ESSAYS ON SOFTWARE ENGINEERING

Software Bloat - Isit Hereto Stay? 1994 by Herb Chong

Have you ever wondered how all that space on your hard disk isused ? Doesn’t
it seem like yesterday that a 10M hard disk, or any hard disk at all, was an
incredible amount of storage that would take along timeto useup? | went
through my old Byte magazines to resear ch thisarticle and tallied up the hard
disk sizesin some of the systemsreviewed and previewed. Combining that with
some data published in PC Week and a little black magic, | ended up with this
chart. It purportsto show the average hard disk size shipped with the “average”
system today. The 1994 figure is PC Week’s estimate for the end of 1994.
Extraordinary --isn’t it?

If you take the numbersand do alittle arithmetic, as| did, you will find that the
average disk size almost doubled each year from 1986 to about 1990, and then
mor e than doubling since then. | don’t think it isany coincidence that Micr osoft
Windows 3.0 hit the market placein May of that year. People have more
applications on their systemsif they are Windows usersthan if they are DOS
users and those applications ar e bigger. Windows applications tend to come with
mor e features and arejust generally bigger than their DOS counter parts.

700

600

500

400

Megabytes

300

200

100

1986 1987 1988 1989 1990 1991 1992 1993 1994

WW

Istherean end in sight to thisrapid growth? To answer this question, we need to
look at some of the reasons for therapid software size growth these past several
years, what causeslie behind those reasons, and finally, what assumptions they
create about how people use their systems.

More - Cheaper - Faster -, and Sooner!

Takealook at the Windows applications on your computer. Have you upgraded
any of them since you got your first version? What has changed from version to
version? Each upgrade promises that you simply cannot do without the new
featuresthat the older version doesn’t do. The packages ar e getting skinnier,
especially if you get the CD-ROM version. They seem to come out at an ever
increasing rate on ever increasingly tight delivery schedules. It’satrend that
started in the ‘80s and is continuing. Let’slook at these and other factors and
how they influence softwar e size.

Staying Even with the Competition

It seemsthat the only real justification for an upgradeisto get new features that
you want. Marketing'sjob isto convince you that you really need these features.
Otherwise, they are not going to make any more money from you. A software
vendor in the PC world doesn’t sell you a subscriptionyet, they make a one-time
transaction. To keep in business, a softwar e vendor must continue to sell to new
customers. What better way to get new customersthan to convert all your old
customersto new ones by obsoleting everything they own? If they are going to
make people pay for their software, they have to convince people that they need
something they don’t already have.

Just in case you have any doubt, the marketing department spendsalot of time
and money convincing you why the latest features are onesyou really need to
have and what new things you are going to be able to do with their new version
that you can’t do with the old. Thereisno doubt in my mind that all new features
are useful. Thereal questions are how useful they are and to how many people?
Asthe software market and consumer sophistication mature, it’s harder and
harder to find genuinely useful featuresfor alarge portion of the users.

Nonetheless, if you decide that one or two features ar e sufficiently useful to you to
upgrade, you’ll upgradeto get them. When you do, you get all the featuresyou
don’t need aswell. The programmers spent time writing and debugging the code,
and the code ends up on theinstallation disks and your hard disk. You pay for
them all. The softwar e vendors and the programmerswill argue that the cost of
adding all these featuresisn’t alot more than adding some of them, and this will
allow them to satisfy more people than they would otherwise be able to. No doubt
thisistrue, but thereisafineline between adding a feature simply for the sake of
adding a feature and adding a feature because many userscan’t do without it.

WW

Let’suse Word for Windows as an example. | use Word for Windows the most of
all the applicationson my desktop. One of the handiest featuresto comealongin
Version 6isthe AutoCorrect feature. 1f | forget to hold down the shift key when
| begin a sentence, it capitalizesit for mewhen | pressthe space bar. If | forget
to hold down the shift key in the middle of the sentence when | pressthe“i” key,
and then space, it upper casesit for me. If | hold down the shift key too long and
thefirst two letters of aword are capitalized, it lower casesthe second letter. It
remembersthat | type “don;t” frequently when | really mean “don’t” and fixes
the mistake. Autocorrect isareally useful feature because I’'m a self-taught touch
typist and | have picked up some bad habits.

Again using Word as an example, | have yet to find someone who prefersto move
text by using drag-and-drop instead of cut and paste, either via the keyboard,
toolbar or menus. It’s harder to position the cursor for an exact paste and so
people frequently drop the text in the wrong place. | know that it took someone a
some nontrivial amount of timeto get it working...and it doeswhat it is supposed
to do. How many peoplereally benefit from it? Not nearly as many as Micr osoft
hoped when they introduced Word for Windows Version 2.0 and highlighted this
asone of the most significant new features.

There' sthe competition too. After Lotusintroduced Smartlconsintoits Ami Pro
word processor and received favorable press, Microsoft and WordPerfect had to
follow suit, whether or not it fit into their style of working. Assoon asone of the
big three word processorsintroduces a new feature into their program, it
becomes a point of comparison between the programs. Adding features becomes
a game of marketing and programming one-upmanship to come up with new
featuresfor these programs. The features themselves makes the competition play
catch-up and allows the program to reach out to yet more of the users who might
otherwise choose something different. Every extraline on the features
comparison chart cost you more money and disk space, whether you useit or not.

RTFM (Read The Fine Manual)

Have you noticed that manuals are getting thinner and thinner? | have. As|
upgrade my one hundred or so Windows applications on my main computer, |
manage to find more and mor e shelf space to put thethird party books | haveto
keep on buying to under stand something that isn’t in the manual anymore. That
shelf space comes from the new version’s manuals occupying less space than the
onesthe old version occupied. | somehow manage to net out at about the same
amount of spaceas| used to.

Theinformation that used to be in the manual hasto go somewhere. If you are

willing to live with slow access times and keeping theright CD-ROM in your
driveat all times (I'll ignore those of you with jukeboxes), you need any extra

WW

disk space for the on-line versions of the manual. If you don’t want to do thisor
don’t have a CD-ROM drive, you have to put the manuals onto the hard disk.
Yes, it’sniceto be ableto look up things from wherever you are, but how many
of you actually prefer the on-line manualsto the paper ones? Therearetoo
many thingsthat just aren’t easily suited to on-line use. Thisincludestutorials
and detailed reference infor mation.

| ordered an upgrade from Microsoft Visual C++ 1.0 to 1.5 recently. It only
comes on CD-ROM media and doesn’t come with manuals. Y ou need to pay $100
for the manual set. Thisisa continuingtrend in Windows softwar e distribution.
Hardcopy manuals have been shrinking and shrinking. The information
formerly in hardcopy is being shifted to on-line documentation becauseit’s
cheaper for thevendor. In thisday and age of increasing competition and ever
diminishing profit margins, trading a $30 manual for a few $1 diskettesis
something that can’t beignored. Reducing the cost of the software is somewhat
offset by the extra disk space for the floppy disks and the space taken up on the
hard disk.

Guess who hasto pay for the exchange of disk space for manuals? Marketing
has always managed to sell or at least confuse the issue by concentrating on the
great thingsyou can do with on-line help like hypertext and sear ching, that you
can’'t do with a hardcopy manual. Frankly, the Windows Help Engineisn’t
anything to brag about. | can do a few thingswith the on-line help that | can’t
do with the manual. Thereare also, alot of things| can’t do, likereading it
without turning on the computer, or having to use low resolution text and
graphicsinstead of phototypeset output, or being able to mark it up with notes
and littledrawings. On-line help isgreat when | can’t carry the manuals with me,
but when I’'m in my office surrounded by my bookshelves, on-line help is
annoyingifit’sall I have. | rely on the Visual Basic On-line Help because the
manual istoo thin to be helpful. It keepsreferring meto the on-line help for the
real answersand | get to pay for thisprivilege.

| Want It Yesterday !

The average Windows program is much more complicated than the average DOS
program trying to do the samething. The event driven model of application
interaction places a heavy burden on the application programmer to take car e of
all sorts of details about making their application run. A few years ago, object-
oriented classlibraries and C++ became the next great thing in Windows
programming. Some people went to a lot of trouble packaging up all the details
and providing defaultsfor everything so that unless you, the programmer,
wanted something different from the default, you didn’t have to write anything.
Theclasslibrary took care of everything. Programmer productivity shot up.
What used to take a year to design and write now took a couple of months.

WW

M arketing folks went nuts. Now they could promise even moreto their customers
and still have a good chance of delivering.

With such pressure from all sides, programmersreally haven’t got much choice.
They have to use development tools that let them get as much correct function as
possible with aslittle effort as possible. Everybody elseisusing them . Thetools,
however, have a major drawback: they are profligatein their use of memory and
disk space. People used to complain that the Windows equivalent of the famous
“hello, world” program took up 20K of memory, which in the DOS equivalent
would occupy a measly 800 bytes. Yet a program that takes up 10 times that
much space barely rates a blink, because that iswhat C++ classlibrarieslike
Microsoft Foundation Classes and Object Windows Library impose on the
programmers. Turn on debugging and then you see disk and memory
requirements grow by another factor of five.

It’sall part of how the C++ language and the I ntel object format are defined.
Whenever a programmer referencesavariable, it hasto beincluded as part of
the program whether it isused or not. The compiler can’t even try to tell until
you bring everything together at linking time whether something might or might
not beused. Inthedaysof C programming, it wasn’'t so bad because all the
variousvariables a program could use wer e split across many header filesand a
programmer could be selective about which onesthey used. That helped cut
down on the number of referenced but not used variablesin a program. With
C++, whenever you use a classlibrary, you haveto include the entire class
hierarchy every time. Doing otherwiseis extremely error prone and just plain
inelegant. Declaring a variable of atypein theleaf of the class hierarchy brings
in everything aboveit right up to thetop, - all their member variables and all
their member functions! In the case of MFC and OWL, this can be a total of
several hundred for every variable a programmer declaresin their program.

When alinker processes object filesto produce an executable, it knows
something about which functions and exter nal variables are used throughout. C
and C++, however, do not permit the linker to eliminate unused code. Partly it is
because of how C and C++ allow you to abuse the language and cause r efer ences
to such objects outside of the compiler’s knowledge, and partly because the Intel
OBJ format doesn’t store enough information for the linker to unambiguously
tell if afunction isreally unused or not.

Thereisn’t much choice but to leave them in. Borland thought this was enough of
a problem to invent an extension to the OBJ format to allow the linker to know
for surewhether something was needed or not and eliminate redundant code. So
Borland Pascal for Windows programs using the same OWL classlibrary can
comein at 2/3to 1/2 of the size of C++ programsusing OWL. Do you seea
stampede toward using Borland Pascal asthe standard Windows development
tool? Most developersdon’'t seem to care Most can’t afford to care.

WW

Productivity iswhat they are measured on. Once again, you pay extra for the
programmer’s productivity. Unfortunately, the programmer doesn’t benefit
from what you pay.

It Works! What More Do You Want?

Imagine you are a new programmer on a project. The program you will be

wor king on has been around for about three years. Remember thisisWindows
and C++, not COBOL. There have been four programmers before you who have
worked on the code. They are no longer working on it because they have been
promoted or moved on to other things. Your job isto takethelist of featuresthe
team leader has negotiated hard with the marketing folks about and turn your
part of that list into something that works. There sno documentation, - one
hundred thousands lines of code, - and no-one to ask!

Do you daretake out any code? After all, it worksnow, moreor less. Much
safer towork in thisbit here, work in that bit there, and generally change
something only after you are absolutely sure of how it works. During testing, you
find that sometimes garbage appearsin your input. If you fiddlewith it a bit, the
program doesn’t crash, and things seem to keep on working. All your
predecessor s except the original programmer probably did the same thing.

Any Windows program that has been around for morethan a version or two is
going to become harder and harder to add featuresto. First of all, new the
features are more and more pervasive and more and more complex. They just
can’'t be hacked in an afternoon. Second, adding these features stretch the
original design more and more, frequently pushing it in directions that were
never intended or deliberately avoided. Programs morethan a few versions old
quickly become frightful patchworks of elegance and ragged code right next to
each other. It becomes harder and harder to enhance.

Put another way, programmer productivity isnot as high asit should be. With
today’s deadlines for software delivery, especially in the Windows software
arena, delaysin delivery are very unhealthy. The faster a company can deliver
new releases, the more money they make and the happier the shareholdersare. It
doesn’t leave much room for tuning, redesign, and other such thingsthat refine
theway a program worksinside. If it’s not visibleto the user, it’snot a feature.
Features sell. Taking that long pause to re-architect for the future means no new
releases for a while. No releases means no income. Guess wher e management
wantsyou to spend your time?

When Will It End?

Just how far can these trends continue? Remember reading about how carswere
madein the ‘50's? Each year, there seemed to be a different bump or lump

WW

(some people called them fins) on acar. Thisyear’slump wasin and last year’s
lump was out. It kind of cameto an abrupt halt in the mid 60’s. People suddenly
wised up. Carsweren’t really all that different from year to year. It was
marketing of featuresthat didn’t really have much to do with what people
wanted in acar.

| think that we arein a situation with Windows softwar e wher e ther e are so many
people new to software and using tools when they really don’t know much about
computersyet. They are swayed by the advertising and pressthat new versions
of programsreceivein review after review. When most people are abletake a
serious, educated look at what they do and what they need in software, | think
that software sales are going to drop off.

Corporations are slower to adopt new version softwar e because they spend more
time defining thereal costs of software. They understand that thereal costs
includes payment for upgradesthey don’'t need, advertising to convincesthem
that they can’t do without some feature or another, or that they will be left
behind by an implicit warning against obsolescence without some wonder ful
upgrade or another. They know they will pay again because after the upgrade,
they won’t have enough room for all the other software that they need, or enough
CPU to run that essential piece of software, and never enough colorsto bring
those gamestruly to life.

When consumers get fed up with being led around by the nose by the major
software vendors, we'll seetherate of growth in computing power, RAM and
hard disk space slow. Until then, we're going to continue to make everyonein the
businessricher.

Herb Chong has been a contributing writer for Windows Sources, isa Contributing

writer for The Cobb Group’sInside Microsoft Windows; and is the Contributing
Editor of WindoWatch.

