The Official

�

Technical Specs version 0.9

Author: Ben Morris (bmorris@islandnet.com)

Information from Raven provided by Ben Gokey

MS Word 6.0 conversion by Kevin McGrail (74107.1254@compuserve,com)

 [Disclaimer]

The text contained in this document is for informational purposes only. If you decide to use this information in any way, neither id Software, Raven Software, nor Ben Morris can be held responsible for any damages or losses (including, but not limited to: dismembered bodily parts, telefrags and lack of sleep) incurred by this information's use. Although this is an "Official" specification, some of the information contained within might be old, or just plain typed in wrong.

You have been warned.

This version of the specs, 0.9, is a preliminary release. Most of the information here is tried and true, but there's a good chance there are errors in the file. If something doesn't look right, or really IS wrong, please contact me (Ben Morris) at the address above. Please do NOT contact me about new versions of the specs; I will release the new versions when they are ready. Thanks.

Definitions used in this File

Angle [0..255] Used in "angle" parameters to Special types:

0�East�64�North�128�West�192�South��32�Northeast�96�Northwest�160�Southwest�224�Southeast��

* NOTE:

This differs from DOOM/Heretic in that 45/90 degree increments are not used. However, this difference does not apply for the angles used for the THINGS in map editing. They are the same as DOOM's

(eg: 0 = East, 90 = North, etc.)

Tics		Time unit of length 1/35 second. So, 35 tics = 1 second.

Octics		Time unit of length 8 tics. So, 8 octics = 1 second.

About This File

This file was written for those who are interested in the inner workings of Hexen. It doesn't contain playing tips or information on how to get Hexen working on your system.

This file is intended to be supplementary to Matt Fell's "Unofficial DOOM Specs", which probably came with your copy of DOOM or DOOM][. Wherever it's relevant, this file refers to a specific section in the DOOM specs (be sure you have version 1.666!), so it's a good idea to have a copy at hand.

�Table of Contents

� TOC \o "1-6" �[Disclaimer]	� GOTOBUTTON _Toc343502761 � PAGEREF _Toc343502761 �1��

Definitions used in this File	� GOTOBUTTON _Toc343502762 � PAGEREF _Toc343502762 �1��

About This File	� GOTOBUTTON _Toc343502763 � PAGEREF _Toc343502763 �1��

Table of Contents	� GOTOBUTTON _Toc343502764 � PAGEREF _Toc343502764 �2��

Introduction to Hexen	� GOTOBUTTON _Toc343502765 � PAGEREF _Toc343502765 �4��

1 Hexen Data Structures	� GOTOBUTTON _Toc343502766 � PAGEREF _Toc343502766 �4��

1.1 The Hexen LINEDEF structure	� GOTOBUTTON _Toc343502767 � PAGEREF _Toc343502767 �4��

1.1.1 Line Flags	� GOTOBUTTON _Toc343502768 � PAGEREF _Toc343502768 �4��

1.1.1a Activation Values (for LineFlag bits 10..12)	� GOTOBUTTON _Toc343502769 � PAGEREF _Toc343502769 �5��

1.2 The Hexen THING structure	� GOTOBUTTON _Toc343502770 � PAGEREF _Toc343502770 �5��

1.2.1 Thing Flags	� GOTOBUTTON _Toc343502771 � PAGEREF _Toc343502771 �6��

1.2.2 Thing Types	� GOTOBUTTON _Toc343502772 � PAGEREF _Toc343502772 �6��

1.2.2a Player Things	� GOTOBUTTON _Toc343502773 � PAGEREF _Toc343502773 �6��

1.2.2b Weapon Things	� GOTOBUTTON _Toc343502774 � PAGEREF _Toc343502774 �7��

1.2.2c Gettable Things	� GOTOBUTTON _Toc343502775 � PAGEREF _Toc343502775 �7��

1.2.2d Monsters	� GOTOBUTTON _Toc343502776 � PAGEREF _Toc343502776 �7��

1.2.2e Keys	� GOTOBUTTON _Toc343502777 � PAGEREF _Toc343502777 �7��

1.2.2f map activities	� GOTOBUTTON _Toc343502778 � PAGEREF _Toc343502778 �8��

1.2.2g Sounds	� GOTOBUTTON _Toc343502779 � PAGEREF _Toc343502779 �8��

1.2.2h Indoor Decorations	� GOTOBUTTON _Toc343502780 � PAGEREF _Toc343502780 �8��

1.2.2i Cave Decorations	� GOTOBUTTON _Toc343502781 � PAGEREF _Toc343502781 �8��

1.2.2j Forest Decorations	� GOTOBUTTON _Toc343502782 � PAGEREF _Toc343502782 �9��

1.2.2k Graveyard Decorations	� GOTOBUTTON _Toc343502783 � PAGEREF _Toc343502783 �9��

1.2.2l Ice Decorations	� GOTOBUTTON _Toc343502784 � PAGEREF _Toc343502784 �9��

1.2.2m Mess Hall Decorations	� GOTOBUTTON _Toc343502785 � PAGEREF _Toc343502785 �9��

1.2.2n Gargoyle Pedestals	� GOTOBUTTON _Toc343502786 � PAGEREF _Toc343502786 �10��

1.2.2o Swamp Decorations	� GOTOBUTTON _Toc343502787 � PAGEREF _Toc343502787 �10��

1.2.2p World Outside (rocks)	� GOTOBUTTON _Toc343502788 � PAGEREF _Toc343502788 �10��

1.2.2q UsePuzzleItem Things	� GOTOBUTTON _Toc343502789 � PAGEREF _Toc343502789 �10��

2 Hexen Script Language	� GOTOBUTTON _Toc343502790 � PAGEREF _Toc343502790 �10��

2.1 Variables and their Scope	� GOTOBUTTON _Toc343502791 � PAGEREF _Toc343502791 �11��

2.2 Language Structure	� GOTOBUTTON _Toc343502792 � PAGEREF _Toc343502792 �12��

2.2.1 Keywords	� GOTOBUTTON _Toc343502793 � PAGEREF _Toc343502793 �12��

2.2.2 Comments	� GOTOBUTTON _Toc343502794 � PAGEREF _Toc343502794 �12��

2.2.3 World-variable definitions	� GOTOBUTTON _Toc343502795 � PAGEREF _Toc343502795 �12��

2.2.4 Map-variable definitions	� GOTOBUTTON _Toc343502796 � PAGEREF _Toc343502796 �12��

2.2.5 Include Directive	� GOTOBUTTON _Toc343502797 � PAGEREF _Toc343502797 �12��

2.2.6 Define Directive	� GOTOBUTTON _Toc343502798 � PAGEREF _Toc343502798 �12��

2.2.7 Constant Expressions	� GOTOBUTTON _Toc343502799 � PAGEREF _Toc343502799 �13��

2.2.8 String Literals	� GOTOBUTTON _Toc343502800 � PAGEREF _Toc343502800 �13��

2.2.9 Script Definitions	� GOTOBUTTON _Toc343502801 � PAGEREF _Toc343502801 �13��

2.2.10 Statements	� GOTOBUTTON _Toc343502802 � PAGEREF _Toc343502802 �13��

2.3 Internal Functions	� GOTOBUTTON _Toc343502803 � PAGEREF _Toc343502803 �16��

3 Flats with special properties	� GOTOBUTTON _Toc343502804 � PAGEREF _Toc343502804 �18��

4 The MAPINFO lump	� GOTOBUTTON _Toc343502805 � PAGEREF _Toc343502805 �19��

�Table of Contents (cont.)

5 PolyObjects	� GOTOBUTTON _Toc343502806 � PAGEREF _Toc343502806 �20��

5.1 PolyObject Specials	� GOTOBUTTON _Toc343502807 � PAGEREF _Toc343502807 �20��

5.11 Polyobj_StartLine():	� GOTOBUTTON _Toc343502808 � PAGEREF _Toc343502808 �20��

5.12 Polyobj_ExplicitLine:	� GOTOBUTTON _Toc343502809 � PAGEREF _Toc343502809 �20��

5.2 Polyobj Start Spots and Anchor Points	� GOTOBUTTON _Toc343502810 � PAGEREF _Toc343502810 �21��

Appendices:	� GOTOBUTTON _Toc343502811 � PAGEREF _Toc343502811 �22��

Appendix A - List of Spawnable Objects	� GOTOBUTTON _Toc343502812 � PAGEREF _Toc343502812 �22��

Appendix B - List of Activateable/Deactivateable Objects	� GOTOBUTTON _Toc343502813 � PAGEREF _Toc343502813 �23��

Appendix C - List of THINGS that require arguments	� GOTOBUTTON _Toc343502814 � PAGEREF _Toc343502814 �24��

Appendix D - Sector Specials	� GOTOBUTTON _Toc343502815 � PAGEREF _Toc343502815 �25��

Appendix E - Action Specials	� GOTOBUTTON _Toc343502816 � PAGEREF _Toc343502816 �26��

Floor and Ceiling Specials	� GOTOBUTTON _Toc343502817 � PAGEREF _Toc343502817 �26��

Floor and Ceiling Specials (cont.)	� GOTOBUTTON _Toc343502818 � PAGEREF _Toc343502818 �27��

Stair Specials	� GOTOBUTTON _Toc343502819 � PAGEREF _Toc343502819 �27��

Door Specials	� GOTOBUTTON _Toc343502820 � PAGEREF _Toc343502820 �28��

Script Specials	� GOTOBUTTON _Toc343502821 � PAGEREF _Toc343502821 �28��

Light Specials	� GOTOBUTTON _Toc343502822 � PAGEREF _Toc343502822 �28��

Miscellaneous Specials	� GOTOBUTTON _Toc343502823 � PAGEREF _Toc343502823 �29��

Thing Specials	� GOTOBUTTON _Toc343502824 � PAGEREF _Toc343502824 �30��

PolyObject Specials	� GOTOBUTTON _Toc343502825 � PAGEREF _Toc343502825 �31��

Appendix F - Sector Sounds for ChangeSectorSound() special	� GOTOBUTTON _Toc343502826 � PAGEREF _Toc343502826 �31��

Appendix G - Key Numbers	� GOTOBUTTON _Toc343502827 � PAGEREF _Toc343502827 �31��

��

Introduction to Hexen

Hexen is the sequel to Heretic, Raven Software's first collaboration with id Software. Hexen's major difference from Heretic and DOOM is its programmability. Hexen features a powerful script language that can be used to create a wide variety of in-game effects such as traps, puzzles and even earthquakes!

1 Hexen Data Structures

This section outlines the format of the new data blocks in a Hexen map - the LINEDEF and THING structures. These structures have changed from the versions used in DOOM and Heretic.

1.1 The Hexen LINEDEF structure

Offset�Size�Meaning��0�word�the line's start-vertex��2�word�the line's end-vertex��4�word�line flags (see below)��6�byte�special type (see [Specials])��7�5 bytes�special arguments��12�word�the line's right sidedef number��14�word�the line's left sidedef number��

1.1.1 Line Flags

The following flags are starred with an asterisk if they're new for Hexen:

Bits�Meaning when Set��0�impassable - the line cannot be crossed.��1 �impassable to monsters only.��2�two-sided��3�upper texture is unpegged (drawn from top-down)��4�lower/middle texture is unpegged (drawn from bottom-up)��5�secret - the line appears as impassable on the automap.��6�sound can't travel through the line, but only for monsters' ears.��7�never draw the line on the auto-map, even with the map cheat enabled.��8�the line is always drawn on the auto-map, even if it hasn't been seen by the player.��*9�the line's special (see 1.1) is repeatable, ie: it can be activated more than once.��*10..12�the line's special activation, ie: how the special is activated.���

1.1.1a Activation Values (for LineFlag bits 10..12)

Value�Activated when...��0�Player crosses the line��1�Player uses the line with the use key��2�Monster crosses the line��3�Projectile impacts the wall��4�Player pushes the wall��5�Projectile crosses the line��

To get the special activation, use the following formula:

activation := (line.flags BITAND 0x1C00) BITSHIFTRIGHT 10

1.2 The Hexen THING structure

Offset�Size�Meaning��*0��word�Thing ID (TID) used in scripts and specials to identify a THING or set of THINGs.��2��word�x-position on the map��4��word�y-position on the map��*6��word�starting altitude on the map - the THING is initialized at this height above the floor

of the when the map is entered. It is immediately subjected to gravity.��8��word�the angle the thing is facing when the map is entered.��10��word�the thing type (see 1.22)��*12��word�thing flags (see 1.21)��14��byte�special type (see [Specials]). a thing's special is activated when the thing is killed

(Monster), destroyed (Tree, Urn, etc.), or picked up (Artifact, Puzzle Piece.)��15��5 bytes�special arguments (arg1, arg2, arg3, arg4, arg5)���1.2.1 Thing Flags

The following flags are starred with an asterisk if they're new for Hexen:

Bits�Meaning when Set��0��the thing appears on the Easy skill settings (1-2)��1��the thing appears on the Normal skill setting (3)��2 ��the thing appears on the Hard skill settings (4-5)��3��the thing is deaf - it sits around until it's hurt, or until it sees a player.��*4��the thing is dormant until activated by the Thing_Activate() special.��*5��the thing appears for the Fighter class.��*6��the thing appears for the Cleric class.��*7��the thing appears for the Mage class.��*8��the thing appears in single-player games.��*9��the thing appears in cooperative games.��*10��the thing appears in deathmatch games.��

Each "thing appears" flag must be set for each condition under which the thing is to appear. For multi-player games involving more than one class, a thing that is set for one of the classes involved will also appear for the other two classes in the game.

For example, if you set the three pieces of the Fighter's sword to appear for only the Fighter (bit 5 is set) and in Deathmatch (bit 10 is set), if a Mage or a Cleric is also playing, the pieces of the sword will be visible to them, too.

1.2.2 Thing Types

Creatures as well as some objects can be activated and/or deactivated with the ThingActivate and ThingDeactivate line specials. Creatures will freeze when deactivated and resume when activated. Activation can also be used to bring a "dormant" creature to life. If a creature has a special, that special will be activated upon its death. Also, if the creature is teleported away using the banishment device (teleport other), the special will be activated and then removed from the creature.

1.2.2a Player Things

Name�Type��Player_1_start�1���Player_2_start�2���Player_3_start�3���Player_4_start�4���Player_Deathmatch�11���Player_TeleportSpot�14����1.2.2b Weapon Things

Cleric Weapons��Fighter Weapons��Mage Weapons��Name�Type���Name�Type���Name�Type���2C_SerpentStaff�10���2F_Axe�8010���2M_ConeOfShards�53���3C_Firestorm�8009���3F_Hammer�123���3M_Lightning�8040���4C_1Shaft�20���4F_1Hilt�16���4M_1Stick�23���4C_2Cross�19���4F_2Crosspiece�13���4M_2Stub�22���4C_3Arc�18���4F_3Blade�12���4M_3Skull�21���1.2.2c Gettable Things

Battle Aids��Healing and Mana��Other Aids and Armor��Name�Type���Name�Type���Name�Type���A_Banishment�10040���A_HealingComplete (Urn)�32���A_BootsOfSpeed�8002���A_ChaosDevice�36���A_HealingHefty (Flask)�82���A_Bracers�8041���A_DarkServant�86���A_HealingWimpy (Vial)�81���Ar_Amulet�8008���A_Flechette�10110���A_HealRadius�10120���Ar_Armor�8005���A_IconOfDefender�84���A_BoostMana�8003���Ar_Helmet�8007���A_Porkelator�30���Mana_1�122���Ar_Shield�8006���A_Repulsion�8000���Mana_2�124���A_Torch�33�������ManaCombined�8004���A_WingsOfWrath�83���1.2.2d Monsters

Name�Type���Name�Type���Name�Type���Name�Type���C_Bishop�114���C_Demon2�8080���C_Fly�112���C_Serpent�121���C_Centaur�107���C_Dragon�254���C_Heresiarch�10080���C_SerpentLeader�120���C_CentaurLeader�115���C_Ettin�10030���C_IceGuy�8020���C_Wraith�34���C_ClericBoss�10101���C_FighterBoss�10100���C_Korax�10200���C_Wraith2�10011���C_Demon�31���C_FireImp�10060���C_MageBoss�10102�������1.2.2e Keys

Name�Type���Name�Type���Name�Type���K_AxeKey�8032���K_FireKey�8033���K_SteelKey�8030���K_CastleKey�8034���K_GoldKey�8200���K_SwampKey�8039���K_CaveKey�8031���K_RustyKey�8037���K_WasteKey�8038���K_DungeonKey�8035���K_SilverKey�8036��������1.2.2f map activities

Name�Type���Name�Type���Name�Type���PO_Anchor�3000���Spawn_Fog�10000���Spike_Down�10090���PO_StartSpot�3001���Spawn_Fog_a�10001���Spike_Up�10091���PO_StartSpot_Crush�3002���Spawn_Fog_b�10002���X_MapSpot�9001���SE_Wind�1410���Spawn_Fog_c�10003���X_MapSpotGravity�9013���Spawn_Bat�10225���Spawn_Leaf�113�������1.2.2g Sounds

Name�Type��Name�Type��Name�Type��Name�Type��Name�Type��SS_Creak�1403��SS_Heavy�1401��SS_Lava�1405��SS_Metal2�1409��SS_Stone�1400��SS_EarthCrack�1408��SS_Ice�1407��SS_Metal�1402��SS_Silent�1404��SS_Water�1406��1.2.2h Indoor Decorations

Name�Type���Name�Type���Name�Type���Z_ArmorSuit�8064���Z_ChainHeart�8073���Z_LargeFlame_Timed�10502���Z_Banner�77���Z_ChainSkull�8077���Z_SmallFlame_Permanent�10501���Z_Barrel�8100���Z_ChainLHook�8074���Z_SmallFlame_Timed�10500���Z_Bell�8065���Z_ChainSHook�8075���Z_TeleportSmoke�140���Z_BlueCandle�8066���Z_ChainSpikeBall�8076���Z_TwinedTorch�116���Z_BrassBrazier�8061���Z_Chandelier�17���Z_TwinedTorch_Unlit�117���Z_Bucket�8103���Z_Chandelier_Unlit�8063���Z_VasePillar�103���Z_Cauldron_Unlit�8070���Z_FireBull�8042���Z_Wall_Torch_Lit�54���Z_Candle�119���Z_FireBull_Unlit�8043���Z_Wall_Torch_Unlit�55���Z_Cauldron�8069���Z_FireSkull�8060���Z_WingedStatue�5���Z_Chain32�8071���Z_GlitterBridge�118�������Z_Chain64�8072���Z_LargeFlame_Permanent�10503�������1.2.2i Cave Decorations

Name�Type���Name�Type���Name�Type���ZC_Rock1�6���ZC_ShroomSmall1�42���ZC_StalactiteSmall�57���ZC_Rock2�7���ZC_ShroomSmall2�44���ZC_StalagmiteLarge�49���ZC_Rock3�9���ZC_ShroomSmall3�45���ZC_StalagmiteMedium�50���ZC_Rock4�15���ZC_StalactiteLarge�52���ZC_StalagmiteSmall�51���ZC_ShroomLarge�41���ZC_StalactiteMedium�56���ZC_Stalagmite_Pillar�48����1.2.2j Forest Decorations

Name�Type���Name�Type���Name�Type���ZF_DestructibleTree�8062���ZF_ShroomSmall2�47���ZF_TreeDestructible�25���ZF_Hedge�8068���ZF_Shrub1�8101���ZF_TreeGnarled1�80���ZF_ShroomBoom�8104���ZF_Shrub2�8102���ZF_TreeGnarled2�87���ZF_ShroomLarge1�39���ZF_StumpBare�29���ZF_TreeLarge1�78���ZF_ShroomLarge2�40���ZF_StumpBurned�28���ZF_TreeLarge2�79���ZF_ShroomSmall1�46���ZF_TreeDead�24�������1.2.2k Graveyard Decorations

Name�Type���Name�Type���Name�Type���ZG_BloodPool�111���ZG_CorpseSitting�110���ZG_TombstoneBrianR�66���ZG_CorpseHanging�71���ZG_CorpseSleeping�62���ZG_TombstoneBrianP�69���ZG_CorpseKabob�61���ZG_IronMaiden�8067���ZG_TombstoneCrossCircle�67���ZG_CorpseLynched�108���ZG_TombstoneBigCross�65���ZG_TombstoneRIP�63���ZG_CorpseNoHeart�109���ZG_TombstoneSmallCross�68���ZG_TombstoneShane�64���1.2.2l Ice Decorations

Name�Type���Name�Type���Name�Type���ZI_IcicleLarge�89���ZI_IcicleSmall�91���ZI_IceSpikeMedium�94���ZI_IcicleMedium�90���ZI_IceSpikeLarge�93���ZI_IceSpikeSmall�95���1.2.2m Mess Hall Decorations

Name�Type���Name�Type���Name�Type���ZM_CandleWeb�8502���ZM_LgCandle�8504���ZM_Pot2�105���ZM_CleaverMeat�8509���ZM_SmCandle�8503���ZM_Pot3�106���ZM_GobletSilver�8508���ZM_LgStein�8500���ZM_Rubble1�100���ZM_GobletSmall�8507���ZM_SmStein�8501���ZM_Rubble2�101���ZM_GobletTall�8506���ZM_Pot1�104���ZM_Rubble3�102���ZM_GobletSpill�8505������������1.2.2n Gargoyle Pedestals

Name�Type���Name�Type���Name�Type���ZP_GargBrnzShort�8051���ZP_GargLavaBrtShort�8050���ZP_GargPortalShort�74���ZP_GargBrnzTall�8047���ZP_GargLavaBrtTall�8046���ZP_GargPortalTall�72���ZP_GargCorrode�8044���ZP_GargLavaDrkShort�8049���ZP_GargStlShort�8052���ZP_GargIceShort�76���ZP_GargLavaDrkTall�8045���ZP_GargStlTall�8048���ZP_GargIceTall�73�����������1.2.2o Swamp Decorations

Name�Type���Name�Type���Name�Type���ZS_Log�88���ZS_Stump1�37���ZS_Tree2�26���ZS_Moss1�58���ZS_Stump2�38���ZS_Vine�60���ZS_Moss2�59���ZS_Tree1�27�������1.2.2p World Outside (rocks)

Name�Type���Name�Type���Name�Type���ZW_RockBlack�99���ZW_RockBrownLarge�97���ZW_RockBrownSmall�98���1.2.2q UsePuzzleItem Things

Name�Type���Name�Type���Name�Type���ZZ_Book1�9007���ZZ_Gear3�9020���ZZ_GemGreen2�9009���ZZ_Book2�9008���ZZ_Gear4�9021���ZZ_GemRed�9004���ZZ_CWeapon�9016���ZZ_BigGem�9003���ZZ_GemPedestal�9012���ZZ_FWeapon�9015���ZZ_GemBlue1�9006���ZZ_Skull�9002���ZZ_MWeapon�9017���ZZ_GemBlue2�9010���ZZ_Skull2�9014���ZZ_Gear�9018���ZZ_GemGreen1�9005���ZZ_WingedStatueNoSkull�9011���ZZ_Gear2�9019�����������2 Hexen Script Language

The Hexen Script Language is called the "Action Code Script", or ACS.

Each map has an ACS file that contains the scripts specific to that map. The scripts within it are identified using numbers that the general special ACS_Execute() uses. A script itself can call the ACS_Execute() special (actually quite common), which will spawn another script that will run concurrently with the rest of the scripts. A script can also be declared as OPEN, which will make it run automatically upon entering the map. This is used for perpetual type effects, level initialization, etc. The compiler takes the ACS file and produces and object file that is the last lump in the map WAD (BEHAVIOR).

To create a compiled ACS file from a text script, use the DOS command:

 c:\hexen> acs filename [enter]

This command will produce 'filename.o' from 'filename.acs'. The contents of the output file (filename.o) can be directly used as the BEHAVIOR lump of the map it's used with.

Map scripts should start with #include "common.acs", which is just...

#include "specials.acs"

#include "defs.acs"

#include "wvars.acs"

The file "specials.acs" defines all the general specials. These are used within scripts just like function calls. The file "defs.acs" defines a bunch of constants that are used by the scripts. The file "wvars.acs" defines all the world variables. It needs to be included by all maps so they use consistent indexing.

2.1 Variables and their Scope

There is only one data type ACS, a 4 byte integer. Use the keyword int to declare an integer variable. You may also use the keyword str, it is synonymous with int. It's used to indicate that you'll be using the variable as a string. The compiler doesn't use string pointers, it uses string handles, which are just integers.

Declaring a variable is simple. There are two "types" of variable - "str" and "int":

str mystring;

int myint;

 or:

str texture, sound;

int i, tid;

* Note: You can't assign a variable in its declaration; you must give it a value in a different expression.

The SCOPE of a variable is one of World-scope, Map-scope, or Script-scope:

World-scope variables are global, and can be accessed in any map. Hexen maintains [n] permanent globals, numbered 0-[n-1]. You must assign one of the globals a name in order to access it, like this:

world int 5:Grunt;

	This tells Hexen to reference world global number 5 whenever it encounters the name "Grunt".

Map-scope variables are local to the current map. They must be declared outside of any script code, but without the world keyword. These variables can't be accessed in any other map.

Script-scope variables are local to the current script - they can't be accessed by any other script or map.

	Here's some code that shows the declaration of all three scopes:

world int 3:DungeonAccess; // World-scope

int mapTimer; // Map-scope

script 4 (void)

 {

 int x, y; // Script-scope

 ...

 }

2.2 Language Structure

Here is a quick reference manual of the language. It ends with a description of all the internal functions.

 2.2.1 Keywords

The following identifiers are reserved for use as keywords, and may not be used otherwise:

 break� if� str�� case� include� suspend�� const� int� switch�� continue� open� terminate�� default� print� until�� define� printbold� void�� do� restart� while�� else� script� world�� goto� special���2.2.2 Comments

Comments are ignored by the script compiler.

/*

 This is a comment.

*/

int a; // And this is a comment

2.2.3 World-variable definitions

world int <constant-expression> : <identifier>

world int <constant-expression> : <identifier> , ... ;

2.2.4 Map-variable definitions

Declares a variable local to the current map.

int <identifier> ;

str <identifier> ;

int <identifier> , ... ;

2.2.5 Include Directive

Includes the source of the specified file and compiles it.

#include <string-literal>

2.2.6 Define Directive

Replaces an identifier with a constant expression.

#define <identifier> <constant-expression>

�2.2.7 Constant Expressions

<integer-constant>:

decimal 200

hexadecimal 0x00a0, 0x00A0

fixed point 32.0, 0.5, 103.329

any radix <radix>_digits

binary 2_01001010

octal 8_072310

decimal 10_50025

hexadecimal 16_00a03f2

2.2.8 String Literals

<string-literal>: "string"

2.2.9 Script Definitions

To define a script:

<script-definition>:

script <constant-expression> (<arglist>) { <statement> }

script <constant-expression> OPEN { <statement> }

eg:

script 10 (void) { ... }

script 5 OPEN { ... }

* Note that OPEN scripts do not take arguments.

2.2.10 Statements

<statement>:�<declaration-statement>�<assignment-statement>��<compound-statement>�<switch-statement>�<jump-statement>��<selection-statement>�<iteration-statement>�<function-statement>��<linespecial-statement>�<print-statement>�<control-statement>��

2.2.10a Declaration Statements

Delcaration statements create script variables.

<declaration-statement>:

int <variable> ;

int <variable> , <variable> , ... ;

�2.2.10b Assignment Statements

Assigns an expression to a variable.

<assignment-statement>:

<variable> <assignment-operator> <expression> ;

<assignment-operator> is one of the following:

=, +=, -=, *=, /= or %=

* Note: An assignment of the form V <op>= E is equivalent to V = V <op> E.

For example:		A += 5	is the same as

			A = A + 5;

2.2.10c Compound Statements

<compound-statement>:

	{ <statement-list> }

<statement-list>:

	<statement> <statement> <...>

2.2.10d Switch Statements

A switch statement evaluates an integral expression and passes control to the code following the matched case.

<switch-statement>:

	switch (<expression>) { <labeled-statement-list> }

 <labeled-statement>:

case <constant-expression>:

<statement>

default : <statement>

Example:

 switch (a)

 {

case 1: b = 1; 	// when a == 1, this is executed.

break; 		// and this breaks out of the switch().

case 2: b = 8;	// when a == 2.. this is executed, but there is no break, so it continues to 				//the next case, even though a != 3.

case 3: b = 666;	// when a == 3.. this is executed,

break;		//and this breaks out of the switch().

default: b = 777;	// when none of the other cases match, .. this is executed.

}

* Note for C users: While C only allows integral expressions in a switch statement,

 ACS allows full expressions such as "a + 10".

�2.2.10e Jump Statements

A jump statement passes control to another portion of the script.

<jump-statement>:

continue ;

break ;

restart ;

2.2.10f Iteration Statements

<iteration-statement>:

while (<expression>) <statement>

until (<expression>) <statement>

do <statement> while (<expression>);

do <statement> until (<expression>);

for (<assignment-statement>; <expression>; <assignment-statement>)

<statement>

The continue, break and restart keywords can be used in an iteration statement:

the continue keyword jumps to the end of the last <statement> in the iteration�statement. The loop continues.

the break keyword jumps right out of the iteration-statement.

2.2.10g Function Statements

A function statement calls a Hexen internal-function, or a Hexen linespecial-function.

<function-statement>:

<internal-function> | <linespecial-statement>

<internal-function>:

<identifier> (<expression> , ...) ;

<identifier> (const : <constant-expression> , ...) ;

<linespecial-statement>:

<linespecial> (<expression> , ...) ;

<linespecial> (const : <constant-expression> , ...) ;

2.2.10h Print Statements

<print-statement>:

print (<print-type> : <expression> , ...) ;

printbold (<print-type> : <expression> , ...) ;

<print-type>:

s string

d decimal

c constant

2.2.10.i Selection Statements

<selection-statement>:

if (<expression>) <statement>

if (<expression>) <statement> else <statement>

2.2.10j Control Statements

<control-statement>:

suspend ;		// suspends the script

terminate ;		// terminates the script

2.3 Internal Functions

void tagwait(int tag);�The current script is suspended until all sectors marked with <tag> are inactive.��void polywait(int po);�The current script is suspended until the polyobj marked with <po> is inactive.��void scriptwait(int script);�The current script is suspended until the script specified by <script> has terminated.��void delay(int ticks);�The current script is suspended for a time specified by <ticks>. A tick is one cycle from a 35Hz timer.��void changefloor(int tag, str flatname);�The floor flat for all sectors marked with <tag> is changed to <flatname>.��void changeceiling(int tag, str flatname);�The ceiling flat for all sectors marked with <tag> is changed to <flatname>.��int random(int low, int high);�Returns a random number between <low> and <high>, inclusive. The values for <low> and <high> range from 0 to 255.��int lineside(void);�Returns the side of the line the script was activated from. Use the macros LINE_FRONT and LINE_BACK, defined in "defs.acs".��void clearlinespecial(void);�The special of the line that activated the script is cleared.��int playercount(void);�Returns the number of active players.��int gametype(void);�Returns the type of game being played:

GAME_SINGLE_PLAYER GAME_NET_COOPERATIVE GAME_NET_DEATHMATCH��int gameskill(void);�Returns the skill of the game being played:

SKILL_VERY_EASY

SKILL_EASY

SKILL_NORMAL

SKILL_HARD

SKILL_VERY_HARD

Example:

int a;

a = gameskill();

switch(gameskill())

{

case SKILL_VERY_EASY:

...

case SKILL_VERY_HARD:

...

 }��int timer(void);

�Returns the current leveltime in ticks.��void sectorsound(str name, int volume);

�Plays a sound in the sector the line is facing. <volume> has the range 0 to 127.��void thingsound(int tid,str name,int volume);

�Plays a sound at all things marked with <tid>. <volume> has the range 0 to 127.��void ambientsound(str name, int volume);

�Plays a sound that all players hear at the same volume. <volume> has the range 0 to 127.��void soundsequence(str name);

�Plays a sound sequence in the sector the line is facing��int thingcount(int type, int tid);

�Returns a count of things in the world. Use the thing type definitions in defs.acs for <type>. Both <type> and <tid> can be 0 to force the counting to ignore that information.

Examples:

//Count all ettins that are marked with TID 28:

c = thingcount(T_ETTIN, 28);

//Count all ettins, no matter what their TID is:

c = thingcount(T_ETTIN, 0);

//Count all things with TID 28, regardless of the type:

c = thingcount(0, 28);

��void setlinetexture(int line, int side,

int position, str texturename);

�Sets a texture on all lines identified by <line>. A line is identified by giving the special Line_SetIdentification in a map editor.

<side>:	SIDE_FRONT

		SIDE_BACK

<position>:	TEXTURE_TOP

 		TEXTURE_MIDDLE

 		TEXTURE_BOTTOM

Examples:

setlinetexture

(14, SIDE_FRONT, TEXTURE_MIDDLE, "ice01");

setlinetexture

(3, SIDE_BACK, TEXTURE_TOP, "forest03");

��void setlineblocking(int line, int blocking);

�Sets the blocking (impassable) flag on all lines identified by <line>.

<blocking>:

ON

OFF

Example:

setlineblocking(22, OFF);

��void setlinespecial(int line, int special,

int arg1, int arg2, int arg3,

int arg4, int arg5);�Sets the line special and args on all lines identified by <line>.

��

3 Flats with special properties

Lava does damage

Water Makes things sink

Sludge Makes things sink

Ice Changes friction

�4 The MAPINFO lump

This is a lump in the .WAD that gives attributes to each map. This entry does not go with each map - there is only one MAPINFO lump in the entire IWAD. If you include a MAPINFO lump in a PWAD, make sure it's got information for all the possible maps the player will be entering.

map�Number and name of map [1..60]��warptrans�Actual map number in case maps are not sequential [1..60]��next�Map to teleport to upon exit of timed deathmatch [1..60]��cdtrack�CD track to play during level��cluster�Defines what cluster level belongs to��sky1�Default sky texture; followed by speed��sky2�Alternate sky displayed in Sky2 sectors ; followed by speed��doublesky: parallax sky�sky2 behind sky1��lightning�Keyword indicating use of lightning on the level flashes from sky1 to sky2

(see also: IndoorLightning special)��fadetable�Lump Name of fade table {fogmap}��

 Example MapInfo entry:

 map 1 "Winnowing Hall"

 warptrans 1

 next 2

 cluster 1

 sky1 SKY2 2 ; 2 is the sky scroll speed

 sky2 SKY3 0 ; 0 means don't scroll sky

 lightning

 doublesky

 cdtrack 13

Note on "next" integer (for timed deathmatches):

In normal gameplay, there is no linear fashion in which the game progresses from one level to another; you just go through a teleport somewhere on a level, and it takes you to somewhere on another level. For -timer deathmatch, the game needs to know what level to proceed to because it isn't always just the next higher level.

Note about the WARPTRANS keyword:

Maps are edited and named MAPxx, where xx is a number from 01 to 63. This is the number that

is used from within scripts when a map is referred to, and by the MAP keyword in the MAPINFO lump.

However, the -warp option and the warping cheat use a different set of numbers. This different set of

numbers is set by the WARPTRANS keyword. By default, the WARPTRANS value is set to the same number as the map. Our designers starting making maps with numbers that had big gaps between them, and then made the scripts refer to these numbers, so we needed a way to pack all the map numbers into a continuous stream for the -warp option. Also, the accepted range for a WARPTRANS value is 1-31. Makes it

easy when using DM.

Note on "cluster" integer:

The game maps are divided into clusters. When you enter a new cluster, you can never again visit any of the levels from the previous cluster. This makes it so each individual save game only needs to backup map archives for about 6-7 maps, and provides for a milestone marker of sorts for game play, like an episode -- a Hexen backdrop and some text are given at the end of each cluster. If you don't enter a cluster, it defaults to 0. The commercial IWAD separates its 31 maps into 5 clusters.

5 PolyObjects

Polyobjs are one-sided lines that are built somewhere else on the map, and then later translated to the desired start spot on the map at level load.

5.1 PolyObject Specials

In building polyobjs, two different line specials can be used to determine the line drawing order:

Polyobj_StartLine(polyNumber, polyMirror, sound);

Polyobj_ExplicitLine(polyNumber, orderNumber, polyMirror, sound);

Each polyobj should have a unique polyNumber, which is used in poly line specials to refer to a particular polyobj.

polyMirror refers to a second polyobj that will "mirror" all actions of the first polyobj. For instance, if a polyobj is rotated to the right by 90 degrees, then that polyobj's mirror will rotate left 90 degrees. Note that having two polyobjs mirror each other is not considered to be a good thing, but in general won't cause problems because a poly can only do one particular action at a time. Meaning: if that poly that rotated left by 90 degrees then mirrored the right-turning polyobj, the right-turning poly would ignore any attempt to rotate it again, as it would already be being acted upon.

The last parameter to these specials refers to a particular sound type that should play when the poly is moved/rotated. See the section on attaching sounds to a moving sector for more info.

5.11 Polyobj_StartLine():

A very basic special. Place it on a particular polyobj line, and that line will be the first line rendered on the polyobj. The rendering order for all other lines are determined by itterating through to the next line that has a

first point identical to the start line's second point. The third line rendered will be the next line that has a first point identical to the second line's second point, and so on and so forth. This method works well for

polyobjs that are convex, and has the advantage of leaving all but one line free for other line specials.

5.12 Polyobj_ExplicitLine:

This special requires a bit more work to use. Each line in the polyobj defined using this special must use this line special. Then, a value from 1-255 should be placed in orderNumber. This defines the rendering order for

the lines, with a 1 being the first line rendered, and so on. Useful for non-convex polyobjs, but has the disadvantage of utilizing all line specials on the poly.�

5.2 Polyobj Start Spots and Anchor Points

Each polyobj must have an anchor point, and a startSpot. The anchor is a thing placed near the polyobj when it's created that defines the origin of the polyobj, or the point in which it will rotate about. The anchor (and all polyobj lines) are directly translated to the polyobj startSpot.

Bottom line:�The anchor point is the point near the polyobj, and the startSpot is the point on the actual map that defines the location of the poly.��

There are two different types of startSpots: crushing and non-crushing. Pretty obvious what the difference is: if the poly strikes an object, it'll first attempt to move it. If that fails it will either try to damage the object, or just stop moving depending upon the type of startSpot.

Please note that the ANGLE field of the startSpot and anchor points should be equal to the polyNumber that was previously defined for that particular polyobj. The polyobj stuff was done before any of the TID/thing special code was implimented, so Raven did this temporary hack, which turned permanent, as the designers had already done a ton of polyobjs, and didn't want to have to go back and replace them.

�Appendices:

List of Spawnable Objects

List of Activate/Deactivate Objects

List of arg requiring Objects

List of Sector Specials

List of Line Specials

List of Sector Sounds

Key Numbers

Appendix A - List of Spawnable Objects

Use these identifiers for the Thing_Spawn() and Thing_SpawnNoFog() specials:

� T_AMULETOFWARDING

 T_ARROW

 T_AXEKEY

 T_BISHOP

 T_BLADE

 T_BRIDGE

 T_CENTAUR

 T_CENTAUR_MASH

 T_CENTAURLEADER

 T_CLERICHOLY1

 T_CLERICHOLY2

 T_CLERICHOLY3

 T_CLERICSTAFF

 T_DART

 T_DEMON

 T_DEMON_MASH

 T_DEMON2_MASH

 T_DIRT1

 T_DIRT2

 T_DIRT3

 T_DIRT4

 T_DIRT5

 T_DIRT6

 T_DRAGONSKINBRACERS

 T_ETTIN

 T_ETTIN_MASH

 T_FALCONSHIELD

 T_FIGHTERAXE

 T_FIGHTERHAMMER

 T_FIGHTERSWORD1

 T_FIGHTERSWORD2

 T_FIGHTERSWORD3

 T_FIREBALL1

 T_FIREGARGOYLE

 T_FIREKEY

 T_FLAME_LARGE

 T_FLAME_SMALL

 T_FLESH_DRIP1

 T_FLESH_DRIP2

 T_GREENKEY

 T_HORNKEY

 T_ICEGOLEM

 T_ICESHARD

 T_ITEMBOOSTMANA

 T_ITEMBOOTS

 T_ITEMEGG

 T_ITEMFLECHETTE

 T_ITEMFLIGHT

 T_ITEMHEALTHFLASK

 T_ITEMHEALTHFULL

 T_ITEMHEALTHPOTION

 T_ITEMREPULSION

 T_ITEMSUMMON

 T_ITEMTELEPORT

 T_ITEMTORCH

 T_ITEMTPORTOTHER

 T_MACEKEY

 T_MAGESHARDS

 T_MAGESTAFF1

 T_MAGESTAFF2

 T_MAGESTAFF3

 T_MANA1

 T_MANA2

 T_MANA3

 T_MESHARMOR

 T_METALKEY

 T_MORPHBLAST

 T_NONE

 T_PERMLARGEFLAME

 T_PERMSMALLFLAME

 T_PLATINUMHELM

 T_POISONDART

 T_PUZZBOOK1

 T_PUZZBOOK2

 T_PUZZGEMBIG

 T_PUZZGEMBLUE1

 T_PUZZGEMBLUE2

 T_PUZZGEMGREEN1

 T_PUZZGEMGREEN2

 T_PUZZGEMRED

 T_PUZZSKULL

 T_RIPPERBALL

 T_ROCK1

 T_ROCK2

 T_ROCK3

 T_RUSTYKEY

 T_SERPENTKEY

 T_SILVERKEY

 T_SMALLMETALKEY

 T_SPARK_DRIP

 T_STAINEDGLASS0

 T_STAINEDGLASS1

 T_STAINEDGLASS2

 T_STAINEDGLASS3

 T_STAINEDGLASS4

 T_STAINEDGLASS5

 T_STAINEDGLASS6

 T_STAINEDGLASS7

 T_STAINEDGLASS8

 T_STAINEDGLASS9

 T_TEMPLARGEFLAME

 T_TEMPSMALLFLAME

 T_THRUSTSPIKEDOWN

 T_THRUSTSPIKEUP

 T_WATERDRIP

 T_WATERLURKER

 T_WATERLURKERLEADER

 T_WRAITH

 T_WRAITHBURIED

�

�Appendix B - List of Activateable/Deactivateable Objects

Objects that can be Activated AND Deactivated��Object�Activate/Deactivate Action��MT_BAT_SPAWNER�Start/Stop bat spawning��MT_FLAME_LARGE�Ignites/Extinguishes flame��MT_FLAME_SMALL�Ignites/Extinguishes flame��MT_THRUSTFLOOR_DOWN�Raises/Lowers thrust spike��MT_THRUSTFLOOR_UP�Raises/Lowers thrust spike��MT_ZCAULDRON�Lights/Extinguishes flames��MT_ZCAULDRON_UNLIT�Lights/Extinguishes flames��MT_ZFIREBULL�Lights flames/Extinguishes��MT_ZFIREBULL_UNLIT�Lights/Extinguishes flames��MT_ZTWINEDTORCH�Lights/Extinguishes torch��MT_ZTWINEDTORCH_UNLIT�Lights/Extinguishes torch��MT_ZWALLTORCH�Lights/Extinguishes torch��MT_ZWALLTORCH_UNLIT�Lights/Extinguishes torch�����Objects that can only be Activated��Object�Activate Action��MT_ZBELL�Rings bell��MT_ZGEMPEDESTAL�Makes gem appear��MT_ZWINGEDSTATUENOSKULL�Makes skull appear in hands��

�

Appendix C - List of THINGS that require arguments

These THINGS ignore their special types, and use the arg0..arg5 fields for their own purposes:

Thing�Type��Arg() Descriptions��Bat Spawner�10225��arg0: frequency of spawn (1=fastest, 10=slowest)

arg1: spread angle (0..255)

arg2: unused

arg3: duration of bats (in octics)

arg4: turn amount per move (in degrees [0..255])��Fog Spawner�10000��arg0: movement speed [0..10] (10 == fastest)

arg1: spread angle [0..128] (128 == 180 degrees)

arg2: Frequency of spawn [1..10] (1 == fastest)

arg3: Fog Lifetime [0..255] (5 == 1 second)

arg4: unused��Fog Patch Small�10001��arg0: movement speed [0..10] (10 == fastest)

arg1: unused

arg2: unused

arg3: Fog Lifetime [0..255] (5 == 1 second)

arg4: Boolean: (0 == not moving)��Fog Patch Medium�10002��arg0: movement speed [0..10] (10 == fastest)

arg1: unused

arg2: unused

arg3: Fog Lifetime [0..255] (5 == 1 second)

arg4: Boolean: (0 == not moving)��Fog Patch Large�10003��arg0: movement speed [0..10] (10 == fastest)

arg1: unused

arg2: unused

arg3: Fog Lifetime [0..255] (5 == 1 second)

arg4: Boolean: (0 == not moving)��Dragon Lich*�254��arg0: TID of possible destination (required)

arg1: TID of possible destination (optional)

arg2: TID of possible destination (optional)

arg3: TID of possible destination (optional)

arg4: TID of possible destination (optional)��Korax�10200��TIDs:	245 Korax's mapthing

	249 Teleport destination (MapSpots)

Scripts:	249 Run when korax health falls below half

	250-254 Randomly run by korax as commands

	255 Run upon death of korax��

 *	The dragon lich also requires mapspots placed around the map with its args containing TIDs of

possible destinations, making up to 5 destinations possible from each position. The choice of next destination is random. Note that the dragon lich's first destination is the first thing that it can locate that has a TID identical to it's own.�

Appendix D - Sector Specials

The following numbers are used in the sector.type field [see DOOM specs.]:

Light_Phased

LightSequenceStart

LightSequenceSpecial1

LightSequenceSpecial2

These specials deal with phased lighting ("moving lights"). Two different ways to go about doing phased lighting: automatic, or by-hand. The automatic method is (obviously) more convenient, but the by-hand method is more flexible. Light_Phased is the by-hand special. Place it on a sector, then set the sector's lightlevel to a phase index (0-63). As you place the special on nearby sectors, increment the index for each sector.

Or, to use the LightSequence specials, just place the LightSequence special on a sector. Then, for each additional sector, alternate between LightSequenceSpecial1 & LightSequenceSpecial2.

For instance, if you wanted phased lightning to flow up a staircase, you could either place Light_Phased on each step, and change the phase index (lightlevel) accordingly. Or, you could place LightSequenceStart on the bottom step (and set that step's lightlevel to something mid-ranged: 80-128 are pretty nice values), and then let the game calculate the phase indices for each step by placing the LightSequenceSpecial specials on all other steps. Note that for the LightSequenceSpecial specials to have proper lighting, set their lightlevels to zero, which causes it to use the previous sector's lightlevel. Hence, that "nice value" which was placed on the first step will iterate through all the other steps. If a step's lightlevel is not zero, then that value will filter down to all other steps after it.

Name�No.�Comments��Stairs_Special1�26��Used by action specials that build stairs.��Stairs_Special2�27��Used by action specials that build stairs.��Light_IndoorLightning1�199��Dimmer effect during lightning flash. Used for indoor areas, which are normally not affected by lightning.��Light_IndoorLightning2�198��Same as 1, but brighter.��Sky2�200��Use the alternate sky specified in the mapinfo lump.��

The following Special scroll floor Flats in the indicated direction, taking objects with them.

Name�No.��Name�No.��Name�No.��Scroll_North_Slow�201��Scroll_South_Fast�209��Scroll_NorthEast_Medium�217��Scroll_North_Medium�202��Scroll_West_Slow�210��Scroll_NorthEast_Fast�218��Scroll_North_Fast�203��Scroll_West_Medium�211��Scroll_SouthEast_Slow�219��Scroll_East_Slow�204��Scroll_West_Fast�212��Scroll_SouthEast_Medium�220��Scroll_East_Medium�205��Scroll_NorthWest_Slow�213��Scroll_SouthEast_Fast�221��Scroll_East_Fast�206��Scroll_NorthWest_Medium�214��Scroll_SouthWest_Slow�222��Scroll_South_Slow�207��Scroll_NorthWest_Fast�215��Scroll_SouthWest_Medium�223��Scroll_South_Medium�208��Scroll_NorthEast_Slow�216��Scroll_SouthWest_Fast�224��Appendix E - Action Specials

These are the specials found in the THING.special and LINEDEF.special fields.

Floor and Ceiling Specials

Definitions of Arg() Fields in this Chart:

tag:�tag of affected sector��speed:�speed of move [0..255]��height:�relative height of move in pixels��height8:�relative height of move in 8 pixel units��crush:�damage done by crush��negative:�boolean (true if height is negative)��delay:�delay before reversing direction��f_height:�relative height to move floor down��c_height:�relative height to move ceiling up��

No.�Name�Arg1�Arg2�Arg3�Arg4�Arg5�Comments��20�Floor_LowerByValue�tag�speed�height���Moves the floor of all sectors identified by 'tag'.��21�Floor_LowerToLowest�tag�speed����Lowers floor to lowest adjacent sectors' floor.��22�Floor_LowerToNearest�tag�speed����Lowers floor to next lower adjacent sector's floor.��23�Floor_RaiseByValue�tag�speed�height���Moves the floor of all sectors identified by 'tag'.��24�Floor_RaiseToHighest�tag�speed����Raises floor to highest adjacent sectors' floor.��25�Floor_RaiseToNearest�tag�speed����Raises floor to next higher adjacent sector's floor.��28�Floor_RaiseAndCrush�tag�speed�crush���Raises floor to ceiling and does crushing damage.��29�Pillar_Build�tag�speed�height���Makes the floor meet the ceiling.��30�Pillar_Open�tag�speed�f_height�c_height��Makes the floor and the ceiling meet by moving both.��35�Floor_RaiseByValueTimes8�tag�speed�height8���Raises the floor in increments of 8 units.��36�Floor_LowerByValueTimes8�tag�speed�height8���Lowers the floor in increments of 8 units.��40�Ceiling_LowerByValue�tag�speed�height���Relative ceiling move.��41�Ceiling_RaiseByValue�tag�speed�height���Relative ceiling move.��42�Ceiling_CrushAndRaise�tag�speed�crush���Lowers ceiling to crush and raises (continual until stopped)��43�Ceiling_LowerAndCrush�tag�speed�crush���Lowers ceiling to floor and stops.��44�Ceiling_CrushStop�tag�����Stop a crushing ceiling.��45�Ceiling_CrushRaiseAndStay�tag�speed�crush���Lowers ceiling to crush, raises and stays.���Floor and Ceiling Specials (cont.)

No.�Name�Arg1�Arg2�Arg3�Arg4�Arg5�Comments��46�Floor_CrushStop�tag�����Turns off a crushing floor.��60�Plat_PerpetualRaise�tag�speed�delay���Continually raises and lowers platform.��61�Plat_Stop�tag�����Stops a PerpectualRaise platform.��62�Plat_DownWaitUpStay�tag�speed�delay���One cycle of lowering and raising.��63�Plat_DownByValue�tag�speed�delay�height8��Relative platform move.��64�Plat_UpWaitDownStay�tag�speed�delay���One cycle of raising and lowering.��65�Plat_UpByValue�tag�speed�delay�height��Relative platform move.��66�Floor_LowerInstant�tag��height8���Moves the floor down instantly by a specified amount.��67�Floor_RaiseInstant�tag��height8���Moves the floor up instantly by a specified amount.��68�Floor_MoveToValueTimes8�tag�speed�height8�negative��Move floor to an absolute height.��69�Ceiling_MoveToValueTimes8�tag�speed�height8�negative��Moves ceiling to absolute height.��94�Pillar_BuildAndCrush�tag�speed�height�crush����95�FloorAndCeiling_LowerByValue�tag�speed�height8���Relative move of both floor and ceiling.��96�FloorAndCeiling_RaiseByValue�tag�speed�height8���Relative move of both floor and ceiling.��

 Stair Specials

These stair building specials find the sector with 'tag' and build stairs by traversing adjacent sector marked with StairSpecial1 and StairSpecial2. These specials must alternate between the two and must not branch.

Definitions of Arg() Fields in this Chart:

tag:�tag of sector to start in��speed:�speed of build [0..255]��height:�relative height of step in pixels��delay:�delay between steps in tics��reset:�delay before stairs to reset (0==no reset)��

No.�Name�Arg1�Arg2�Arg3�Arg4�Arg5��26�Stairs_BuildDown�tag�speed�height�delay�reset��27�Stairs_BuildUp�tag�speed�height�delay�reset��31�Stairs_BuildDownSync�tag�speed�height�reset���32�Stairs_BuildUpSync�tag�speed�height�reset���� Door Specials

Definitions of Arg() Fields in this Chart:

tag:�tag of affected sector or zero if line is part of door��speed:�speed of move��delay:�delay before door lowers��lock:�key number that will unlock door (see key numbers)��

No.�Name�Arg1�Arg2�Arg3�Arg4�Arg5�Comments��10�Door_Close�tag�speed����Closes a door sector.��11�Door_Open�tag�speed����Opens a door sector.��12�Door_Raise�tag�speed�delay�����13�Door_LockedRaise�tag�speed�delay�lock��Raises a door if correct key is

in inventory of triggering player.��

 Script Specials

Definitions of Arg() Fields in this Chart:

script:�script number to execute��map:�map which contains the script��lock:�key number needed to run script (see key numbers)��

No.�Name�Arg1�Arg2�Arg3�Arg4�Arg5��80�ACS_Execute�script�map�s_arg1�s_arg2�s_arg3��81�ACS_Suspend�script�map�����82�ACS_Terminate�script�map�����83�ACS_LockedExecute�script�map�s_arg1�s_arg2�lock��

Light Specials

Definitions of Arg() Fields in this Chart:

tag:�tag of affected sector��value:�relative value of light level change��tics:�number of tics to change light level��upper:�brightest light level��lower:�lowest light level��u-tics:�tics to stay at upper light level��l-tics:�tics to stay at lower light level��

No.�Name�Arg1�Arg2�Arg3�Arg4�Arg5��110�Light_RaiseByValue�tag�value�����111�Light_LowerByValue�tag�value�����112�Light_ChangeToValue�tag�value�����113�Light_Fade�tag�value�tics����114�Light_Glow�tag�upper�lower�tics���115�Light_Flicker�tag�upper�lower����116�Light_Strobe�tag�upper�lower�u-tics�l-tics��� Miscellaneous Specials

Definitions of Arg() Fields in this Chart:

line:�unique id of this line��speed:�speed of scroll in pixels��item:�item number neede to activate��script:�script to run upon activation��tag:�tag of sector to contain sound��sound:�sound to be played - see sector sounds��duration:�duration in tics [1..255]��damrad:�radius of damage in 64x64 cells [0..255]��tremrad:�radius of tremor in 64x64 cells [0..255]��tid:�TID of map thing(s) for quake foci, or destination of teleport��map:�map to teleport to��position:�corresponds to destination player start spot arg0��

No�Name�Arg1�Arg2�Arg3�Arg4�Arg5�Comments��70�Teleport������Teleports triggering object to MapSpot with tid.��71�Teleport_NoFog������Same as teleport, but silent with no fog sprite.��74�Teleport_NewMap�map�position����Teleports the player to a new map and to the player start spot whose arg0 member matches 'position.'��75�Teleport_EndGame������Ends game and runs finale script.In deathmatch, teleports to level 1.��100�Scroll_Texture_Left�speed�������101�Scroll_Texture_Right�speed�������102�Scroll_Texture_Up�speed�������103�Scroll_Texture_Down�speed�������120�Earthquake�intensity�duration�damrad�tremrad�tid�Creates an earthquake at all matching foci.��121�Line_SetIdentification�line�����The script functions setlineblocking, setlinespecial, and setlinetexture use the ID specified here to identify lines.��129�UsePuzzleItem�item*�script�s_arg1�s_arg2�s_arg3�Runs a script upon use of appropriate puzzle item*��140�Sector_ChangeSound�tag�sound������

 * the items available for script use with UsePuzzleItem are listed on the following page.�*The item field (Arg1) in UsePuzzleItem contains the number of one of the following items:

No.�Name��No.�Name��No.�Name��No.�Name��0�ZZ_Skull��5�ZZ_GemBlue1��9�ZZ_Skull2��13�ZZ_Gear��1�ZZ_BigGem��6�ZZ_GemBlue2��10�ZZ_FWeapon��14�ZZ_Gear2��2�ZZ_GemRed��7�ZZ_Book1��11�ZZ_CWeapon��15�ZZ_Gear3��3�ZZ_GemGreen1��8�ZZ_Book2��12�ZZ_MWeapon��16�ZZ_Gear4��4�ZZ_GemGreen2�����������

Thing Specials

Definitions of Arg() Fields in this Chart:

angle:�byte angle to thrust [0..255]��distance:�distance to thrust��damage:�distance to thrust��tid:�TID of affected thing or Spawn location��type:�Type of thing to spawn (see spawnable things)��angle:�byte angle projectile or thing is to face��speed:�speed of projectile��vspeed:�vertical speed��

No.�Name�Arg1�Arg2�Arg3�Arg4�Arg5�Comments��72�ThrustThing�angle�distance������73�DamageThing�damage�������130�Thing_Activate�tid�������131�Thing_Deactivate�tid�������132�Thing_Remove�tid�������133�Thing_Destroy�tid�����Puts thing into its death state��134�Thing_Projectile�tid�type�angle�speed�vspeed�Spawns a projectile��135�Thing_Spawn�tid�type�angle���Spawns a thing��136�Thing_ProjectileGravity�tid�type�angle�speed�vspeed�Spawns a projectile with gravity��137�Thing_SpawnNoFog�tid�type�angle���Spawns a thing silently�� �PolyObject Specials

Definitions of Arg() Fields in this Chart:

po:�refer to a particular polyobj��mirror:�poly that will mirror the moves of this poly��damage:�distance to thrust��sound:�See Section F) Sector Sounds��distance:�byte distance to move��angle:�byte angle to rotate��speed:�speed��order:�rendering order of this line��delay:�delay in tics��

No.�Name�Arg1�Arg2�Arg3�Arg4�Arg5��1�Polyobj_StartLine�po�mirror�sound����2�Polyobj_RotateLeft�po�speed�angle����3�Polyobj_RotateRight�po�speed�angle����4�Polyobj_Move�po�speed�angle�distance���5�Polyobj_ExplicitLine�po�order�mirror�sound���6�Polyobj_MoveTimes8�po�speed�angle�distance���7�Polyobj_DoorSwing�po�speed�angle�delay���8�Polyobj_DoorSlide�po�speed�angle�distance�delay��90�Polyobj_OR_RotateLeft*�po�speed�angle����91�Polyobj_OR_RotateRight*�po�speed�angle����92�Polyobj_OR_Move*�po�speed�angle�distance���93�Polyobj_OR_MoveTimes8*�po�speed�angle�distance���

*The OR stands for OverRide. As stated before, each poly can only be doing a single action at a time. This poses a problem with perpetual polyobjs, since they are already moving, the designer cannot do anything else with them. However, using these functions the designer can override the code to not allow a poly to concurrently execute more than one action, and force a poly to do the other action as well.

Appendix F - Sector Sounds for ChangeSectorSound() special

�heavy

metal

creak

silence

lava

water

ice

earth

metal2

�Appendix G - Key Numbers

These are referenced by the DoorRaiseLocked() and ACS_ExecuteLocked() specials.

�steel key

cave key

axe key

fire key

�emerald key

dungeon key

silver key

rusted key

�horn key

swamp key

castle key

HEXEN Specs v0.9

Page � PAGE �31� of � NUMPAGES * MERGEFORMAT �31�

