, smatrix

		 	if(a==b){...};

!=		 	logic not equal operator for complex, matrix, matrixn,

		 	cmatrix, cmatrixn, imatrix, imatrixn, smatrix

		 	while(a!=b){...};

exp()			exponential for complex

		 	exp(J*2.0*PI);

abs()			absolute for complex

		 	sqrt(sum a(i,j)*a(i,j)) for matrix, matrixn

		 	sqrt(sum a(i,j)*(~a(i,j))) for cmatrix, cmatrixn

			double dc;

			dc=abs(a);

norm()			real*real+imag*imag for complex	

		 	sum a(i,j)*a(i,j) for matrix, matrixn, imatrix, imatrixn

		 	sum a(i,j)*(~a(i,j)) for cmatrix, cmatrin

			double dc;

			dc=norm(a);

phase()			phase of a complex number between (0,2*PI)

		 	phase(c);

arg()			same as phase()

pow(,)			power for complex number

		 	Complex c;

		 	pow(c,2.0);

		 	pow(c,3);

printw()			print to screen for complex, matrix, matrixn,

		 	cmatrix, cmatrixn, imatrix, imatrixn, smatrix,

		 	double, integer, character

		 	printw(a);

		 	printw(2.0+3.0*J);

		 	printw(1.0);

		 	printw(1);

		 	printw('c');

			printw(“test=%g, dog=%d\n”,0.5,100);

fprintf(,)		print to a disk file for complex, matrix, matrixn,

		 	cmatrix, cmatrixn, imatrix, imatrixn, smatrix,

		 	double, integer, character

		 	fprintf(fp, c);

fscanf(,)		read from a disk file for complex, matrix, matrixn,

		 	cmatrix, cmatrixn, imatrix, imatrixn, smatrix,

		 	double, integer, character

		 	fscanf(fp, a);

(,)			an element of a matrix, matrixn, cmatrix, cmatrixn

			imatrix, imatrixn, smatrix

			a(2,-5)=10.1+2.1*J;

			p(-5)=3.0+9.9*J;

init(, ...)			initialize a matrix, matrixn, cmatrix, cmatrixn

			imatrix, imatrixn, smatrix

			matrix a(2,2);

			init(a, 1.0,2.0,

				4.0,5.0

);

			matrixn a(2,2);

			a=init(a,1.0,2.0,3.0,4.0,5.0,

				 2.0,2.0,3.0,4.0,5.0,

				 3.0,2.0,3.0,4.0,5.0,

				 4.0,2.0,3.0,4.0,5.0,

				 5.0,2.0,3.0,4.0,5.0

);

			cmatrix a(2,2);

			a=init(a,

				1.0+2.0*J, 2.0+3.0*J,

				1.1+2.1*J, 2.1+3.1*J

);

			cmatrixn a(2,2);

			a=init(a,

				1.0+2.0*J, 2.0+3.0*J, 1.0+2.0*J, 2.0+3.0*J, 1.0+2.0*J,

				1.1+2.1*J, 2.1+3.1*J, 1.0+2.0*J, 2.0+3.0*J, 1.0+2.0*J,

				1.0+2.0*J, 2.0+3.0*J, 1.0+2.0*J, 2.0+3.0*J, 1.0+2.0*J,

				1.1+2.1*J, 2.1+3.1*J, 1.0+2.0*J, 2.0+3.0*J, 1.0+2.0*J,

				1.0+2.0*J, 2.0+3.0*J, 1.0+2.0*J, 2.0+3.0*J, 1.0+2.0*J

);

			imatrix a(2,2);

			init(a,

		 		1,2,

				4,5

);

			imatrixn a(2,2);

			init(a,

		 		1,2,3,2,3,

				4,5,6,2,3,

				7,8,9,2,3,

				4,5,6,2,3,

				7,8,9,2,3

);

			smatrix a(2,2);

			a=init(a,

				'H','i',

				'O','K');

joinr(a, b);		right join matrices a,b as (a b) for matrix, cmatrix, imatrix

	

joind(a, b);		down join matrices a,b as

	 		 a(1,1)......

	 		

			(b(1,1)......)

	 		

			for matrix, cmatrix, imatrix

shiftl(a)			shift left by 1 for matrix, matrixn,

		 	cmatrix, cmatrixn, imatrix, imatrixn

shiftr(a)			shift right by 1 for matrix, matrixn,

		 	cmatrix, cmatrixn, imatrix, imatrixn

shiftu(a)		shift up by 1 for matrix, matrixn,

		 	cmatrix, cmatrixn, imatrix, imatrixn

shiftd(a)			shift down by 1 for matrix, matrixn,

		 	cmatrix, cmatrixn, imatrix, imatrixn

sub(a, m1, n1, m2, n2)	

			Take submatrix beginning at a(m1,n1) and ending at a(m2,n2)

			for matrix, matrixn, cmatrix, imatrix		

			(matrixn becomes a matrix)

			sub(a,m1,n1,m2,n2);

TT()			transpose for matrix, matrixn,

		 	cmatrix, cmatrixn, imatrix, imatrixn, smatrix

			c=TT(a);

HH()			hermitian for cmatrix, cmatrixn

			c=HH(a);

Max()			find maximum of all elements for matrix

			double a_max=Max(a);

Min()			find minimum of all elements for matrix

			double a_min=Min(a);

Max(, , ,)		find maximum of all elements for matrix

			Max(a, y_max, i_max, j_max); //y_max=a(i_max,j_max)

Min(, , ,)		find minimum of all elements for matrix

			Min(a, y_min, i_min, j_min); //y_min=a(i_min,j_min)

corrm(a, b, n)	

			n-by-n correlation matrix of a and b for cmatrix, cmatrixn

			c=corrm(a,b,2);

det()			determinant of a matrix, matrixn, cmatrix, cmatrixn

			imatrix, imatrixn

			double dc;

			dc=det(a);

|			or for imatrix, imatrixn

			c=a|b;

&			and for imatrix, imatrixn

			c=a&b;

^			X-or for imatrix, imatrixn

			c=a^b;

int2string(ia, sa, len)	

			convert integer ia to string sa(1) ... sa(len)

float2string(fa, sa, len)

			convert float number fa to string sa(1) ... sa(len)

 GRAPHICS

plot(y)			plot array y

			matrix y(100);

			plot(y);

plot(x, y)		plot array, x=X-axis, y=Y-axis

			matrix x(100), y(110);

			plot(x, y);

plot(x, y1, y2)		

			plot array, x=X-axis, y1,y2,...=Y-axis

			matrix x(100), y1(110), y2(100);

			plot(x, y1, y2);

plot(x, y1, y2, y3)

plot(x, y1, y2, y3, y4);

plot(x, y1, y2, y3, y4, y5);

plot(y, "legend");

plot(x, y, "legend");

plot(x, y1, "legend1", y2, "legend2");

plot(x, y1, "legend1", y2, "legend2", y3, "legend3");

plot(x, y1, "legend1", y2, "legend2", y3, "legend3", y4, "legend4");

plot(x, y1, "legend1", y2, "legend2", y3, "legend3", y4, "legend4", y5, "legend5");

set_picture_size(x);	scale picture

			x=1.0 default size

			0.0<x<1.0 shrink by x

			1.0<x<2.0 expand by x

			set_picture_size(1.0); //default

			set_picture_size(1.5);

			set_picture_size(0.5);

	

set_picture_position(x, y);

			relocate picture position

			-10000<x,y<10000

			set_picture_position(0, 0);	//default

			set_picture_position(2000, 1000); //move right by 2000, up by 1000

			set_picture_position(-2000, -1000); //move left by 2000, down by 1000

set_axis_title("x_title", "y_title");

set_text_color("color");

			color=black (default), blue, green, cyan, red, magenta, yellow, white

	 		darkblue, darkgreen, darkcyan, darkred, darkmagenta, darkyellow

	 		darkgrey, lightgrey

set_text_position(x, y);

			x=row, y=column

			x,y>0

			set_text_position(100, 20);

	

set_text_size(x);

			set text font size

			set_text_size(10); //default

			set_text_size(15);

 COMMUNICATIONS ENGINEERING AND SIGNAL PROCESSING SIMULATION

convol(x, y)		convolution of arrays x and y for matrix, matrixn, cmatrix and cmatrixn

			matrix x(100),y(100),z(200);

			z=convol(x,y);

			matrixn xn(100),yn(100),zn(200);

			zn=convol(xn,yn);

			cmatrix cx(100),cy(100),cz(200);

			cz=convol(cx,cy);

			cmatrixn cxn(100),cyn(100),czn(200);

			czn=convol(cxn,cyn);

corr(x, y)		correlation of arrays x and y for matrix (array) and cmatrix (array)

			matrix x(100), y(100);

			matrixn z(100);	//z(-100) ... z(100)

			z=corr(x,y);

			cmatrix x(100), y(100);

			cmatrixn z(100);	//z(-100) ... z(100)

			z=corr(x,y);

corrnorm(x, y)		normalized correlation of arrays x and y for matrix (array) and cmatrix (array)

			matrix x(100), y(100);

			matrixn z(100);	//z(-100) ... z(100)

			z=corrnorm(x,y);

			cmatrix x(100), y(100);

			cmatrixn z(100);	//z(-100) ... z(100)

			z=corrnorm(x,y);

fft(x, sp_freq, sp_amp, sp_phase, n, Ts);

		compute spectrum of an array x using FFT

		n=pow(2,r)=number of points in FFT,

		dimension of sp_freq (frequency), sp_amp (amplitude) and sp_phase (phase) is n/2

		Ts=sampling-period

		int n=4098;	//2^12

		matrix x(n), freq(n/2), amp(n/2), phase(n/2);

		float Ts=0.01;

		fft(x, freq, amp, phase, n, Ts);

		plot(freq, amp, "Amplitude", phase, "Phase");

crandom();		generate uniform-distributed integer in (0, 2147483647)

			int a;

			a=crandom();

integral(func, a, b, step)	

 			integrate function func from a to b with step-size step

			double function(double x){

	 		double y;

	 	

	 		return y;

			}

			double a=-1.0,b=2.0,step=0.01;

			integral(func,a,b,step);

lpf(fmT, n, h);

			generate low pass filter coefficient h(1) h(n) with cut-off frequency fmT

			int n=20;

			float fmT=1000;

			matrix h(n);

			lpf(fmT, n, h);

norm(m, v)

			generate Gaussian (Normal) distributed random variable with mean m and 				variance v*v

			float a;

			a=norm(1.0, 2.0);

			//Gaussian distributed random variable with mean 1.0 and variance4.0

phasecontinue(p)

			make the phase array p to be continuous by subtracting or adding 2PI.

			matrix p(100);

			phasecontinue(p);

			plot(p);	//the plot will be continuous

phasefollow(p1, p2)

			make phase array p1 follow phase array p2 by subtracting or adding 2PI.

			matrix p1(100),p2(100),x(100);

			phasefollow(p1,p2);

			plot(x,p1,p2);	

qpiqpskmod(a2, a1)

			PI/4-QPSK modulation.

			binary sequence (a2 a1)to QPSK mapping: 00=PI/4, 01=3*PI/4, 11=5PI/4, 				10=7PI/4.

			cmatrix x(100);

			imatrix a(200);

			a(2)=0;

			a(1)=1;

			x(1)=qpiqpskmod(a(2), a(1));

qpiqpskdem(x, a2, a1);

			PI/4-QPSK demodulation.

			binary sequence (a2 a1)to QPSK mapping: 00=PI/4, 01=3*PI/4, 11=5PI/4, 				10=7PI/4.

