UWVFP( FP0 ‹؋F&O F&G&G<ʋЋ™Ƌ$6&~&6&F&9EtL2pP3P F&EĞ&(6&>pt*6&>vt TF&EF,6&>~FvFĞ&^&9~Ì~ڹ-F*Ftz8ft F^&8Gui~t F^&8GuWF+F;F| F9Fu~tF@t8F^&8Gt,F+F;F~<.6&>t0^&GĞ&v&@F[FF,6&9~2F^&8Gu FuӋvzvĞ&7X06&?&&DPĞ&&& 26&>|u 46&z66&^&Gȋƻ[؎86&>&I86&&a~t;F*PĞ&&& 46&zF*Pv:6&& ud26&>|u 46&zĞ&&& <6&6&6` P, >6&F&H t8PP  |FPPh P:6&6&6P  |FPPh P*6&>vt BlPP] @6&6&6`Ğ&&& pP B6&R&TĞ&7FD6&FF6& fĞ&7FtH6&&J6&H6&J6&f%=؎L6&FD6&FF6& ^_]ːUVN6&6 &6rP N6&6 &6"P vPrPh P"Ph FPrPXX @uNFP"PXX @uQN6&6 &6"P P6&6(&6&"Ph FP"PXX @uFV9Vvr9Fv~} ~[sPrPC uƆrPrPVj3 6d6brP  udpP~QPVj3 FPF-P86&6&6VP R6&[RPFV-RP ,6&V2 ^]UWV+PP( FVN6&6 &6FP N6&6 &64P PFPh P4Ph FP4PXX @uQN6&6 &64P P6&6(&6&4Ph FP4PXX @u3FV9Vw1r9Fs*FVFV06&X&& FVFVFVPPFPC uP6d6bVh4 pP~QPVh4 3,602&9?~Dv3ɉNރ,.&Gt &u&g[GĞ0&9?ЋvFP[Ğ0&/P86&6&6VW V2 FPFPR ^_]ːUTWVN6&6 &6FP PFPh PFP V t)FPVQpQ~RQx WV ^_]ːU"WVFP( FP0 V<&m&EFT6&F&M FF &EF~,6&F 86&&؉V$6&FN9Nu~t F&u|v&DF&8G tl&G *Fta&G:F t F&D8FuJF&G9F t F&D8Fu0Fw&F;FF&@t+~9~~~[A9N~a~}+FFf~@~F39N86&&>؉V~؃~t Fw&uZFw&*FtJF&F t F&8Eu4Fw&F t F&8EuFw&FF;F}F[A9N~V~t}^_]ːear all searchUWVP V t5P6  u$FPVVP VPƆVPVPh FPVPXX  t$VPP(P P ~WP V u P(P P P-PVP26 FV u$VP0P(P P vvWPvV ;t2VPLP(P vv P vv  t$VPwP(P P F  3RT&7&GLX"3NP&&G&MVv~~؎ZX&&+NjV&&PIuvĞN&F&7&GĞR&&&GÌV&$3& &> & & ߎ&&3&OF&&&ʋH(3JL&&G*3&&F&ʋFPQ" @FĞJ&&?~G~VvN~&&+NjV&&PAĞJ&&9ڋ~v*3&F&7&GĞJ&&@&GF,3&> & M.3& & ^_]ː% U.WV4Z9&3\9&6^9&"`9& b9&r d9&bf9&dh9&fj9&h+ɉNNvvZ RP"Pr QP V^V۹^VNVl9&>nu-n9&X&B&@ "P| 3br QP t~ PvvP t!2PP] p9&tN릐2PP] p9&u, QP2PP] p9&u0 ~+PP( FVP+PP( ȋ+FV~9&&SQvvvVr FV~9&&d3SQRP FVdRPvv FVvvRP<RPSQRPvv⚺ RPFމVT SQvvމFډVܚT <3SQvvF։Vؚ FV؋Nڋ^+SQF҉VԚT +FVRPvvvvvvZ RPn9&X&r&p N~9&pr9^F&?tt9&>vt^&?t;^9&>"u\9&>6u `9&> tPvv^&?tMt9&>vtAPPv9&68&66`Px9&GPv9&68&66 tظ[.ظ&&،F&Gt1&9}&Gع&;z ~36&z F&9G|&F u &>tF&Gu & t~u &>tF&Gt & uPvvP t}pr9^F&?tMt9&>vtAPPv9&68&66`Px9&JPv9&68&66+PP( FVz9&>|u |9&z, QP |%^&?tMt9&>vtAPPv9&68&66`Px9&GPv9&68&66PvvPn9&X&F&D PvvPr9&>ptMt9&>vtAPPv9&68&66`Px9&GPv9&68&66^_]UWV P3Z9&P QP 9+&& ~ u19&9>"t2PP] p9&u |] u9&9&F |#[n9&&@t 9&2P P] =tz9&>|u |9&zr9&>ptt9&>vtT9&>"t2PP] p9&t t3Pt9&N& LtsdP FV|] t6~vv`  u!dP FV] |] u͚] 3P9&6N&6LtmpP FVRP`  tP~|] t@2P P] =t* vv`  t 3b2PP] p9&t;3PN^9&>"u\9&>6u `9&> t N(^_]ːUWV9 &?|%[&/9&&~ڹ-Ğ &?}^9&>"t5~t/F*Pn9&X&N&L F*P3~9&& t1B*PWn9&X&R&P B*PFF;r `9&?u \9&>6t?Ğ &?|5~t/F*Pn9&X&V&T F*PO9&& uĞ&?u\9&>6u^9&>"un9&X&Z&X 9&6&6` P, 9&6&6P Ğ &?|FPPh PPP] n9&X&^&\ 9&6&6`pP 9&R&T3^9&"\9&6Ğ&^_]ːU욀"P9&6&6n9&X&& 9&6&6`嚖t9&>vt9&63P] 9&>Ltr 9&>du.] v ]UVv u3, ȋƙ+T؋ʙùdP ^]ːUWV~9&B&DF&9Eu &9U u&E & Eu 9&&9&6&6KP KP" KF^F9&& u~N؋W&9Du&9T tGG u9&&V uVV‹&?u$~9&>t3"PvW ~^FFG&<u^&7"PvW_9&6&6KP KP" K^9&F&9t&9&>uF&5"PDvP K^_]ːUt9&>vur9&>pu3P, 9&@P"Pr QP PQ9&6&6`r QP9&6&6Z9&@P9&6 "Pr QP PP9&6&6`r QP9&6&6Z9&bF t'P9&6&6"Pr QP $9&6&6 #Pr QP PQ9&6&6`#P9&6&6ZPP9&6&6`r QP9&6&6Z3P9&6^ ]ːt9&>vt&r9&>pt P9&6&6ːU.WV~FL^ }dǹ[FԻ9^֌F&&GtFLBƌ@V~t ‹F& ^&^&GtFF&C~t FF& ^&^&GtFF&D~t FF& ~t$^&^&G@tFF&FFF& ^&^&GtFF&H~t FF& ^&^&GtFF&K~t FF& ^&^&GtyFF&L~ti^&^&GF |@P+# +FP0#PFP FڌҋȎڋ6?t!vNG^F&=uv~~t$^&^&GtFF&MFF& ^&^&GtFF&N~t FF& ^&^&GtFF&S~t FF& ^&^&G tFF&R~t FF& ~t^~&=&At FF&XF&FL^_]ÐUt9&>vur9&>pu9&>u3P9&6+RP9&@P5#Pr QP PQ9&6&6`r QP9&6&6Z PP9&6&6`vv9&6&6ZT]UWV3Pz9`b&?}Tt9&>vuEWĞ`&@PXn9\^&&f&ddP PP9XZ&w&7`dPĞX&w&7ZPĞ`&7‹؋F&?tTPVĞ\&&j&hdP PPĞX&w&7`dPĞX&w&7Z9TV&G& u9&w&7dP A#PdPh PJ#PdP26 V uFPVQQNQ FWV ~uvrĞT&w&7dP M#PdPh 3PdQNQ*6 uqvFP ;PdPFP*6 t@2PPĞX&w&7`Ğ\&&n&lĞX&w&7ZT^_]R$bCLSU.WV4 ع4& &QP( 4+&,&*&(&0&.p4^F&9t&4&9vt4&X&&F4^&?u-~ٹ~t%FFF4&F ~FFFP RP4&6&6 Pr QP r QPB FP RP Pr QP r QPB F ~js)+FFFFFF4^ތF&4&>v% 4^ڌF&4&>x ^&4& 4&9s 4&> t^&3PN։VRQQD~u QPP  tuHtpHtHHtMc uW^&^&ub4&h4&d4&X&& 뤚 u ^&^&u2봎4&h3P4&T4&ht F҉NԐ3^&9?~14&t&4 QPF  uG^&9?ҚHuHuGHtvHu}W4&t ;E2PP] 4&u)FPP 3PvvָP4& u^&^&t4&d4&h4&X&&  u^&^&t밐62PP] 4&u_4&>tPFPP 3PvvָP"2PP] 4&uFFPQ F4&^&?tp4&>vtd4&6&6 Pr QP PP4&6&6`r QP4&6&6ZT4&h3PO QPP 4&^&?tp4&>vtd4&6&6 Pr QP PP4&6&6`r QP4&6&6ZT4&T4&h QPP 4&^&?tp4&>vtd4&6&6 Pr QP PP4&6&6`r QP4&6&6ZT3P5& 5&b4&d5&f4&hPvvָPf3PvvָPQ^_]WV+ &&r & &6&"&& & ع^_ːUVXP FVRP`  uuv2PP] 4&tY uP2PP]  tFF& t*<t&P]  vv`  t'2PP] :] P ] 3^]ːU(WVb5&?u]v vFVF tHt#HuHuHu)F396F~(D Pv vWd u F;6F|ۋ~F &}t=&u&uvv PbP F &u/ PFP 2vvbP F &u&u8 PFP FLJFĞ&7bPE PP T PP V us5&& tZFLJFbP Ğ&7bPW PP f PP VF u-~ uyP4&X&>&< UFPV FPbPh bPP<  uX9F t!bP4&X&B&@ FDF^FFV ~~ t+v vZ RP4&X&F&D PB >Fuy396F~%D Pv vWd t F;6F|96F/~ u=v vZ RP4&X&J&H~F &}t=&u&uvvi PbP F &uy PFP 2vvbP F &u&u PFP F?t5&6&6bP FPbPh F;6F}rFFFFDFDFF+ƉF~vF^^F^FF F NuFbPB  u$9F ubP4&X&N&L?~ ubP4&X&R&P 5&& uĞ&7P PbP  PbP RP D5&& t-Ğ&7P PbP bPB 3^_]U($ 5^ތF&?u5^ڌF&G& u  t6 6 `  udP   5&bF tP^&w&7 PNFP ^&w&7 PNFP FPNFPXX  uDNFPB ^&74&X&&  5&z^&7]39&RzLxL9&9ptI9&9vt>PP9&6&6`#P9&6&6ZT#P| ] 9&$PP] P u 9&X&N&L 3n9&>ptJ9&>vt>PP9&6&6`#P9&6&6ZT$P| PV39&RzLxL9&9ptH9&9vt=PP9&6&6`&$P9&6&6ZT H$P| :] 9&$PP] 3PN tz9&>ptK9&>vt?PP9&6&6`S$P9&6&6ZTu$P| 3P u4^ːUWV9& & VȋڀFV$PSQ $PvW QPr9&QPZ RP$P 9&QPZ RPvW'3FF9&9~Q~9&9>t,$PvvPVZ RPvv G9&9>~$PvW89^F+&G&9Ft QP: '~uZzL0QP: ~9^&G& t-P&w&7vv< ^&GSvW%$PvW~t)9&>^u9&>`t$6$1$+9&t$PvW9&u$PvW$PvW9&> بt+& ~u:& #Ft&ِFtvt &6 بt$`~t6t$PvWt$PvWƨt3$"t$t$ ƨt$PvW9&t~t9&>zu$PvW$PvW$PvWw$PvWh9&>ju9&X&&$ډFVRP9&69&6$PP%Pvv vvvW%PvW9&6&69&6&6:&6&6#%Pvv vvvWB:&6&6:&6&6:&6&60%Pvv vvvW=%PvWD:&&&(0T|RPE%Pvv vvvW vW" 9&$PP] FpP FVv~vvO%PvV vV" PvVj! FPQ\%QJ] PvV" PvVJ] PvvvJ] F~~;~v^^؋NJ*3QNJ*&3ZF;v|։~v] v_%PvV PvV" PvVJ] FF=vP FVvv`  t 2PP]  :&uvv`  t|] u t 3P( -*ui%PvV vV2 ui6`#6^#vVF  uN6p#6n#vvF  t~9&X&&e%PFPW ƋFv2PP] 9&X&&V\2PP]  :&u9&X&&ˎ9&X&&k%PFPV NjFvW 3^_]U WVFdžPƆ{dž8o%:dždž@~%BdžD%FdžH%J+NL9& & vx~prt89 +&G&n9&9ptH9&9vt=PP9&6&6`%P9&6&6ZT %P| T :&P FVpP FV+FF{{<vv~uZ6`#6^#%P~V P~V" P~VJ] neat a job as possible. Don't cut corners. Exceed specifications. Otherwise, the inspector may get extremely picky and fault you on the slightest transgressions. Don't try to hide anything from the inspector. Use the proper tools. Ie: don't use a bread knife to strip wires, or twist wires with your fingers. The inspector won't like it, and the results won't be that safe. And it takes longer. And you're more likely to stick a hunk of 12ga wire through your hand that way. Don't handle house wire when it's very cold (eg: below -10C or 16F). Thermoplastic house wire, particularly older types become very brittle. Subject: What do I need in the way of tools? First, there's the obvious -- a hammer, a drill, a few screwdrivers, both straight and Phillips-head. If you're lucky enough to live in Canada (or find a source of CSA-approved devices) you need Robertson ("square recess") screwdrivers (#1 and #2) instead of phillips. For drilling a few holes, a 3/4" or 1" spade bit and 1/4" or 3/8" electric drill will do. If you're doing a lot, or are working with elderly lumber, we recommend a 1/2" drill (right-angle drills are wonderful. Can be rented) and 3/4" or 1" screw-point auger drill bits. These bits pull you through, so they're much faster and less fatiguing, even in 90 year old hardwood timbers. Screw-driver bits are useful for drills, expecially if you install your electrical boxes using screws (drywall screws work well). For stripping wire, use a real wire stripper, not a knife or ordinary wire cutters. Don't buy the $3 K-mart "combo stripper, crimper and bottle opener" types. You should expect to pay $15 to $20 for a good "plier-type" pair. It will have sized stripping holes, and won't nick or grab the wire - it should be easy to strip wire with it. One model has a small hole in the blade for forming exact wire loops for screw terminals. There are fancier types (autostrip/cut), but they generally aren't necessary, and pros usually don't use them. A pair of diagonal side cutter pliers are useful for clipping ends in constricted places. Don't use these for stripping wire. You will need linesman pliers for twisting wires for wire nuts. You should have a pair of needle-nose pliers for fiddling inside boxes and closing loops, but it's better to form wire loops with a "loop former hole" on your wire stripper - more accurate. If you're using non-metallic cable, get a cable stripper for removing the sheath. Or, do what some pros do, they nick the end of the sheath, grab the ground wire with a pair of pliers, and simply rip the sheath back using the ground wire as a "zipper", and cut the sheath off. You shouldn't try to strip the sheath with a knife point, because it's too easy to slash the insulation on the conductors. Apparently Stanley utility knives fitted with linoleum cutters (hooked blades) can be used to strip sheath, but there is still the possibility that you'll gouge the conductors. For any substantial amount of work with armored cable, it's well worth your while to invest in a rotary cable splitter (~US$ 18). Hack saws are tricky to use without cutting into the wire or the insulation. Three-prong outlet testers are a quick check for properly-wired outlets. About $6. Multimeters tell you more, but are a lot more expensive, and probably not worth it for most people. A simple voltage sensor, which can detect potential through an insulated wire not supplying any devices, is extremely helpful; they cost about US$ 10 at Radio Shack. You should have a voltage detector - to check that the wires are dead before doing work on them. Neon-bulb version are cheap ($2-3) and work well. If you get more serious, a "audible alarm" type is good for tracing circuits without a helper. (Though I've been known to lock the drill on, and hit breakers until the scream stops ;-) For running wires through existing walls, you need fish tape. Often, two tapes are needed, though sometimes, a bent hanger or a length of thin chain will suffice. Fish tapes can be rented. Electrical tape. Lots of it ;-) Seriously, a good and competent wiring job will need very little tape. The tape is useful for wrapping dicy insulation in repair work. Another use is to wrap around the body of outlets and switches to cover the termination screws - I don't do this, but drywall contractors prefer it (to prevent explosions when the drywall knife collides with a live outlet that has no cover plate). Subject: What is UL listing? The UL stands for "Underwriters Laboratory". It used to be an Insurance Industry organization, but now it is independent and non-profit. It tests electrical components and equipment for potential hazards. When something is UL-listed, that means that the UL has tested the device, and it meets their requirements for safety - ie: fire or shock hazard. It doesn't necessarily mean that the device actually does what it's supposed to, just that it probably won't kill you. The UL does not have power of law in the U.S. -- you are permitted to buy and install non-UL-listed devices. However, insurance policies sometimes have clauses in them that will limit their liability in case of a claim made in response to the failure of a non-UL-listed device. Furthermore, in many situations the NEC will require that a wiring component used for a specific purpose is UL-listed for that purpose. Indirectly, this means that certain parts of your wiring must be UL-listed before an inspector will approve it and/or occupancy permits issued. Subject: What is CSA approval? Every electrical device or component must be certified by the Canadian Standards Association before it can be sold in Canada. Implicit in this is that all wiring must be done with CSA-approved materials. They perform testing similar to the UL (a bit more stringent), except that CSA approval is required by law. Again, like the UL, if a fire was caused by non-CSA-approved equipment, your insurance company may not have to pay the claim. Note: strictly speaking, there usually is a legal way around the lack of a CSA sticker. In some cases (eg: Ontario), a local hydro inspection prior to purchase, or prior to use, is acceptable. The hydro inspector will affix a "hydro sticker" to the unit, which is as good as CSA approval. But it costs money - last I knew, $75 per unit inspected. ULC (Underwriters Laboratory of Canacense. Nor are you permitted to do wiring in "commercial" buildings. Multiple dwellings (eg: duplexes) are usually considered "semi-commercial" or "commercial". However, many jurisdictions will permit you to work on semi-commercial wiring if you're supervised by a licensed electrician - if you can find one willing to supervise. If you do your own wiring, an important point: Do it NEAT and WELL! What you really want to aim for is a better job than an electrician will do. After all, it's your own home, and it's you or your family that might get killed if you make a mistake. An electrician has time pressures, has the skills and knows the tricks of the trade to do a fast, safe job. In this FAQ we've consciously given a few recommendations that are in excess of code, because we feel that it's reasonable, and will impress the inspector. The inspector will know that you're an amateur. You have to earn his trust. The best way of doing this is to spend your time doing asused for most circuits supplying receptacles and lighting within your house. (3) is usually used for supplying power to major appliances such as stoves, and dryers - they often have need for both 220V and 110V, or for bringing several circuits from the panel box to a distribution point. (2) is usually for special 220V motor circuits, electric heaters, or air conditioners. [Note: In the US, the NEC frequently permits a circuit similar to (2) be used for stoves and dryers - namely, that there are two hot wires, and a wire that does dual duty as neutral and ground, and is connected to the frame as well as providing the neutral for 110V purposes - three prong plugs instead of four (*only* for stoves/dryers connected to the main panel. When connected to most sub-panels, 4 prong plugs and receptacles are required). In our not-so-humble opinion this is crazy, but the NFPA claims that this practice was re-evaluated for the 1992 NEC, and found to be safe. Check your local codes, or inquire as to local practice -- there are restrictions on when this is permissible.] (1) is usually wired with three conductor wire: black for hot, white for neutral, and bare for grounding. (2) and (3) have one hot wire coloured red, the other black, a bare wire for grounding, and in (3) a white wire for neutral. You will sometimes see (2) wired with just a black, white and ground wire. Since the white is "hot" in this case, both the NEC and CEC requires that the white wire be "permanently marked" at the ends to indicate that it is a live wire. Usually done with paint, nail polish or sometimes electrical tape. Each circuit is attached to the main wires coming into the panel through a circuit breaker or fuse. There are, in a few locales, circuits that look like (1), (2) or (3) except that they have two bare ground wires. Some places require this for hot tubs and the like (one ground is "frame ground", the other attaches to the motor). This may or may not be an alternative to GFCI protection. Subject: "grounding" versus "grounded" versus "neutral". According to the terminology in the CEC and NEC, the "grounding" conductor is for the safety ground, i.e., the green or bare or green with a yellow stripe wire. The word "neutral" is reserved for the white when you have a circuit with more than one "hot" wire. Since the white wire is connected to neutral and the grounding conductor inside the panel, the proper term is "grounded conductor". However, the potential confusion between "grounded conductor" and "grounding conductor" can lead to potentially lethal mistakes - you should never use the bare wire as a "grounded conductor" or white wire as the "grounding conductor", even though they are connected together in the panel. [But not in subpanels - subpanels are fed neutral and ground separately from the main panel. Usually.] Note: do not tape, colour or substitute other colour wires for the safety grounding conductor. In the trade, and in common usage, the word "neutral" is used for "grounded conductor". This FAQ uses "neutral" simply to avoid potential confusion. We recommend that you use "neutral" too. Thus the white wire is always (except in some light switch applications) neutral. Not ground. Subject: What does a fuse or breaker do? What are the differences? Fuses and circuit breakers are designed to interrupt the power to a circuit when the current flow exceeds safe levels. For example, if your toaster shorts out, a fuse or breaker should "trip", protecting the wiring in the walls from melting. As such, fuses and breakers are primarily intended to protect the wiring -- UL or CSA approval supposedly indicates that the equipment itself won't cause a fire. Fuses contain a narrow strip of metal which is designed to melt (safely) when the current exceeds the rated value, thereby interrupting the power to the circuit. Fuses trip relatively fast. Which can sometimes be a problem with motors which have large startup current surges. For motor circuits, you can use a "time-delay" fuse (one brand is "fusetron") which will avoid tripping on momentary overloads. A fusetron looks like a spring-loaded fuse. A fuse can only trip once, then it must be replaced. Breakers are fairly complicated mechanical devices. They usually consist of one spring loaded contact which is latched into position against another contact. When the current flow through the device exceeds the rated value, a bimetallic strip heats up and bends. By bending it "trips" the latch, and the spring pulls the contacts apart. Circuit breakers behave similarly to fusetrons - that is, they tend to take longer to trip at moderate overloads than ordinary fuses. With high overloads, they trip quickly. Breakers can be reset a finite number of times - each time they trip, or are thrown when the circuit is in use, some arcing takes place, which damages the contacts. Thus, breakers should not be used in place of switches unless they are specially listed for the purpose. Neither fuses nor breakers "limit" the current per se. A dead short on a circuit can cause hundreds or sometimes even thousands of amperes to flow for a short period of time, which can often cause severe damage. Subject: Breakers? Can't I use fuses? Statistics show that fuse panels have a significantly higher risk of causing a fire than breaker panels. This is usually due to the fuse being loosely screwed in, or the contacts corroding and heating up over time, or the wrong size fuse being installed, or the proverbial "replace the fuse with a penny" trick. Since breakers are more permanently installed, and have better connection mechanisms, the risk of fire is considerably less. Fuses are prone to explode under extremely high overload. When a fuse explodes, the metallic vapor cloud becomes a conducting path. Result? From complete meltdown of the electrical panel, melted service wiring, through fires in the electrical distribution transformer and having your house burn down. [This author has seen it happen.] Breakers won't do this. Many jurisdictions, particularly in Canada, no longer permit fuse panels in new installations. The NEC does permit new fuse panels in some rare circumstances (requiring the special inserts to "key" the fuseholder to specific size fuses) Some devices, notably certain large air conditioners, require fuse protection in addition to the breaker at the panel. The fuse is there to protect the motor windings from overload. Check the labeling on the unit. This is usually only on large permanently installed motors. The installation instructions will tell you if you need one. Subject: What size wire should I use? For a 20 amp circuit, use 12 gauge wire. For a 15 amp circuit, you can use 14 gauge wire (in most locales). For a long run, though, you should use the next larger size wire, to avoid voltage drops. 12 gauge is only slightly more expensive than 14 gauge, though it's stiffer and harder to work with. Here's a quick table for normal situations. Go up a size for more than 100 foot runs, when the cable is in conduit, or ganged with other wires in a place where they can't dissipate heat easily: Gauge Amps 14 15 12 20 10 30 8 40 6 65 We don't list bigger sizes because it starts getting very dependent on the application and precise wire type. Subject: Where do these numbers come from? There are two considerations, voltage drop and heat buildup. The smaller the wire is, the higher the resistance is. When the resistance is higher, the wire heats up more, and there is more voltage drop in the wiring. The former is why you need higher-temperature insulation and/or bigger wires for use in conduit; the latter is why you should use larger wire for long runs. Neither effect is very significant over very short distances. There are some very specific exceptions, where use of smaller wire is allowed. The obvious one is the line cord on most lamps. Don't try this unless you're certain that your use fits one of those exceptions; you can never go wrong by using larger wire. Subject: What does "14-2" mean? This is used to describe the size and quantity of conductors in a cable. The first number specifies the gauge. The second the number of current carrying conductors in the wire - but remember there's usually an extra ground wire. "14-2" means 14 gauge, two insulated current carrying wires, plus bare ground. -2 wire usually has a black, white and bare ground wire. Sometimes the white is red instead for 220V circuits without neutral. In the latter case, the sheath is usually red too. -3 wire usually has a black, red, white and bare ground wire. Usually carrying 220V with neutral. Subject: What is a "wirenut"/"marrette"/"marr connector"? How are they used? A wire nut is a cone shaped threaded plastic thingummy that's used to connect wires together. "Marrette" or "Marr connector" are trade names. You'll usually use a lot of them in DIY wiring. In essence, you strip the end of the wires about an inch, twist them together, then twist the wirenut on. Though some wirenuts advertise that you don't need to twist the wire, do it anyways - it's more mechanically and electrically secure. There are many different sizes of wire nut. You should check that the wire nut you're using is the correct size for the quantity and sizes of wire you're connecting together. Don't just gimble the wires together with a pair of pliers or your fingers. Use a pair of blunt nose ("linesman") pliers, and carefully twist the wires tightly and neatly. Sometimes it's a good idea to trim the resulting end to make sure it goes in the wirenut properly. Some people wrap the "open" end of the wirenut with electrical tape. This is probably not a good idea - the inspector may tear it off during an inspection. It's usually done because a bit of bare wire is exposed outside the wire nut - instead of taping it, the connection should be redone. Subject: What is a GFI/GFCI? A GFCI is a ``ground-fault circuit interrupter''. It measures the current current flowing through the hot wire and the neutral wire. If they differ by more than a few milliamps, the presumption is that current is leaking to ground via some other path. This may be because of a short circuit to the chassis of an appliance, or to the ground lead, or through a person. Any of these situations is hazardous, so the GFCI trips, breaking the circuit. GFCIs do not protect against all kinds of electric shocks. If, for example, you simultaneously touched the hot and neutral leads of a circuit, and no part of you was grounded, a GFCI wouldn't help. All of the current that passed from the hot lead into you would return via the neutral lead, keeping the GFCI happy. The two pairs of connections on a GFCI outlet are not symmetric. One is labeled LOAD; the other, LINE. The incoming power feed *must* be connected to the LINE side, or the outlet will not be protected. The LOAD side can be used to protect all devices downstream from it. Thus, a whole string of outlets can be covered by a single GFCI outlet. Subject: Where should GFCIs be used? The NEC mandates GFCIs for 110V, 15A or 20A single phase outlets, in bathrooms, kitchens within 6' of the sink, wet-bar sinks, roof outlets, garages, unfinished basements or crawl spaces, outdoors, near a pool, or just about anywhere else where you're likely to encounter water or dampness. There are exceptions for inaccessible outlets, those dedicated to appliances ``occupying fixed space'', typically refrigerators and freezers, and for sump pumps and laundry appliances. The NEC now requires that if your replace an outlet in a location now requiring GFCI, you must install GFCI protection. Note in particular - kitchen and bathroom outlets. When using the "fixed appliance" rule for avoiding GFCI outlets, single outlet receptacles must be used for single appliances, duplex receptacles may be used for two appliances. The CEC does not mandate as many GFCIs. In particular, there is no requirement to protect kitchen outlets, or most garage or basement outlets. Basement outlets must be protected if you have a dirt floor, garage outlets if they're near the door to outside. Bathrooms and most exterior outlets must have GFCIs, as do pools systems and jacuzzi or whirlpool pumps. There are many rules about GFCIs with pools and so on. This is outside of our expertise, so we're not covering it in detail. See your inspector. When replacing an outlet, it must now be GFCI-protected if such would now be required for a new installation. That is, a kitchen outlet installed per the 1984 code need not have been protected, but if that outlet is ever replaced, GFCI protection must now be added (under NEC). This is explicit in the 1993 NEC, and inspector-imposed in Canada. Even if you are not required to have GFCI protection, you may want to consider installing it anyway. Unless you need a GFCI breaker (see below), the cost is low. In the U.S., GFCI outlets can cost as little as US$8. (Costs are a bit higher in Canada: C$12.) Evaluate your own risk factors. Does your finished basement ever get wet? Do you have small children? Do you use your garage outlets to power outdoor tools? Does water or melted snow ever puddle inside your garage? Subject: Where shouldn't I use a GFCI? GFCIs are generally not used on circuits that (a) don't pose a safety risk, and (b) are used to power equipment that must run unattended for long periods of time. Refrigerators, freezers, and sump pumps are good examples. The rationale is that GFCIs are sometimes prone to nuisance trips. Some people claim that the inductive delay in motor windings can cause a momentary current imbalance, tripping the GFCI. Note, though, that most GFCI trips are real; if you're getting a lot of trips for no apparent reason, you'd be well-advised to check your wiring before deciding that the GFCI is broken or useless. Subject: What is the difference between a GFCI outlet and a GFCI breaker? For most situations, you can use either a GFCI outlet as the first device on the circuit, or you can install a breaker with a built-in GFCI. The former is generally preferred, since GFCI breakers are quite expensive. For example, an ordinary GE breaker costs ~US$5; the GFCI model costs ~US$35. There is one major exception: if you need to protect a ``multi-wire branch circuit'' (two or more circuits sharing a common neutral wire), such as a Canadian-style kitchen circuit, you'll need a multi-pole GFCI breaker. Unfortunately, these are expensive; the cost can range into the hundreds of dollars, depending on what brand of panel box you have. But if you must protect such a circuit (say, for a pool heater), you have no choice. One more caveat -- GFCI outlets are bulky. You may want to use an oversize box when installing them. On second thought, use large (actually deep) boxes everywhere. You'll thank yourself for it. Incidentally, if you're installing a GFCI to ensure that one specific outlet is protected (such as a bathroom), you don't really have to go to all of the trouble to find the first outlet in the circuit, you could simply find the first outlet in the bathroom, and not GFCI anything upstream of it. But protecting the whole circuit is preferred. When you install a GFCI, it's a good idea to use the little "ground fault protected" stickers that come with it and mark the outlets downstream of the GFCI. You can figure out which outlets are "downstream", simply by tripping the GFCI with the test button and see which outlets are dead. Note that the labels are mandatory for GFCI-protected-but-ungrounded three prong outlets according to the NEC. Subject: What's the purpose of the ground prong on an outlet, then? Apart from their use in electronics, which we won't comment on, and for certain fluorescent lights (they won't turn on without a good ground connection), they're intended to guard against insulation failures within the device. Generally, the case of the appliance is connected to the ground lead. If there's an insulation failure that shorts the hot lead to the case, the ground lead conducts the electricity away safely (and possibly trips the circuit breaker in the process). If the case is not grounded and such a short occurs, the case is live -- and if you touch it while you're grounded, you'll get zapped. Of course, if the circuit is GFCI-protected, it will be a very tiny zap -- which is why you can use GFCIs to replace ungrounded outlets (both NEC and CEC). There are some appliances that should *never* be grounded. In particular, that applies to toasters and anything else with exposed conductors. Consider: if you touch the heating electrode in a toaster, and you're not grounded, nothing will happen. If you're slightly grounded, you'll get a small shock; the resistance will be too high. But if the case were grounded, and you were holding it, you'd be the perfect path to ground... Subject: Why is one prong wider than the other? Polarization Nowadays, many two-prong devices have one prong wider than the other. This is so that the device could rely (not guaranteed!) on one specific wire being neutral, and the other hot. This is particularly advantageous in light fixtures, where the the shell should neutral (safety), or other devices which want to have an approximate ground reference (ie: some radios). Most 2-prong extension cords have wide prongs too. This requires that you wire your outlets and plugs the right way around. You want the wide prong to be neutral, and the narrow one hot. Most outlets have a darker metal for the hot screw, and lighter coloured screw for the neutral. If not, you can usually figure out which is which by which prong the terminating screw connects to. Subject: How do I convert two prong receptacles to three prong? Older homes frequently have two-prong receptacles instead of the more modern three. These receptacles have no safety ground, and the cabling usually has no ground wire. Neither the NEC or CEC permits installing new 2 prong receptacles anymore. There are several different approaches to solving this: 1) If the wiring is done through conduit or BX, and the conduit is continuous back to the panel, you can connect the third prong of a new receptacle to the receptacle box. NEC mainly - CEC frowns on this practice. 2) If there is a copper cold water pipe going nearby, and it's continuous to the main house ground point, you can run a conductor to it from the third prong. NEC: this can only be done if the point of attachment is within 5 feet of where the pipe enters the ground. 3) Run a ground conductor back to the main panel. 4) Easiest: install a GFCI receptacle. The ground lug should not be connected to anything, but the GFCI protection itself will serve instead. The GFCI will also protect downstream (possibly also two prong outlets). If you do this to protect downstream outlets, the grounds must not be connected together. Since it wouldn't be connected to a real ground, a wiring fault could energize the cases of 3 prong devices connected to other outlets. Be sure, though, that there aren't indirect ground plug connections, such as via the sheath on BX cable. The CEC permits you to replace a two prong receptacle with a three prong if you fill the U ground with a non-conducting goop. Like caulking compound. This is not permitted in the NEC. The NEC requires that three prong receptacles without ground that are protected by GFCI must be labelled as such. See the next section about computers on GFCI-protected groundless outlets. Subject: Surges, spikes, zaps, grounding and your electronics (NEW) Theoretically, the power coming into your house is a perfect AC sine wave. It is usually quite close. But occasionally, it won't be. Lightning strikes and other events will affect the power. These usually fall into two general categories: very high voltage spikes (often into 1000s of volts, but usually only a few microseconds in length) or surges (longer duration, but usually much lower voltage). Most of your electrical equipment, motors, transformer-operated electronics, lights, etc., won't even notice these one-shot events. However, certain types of solid-state electronics, particularly computers with switching power supplies and MOS semiconductors, can be damaged by these occurances. For example, a spike can "punch a hole" through an insulating layer in a MOS device (such as that several hundred dollar 386 CPU), thereby destroying it. The traditional approach to protecting your electronics is to use "surge suppressors" or "line filters". These are usually devices that you plug in between the outlet and your electronics. Roughly speaking, surge suppressors work by detecting overvoltages, and shorting them out. Think of them as voltage limiters. Line filters usually use frequency-dependent circuits (inductors, capacitors etc.) to "tune out" undesirable spikes - preventing them from reaching your electronics. So, you should consider using suppressors or filters on your sensitive equipment. These devices come in a very wide price range. From a couple of dollars to several hundred. We believe that you can protect your equipment from the vast majority of power problems by selecting devices in the $20-50 range. A word about grounding: most suppressors and EFI filters require real grounds. Any that don't are next to useless. For example, most surge suppressors use MOVs (metal oxide varistors) to "clamp" overvoltages. Yes, you can have a suppressor that only has a MOV between neutral and hot to combat differential-mode voltage excursions, but that isn't enough. You need common-mode protection too. Good suppressors should have 3 MOVs, one between each pair of wires. Which means you should have a good solid ground. Eg: a solidly connected 14ga wire back to the panel. Not rusty BX armour or galvanized pipe with condensation turning the copper connection green. Without a ground, a surge or spike is free to "lift" your entire electronics system well away from ground. Which is ideal for blowing out interface electronics for printer ports etc. Secondly, static electricity is one of the major enemies of electronics. Having good frame grounds is one way of protecting against static zaps. If you're in the situation of wanting to install computer equipment on two wire groundless circuits take note: Adding a GFCI outlet to the circuit makes the circuit safe for you. But it doesn't make it safe for your equipment - you need a ground to make surge suppressors or line filters effective. Subject: Are you sure about GFCIs and ungrounded outlets? Should the test button work? The NEC, section 210-7(d), and CEC, section 26-700(9), are quite explicit that GFCIs are a legal substitute for a grounded outlet in an existing installation where there is no ground available in the outlet box. But your local codes may vary. As for the TEST button -- there's a resistor connecting the LOAD side of the hot wire to the LINE side of the neutral wire when you press the TEST button. Current through this resistor shows up as an imbalance, and trips the GFCI. This is a simple, passive, and reliable test, and doesn't require a real ground to work. If your GFCI does not trip when you press the TEST button, it is very probably defective or miswired. Again: if the test button doesn't work, something's broken, and potentially dangerous. The problem should be corrected immediately. The instructions that come with some GFCIs specify that the ground wire must be connected. We do not know why they say this. The causes may be as mundane as an old instruction sheet, or with the formalities of UL or CSA listing -- perhaps the device was never tested without the ground wire being connected. On the other hand, UL or CSA approval should only have been granted if the device behaves properly in *all* listed applications, including ungrounded outlet replacement. (One of us called Leviton; their GFCIs are labeled for installation on grounded circuits only. The technician was surprised to see that; he agreed that the NEC does not require it, and promised to investigate.)