DBQueryCombo - A Delphi Component

Frustrated with the DBLookupCombo? Ever used lookup combos in Microsoft Access? Then you know how they’re filled by a SQL query, allow the user
to
display text - yet an ID number is stored in the table behind the scenes. For example, pick customer names from a query result, but post their hidden ID numbers instead. They support “intelligent search” auto fill-in text entry as well. Here it is in Delphi ! Shareware from Application Methods.

The DBQueryCombo component provides several features not available in existing components. Like the DBLookupCombo which ships with the product, this component can display values in a dropdown list different from the datafield bound to a table. However, here’s where it differs:

The items in the dropdown list are populated by a SQL query, rather than a table!

You don’t have to add a TQuery component to your form; this component creates a TQuery instance at runtime, using the SQL string you specify as a property. Also, like Delphi’s standard TQuery component, a replaceable parameter is allowed within your SQL text (in this version, limited to a single parameter)

Combo box text is automatically filled in as the user types characters! This emulates the auto-expand property found in Microsoft Access or Quicken.

The functionality provided by DBQueryCombo is very important to database developers. Here’s an example of why you’d want to employ this component:

Assume that you’re creating an invoicing system and each customer has a unique ID number. For performance sake and to preserve the integrity of primary keys, you need to store customer ID numbers in transaction records, not customer names. However, the users of your app could care less about customer numbers - they want to type and see customer names! Furthermore, you don’t want all customers to be available for selection - only those that meet certain criteria.

This component allows you to populate the combo’s dropdown list from the results of a query. And as users scroll through a transaction table, they see the customer names change, not the customers’ ID numbers. When typing a new value, they type the first few characters of the name and the component automatically fills in the rest of the value! Behind the scenes, the customer’s ID number is posted to the table.

Installation

The files DBQCOMBO.DCU and DBQCEDIT.DCU (or .PAS if you own the source code) are required for installation.

1) From the Delphi menu, choose
Options

|

Install Components
.

2) Click the [Add] button and add the
DBQCOMBO.DCU unit

	(DBQCOMBO.PAS if you own the source code)

	The component is placed on the "Data Controls" page of your

	component palette.

Required Properties

The following properties must be specified at design-time for the component to function properly:

DataField	Identifies the field to & from which the data-aware control gets & posts data (this value is hidden). Using the customer name/number example above, you would specify the customer number field in this property.

DataSource	Determines where the component obtains the DataField (above). Specify the datasource component that identifies the dataset the datafield is found in.

QuerySQL	Holds the text of the SQL statement that will be executed in order to fill the combo’s dropdown list. In your SQL SELECT statement, the last column specified
must
 be the field which corresponds to the DataField property above. Column values are listed in the combo’s dropdown list in the order (left-to-right) that you specify them in your SQL SELECT statement

QueryDBName	Specifies the BDE (Borland Database Engine) database alias that the
above
query
should be executed against.

Examples - here’s how you might specify values for these properties in an invoicing application, where you want the user to pick a customer name from a queried list, yet post their customer number to the invoice instead:

DataField	CustomerInvoiced (a number)

DataSource	DataSourceInvoice

QuerySQL	SELECT Name,ID_Number

		FROM Customer

		ORDER BY Name

QueryDB	Accounting

Required Event Handler

Initialization
	
I
n order to populate the
combo
’s
dropdown
 list as soon as the form opens, you need to add a single line of code
to
the the form
’s
OnShow event, as follows:

	DBQueryCombo.initialize

;

	
T
his event handler
is
n
’t
necessarily
required
 in all cases
. If you have failed to initialize the component, it will
automatically
initialize itself upon first use. However, it makes sense
to initialize it when the form is first displayed, so that valid data will be displayed in the combo as users scroll through a table - even if they never click on or enter the control itself.

Behavioral Properties (optional)

The following properties are available to modify the behavior of the component at runtime:

QueryOnDropDown	Set this property to True if you wish the combo dropdown list to be repopulated (the query is refreshed) each time the user clicks on the dropdown button. If False, the combo dropdown list is only populated the first time.

LimitToList	This property is similar to the Required property of other edit-type components. If True, it simply means that combo entries must match one of the items in the dropdown list. The cursor cannot leave the combo until a valid value has been entered or selected. If False, the cursor is allowed to exit the combo box even if the user type
s
 a value which does not match a dropdown list item. For an event related to this property, see the OnNotInList event below.

QueryParameter	If your query contains a replaceable parameter, use this property at runtime to set its value. As with Delphi’s TQuery component, use a colon (:) to precede a replaceable parameter in your query text.

	Since this property’s value is set by your code at runtime, you won’t find it listed in the Object Inspector.

QueryParamIsString	If your query contains a replaceable parameter, this property indicates whether or not it is a string parameter. Set this value to True if it is, False otherwise.

Examples - here’s how you might set these properties if you wanted to require the user’s input to match an item in the dropdown list, but did not want the dropdown list refreshed each time the user displayed it:

QueryOnDropDown	False

LimitToList	True

Let’s assume that your QuerySQL property contained a replaceable parameter; here’s how you might set the following properties:

QuerySQL	SELECT Name,Number

		FROM Customer

		WHERE State = :variable

		ORDER BY Name

QueryParameter	Set in an event handler somewhere (such as OnEnter), like this:

		DBQueryCombo.QueryParameter := ‘CA’
 ;

QueryParamIsString	True

Here’s how things might look if your query’s replaceable parameter was a number, instead:

QuerySQL	SELECT Name,Number

		FROM Customer

		WHERE CurrentBalance > :variable

		ORDER BY Name

QueryParameter	Set in an event handler like this, enclosing the number in single quotes:

		DBQueryCombo.QueryParameter := ‘5000’
 ;

QueryParamIsString	False

Behavioral Events (optional)

The following events are available for your own event handler code:

OnDBChange	This event is triggered each time the hidden DataField value changes. Using our example above, as the user scroll
s
 through the transaction table and the customer number change
s
, your event handler here would execute.

	To create an event handler which will execute as the user types changes into the visible combo box, use the standard OnChange event instead.

OnNotInList	Regardless of how the LimitToList property is set (see above), this event is triggered if the user exits the combo box after typing a value which does not match any item in the dropdown list. You might write an event handler here to display a specific error message, for example.

Public Procedures (unpublished / optional)

The following procedures can be called inside the component as desired:

FillDropDownList
	This procedure automatically executes the first time
the component is initialized
. See the QueryOnDropDown property above for determining if it executes each time the dropdown button of the combo is clicked. Otherwise, you may call it in your own code any time you want the dropdown list refreshed.

General Behavior

DBQueryCombo‘s ancestor is the TComboBox component, so all standard properties and events from that component are available.

Replaceable Parameter	(QuerySQL Property) At present, the QuerySQL text allows for a single, replaceable parameter. However, this parameter can be used as many times in your SQL query as needed. Make sure you remember to specify the QueryParamIsString property if you employ a replaceable parameter.

Displaying Dropdown List	The component’s dropdown list can be displayed by clicking the dropdown button.
P
ressing <Alt-Down Arrow> accomplishes the same thing.

Auto Fill-In	(Intelligent-Search Typing) As the user types characters into the combo box (rather than selecting an item from the dropdown list), the component automatically fills in the balance of the value if it finds a match to the nearest item.

	For example, if you had a customer called “Acme Mfg. Co.” and you typed “Ac”, the “me Mfg. Co.” portion of the name would automatically be filled in for you. Each time you type a character, the component comes as close as it can to a matching item in the list. This search is not case sensitive.

	Pressing the <BackSpace> key reverses the direction of the highlighted text, so you can modify the characters you’ve typed (while the component re-searches for a better, matching item).

	Pressing the <Esc> key returns the control’s value to its original state when the user entered the control (by tabbing).

Errors

An error message will be displayed if any of the properties you set are invalid (such as the
QuerySQL
 string). If you run your application from Delphi and have the
“
Integrated Debugging
”
 option turned on (from Options | Environment), Delphi will tell you that it can
’t find
DBQCOMBO.PAS
 (if you haven
’t purchased the source code).
S
imply
 clear this error, correct the problem
with your specified property
and proceed.

Shareware

The shareware version of this component is limited to 25 items in the Combo’s dropdown list. For $20 (U.S.), you’ll receive the unlimited version with full source code. Yes, we take MasterCard and Visa. The component will be sent to you by CompuServe email. We’ll also notify you as
planned enhancements become available.

Created by Ron Stevenson

CompuServe ID 75342,2651

� EMBED PBrush ���

Partners in Information Technology

6300 Southcenter Boulevard

Seattle, WA 98188

(206) 244-2400