			cmatrix x(100);

			imatrix a(200);

			x(1)=exp(J*PI/4.0);

			qpiqpskdem(x(1), a(2), a(1));

qpidqpskmod(a2, a1, x1);

			PI/4-DQPSK modulation.

			binary sequence (a2 a1)to QPSK mapping: 00=PI/4, 01=3*PI/4, 11=5PI/4, 				10=7PI/4.

			cmatrixn x(100);

			imatrixn a(200);

			a(0)=0;

			a(-1)=1;

			x(-1)=exp(J*PI/4.0);

			x(0)=qpidqpskmod(a(0), a(-1),x(-1));

qpidqpskdem(y0, y1, a2, a1);

			PI/4-DQPSK demodulation.

			binary sequence (a2 a1)to QPSK mapping: 00=PI/4, 01=3*PI/4, 11=5PI/4, 				10=7PI/4.

			cmatrix y(100);

			imatrix a(200);

			y(-1)=exp(J*PI/4.0);

			y(0)=exp(J*3.0*PI/4.0);

			qpidqpskdem(y(-1), y(0), a(0), a(-1));

ray(m, v)		generate Rayleigh (m=0) or Rician (m!=0) distributed variable

			float a;

			a=ray(1.0, 2.0);

ray_fade(fm, T, k);	generate Jakes Rayleigh fading channel coefficient

			Doppler frequency is fm Hz, T is symbol period,

			k is any integer number greater than 0

			(setting k1<<k2 respectively gives two-ray channels or diversity 					channels)

			cmatrixn c1(100), c2(100);

			float fm=75.0, T=41.0e-6;

			c1(0)=ray_fade(fm, T, 1);

			c2(0)=ray_fade(fm, T, 1000); //c1 and c2 are two independent rays.

sinc(x);

			sinc function sin(x)/x

			double y;

			y=sinc(1.5*PI);

spectrum(func, sp_freq, sp_amp, sp_phase, n, T);

			compute spectrum of function func

			T=function period, from 0 to T

			n=pow(2,r)=number of points in FFT,

			dimension of sp_freq (frequency), sp_amp (amplitude) and sp_phase (phase) is 				n/2

			sampling-rate=T/n

			float function(float x)

			{...... }

			int n=4098;	//2^12

			matrix freq(n/2), amp(n/2), phase(n/2);

			float T=100.0;

			spectrum(function, freq, amp, phase, n, T);

			plot(freq, amp, "Amplitude", phase, "Phase");

tail(func, a)		integrate the tail of the function func from a to +infinity

			double function(double x){

	 		double y;

	 	

	 		return y;

			}

			double a=1.0;

			tail(func,a);

	

�

The CONTINOCEAN TECH INC. PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY OF FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or implied warranties in certain transactions, therefore, this statement may not apply to you.

Although the information in this document has been carefully provided and reviewed, and is believed to be reliable, CONTINOCEAN TECH INC. does not assume any liability arising out of the application or use of any product, circuit and/or software. This software and accessory publication could include technical inaccuracies or typographical errors. CONTINOCEAN TECH INC. may make improvements and/or changes in the product(s) and/or the program(s) described in this publication at any time. These changes will be incorporated in new editions of the publication.

It is possible that this publication may contain reference to, or information about, CONTINOCEAN TECH INC. products (machines and programs), programming, or services that are not announced in your country. Such references or information must not be construed to mean that the CONTINOCEAN TECH INC. intends to announce such CONTINOCEAN TECH INC. products, programming, or services in your country.

Request for technical information about CONTINOCEAN TECH INC. products should be made to CONTINOCEAN TECH INC. directly at 12 Mountain Ave., Montville, New Jersey, USA 07045. Phone: (201)257-1912. Fax: (201)257-3619.

Copyright ContinOceean Tech Inc. 1995. All rights reserved.

�PAGE �

�PAGE �
5
�

�PAGE \# "'Page: '#'�'" ��

