Creating The “Dr. Dobb’s Journal”�OLE Custom Control

by Steve Ross

Note from DDJ editors: The following narrative was contributed by Steve Ross of Microsoft as part of the submission for “Implementing Interoperable Objects”, which appeared in the Dr Dobbs Special Report on Interoperable Objects, Winter 1994-1995. The article, which is originally in Microsoft Word 6.0 format, contains numerous screen shots which bring the total size up to 2.3 megabytes. We’ve taken the liberty of deleting the screen shots to make it more convenient for those downloading the listings from Compuserve and other bulletin boards. This narrative is appearing in two forms: MS_OCX.DOC (which contains the Word 6.0 document) and MS_OCX.TXT (which is the plain ASCII version of the document).

Problem Description

The following problem description is copied directly from email written by Ray Valdes.

Ideally, the sample component object and application will be implemented on three levels:

A. first, a non-visual implementation that is close to the traditional client/server model, in which the client application makes a request (say, for the phone number) from the server component (which would fill a buffer or return a pointer to shared storage). The emphasis of our coverage is on the messaging/packaging/naming machinery necessary to get the client and server to collaborate across various boundaries. Relevant boundaries are address space, process lifetime boundaries, machine/network boundaries and implementation language boundaries.

DDJ readers will be very curious and motivated to examine the source code to see if the implementation is understandable and workable. Because of this, it is best if the implementation is done by experts who are familiar with the technology, as opposed to having a novice attempt to climb the learning curve.

B. second, a visual implementation that shows the compound document capability. This option, of course, rules out technologies that are strictly low-level in scope, such as SOM/DSOM and ORB. The component object gets embedded in a container document and allow the user to type in a query (such as a name) and displays the resulting phone number. The goal is to demonstrate to the application developer the mechanics of the linking-and-embedding protocol. An additional goal might be to highlight the power of a development tool, class library or app framework, that would ease the burden of implementing this complex protocol between container and component.

C. finally, an optional implementation might show how an application can access the component's service programmatically, via a scripting language or automation interface.

Solution Using OLE Custom Controls

The following description shows how to implement item (B) from the above list as an OLE Custom Control.

Implementation Strategy

For the purposes of this demonstration, we will create an OLE Custom Control that is a subclassed Windows listbox. We will use this subclassed listbox to demonstrate that we can:

Access the “one-minute phone directory database” by Ray Valdes (the code is contained in Appendix A of this document)

Display the data

Fire off an event, NameNumberChanged, when the user changes the selection (demonstrating the events part of OLE Custom Controls, and an important difference between these controls and the standard listbox control)

Provide some methods for accessing the database: GetNameFromNumber, and GetNumberFromName. These methods call the phonedir_LookupByNumber and phonedir_LookupByName functions written by Ray Valdes. The importance of this is that it demonstrates how easily one can encapsulate functionality in an OLE Custom Control.

Provide some read-only properties for inspecting the state of the object: CurrentNumber and CurrentName. These are read-only because the database is read-only. They could just as easily have been read/write, but this provides us with an interesting opportunity to show the flexibility of OLE Custom Controls.

Automated Steps–Part 1: Using the Control Wizard

To start an OLE Custom Control, the first step is to describe it to the Control Wizard. The Wizard then generates much of the code necessary to implement the control. For the purposes of this document, Visual C++ version 2.0 will be discussed, although exactly the same steps work for Visual C++ 1.5 (with the OLE Custom Control Development Kit installed).

Control Wizard General Steps

To start the Control Wizard, choose Control Wizard from the Tools menu. Visual C++ brings up the following dialog box:

	

Figure � SEQ Figure * ARABIC �1�–The Control Wizard

This dialog box looks very similar to the App Wizard dialog, which many Visual C++ users have learned.

(For the fields on this page, take the following actions:

For the project name, type ddjdemo

Navigate the directory listing until you have found a location suitable (not the root) for your control development work.

The Control Wizard proposes a subdirectory called “ddjdemo” and a project name called “ddjdemo.” This is correct. Do not press OK yet.

Next, choose the Control Options button.

Control Wizard: Control Options

<<Figure removed to save space. --- DDJ >>

Figure � SEQ Figure * ARABIC �2�–The Control Options Dialog

The Control Options dialog presents you with a few choices. The only items we need to modify are the following:

Check the “Subclass Windows control” option

Pick “LISTBOX” from the Windows control class dropdown list

Choose OK

The Control Wizard–Wrapup

You can now choose OK to have the Control Wizard generate your control. As you may have noticed from looking around, there are other options available using the Control Wizard, each specific to a different kind of control. Discussion of these other options is beyond the scope of this document.

Automated Steps–Part 2: Defining the OLE Interface Using the Class Wizard

Before adding any implementation at all, you need to define the interface to your OLE Custom Control. This is most easily done using the Class Wizard. To start, choose ClassWizard from the Project menu.

<<Figure removed to save space. --- DDJ >>

Figure � SEQ Figure * ARABIC �3�–ClassWizard OLE Automation Page

Adding the Methods

Pick the OLE Automation page, as shown in � REF _Ref299777563 * MERGEFORMAT �Figure 3�, above. You are going to be adding two methods: GetNameFromNumber and GetNumberFromName. Here are the steps to do that:

(To add GetNameFromNumber

Pick Add Method

For the “External Name,” type GetNameFromNumber (the ClassWizard proposes the same Internal Name, which is fine)

For the return type, pick BSTR from the dropdown combo box. A BSTR is a length-prefixed string, and is a standard way to return a string type

Here is where Visual C++ 1.5 and 2.0 diverge very slightly. In 2.0, there is in-place editing of the parameters to methods, whereas in 1.5 you have to add the parameters explicitly. Whichever you are using, add a parameter called szName and for the type, specify LPCTSTR (this is a constant Unicode-friendly string).

�<<Figure removed to save space. --- DDJ >>

Figure � SEQ Figure * ARABIC �4�–Adding GetNameFromNumber Method

Choose OK and the method is added.

(To add GetNumberFromName, repeat the same steps as above. The completed dialog box is as shown in � REF _Ref299779531 * MERGEFORMAT �Figure 5�, below:

<<Figure removed to save space. --- DDJ >>

Figure � SEQ Figure * ARABIC �5�–Adding GetNumberFromName Method

That’s all there is to adding methods. Once you’ve finished, the ClassWizard will look as follows:

<<Figure removed to save space. --- DDJ >>

Figure � SEQ Figure * ARABIC �6�–ClassWizard with Two Methods Declared

The “M” to the left of the method name indicates that these are methods unique to this control.

Adding the Properties

The properties are added using ClassWizard as well. If you dismissed ClassWizard, start it again and choose the OLE Automation tab. You’ll be adding the CurrentName and CurrentNumber properties.

(To add CurrentName

Choose Add Property

For the “External Name,” type CurrentName

Pick the Get/Set Methods option

For the type, choose BSTR from the dropdown combo box

Clear the Set Function edit box to make the property read-only

A completely filled-in dialog box appears in � REF _Ref299780070 * MERGEFORMAT �Figure 7�, below.

<<Figure removed to save space. --- DDJ >>

Figure � SEQ Figure * ARABIC �7�–Adding the CurrentName Property

(To add CurrentNumber

Repeat the steps above, substituting CurrentNumber for CurrentName

A completely filled-in dialog box is shown in � REF _Ref299780219 * MERGEFORMAT �Figure 8�, below:

<<Figure removed to save space. --- DDJ >>

Figure � SEQ Figure * ARABIC �8�–Adding the CurrentNumber Property

Once these properties have been added, the ClassWizard shows the following screen:

<<Figure removed to save space. --- DDJ >>

Figure � SEQ Figure * ARABIC �9�–Class Wizard with Methods and Properties

The “C” next to CurrentName and CurrentNumber reflect the fact that these are custom properties. The OLE Custom Control Development Kit provides implementation for what are called “stock” properties as well. We won’t touch on these here, but they are shown with an “S” next to them, and you can override the behavior of stock properties if you like.

Adding the NameNumberChanged Event

The last remaining part of the interface to this control is to add an event that is triggered when the user changes selection in the listbox. This event will not only notify the container that the selection has changed but it will also save the container some time and pass the new name and number as event parameters. As with the other interface elements, this is done using the ClassWizard, but this time, you’ll use the OLE Events tab, shown in � REF _Ref299780585 * MERGEFORMAT �Figure 10�, below:

<<Figure removed to save space. --- DDJ >>

Figure � SEQ Figure * ARABIC �10�–OLE Events Tab

(To add the NameNumber

Choose Add Event

For “External Name,” type NameNumberChanged (ClassWizard proposes an internal name of FireNameNumberChanged. This is the function you call in your control’s code to actually fire the event. Accept the proposed name)

As with methods, there is a slight divergence between the behavior of Visual C++ 1.5 and Visual C++ 2.0 here, as the new ClassWizard accepts in-place editing of parameters. Supply two parameters: szName, of type LPCTSTR, and szNumber of type LPCTSTR

A completely filled-in dialog box is shown in � REF _Ref299780970 * MERGEFORMAT �Figure 11�, below:

<<Figure removed to save space. --- DDJ >>

Figure � SEQ Figure * ARABIC �11�–Adding the NameNumberChanged Event

You can now choose OK to finish your work with the ClassWizard. You have declared a complete OLE interface to this control, but have provided no implementation.

The Implementation

Before getting to the implementation, it is important to do just a bit more with the ClassWizard. Start the ClassWizard and select the Message Maps tab as shown in � REF _Ref299789581 * MERGEFORMAT �Figure 12�, below:

<<Figure removed to save space. --- DDJ >>

Figure � SEQ Figure * ARABIC �12�–Adding a Message Map Entry when a new instance of the control is inserted in a container, we populate the listbox with the entries in the database. A good place to do this initialization is in the OnCreate member function, which responds to the WM_CREATE Windows message.

(To map WM_CREATE to your OnCreate function

Pick CDdjdemoCtrl in the left pane (Object IDs)

Pick WM_CREATE in the right pane (Messages)

Choose the Add Function button

The dialog will appear is the one in � REF _Ref299789581 * MERGEFORMAT �Figure 12�. Choose OK to dismiss the ClassWizard.

The implementation for the methods, events, and properties in this control reside entirely in the file DDJDECTL.CPP. The listing below shows this file, and which lines have been added for implementation. Lines that were added without using the Wizard tools are denoted using the (symbol.

	// ddjdectl.cpp : Implementation of the CDdjdemoCtrl OLE control class.

	

	#include "stdafx.h"

	#include "ddjdemo.h"

	#include "ddjdectl.h"

	#include "ddjdeppg.h"

	

	// Include API to "one-minute phone directory by Ray Valdes

(#include "phonedir.h"

	

	

	#ifdef _DEBUG

	#undef THIS_FILE

	static char BASED_CODE THIS_FILE[] = __FILE__;

	#endif

	

	

	IMPLEMENT_DYNCREATE(CDdjdemoCtrl, COleControl)

	

	

	///

	// Message map

	

	BEGIN_MESSAGE_MAP(CDdjdemoCtrl, COleControl)

		//{{AFX_MSG_MAP(CDdjdemoCtrl)

		ON_OLEVERB(IDS_PROPERTIESVERB, OnProperties)

		ON_MESSAGE(OCM_COMMAND, OnOcmCommand)

		ON_WM_CREATE()

		//}}AFX_MSG_MAP

	END_MESSAGE_MAP()

	

	

	///

	// Dispatch map

	

	BEGIN_DISPATCH_MAP(CDdjdemoCtrl, COleControl)

		//{{AFX_DISPATCH_MAP(CDdjdemoCtrl)

		DISP_PROPERTY_EX(CDdjdemoCtrl, "CurrentName", GetCurrentName, SetNotSupported, VT_BSTR)

		DISP_PROPERTY_EX(CDdjdemoCtrl, "CurrentNumber", GetCurrentNumber, SetNotSupported, VT_BSTR)

		DISP_FUNCTION(CDdjdemoCtrl, "GetNameFromNumber", GetNameFromNumber, VT_BSTR, VTS_BSTR)

		DISP_FUNCTION(CDdjdemoCtrl, "GetNumberFromName", GetNumberFromName, VT_BSTR, VTS_BSTR)

		//}}AFX_DISPATCH_MAP

		DISP_FUNCTION_ID(CDdjdemoCtrl, "AboutBox", DISPID_ABOUTBOX, AboutBox, VT_EMPTY, VTS_NONE)

	END_DISPATCH_MAP()

	

	

	///

	// Event map

	

	BEGIN_EVENT_MAP(CDdjdemoCtrl, COleControl)

		//{{AFX_EVENT_MAP(CDdjdemoCtrl)

		EVENT_CUSTOM("NameNumberChanged", FireNameNumberChanged, VTS_BSTR VTS_BSTR)

		//}}AFX_EVENT_MAP

	END_EVENT_MAP()

	

	

	///

	// Property pages

	

	// TODO: Add more property pages as needed. Remember to increase the count!

	BEGIN_PROPPAGEIDS(CDdjdemoCtrl, 1)

		PROPPAGEID(CDdjdemoPropPage::guid)

	END_PROPPAGEIDS(CDdjdemoCtrl)

	

	

	///

	// Initialize class factory and guid

	

	IMPLEMENT_OLECREATE_EX(CDdjdemoCtrl, "DDJDEMO.DdjdemoCtrl.1",

		0xaf3b7529, 0x89d0, 0x101b, 0xa6, 0xe4, 0x0, 0xdd, 0x1, 0x11, 0xa6, 0x58)

	

	

	///

	// Type library ID and version

	

	IMPLEMENT_OLETYPELIB(CDdjdemoCtrl, _tlid, _wVerMajor, _wVerMinor)

	

	

	///

	// Interface IDs

	

	const IID BASED_CODE IID_DDdjdemo =

			{ 0xaf3b752a, 0x89d0, 0x101b, { 0xa6, 0xe4, 0x0, 0xdd, 0x1, 0x11, 0xa6, 0x58 } };

	const IID BASED_CODE IID_DDdjdemoEvents =

			{ 0xaf3b752b, 0x89d0, 0x101b, { 0xa6, 0xe4, 0x0, 0xdd, 0x1, 0x11, 0xa6, 0x58 } };

	

	

	///

	// CDdjdemoCtrl::CDdjdemoCtrlFactory::UpdateRegistry -

	// Adds or removes system registry entries for CDdjdemoCtrl

	

	BOOL CDdjdemoCtrl::CDdjdemoCtrlFactory::UpdateRegistry(BOOL bRegister)

	{

		if (bRegister)

			return AfxOleRegisterControlClass(

				AfxGetInstanceHandle(),

				m_clsid,

				m_lpszProgID,

				IDS_DDJDEMO,

				IDB_DDJDEMO,

				TRUE,						// Insertable

				OLEMISC_ACTIVATEWHENVISIBLE |

				OLEMISC_SETCLIENTSITEFIRST |

				OLEMISC_INSIDEOUT |

				OLEMISC_CANTLINKINSIDE |

				OLEMISC_RECOMPOSEONRESIZE,

				_tlid,

				_wVerMajor,

				_wVerMinor);

		else

			return AfxOleUnregisterClass(m_clsid, m_lpszProgID);

	}

	

	

	///

	// CDdjdemoCtrl::CDdjdemoCtrl - Constructor

	

	CDdjdemoCtrl::CDdjdemoCtrl()

	{

		// Set sensible initial size for the control

(SetInitialSize(250, 100);

		InitializeIIDs(&IID_DDdjdemo, &IID_DDdjdemoEvents);

	

		// Call Ray's Initialize function

(phonedir_Initialize();

	}

	

	

	///

	// CDdjdemoCtrl::~CDdjdemoCtrl - Destructor

	

	CDdjdemoCtrl::~CDdjdemoCtrl()

	{

		// Call Ray's Terminate function

(phonedir_Terminate();

	}

	

	

	///

	// CDdjdemoCtrl::OnDraw - Drawing function

	

	void CDdjdemoCtrl::OnDraw(

				CDC* pdc, const CRect& rcBounds, const CRect& rcInvalid)

	{

		DoSuperclassPaint(pdc, rcBounds);

	}

	

(#ifndef _WIN32

	// For Windows 3.1, some subclassed controls can't be safely drawn to a metafile.

	// As we don't draw to a metafile anyhow, supply an empty override for the

	// function.If we had a drawing representation, we'd iterate the list box, doing

	// DrawText, TextOut calls for each list item.

(void CDdjdemoCtrl::OnDrawMetafile(CDC* pdc, const CRect& rcBounds)

({

(}

(#endif

	

	

	

	///

	// CDdjdemoCtrl::DoPropExchange - Persistence support

	

	void CDdjdemoCtrl::DoPropExchange(CPropExchange* pPX)

	{

		ExchangeVersion(pPX, MAKELONG(_wVerMinor, _wVerMajor));

		COleControl::DoPropExchange(pPX);

	

		// TODO: Call PX_ functions for each persistent custom property.

	

	}

	

	

	///

	// CDdjdemoCtrl::OnResetState - Reset control to default state

	

	void CDdjdemoCtrl::OnResetState()

	{

		COleControl::OnResetState(); // Resets defaults found in DoPropExchange

	

		// TODO: Reset any other control state here.

	}

	

	

	///

	// CDdjdemoCtrl::AboutBox - Display an "About" box to the user

	

	void CDdjdemoCtrl::AboutBox()

	{

		CDialog dlgAbout(IDD_ABOUTBOX_DDJDEMO);

		dlgAbout.DoModal();

	}

	

	

	///

	// CDdjdemoCtrl::PreCreateWindow - Modify parameters for CreateWindowEx

	

	BOOL CDdjdemoCtrl::PreCreateWindow(CREATESTRUCT& cs)

	{

		// Modify the style bits for the listbox so we 1) can make a tab-separated

		// 2-column list; 2) get notification of listbox events; and 3) can do

		// vertical scrolling.

(cs.style |= LBS_USETABSTOPS | LBS_NOTIFY | WS_VSCROLL;

	

		cs.lpszClass = _T("LISTBOX");

		return COleControl::PreCreateWindow(cs);

	}

	

	

	///

	// CDdjdemoCtrl::GetSuperWndProcAddr - Provide storage for window proc

	

	WNDPROC* CDdjdemoCtrl::GetSuperWndProcAddr(void)

	{

		static WNDPROC NEAR pfnSuper;

		return &pfnSuper;

	}

	

	

	///

	// CDdjdemoCtrl::OnOcmCommand - Handle command messages

	

	LRESULT CDdjdemoCtrl::OnOcmCommand(WPARAM wParam, LPARAM lParam)

	{

	#ifdef _WIN32

		WORD wNotifyCode = HIWORD(wParam);

	#else

		WORD wNotifyCode = HIWORD(lParam);

	#endif

		

		// This is where the listbox notifications are received. The only

		// one we're interested in is LBN_SELCHANGE. When the selection is

		// changed, we reuse the code for GetCurrentName and GetCurrentNumber

		// to retrieve the correct strings for name and phone number, then

		// call the FireNameNumberChanged event that ClassWizard created.

(switch(wNotifyCode)

({

(case LBN_SELCHANGE:

(FireNameNumberChanged(GetCurrentName(), GetCurrentNumber());

(break;

(}

	

		return 0;

	}

	

	

	///

	// CDdjdemoCtrl message handlers

	

	BSTR CDdjdemoCtrl::GetNameFromNumber(LPCTSTR szNumber)

	{

		// Use one-minute phone directory API to retrieve a name

		// given a number

(CString s = phonedir_LookupByNumber((char *)szNumber);

	

		return s.AllocSysString();

	}

	

	BSTR CDdjdemoCtrl::GetNumberFromName(LPCTSTR szName)

	{

		// Use one-minute phone directory API to retrieve a number

		// given a name

(CString s = phonedir_LookupByName((char *)szName);

	

		return s.AllocSysString();

	}

	

	BSTR CDdjdemoCtrl::GetCurrentName()

	{

(UINT nIndex;

		CString s;

	

		// If there is a selection, then get the corresponding name,

		// otherwise return an empty string.

(if((nIndex=(UINT)SendMessage(LB_GETCURSEL)) != LB_ERR)

(s = phonedir_LookupByOrdinal(nIndex).SpanExcluding("\t");

(else

(s = "";

	

		return s.AllocSysString();

	}

	

	BSTR CDdjdemoCtrl::GetCurrentNumber()

	{

(UINT nIndex;

		CString s;

	

		// If there is a selection, then get the corresponding number,

		// otherwise return an empty string.

(if((nIndex=(UINT)SendMessage(LB_GETCURSEL)) != LB_ERR)

({

(s = phonedir_LookupByOrdinal(nIndex);

(s = s.Mid(s.Find("\t") + 1);

(}

(else

(s = "";

	

		return s.AllocSysString();

	}

	

	int CDdjdemoCtrl::OnCreate(LPCREATESTRUCT lpCreateStruct)

	{

		if (COleControl::OnCreate(lpCreateStruct) == -1)

			return -1;

		

		// Access the database using an ordinal lookup to get

		// tab-separated strings. Add the strings to the listbox

		// for initial population of the list.

(CString strTemp;

(for(int i = 0; (strTemp = phonedir_LookupByOrdinal(i)).GetLength() != 0; i++)

(SendMessage(LB_ADDSTRING, 0, (long)(LPCTSTR)strTemp);

			

		return 0;

	}

Note that there are only 34 lines of user-supplied code to provide the encapsulation of the “one-minute phone database” in an OLE Custom Control object (35, including the declaration of OnDrawMetafile in DDJDECTL.H).

Other OLE Custom Control Features

Several OLE Custom Control features have not yet been discussed. These are shown in the sample files provided. They are:

Ability to provide a bitmap that container applications can use on their “Tools Palettes” to represent the control. This is done using the Visual C++ bitmap editor. Our bitmap looks like a telephone (except that it was designed by developers, not graphic artists).

Ability to provide a property page that exposes the control’s design-time properties to the user for convenient inspection and modification. In the case of our control, we’ve exposed only read-only properties, but to demonstrate the feature, a property page that interrogates the CurrentName and CurrentNumber properties is provided. The advantage of using property pages is that the control has the ability to validate data before it has to react to it. That can increase the robustness of these controls. Out-of-range data can be rejected immediately and the user can be given immediate feedback about what was wrong with it.

Ability to provide a customized About Box. Display of the About Box is exposed much as a method would be. This provides the implementor the opportunity to display copyright information, an icon, and so on.

Testing the Control

[Some text about “This section assumes you have installed either Visual C++ 1.5 or 2.0, and the OLE Custom Control Development Kit.”]

To test this control, build DDJDEMO.MAK or DDJDEM32.MAK (Visual C++ 1.5 and 2.0, respectively). Do not read DDJDEMO.MAK into Visual C++ 2.0, as it will convert it to a 32-bit project file, rendering it useless for further 16-bit development.

Step 1: Test Container Exercise

From the Tools menu, choose Test Container. A lightweight container applet appears, into which you can insert your control.

<<Figure removed to save space. --- DDJ >>

Figure � SEQ Figure * ARABIC �13�–The DDJ OLE Custom Control In the Test Container

� REF _Ref299790825 * MERGEFORMAT �Figure 13� shows how the control looks inserted in the Test Container. Here are other things you can do using the Test Container:

�	Insert a new control into the container

�	Directly examine the properties of the control by querying it. Make a selection in the list box, then press this toolbar button. Find the CurrentName property. It should be the same as that selected. Find the CurrentNumber property. It should correspond as well.

�	Show an event log. Pick this tool, then change selections within the list. You’ll see the custom event, NameNumberChanged fire, and the new values will be reported to the container.

�	Invoke methods. Pick this tool, then try GetNameFromPhone or GetPhoneFromName (jot down a few of the names and phone numbers first). Try picking a name or number that doesn’t exist.

�	Insert a new control of this type. If you try this and nothing seems to happen, just drag the frame to the left a bit and you’ll see that the reason is because the new control was inserted right over an existing one.

The above is a quick tour of how one might test the functionality of an OLE Custom Control.

Step 2: Try the Control in a Real Container

For this step, you must have installed Microsoft Access, version 2.0. A sample database called DDJTEST.MDB is provided that embeds this control.

(To see the control in an Access form:

Select the Form tab in the Database window�The DDJ Demo form is listed in the Forms pane

Select the DDJ Demo form in the Forms pane, and choose Open. The form shown in � REF _Ref299860412 * MERGEFORMAT �Figure 14� appears.

<<Figure removed to save space. --- DDJ >>

Figure � SEQ Figure * ARABIC �14�–The DDJ Demo Control in Access

This form has 4 active panes.

The control itself, in the top left corner. Changing selections in the control fires the NameNumberChanged event

The Properties pane, in the top right corner. This pane is only refreshed when you press the Update button. Choosing Update runs Access Basic code to get the CurrentName and CurrentNumber properties from the control.

The Methods pane, in the bottom left corner. Enter a name in one of the edit boxes (making sure the other one is empty) and choose Lookup. This runs Access Basic code to invoke either the GetNameFromNumber or GetNumberFromName methods, depending on which edit box has text in it. The returned value is displayed.

The Events pane, in the bottom right corner. This pane is dynamically updated as the NameNumberChanged event is received from the control. If you click different selections in the control, the edit boxes in this pane change value.

Appendix A–One Minute Phone Directory Database

The following two listings are the modified one-minute phone directory database. The primary modifications were to recompile as C++, remove 16-bit dependencies (_f functions), change to the Windows typedefs (LPSTR, BOOL, etc.), and add an iterator function for the initial population of the user interface. The .cpp file is simply included as another file in the project.

PHONEDIR.H

/**

 > PHONEDIR.H -- This is the header file for PHONEDIR,

 > the one-minute phone directory database.

 > 6/30/94. Ray Valdes.

 >***/

// Modified 7/22/94, Steve Ross (Microsoft Corp.)

/*****************This is the PhoneDir API***********************/

BOOL phonedir_Initialize	 (void);

LPSTR phonedir_LookupByName (LPSTR name);

LPSTR phonedir_LookupByNumber (LPSTR number);

void phonedir_Terminate (void);

// Added 7/22/94, Steve Ross (Microsoft Corp.)

CString phonedir_LookupByOrdinal(UINT nIndex);

/*******************End of PHONEDIR.H****************************/

PHONEDIR.CPP

/**

 >

 > PHONEDIR.CPP -- the one-minute phone directory database.

 > 6/30/94. Ray Valdes.

 >

 > This is the simplest possible implementation of a phone directory

 > database, not even a "toy" implementation. Everything is static

 > and in memory. The goal is to provide the simplest possible implementation

 > that satisfies the interface, which is as follows.

 >

 > The interface consists of four functions:

 > 1. Initialize -- called at program startup

 > 2. LookupByName -- given a name, returns corresponding phone number

 > 3. LookupByNumber -- given a number, returns corresponding name

 > 4. Terminate -- called at program termination

 >

 > This interface can be satisfied by a procedural implementation

 > as shown below, which can be packaged into a .OBJ module, or a DLL

 > or other procedurally oriented components such as VBXs and OCXs.

 > Alternatively, one could use this as a basis for an object-oriented

 > implementation. The interface would remain basically the same,

 > except for adding constructor and destructor (if you're using C++)

 > and turning the API entrypoints into member functions.

 >***/

// Modified 7/22/94, Steve Ross (Microsoft Corp.)

/*

 * There are a few minor dependencies on Microsoft C compiler,

 * such as _fstrcmp() lib function and the _far pascal keywords

 */

#include "stdafx.h"

#include <string.h>

#include "phonedir.h"

/**

 > This sets up the database structure, a fixed size array of

 > fixed size records in memory, initialized at startup-time

 > by hard-coded program statements (can this get any simpler?)

 >***/

typedef struct

{

 LPSTR name;

 LPSTR phone_number;

} record;

#define MAX_RECORDS 5

static record theDatabase[MAX_RECORDS];

/**/

void phonedir_CreateRecord(int arrayindex,LPSTR name,LPSTR phone);

/**/

BOOL phonedir_Initialize(void)

{

 phonedir_CreateRecord(0,"Daffy Duck", "310-555-1212");

 phonedir_CreateRecord(1,"Wile E. Coyote", "408-555-1212");

 phonedir_CreateRecord(2,"Scrooge McDuck", "206-555-1212");

 phonedir_CreateRecord(3,"Huey Lewis", "415-555-1212");

 phonedir_CreateRecord(4,"Thomas Dewey", "617-555-1212");

 return TRUE; /* success */

}

/**/

void phonedir_CreateRecord(int i,LPSTR name,LPSTR phone_number)

{

 theDatabase[i].name = name;

 theDatabase[i].phone_number = phone_number;

}

/**/

LPSTR phonedir_LookupByName(LPSTR name)

{

 int i;

 for(i=0; i < MAX_RECORDS; i++)

 {

	if(strcmp(theDatabase[i].name,name)==0)

	 return theDatabase[i].phone_number;

 }

 return NULL;

}

/**/

LPSTR phonedir_LookupByNumber(LPSTR number)

{

 int i;

 for(i=0; i < MAX_RECORDS; i++)

 {

	if(strcmp(theDatabase[i].phone_number,number)==0)

	 return theDatabase[i].name;

 }

 return NULL;

}

/**/

// Added by Steve Ross (Microsoft Corp)

// Allow iteration of the list for initial population of UI

CString phonedir_LookupByOrdinal(UINT nIndex)

{

	if(nIndex < MAX_RECORDS)

	{

		CString strTemp = theDatabase[nIndex].name;

		strTemp += "\t";

		strTemp += theDatabase[nIndex].phone_number;

		return strTemp;

	}

	else

		return "";

}

void phonedir_Terminate(void)

{

 return;

}

/*********************End of PHONEDIR.C**************************/

