I was recently given the task of creating a user interface which included a control very similar to the standard Windows Tree View Control. In fact, the only difference in this control was that each item in the tree would need to display formatted text. This would have been a less than complex task if the Windows common control supported the notion of "Owner-Draw". But alas, it does not.

Common Controls

Most windows programmers are familiar with Common Controls. Common Controls are often-used controls implemented by the operating system which are utilized by applications. There are several reasons why the developers of Windows decided to include these controls as part of the operating system.

Common controls ease the burden of the application developer. Microsoft understood that many applications would need controls such as lists and buttons for their user interfaces. By including these controls in the operating system, they saved the developer the trouble of creating these controls for each project. This also reduces the size of the application.

Common controls also promote a standard in user interface design. Users are able to understand and use software more quickly if it's interface is similar to software that they have already used. A user can be easily frustrated by an interface that behaves in an unexpected manner.

Although a standard interface is important, occasional deviations are desirable and sometimes necessary. For this reason, the concept of Owner-Draw is supported by a fair percentage of the Windows common controls. Buttons, List boxes, Combo boxes, Header Controls, and a handful of other controls support Owner-Draw. The Tree View Control is among the Windows common controls which does not support the owner-draw feature.

Using the Owner-Draw Feature

To achieve the results I was looking for, I had to make some modifications to the Tree View Control, so that it would support features similar to an owner-draw-capable control. However, before I go into the details of changing a standard Windows Control I would like to take a moment to review the functionality of an Owner-Drawn control.

When using the standard, or "SDK", approach to creating an owner drawn control their are two steps which must be taken. The first step is to create the control using CreateWindow (or a dialog resource) with the Owner-Draw style set. For example the following code might be used to create an owner-drawn button:

CreateWindow("button","", WS_CHILD | WS_VISIBLE | WS_OWNERDRAW, 0, 0, 100, 16, hwndParent, IDC_ODBUTTON, hInst, NULL) ;

The parent window which contains the owner-drawn control must also respond to the WM_DRAWITEM message. This message is sent each time the control needs to be drawn. This is the second step in implementing an owner-drawn control. Windows sends a pointer to a DRAWITEMSTRUCT with the WM_DRAWITEM message. This structure includes information necessary for the application to know exactly how and where to draw the control.

Creating an owner-drawn control using C++ and the Microsoft Foundation Classes (MFC) is a similar but somewhat better encapsulated process. As in the SDK approach, the control should be created with the Owner-Draw style set. This means the owner draw checkbox in the dialog editor should be checked for this control, or the Owner-Draw style flag should be included with the call to the control's Create() method. To draw the control, however, MFC takes a slightly different approach from the SDK. Instead of sending a message to the parent, the message is reflected back to the control which causes the control to call its own DrawItem function. The DrawItem function in an MFC "owner-drawable" control is virtual and should be overridden in a derived class to implement the drawing of the control. This functionality was my goal in creating the CCustomTreeCtrl.

Using "CCustomTreeCtrl"

The CCustomTreeCtrl class is derived from the CTreeCtrl class, and was designed with compatibility in mind. For most uses of the CTreeCtrl class, you should be able to substitute the CCustomTreeCtrl without any added trouble. However, to create your own "owner-drawn" tree control you must derive a class from the CCustomTreeCtrl.

To derive a class from CCustomTreeCtrl, your class need implement only one function: DrawItem. The DrawItem virtual function is called by the CCustomTreeCtrl class each time one or more items in the tree needs to be redrawn. The DrawItem function implemented in the CCustomTreeCtrl behaves very much like the standard Windows Tree View control. However your DrawItem function need not be so mundane.

The DrawItem function is a fairly simple function which excepts four parameters. The parameters are: an HTREEITEM, a reference to a CDC object, a reference to a CRect object, and a UINT. The HTREEITEM parameter refers to the item in the tree which currently needs to be drawn. The CDC object should be used for all drawing done in your function. The CRect object describes the dimensions and location of the item to be drawn. And lastly, the UINT includes flags indicating whether the item is to be drawn selected or unselected, with focus or without. That's all there is to it.

I have included a simple dialog based application which derives a class called CRainbowTreeCtrl from CCustomTreeCtrl (See Figure Rainbow Tree). This class displays the text for it's items in the colors of the rainbow. This class is not likely to be useful in any real software, however it provides a well documented example of how to create your own DrawItem implementation.

Creating "CCustomTreeCtrl"

While using CCustomTreeCtrl is fairly simple, creating the class was a learning experience. In designing the class I had these two main goals in mind:

1. To create a class which facilitates the creation of tree controls with a custom look.

2. To use as much of the functionality of the existing Windows control as possible.

The reasons for this second goal relate to the reasons for the existence of common controls in the first place. By using functionality built into Windows I save myself development time and trouble, while providing an interface that will behave in a manner familiar to the users of my software.

The implementation of the CCustomTreeCtrl is based on a programming technique called "Window Subclassing". The details of subclassing a window are all but completely hidden from the MFC programmer, however it is important to understand the basics of this technique (for a discussion on creating a custom Tree View control using the SDK see the sidebar).

All windows in the Windows operating system have a window procedure which is called for each message that the window receives. This functions response to these messages defines the behavior of the window. Subclassing a window is a technique where the windows original window procedure is replaced with a new procedure. This procedure responds to the messages it cares about and then calls the original window procedure for all other processing. By doing this you can create new functionality while retaining the old behavior that fits your needs. When using the MFC, subclassing is automatic. You need only worry about creating message handlers for the messages to which you wish to respond.

Before I was ready to create the functionality for the "new" tree control, it was important that I understand how the existing control works. This required some digging. There were several ways of finding this out, including using the WinSpy++ utility which comes with Visual C++ 4.0. However, the most revealing approach was to create a simple class, derived from CTreeCtrl, for which I created message handlers for some key messages. The messages I chose to try were WM_PAINT and WM_LBUTTONDOWN. The code for these handlers was nothing more than to call the default handlers in the base class. However by placing break points in these handlers and watching the tree control I was able to ascertain when and how the control was redrawn. This was important, because this was the functionality which I wanted to modify. From this I found out one important fact: All drawing for the standard Tree View Control is done in response to WM_PAINT messages.

I was thrilled by this. This meant that I would need only respond to the WM_PAINT message to create tree controls with a custom look. I would be free to allow the existing control to completely handle mouse and keyboard messages. The CCustomTreeCtrl should then respond to user input in nearly exactly the same manner as the standard windows control.

Painting "CCustomTreeCtrl"

At first glance, the drawing or "painting" of the control seemed like an easy enough task. However there were some obstacles to overcome.

The most difficult part of handling the WM_PAINT message was making use of the existing controls paint functionality. The standard Windows Tree View control contains a fair amount of visual functionality which I did not want to modify. So naturally I wanted to make use of existing windows code to whatever extent that I could. In specific I wanted to allow the existing control to manage the drawing of anything to the left of the actual item "text". This includes tree lines, tree expand and collapse buttons, and item images. To make use of this existing code I had no choice but to call the base class implementation of OnPaint to handle the default drawing of the control. I do this before I draw one pixel of custom painting.

Calling the default handler for WM_PAINT raised a major problem that needed overcoming. Unfortunately when calling the default paint code there is no way to execute only the portion that you wish to use. This means that along with the lines, buttons, and images, you will also get the item text... like it or not. This may not seem like a problem at first, because your DrawItem code will effectively cover any item text painted by the default WM_PAINT hander. However, this can cause an unsettling flicker, especially on slower machines. Overcoming this problem required some fancy footwork.

I considered several solutions when dealing with this problem. One I would like to mention, although it was not the one I chose. The cleanest solution to this problem was to adjust the invalid rect for the control to only include the portion that I wished to be painted. This would be a simple and efficient way to limit the default functionality. Unfortunately this solution was unacceptable for the problem at hand because of the "non-rectangular" shape of the default painting which we wished to use. However, this solution may be suitable for visually customizing other common controls.

The solution I chose is simple, but it did present a brand new problem of it's own. I decided that the text portion of each tree control item would consist of nothing but spaces. This way when the default WM_PAINT handler drew the text for an item it would be drawing nothing. This solution would be perfect, except that many custom tree control implementations will still wish to use the text portion of the tree items in their custom drawing.

I solved this problem by storing the text for each item manually. The text is stored using a CMap object that maps CString objects to HTREEITEM handles. Of course this approach made it necessary for me to overload any function in CTreeCtrl that deals with the text of a tree control item. That includes the following functions: SetItemText, GetItemText, InsertItem, GetItem, and SetItem. For each of this functions I simply call the base class routines, substituting the manually stored text where appropriate. This approach has one downside that should be mentioned. The overloaded functions are not virtual in the CTreeCtrl class. This means that if a pointer to a CCustomTreeCtrl object is stored in a CTreeCtrl pointer variable the correct functions would not automatically be called.

Aside from item text, the WM_PAINT handler draws two other items which I did not want displayed. These were the inverted selection bar and the focus rect. Both of these were easily avoided by removing the focus from the control's window before calling the default handler, and then later restoring it (if it had had focus in the first place). However , the standard Windows Tree View Control generates a WM_PAINT message when it loses focus. So by removing the focus while the control was repainting itself I caused Windows to recursively call my OnPaint handler. This was undesirable, so I created a private boolean variable named m_bNoPaint. If this variable is TRUE upon entering OnPaint the function simply returns without repainting the control. I then set this variable to TRUE before removing the focus from the window. This solved the problem of the focus rect and selected item.

The remainder of the OnPaint handler does little more than iterate through the visible items in the control, and call DrawItem for any control whose rect falls within the invalid rect for the control. There is however one more default feature of the standard Windows Tree View Control which needed a minor modification. This was the tooltip that automatically appears over a tree control item.

Tree controls will automatically display a tooltip containing the text of an item, if the entire item does not fit horizontally in the control's client area. This functionality is not directly relevant to the CCustomTreeCtrl because the tree control item may be some graphic rather than text. The tooltip was easily surpressed by overloading the virtual handler OnNotify, and immediately returning TRUE without calling the base class handler. This approach was more desirable then using the undocumented Tree Control Style TVS_NOTOOLTIPS, because a class derived from CCustomTreeCtrl can re-enable tooltips by implementing it's on OnNotify function.

Creating Other Custom Controls

The techniques I used to create the CCustomTreeCtrl can be applied to modifying other standard Windows controls. It is important that the existing control handle all of it's drawing in response to WM_PAINT messages. If this is the case for the control in question, then it is likely that you will be able to use these techniques to modify the look of the control to your specific needs.

SIDEBAR: Creating a Custom Tree Control Using the SDK

The techniques described in the accompanying article can be applied to an SDK custom control as well. However when using the SDK without the MFC some special considerations will apply.

Unlike the MFC approach, when using the SDK each "Custom" control will need to be explicitly subclassed from an existing Tree View Control. An in-depth discussion on window subclassing would be out of place in this article. Many good windows programming books include chapters on window subclassing.

Your subclassed window procedure will need to respond to the WM_PAINT and WM_NOTIFY messages in much the same way that the CCustomTreeCtrl does. Much of the code will port fairly easily, however without the MFC you will not have a simple way of storing the strings for each item.

If you are not using C++ then you will probably want to send a WM_DRAWITEM message to the windows parent for each item that needs to be drawn. This means that you would need to include the information for redrawing the item in a DRAWITEMSTRUCT. This way your subclassed control will behave similar to other owner-draw capable controls.

Other Information

Suggested Title: Customizing Windows' Tree View Control

Figure Text: "Figure Rainbow Tree: A colorful example of a class derived from CCustomTreeCtrl"

Author Biography: Jason Clark developes software for MTE Software, inc. MTE Software consults enterprise solutions with a specialty in printing technology. Jason welcomes your correspondence by email at jason@mtesoft.com or on the web at www.mtesoft.com.

