Document 0765 DOCN M9460765 TI Characterization of a family of related cellular transcription factors which can modulate human immunodeficiency virus type 1 transcription in vitro. DT 9404 AU Yoon JB; Li G; Roeder RG; Laboratory of Biochemistry and Molecular Biology, Rockefeller; University, New York, New York 10021. SO Mol Cell Biol. 1994 Mar;14(3):1776-85. Unique Identifier : AIDSLINE MED/94158849 AB LBP-1 is a cellular protein which binds strongly to sequences around the human immunodeficiency virus type 1 (HIV-1) initiation site and weakly over the TATA box. We have previously shown that LBP-1 represses HIV-1 transcription by inhibiting the binding of TFIID to the TATA box. Four similar but distinct cDNAs encoding LBP-1 (LBP-1a, -b, -c, and -d) have been isolated. These are products of two related genes, and each gene encodes two alternatively spliced products. Comparison of the amino acid sequence of LBP-1 with entries in the available protein data bases revealed the identity of LBP-1c to alpha-CP2, an alpha-globin transcription factor. These proteins are also homologous to Drosophila melanogaster Elf-1/NTF-1, an essential transcriptional activator that functions during Drosophila embryogenesis. Three of the recombinant LBP-1 isoforms show DNA binding specificity identical to that of native LBP-1 and bind DNA as a multimer. In addition, antisera raised against recombinant LBP-1 recognize native LBP-1 from HeLa nuclear extract. Functional analyses in a cell-free transcription system demonstrate that recombinant LBP-1 specifically represses transcription from a wild-type HIV-1 template but not from an LBP-1 mutant template. Moreover, LBP-1 can function as an activator both in vivo and in vitro, depending on the promoter context. Interestingly, one isoform of LBP-1 which is missing the region of the Elf-1/NTF-1 homology is unable to bind DNA itself and, presumably through heteromer formation, inhibits binding of the other forms of LBP-1, suggesting that it may function as a dominant negative regulator. DE Amino Acid Sequence Base Sequence Binding Sites Cloning, Molecular Comparative Study DNA Primers/CHEMISTRY DNA-Binding Proteins/*GENETICS *Gene Expression Regulation, Viral Genes, Structural Hela Cells Human HIV-1/*GENETICS Molecular Sequence Data Recombinant Proteins Repressor Proteins/*GENETICS Restriction Mapping Sequence Alignment Sequence Homology, Amino Acid Support, Non-U.S. Gov't Support, U.S. Gov't, P.H.S. Transcription Factors/*GENETICS Transcription, Genetic JOURNAL ARTICLE SOURCE: National Library of Medicine. NOTICE: This material may be protected by Copyright Law (Title 17, U.S.Code).