Session #ENG-100

Introduction to Databases

Tom Rettig

Rettig Micro Corporation

2532 Lincoln Boulevard, Suite 110

Marina del Rey, CA 90291-5978

Voice 310-301-0911

Fax 310-821-1162

Product Information/Orders 800-742-7843

CompuServe 75066,352

Notice

This material is Copyright �SYMBOL 227 \f "Symbol"� 1995 Rettig Micro Corporation, All Rights Reserved. It was prepared for and presented at the 1995 Microsoft FoxPro International Developer Conference in San Diego, California. Since DevCon, this page and a few notes were added. Some information in here may change by the time Visual FoxPro is released, in which case this document will be upgraded.

Individuals, user-groups, non-profit organizations, and educational institutions may freely distribute this material at no charge provided that it is distributed in its original, complete, and unmodified condition. It may be translated into other languages on the condition that the translators include all the original material including this page, identify themselves in the document, and distribute the translated material free of charge. All other distribution is forbidden without express written permission from Rettig Micro Corporation.

Product Information

Rettig Micro Corporation develops and publishes Tom Rettig's Office® (TRO), a suite of rapid application development (RAD) tools plus an integrated business application including accounting and full source code. TRO's pre-written programs, menus, forms, and reports implement a generic, reusable “foundation” for FoxPro® on top of which you easily build all kinds of applications in record time. TRO for FoxPro 2.6 is a complete cross-platform solution running under Microsoft® Windows�SYMBOL 212 \f "Symbol"�, MS-DOS�SYMBOL 212 \f "Symbol"�, Macintosh®, and UNIX® as a single code base written in 100% pure FoxPro using the FoxPro design tools and unmodified templates. TRO for Visual FoxPro�SYMBOL 212 \f "Symbol"� is a rich class library, fully object oriented, and takes maximum advantage of new features to get your application up and running faster than any other tool on the market, guaranteed! Visual or cross-platform, TRO is the finest FoxPro development environment money can buy with megabytes of functionality ready to use right out of the box.

Contact us today for complete product literature and discover why thousands of developers worldwide choose TRO for building FoxPro RAD applications.

Overview

This session covers everything new in Visual FoxPro databases. You’ll learn how the Database Container makes Visual FoxPro a true relational DBMS by adding keys, relations, views, connections, rules, and triggers to every table it contains, even local .DBF files! You’ll see all the new database goodies including its visual designers, language extensions, and user extensibility. We’ll explore the new data types, null support, long names, nested transactions with rollback, referential integrity, binding data sources to forms and controls, form sessions, record and cursor buffering that forever eliminate any need to edit data variables, SQL back-end connectivity, and more.

Databases

The Visual FoxPro database implementation is very powerful and brings Visual FoxPro into the mainstream relational world, both in client/server and LAN capabilities. Visual FoxPro is not just a “real” database, it’s a solid generation ahead of the competition.

A database is a collection of tables and descriptions. Tables in a Visual FoxPro database are individual .DBF files. The database describes the tables’ properties, rules, triggers, relations, views, connections, and stored procedures. The Visual FoxPro database container is implemented in an ordinary .DBF file but with a .DBC extension.

The database container does not contain a full description of the table that allows you to recreate the table and its indexes from the database. Rather, it contains additional information beyond the tables’ structure and indexes. The database requires that the tables and indexes exist when they are added to the database. From the Visual FoxPro viewpoint, the .DBF file describes (and is) the table’s structure, and the .CDX file describes (and is) the index tag structures. Think of the database as an extension and container rather than a metadata description.

The database must be open when any of its tables are, and Visual FoxPro opens the database automatically when any of its tables are used. Thus, the database always controls and protects the tables regardless of how the tables are accessed.

You can open more than one database, and you select the current one with the database ComboBox on the Standard toolbar or with SET DATABASE TO.

Database Designer

The Database Designer displays a database’s “schema” as a visual representation. A schema is a collection of all the database’s information about the objects it contains. Everything you can do programmatically with a database, you can do visually in the Database Designer.

In the Database Designer, you can create, add, modify, and remove tables, relations, views, connections, rules, triggers, and stored procedures from the toolbar, menu, or by right clicking on the Designer window or one of its objects. From here, you can also access the “RI Builder” to specify referential integrity rules.

Stored Procedures

All code used by the database should be “encapsulated” in the database as stored procedures. This assures that all the required code is always compiled and in memory whenever a table is accessed, even from outside any application. Code used by the database includes user defined functions in rules, triggers, and index expressions.

Stored procedures should have no external dependencies. Although they can access external PUBLIC or PRIVATE (in scope) variables, they should not do so and should be fully functional by themselves. Think of them as your database’s sole guardian.

Language Extensions

Command/Function�Action��CREATE DATABASE�Create a new database container��OPEN DATABASE�Open an existing database container��SET DATABASE TO�Make an open database the current one��MODIFY DATABASE�Open the Database Designer for an open database��MODIFY PROCEDURE�Create/modify stored procedures in the current database��COMPILE DATABASE�Compile stored procedures into object code in the current database��LIST/DISPLAY DATABASE�Display information about the current database��LIST/DISPLAY PROCEDURE�Display information about stored procedures in the current database��PACK DATABASE�Remove deleted records from the current database��VALIDATE DATABASE�Check a database’s validity, and optionally recover an invalid one��DBC()�Full path name of the current database��DBUSED()�Is a specified database open?��ADATABASES()�Get array of all open databases��ADBOBJECTS()�Get array of objects in the current database��DBGETPROP()�Get a database property��DBSETPROP()�Set a database property��CLOSE DATABASE�Close the current database, all its tables, and all open free tables��DELETE DATABASE�Delete database from disk, and optionally delete or free all its tables��Tables

Tables are “free” when they are created without a selected open database, otherwise they are automatically added to the database.

Tables can belong to only one database. The table header stores a “backlink” to the database to which it belongs in the form of a relative path. When you open a database table and the database is not already open, Visual FoxPro will open it automatically. Forcing the database to be open assures that all the rules and triggers are properly checked regardless of how the table is accessed.

Tables in a database can have alias names up to 128 characters long.

The number of work areas is 32,767 per Form Session.

Table Designer

When the table belongs to a database, the Table Designer lets you set field and row data validation rules, field default values, and event triggers. Everything you can do programmatically with a table, you can do visually in the Table Designer.

Language Extensions

Command/Function�Action��CREATE TABLE�SQL compatible with many keywords added (see below)��ALTER TABLE 1�SQL change the table’s structure, keys, rules, and procedures��ADD TABLE�Add a free table to the current database��LIST/DISPLAY TABLES�Display information about tables in the current database��CLOSE TABLES�Close current database’s tables without closing database��REMOVE TABLE�Remove a table from the current database and make it a free table��FREE TABLE�Change a database table to a free table when the DBC is not available��INDBC()�Is a table, connection, or view in the current database?��UPDATE 2�SQL update��DELETE 2�SQL delete��ISEXCLUSIVE()�Is a table opened exclusively?��LOCK("0", cAlias)�Lock a table header without locking the whole file��UNLOCK RECORD nRecno�Unlock a single record by number, or the header using zero��SET CPDIALOG ON | OFF�Specify if the Code Page dialog appears when a program opens a table��1 ALTER TABLE moves the record pointer and drops any filter or order..

2 SQL UPDATE and DELETE move the record pointer. If an index is ordering the table, the pointer is left at the last updated or deleted record, otherwise it's left at the last physical record in the table.

CREATE/ALTER TABLE Options

Clause�Action��DEFAULT 1�Assign a default value to a field when a new record is added��NULL | NOT NULL�Can a field accept null values?��CHECK lValid [ERROR cText]�Data validation rule and error message, both row and field level��PRIMARY KEY�Create/remove the table’s primary key tag��FOREIGN KEY�Create/remove a foreign key tag��REFERENCES�Specify the foreign key table for a persistent relation��NOVALIDATE�Allow this change when current data is in violation of it��1 DEFAULT can be any Visual FoxPro expression and may be, or include, a user-defined function.

New Data Types

Data types and null support are available in both free and database tables.

DateTime

The DateTime data type uses 14 bytes and presents the data in the format, Date + Time. The actual format depends on the settings of SET DATE, SET CENTURY, SET MARK, SET HOURS, SET SECONDS, the settings of the International options in the Windows Control Panel, and the settings of the Regional option in the Visual FoxPro Options dialog. Only whole seconds are stored, not fractions as returned by the SECONDS() function.

Command/Function�Action��SET SECONDS ON | OFF�Affect whether datetime includes seconds��DATETIME()�Current date and time as a datetime value��TTOC()�Convert datetime to character��TTOD()�Convert datetime to date��CTOT()�Convert character to datetime��DTOT()�Convert date to datetime��HOUR()�Get hour portion of datetime��MINUTE()�Get minute portion of datetime��SEC()�Get second portion of datetime��Currency

The currency data type uses 8 bytes and stores all values with four decimal places.

Command/Function�Action��MTON()�Convert currency to numeric��NTOM()�Convert numeric to currency��Double

The double data type uses 8 bytes and is primarily for compatibility with other databases. It offers greater precision and less storage space over numeric and float types. No conversion is needed among these three types.

Like float, the double is distinct in tables only. FoxPro treats them both as numeric internally and in variables.

Picture

The picture data type is for backward compatibility with FoxBASE Mac only. Use General with OLE instead.

Binary

Character and memo fields have an additional “binary” type that prevents these fields from being code-page translated. They are the field-level versions of SET NOCPTRANS, a command that is not necessary anymore. You can select Character(binary) or Memo(binary) in the Table Designer or specify field-level NOCPTRANS in CREATE/ALTER TABLE.

Null Value

The null value is not a data type. Any data type may contain a null value except a table’s field that is part of a primary, candidate, or compound index tag expression.

Think of null as meaning, “I don’t know what value this is” or “no value has been assigned.” If a value is unknown or not yet assigned, it obviously cannot be compared to other real values of the same data type without the result being, “I don’t know what this result is.” The same logic applies to why a null value is invalid as a unique identifier in a primary, candidate, or compound key tag.

Command/Function�Action��.NULL.�Null value is a value for all data types and is not a command/function��SET NULL ON | OFF�Affect how columns are created in CREATE/ALTER TABLE��ISNULL()�Does the expression contain the null value?��NVL()�Get the non-null value from two expressions��CREATE/ALTER TABLE�NULL keyword on ADD/ALTER COLUMN��EMPTY() and ISBLANK() always return false when testing a null value. Null is neither equal to nor not equal to a data value and must always be tested with ISNULL() or NVL().

	STORE "Some String" TO cChar1, cChar2

	cChar2 = .NULL.

	? TYPE("cChar1"), TYPE("cChar2") && both character type

	lResult = (cChar1 = cChar2)

	? TYPE("lResult"), lResult && logical type contains .NULL.

	? ISNULL(cChar2), ISNULL(lResult) && both true

	? ISBLANK(cChar2) EMPTY(cChar2) && both false

	? NVL(cChar2, cChar1) && cChar1 value of "Some String"

Indexes

In Visual FoxPro, indexes are more than just ways of ordering and accessing data. They are the relational keys that implement persistent relations between tables in a database. This is a very powerful new technique.

Index tags can be designated as a “candidate” key and, if the table belongs to a database, a “primary” key. You set persistent relations from one table’s primary or candidate tag to another table’s tag, which is the “foreign” key.

Table Designer

When the table belongs to a database, the Table Designer lets you set one index tag to be the primary key.

Language Extensions

Command/Function�Action��INDEX�Enhanced to allow candidate tags��CANDIDATE()�Is tag a candidate key?��PRIMARY()�Is tag a primary key?��CREATE/ALTER TABLE�PRIMARY and UNIQUE 1 clauses to ADD and DROP tags��1 UNIQUE means candidate in SQL terminology. Do not confuse this with the UNIQUE keyword in the INDEX command and the Table Designer. See Unique below.

Candidate

Candidate keys are so named because they are “candidates” to become the primary key. They are also called “alternate keys” in relational theory.

Candidate keys cannot contain nulls or duplicate data.

Both free and database tables can have candidate key tags, and each table can have more than one.

Candidate keys are ideal for preventing duplicate entries and eliminate the need to write duplicate checking routines in row-level data validation rules.

Primary

A primary key tag has the same rules as candidate except that the table must belong to a database, and each table can have only one primary key tag. Primary tags are assigned with CREATE/ALTER TABLE or the Table Designer and are not available from the INDEX command.

Unique

This is the old style index that takes just the first occurrence but does not prevent duplicate entries as candidate and primary tags do. This is included in the Table Designer and INDEX command only for backward compatibility and should not be used. Above all, do not confuse the name with truly unique tags like primary and candidate. Note that the SQL commands, CREATE/ALTER TABLE, use UNIQUE to mean candidate.

Filtered

All index tags can be filtered on a logical condition. For example, if you filter your primary key tag on NOT DELETED(), your deleted records can contain duplicate primary key values that would otherwise be forbidden. This is valuable for maintaining “reusable” records instead of having to periodically PACK the table.

If you want Rushmore to always be optimized, you must also provide an unfiltered tag on the same expression as the filtered tag.

Deleted

You can add a tag on DELETED() to speed up access when using the DELETED() condition in local SQL commands. The existence of this tag enables Rushmore optimization on the expression.

	SELECT * FROM MyTable WHERE NOT DELETED()

	LOCATE FOR cMyPrimaryExp = " " AND DELETED() && reusable record

Relations

The two types of relations are “persistent” and “temporal.”

Temporal relations are temporary, the same as SET RELATION TO. They establish a runtime link between two tables and may or may not correspond to existing persistent relations. See Use in Forms below. The rest of this section discusses persistent relations.

Persistent relations are set from one table’s primary or candidate tag to another table’s tag, which is the “foreign” key. Both tables must belong to the same database. Persistent relations are used to enforce relational integrity rules. Persistent relations can be “self-referential,” which means that they are set from one tag to another in the same table.

One table can be involved with several relations into several tables, but rarely will it be involved in more than one relation with each table.

Persistent relations can exist only between base tables in the database and cannot be used with view cursors.

Relations are one-to-one if the foreign key tag is primary or candidate, otherwise they are one-to-many. In many-to-many relations, each table must set a one-to-many relation into another “junction” table. This table creates the many-to-many relation between its participant tables.

Edit Relationship Dialog

This dialog appears when you create or modify a persistent relation in the Database Designer.

Language Extensions

Command/Function�Action��CREATE/ALTER TABLE�ADD/DROP FOREIGN KEY clause��ADBOBJECTS()�Get array of related tables, tags, and referential integrity rules.��Relational Integrity

Relational integrity comprises both “entity” and “referential” rules. Entity rules affect which data is allowed in the table, and are enforced through Visual FoxPro Rules. Referential rules affect related tables and are enforced through Visual FoxPro Triggers. Use the RI Builder to specify referential integrity rules.

See Rules and Triggers below.

Relational Key Link

There is much debate over whether the relational key link should be internally generated or not. Relational theory states that the primary key should be “meaningful” and thereby describe the database’s schema. To prevent difficulties with compound key expressions and non-unique data, unique identifying numbers can be assigned. These would include keys like Vendor number, Invoice number, and Part number.

As a practical matter, any part of the primary key that has meaning can change and duplicate entries can result from entry errors, mergers, and fraud. Although assigning a unique internal number on which to link relations can’t eliminate the possibility of duplicate entries, it does reduce maintenance by not having to cascade eventual corrections through all persistent relations.

Whether to use meaningful or assigned numbers to link relations is a design decision we must all make. This developer prefers internally assigned numbers, but Visual FoxPro will let you do it any way you choose.

Rules

Rules can be set for each field and for an entire record. A rule is a logical expression, which if false, prevents the field or row change from occurring and displays the validation text. The rule may be implemented as a function in stored procedures that returns a logical value.

Tables must be in a database container to use rules. If the rule expression is a function, store it in the database’s stored procedures so it is always available regardless of how the table is accessed.

Use rules to enforce “entity” or “data” integrity (what is allowed in the table) at the field or row level.

Use NOT ISNULL() checking to require a value in fields that accept nulls or NOT EMPTY() in fields that do not. In either case, you must provide a default value so the rule isn’t violated when a new record is added.

You can use the Update trigger to allow invalid values to be inserted, e.g., a blank record added without defaults, and not be tested until the record is committed.

To prevent duplicates, use a candidate index tag instead of data validation rules.

Modifying anything in the table from a rule is not allowed and causes an “Illegal recursion” error. Rules simply tell any source that tries to change something whether or not the change is valid. If you have a form, it can check rule violations in its Error event and control its behavior accordingly. Whatever you use to access the table (Forms, BROWSE, SQL, ODBC), it’s up to that access device to behave according to the messages it receives from the database’s rules.

Field rules must not conflict with record rules, and neither may conflict with triggers or defaults.

Field rules fire before record rules, and record rules fire before triggers. If buffering is used (see Buffering below), both field and record rules fire on the buffered record, but triggers don’t fire until you commit the change.

Use AERROR() in your form’s Error event to respond to rule errors with specific messages and behavior.

See the example in Transactions below.

Table Designer

When the table belongs to a database, the Table Designer lets you set field and row data validation rules and text.

Language Extensions

Command/Function�Action��CREATE/ALTER TABLE�SET/DROP CHECK [ERROR] clause��AERROR()�Detect field and record rule violations.��Field-Level Rules

Field rules are activated when the field value changes. This can occur when you add or change a record in the language or when you move off a changed field in a form or browse. The rule is not checked if no changes are made.

Record-Level Rules

Record rules are activated when the record pointer moves off the record or attempt to commit the changes with END TRANSACTION or TABLEUPDATE(). The record pointer moves in a form, browse, or from language commands like COUNT, INSERT, LOCATE, and SKIP. The rule is not checked if no changes are made.

Make sure your rule functions do not move the record pointer in their attempt to validate the data. Use SQL SELECT to retrieve information without moving the record pointer.

Triggers

Triggers are events that occur on an Insert, Update, or Delete attempt. You can store a different trigger expression for each event. Insert triggers fire when a record is added or a deleted record is recalled. Delete triggers fire when a record is deleted. Update triggers fire when a record is changed. Like record-level rules, triggers activate when you move off the record or attempt to commit the changes with END TRANSACTION or TABLEUPDATE().

Trigger expressions are generally functions in stored procedures that test the current attempt and return a logical true if okay or false if not. True allows the event to take place, and false prevents it and fires the error “Trigger failed.” To show a different message, trap this error in your error handler.

Tables must be in a database container to use triggers. Store function code in the database’s stored procedures so it is always available regardless of how the table is accessed.

Use triggers to enforce “referential” integrity (how the event affects or is affected by related (referenced) tables). Referential rules are properties of a persistent relation, and are set with the RI Builder.

Triggers must not conflict with field and record rules or field defaults.

As with Rules, modifying anything in the table from a trigger is not allowed and causes an “Illegal recursion” error.

Both field and record rules fire before triggers. If buffering is used (see Buffering below), both field and record rules fire on the buffered record, but triggers don’t fire until you commit the change.

Use AERROR() in your form’s Error event to respond to trigger errors with specific messages and behavior.

See the example in Transactions below.

Table Designer

When the table belongs to a database, the Table Designer lets you set Insert, Update, and Delete trigger expressions.

Language Extensions

Command/Function�Action��CREATE TRIGGER�Add a trigger to a table��DELETE TRIGGER�Remove a trigger from a table��AERROR()�Detect trigger violations.��Buffering

Visual FoxPro has two kinds of buffering, row and table. Use row buffering when you deal with one record at a time, and use table buffering when you deal with multiple records. Buffering eliminates the need to store field values to temporary variables or arrays for editing.

Buffering works with both free and database tables as well as cursors.

Buffering is most effective when used within a transaction (see below), but it can also be used alone.

Language Extensions

Command/Function�Action��CURSORGETPROP()�Get a table’s buffering property��CURSORSETPROP()�Set a table’s buffering property��GETFLDSTATE()�Has a table’s field been edited, appended, or its deleted status changed?��SETFLDSTATE()�Set the state of a field��GETNEXTMODIFIED()�Get a table’s record number of its next record that has been modified��CURVAL()�Get the current value of a table’s field��OLDVAL()�Get the original value of a table’s field at the time it was first buffered��AERROR()�Detect rule and trigger violations.��TABLEREVERT()�Discard buffered row, table, or cursor changes and restore original��TABLEUPDATE()�Commit buffered row, table, or cursor changes��Buffered Locking

The two kinds of buffered locking are optimistic and pessimistic.

Optimistic locking lets you edit all the buffered records and doesn’t attempt to lock them until you commit the changes. CURVAL() and OLDVAL() work only when optimistic buffering is in effect and are used to detect whether another user changed anything that you did.

Pessimistic locking locks the records at the time they are buffered and retains the locks until you commit or roll back your changes.

TABLEUPDATE() releases automatic record locks. Explicit locks made with LOCK() are not released.

Transactions

Tables must be in a database container to use transactions.

Transactions can be nested five levels deep.

All changes made after a BEGIN TRANSACTION are not “committed” to the table until an END TRANSACTION is executed. All changes made during a transaction are discarded if a ROLLBACK is executed instead of END TRANSACTION.

ROLLBACK and END TRANSACTION can occur from anywhere in the application, such as in an error routine. Unlike all other Visual FoxPro “structured” commands, they do not have to appear in the same program, procedure, or class method. ROLLBACK and END TRANSACTION always terminate the most recently issued BEGIN TRANSACTION, that is, the current transaction level and release all automatic locks but not manual locks.

If the system crashes or the power goes down during an incomplete transaction, it is the same as issuing ROLLBACK, that is, no changes will appear in the tables involved in the transaction.

Transactions are very useful in a client/server environment because they can roll back the local cursor if there is an error updating the server.

Language Extensions

Command/Function�Action��BEGIN TRANSACTION�Begin a transaction (can be nested five levels)��TXNLEVEL()�Number of transaction levels in use��ROLLBACK�End the current transaction and discard all changes��END TRANSACTION�End the current transaction and save or “commit” all changes��Example

ON ERROR DO MyErrorHandler && or call from a form's Error method

BEGIN TRANSACTION

	INSERT INTO MyTable (cField) VALUES ("Whatever")

	BEGIN TRANSACTION

		INSERT INTO AnotherTable (cField) VALUES (MyTable.cField)

		REPLACE AnotherTable.nNumber WITH 123

	END TRANSACTION

	REPLACE MyTable.nNumber WITH AnotherTable.nNumber

END TRANSACTION

ON ERROR

PROCEDURE MyErrorHandler

	LOCAL laError[1], llRollback

	=AERROR(laError)

	DO CASE

		CASE INLIST(laError[1], 1581, 1582, 1884)

			* 1581: Field doesn't accept NULL

			* 1582: Field rule violated

			* 1884: Unique index violation

			llRollback = .T.

			=MESSAGEBOX(laError[2]+" "+laError[3]) && include field or tag name

		CASE INLIST(laError[1], 1583, 1585, 1700)

			* 1583: Record rule violated

			* 1585: Record changed by another

			* 1700: Record in use by another

			llRollback = .T.

			=MESSAGEBOX(laError[2])

		CASE laError[1] == 1539 && Trigger failed

			llRollback = .T.

			DO CASE

				CASE laError[5] == 1

					=MESSAGEBOX("Insert "+laError[2])

				CASE laError[5] == 2

					=MESSAGEBOX("Update "+laError[2])

				CASE laError[5] == 3

					=MESSAGEBOX("Delete "+laError[2])

			ENDCASE

	ENDCASE

	IF llRollback

		DO WHILE TXNLEVEL() > 0

			ROLLBACK && all

		ENDDO

	ENDIF

ENDPROC

Connections

Connections are a bridge between the Visual FoxPro database and an external ODBC database, and are used by Views (see below) to retrieve a local cursor for manipulation. Views can be updatable, which means that any changes made to the local cursor will be written to the connected table(s).

The external database can be any database for which an ODBC driver is registered.

Connection Designer

The Connection Designer lets you set a connection’s properties including the connected data source, user ID, password, timeout intervals, and type of execution and processing. Everything you can do programmatically with a connection, you can do visually in the Connection Designer.

Language Extensions

Command/Function�Action��CREATE CONNECTION 1�Create connections in current database��MODIFY CONNECTION�Edit connections in current database using the Connection Designer��LIST/DISPLAY CONNECTIONS�Display connections in the current database��DELETE CONNECTION�Remove a connection from the current database��1 Use the Connection Designer or keywords DATASOURCE, USERID, PASSWORD, and CONNSTRING

Execution

Connection execution can be “synchronous” or “asynchronous.” A synchronous connection completes execution before returning control to Visual FoxPro. An asynchronous connection returns control periodically during execution so you have the opportunity to display a progress thermometer or cancel execution that takes too long.

Views

Views are cursors or “virtual tables” that exist in the database by definition only. When you open a view, the cursor is created by retrieving the data in its definition with SQL.

Views can be updatable, which means that any changes made to the local cursor are written to the view’s table(s).

Views can be set between two tables in the same database or between one table in a database and the other either in another database or a free table. The view itself must belong to a Visual FoxPro database.

Local

A local view is a view of local Visual FoxPro tables, which may be free or belong to a local database. Local views use the local SQL commands, SELECT, INSERT, UPDATE, and DELETE.

Remote

A remote view is a view of tables in a non-FoxPro database that is accessed through an ODBC connection. The external database can be any database for which an ODBC driver is registered. Remote views use SQL pass-through functions (see below).

View Designer

The View Designer lets you set a view’s properties including the tables, fields, order, group, and selection and update criteria. The SQL available in the View Designer is a subset of Visual FoxPro’s SQL language, so although you can do quite a lot from the designer, you can actually do more with the language.

Language Extensions

Command/Function�Action��CREATE SQL VIEW�Create local or remote view in the current database using the View Designer��MODIFY VIEW�Edit local or remote view in the current database using the View Designer��LIST/DISPLAY VIEWS�Display information about views in the current database��USE ViewName�Execute the named view, opening all its tables��CURSORGETPROP()�Get a view’s cursor properties��CURSORSETPROP()�Set a view’s cursor properties��GETFLDSTATE()�Has a cursor’s field been edited, appended, or its deleted status changed?��SETFLDSTATE()�Set field or deletion state in a local cursor created from a remote view��REFRESH()�Refresh records in a remote updatable SQL view��REQUERY()�Reissue a parameterized query after changing the parameter��DELETE VIEW�Remove a view from the current database��SQL Pass-Through Functions

Command/Function�Action��SQLCONNECT()�Establish an ODBC connection to a remote data source��SQLSTRINGCONNECT()�Establish an ODBC connection using a connection string��SQLGETPROP()�Get current or default settings of connection, data source, or attached table��SQLSETPROP()�Set current or default settings of connection, data source, or attached table��SQLEXEC() 1�Send a SQL statement to be processed by the remote data source��SQLMORERESULTS() 1�Get another result set if more are available��SQLCANCEL()�Cancel an executing SQL statement��SQLROLLBACK()�Cancel any changes made during the current transaction��SQLCOMMIT()�Commit a transaction��SQLTABLES() 1�Get a data source’s table names into a cursor��SQLCOLUMNS() 1�Get a remote table’s column details into a cursor��SQLDISCONNECT()�Terminate an ODBC connection to a remote data source��1 The four SQL pass-through functions that can operate asynchronously (see Connections for a description) are SQLEXEC(), SQLMORERESULTS(), SQLTABLES(), and SQLCOLUMNS().

Use in Forms

Opening tables and cursors in a form is achieved automatically by “binding” a data source to the form or its controls.

You bind data to forms in the DataEnvironment property, which you access from the toolbar, menu, or by right clicking on the Form Designer window or one of its objects. The DataEnvironment can contain both tables and views, and opens them when the form is run. Any relations set here are temporary or “temporal” relations set at runtime with SET RELATION TO.

You bind data to controls in their source properties, ControlSource, RowSource, RowSourceType, ChildOrder, and LinkMaster.

Multiple session forms give you an unlimited number of work areas for any form because each instance of the form uses its own copy (“data session”) of the work areas populated by the DataEnvironment property.

Extending the Database Container

You can add fields to the DBC, but you cannot add records. You can add index tags, but not to the .DCX production file. If you add an index tag, a .CDX file is created which you must remember to explicitly open whenever you USE the DBC. Because Visual FoxPro updates the DBC, you must always check to make sure that your extensions, however implemented, are current with any Visual FoxPro updates.

Visual FoxPro only changes the DBC objects Database, Table, and Connection. Any changes made to Field, Index, and View objects, either visually or programmatically, cause existing records to be marked DELETED() and new records added to replace them. For example, when you rename one field, all that table’s field entries in the DBC are deleted and new entries are written for each field, even the ones that did not change. When the database container is packed from the Database menu or with PACK DATABASE, or if you USE it and PACK, all the ObjectID entries are renumbered to match the record number and all the ParentID numbers are renumbered to match their parent’s new ObjectID.

If you extend the DBC by adding fields or putting lots of information in the User field, you may risk contention issues with VFP over use of the file. A better method is to use a separate file linked by a unique ID in the User field, which is always copied over when changes occur.

Structure

Field�Field Name�Type�Width�Dec�Index�Collate�Nulls��1�OBJECTID�Numeric�10����No���Object’s ID is always the same as the object’s record number��2�PARENTID�Numeric�10����No���Object’s parent ID is the object ID of the object’s parent object��3�OBJECTTYPE�Character�10��Asc�Machine�No���Object’s type is Database, Table, Field, Index, View, Connection, or Relation��4�OBJECTNAME�Character�128��Asc�Machine�No���Object’s name��5�PROPERTY 1�Memo�10����No���Object’s properties with binary identifiers��6�CODE�Memo�10����No���Stored procedures; both source and compiled each in its own record��7�RIINFO�Char�6����Yes���Referential integrity rules for Update, Delete, and Insert events��8�USER 2�Memo�10����No���A place to store any user-defined extensions you want to create��Total���195������1 A table’s file path is a property of the table and is stored as a read-only relative path to the DBC location.

2 The User field should be left for the user’s custom use if any. Third party add-on products that extend the DBC should either add fields using the prefix U_, as in U_TRO, or keep extensions in a separate file. A separate file is preferable to prevent contention issues with Visual FoxPro over the DBC.

Index Tags

Tag Name�Expression�Filter��ObjectName�STR(ParentID) + ObjectType + LOWER(ObjectName)�NOT DELETED()��ObjectType�STR(ParentID) + ObjectType�NOT DELETED()��Object Types, Parents, and Locations

Parent objects are always located physically before their child objects.

The main Database object is always record number one and has itself as its parent. Other Database objects include TransactionLog, StoredProdecuresSource, and StoredProdeduresObject, which occupy records 2 through 4 and all have the main Database object (record 1) as their parent.

Tables, Views, and Connections all have the main Database object (record 1) as their parent.

Indexes and Relations have Tables as their parent. A Relation's parent table is the foreign key table.

Fields have both Tables and Views as their parent(s).

DBC Access

Because the Database Container is an ordinary Visual FoxPro table, you can access it directly. Although you should not need to do this since you can get all its information from language extensions, it’s useful to see how the structure and tags facilitate access.

The ObjectID is always the same as the object’s record number, so you can quickly access any object’s parent object with GO nRecordNumber.

	USE MyData.dbc AGAIN IN SELECT(1) ALIAS Parent

	USE MyData.dbc AGAIN IN SELECT(1) ALIAS Child ORDER ObjectName

	SELECT Child

	SCAN

		GO Child.ParentID IN Parent

		? Child.ObjectType, Child.ObjectName

		? " Parent:", Parent.ObjectType, Parent.ObjectName

	ENDSCAN

To access children of a parent, use the indexes.

	USE MyData.dbc AGAIN IN SELECT(1) ALIAS Child ORDER ObjectType

	USE MyData.dbc AGAIN IN SELECT(1) ALIAS Parent ORDER ObjectName

	SELECT Parent

	SCAN

		IF SEEK(STR(Parent.ObjectID), "Child") && assumes SET EXACT OFF

			? Parent.ObjectType, Parent.ObjectName

			DO WHILE Parent.ObjectID == Child.ParentID

				? " Child:", Child.ObjectType, Child.ObjectName

				SKIP IN Child

			ENDDO

		ENDIF

	ENDSCAN

Extended Database Container Class Library

The DevCon source code diskette contains a class library, EdcLib.prg, that you can use to add your own extensions to the DBC. It is posted on the beta forums and will be posted publicly when VFP is released.

EdcLib uses a single extended file with separate memo fields for everybody’s individual extensions. This prevents DBC bloat, allows the user to access a different extension with each instance, and allows everybody to access each other’s extensions.

Methods create the extended file and individual extension fields, set and retrieve extended properties and unique identifiers, validate the EDC to the DBC, and analyze the DBC Property field’s data.

All extended properties are fully user-defined, can be assigned to any DBC object, and their values can be any data type except General, Memo, Object, Picture, and Screen.

All names, delimiters, and limits are properties that can be changed by subclassing.

All messages are properties that can be subclassed for other languages.

This class library is public domain, subject to a warranty disclaimer, and may be used freely by anyone in any way without obligation to the author other than indemnification according to the disclaimer.

Conclusion

Way cool! There’s nothing you can’t do with Visual FoxPro’s database implementation.

Developers who have never worked with a “real” database may find some difficulty adjusting to relational constraints. For more information on relational theory and implementation, I highly recommend An Introduction to Database Systems by C. J. Date from Addison Wesley.

Introduction to Databases	1995 Microsoft FoxPro International Developer Conference��SYMBOL 227 \f "Symbol"� 1995 Rettig Micro Corporation, All Rights Reserved	Session #ENG-100 Page � PAGE �1�

