
 ww

PROGRAMMING NOTES A WindoWatch Series

WINDOWS ASPECT: A Scripting Language

 A Tutorial - Part Two for Procomm for Windows v.2
 GHOST BBS v.3.20 © 1995 by Gregg Hommel

When last we left our intrepid hero, George, he was just starting to learn about
scripting in the Windows Aspect (Wasp) language of Procomm Plus for Windows
2.0, by writing a very simple log on script.

Let's give him a little time to get in some practice, before we pick up his saga and
look at something that we touched on briefly in the last column, i.e. the nature of
a script. What we said way back then was this....

“In Wasp, a script is a series of commands which Procomm Plus for Windows
will read when told to, and execute as specified. These commands are written
using a particular form, following a designated syntax, and instruct Procomm
Plus for Windows to perform various tasks at specified times, and in a specified
order."

Now, to some of you, that just might look like a rather simplified definition of a
computer program. This could be because a script can be considered just that,
and those of us who write scripts generally consider what we do as programming.

Basically, I suppose that every programmer has his own idea of what makes up
good programming practice. In my opinion, this good practice consists of two
basic routines :

 1) planning in advance what you want the script to accomplish, and
roughly how it might do so, and

 2) writing the code you need in a modular fashion. Let me explain.....

It is quite difficult to write code to have a script do what needs be done next,
when you, the author, have no idea what you want it to do next. The code won't
"get anywhere" if you, the programmer, have no idea where you expect it to go.

Generally, before I begin work on any code, I attempt to write out, in English,
what I want the code to accomplish, and where I want it to finish when done.
This gives me a basic word picture of what I hope the code accomplish. To relate
this directly to Wasp, it also helps to force you to look at what is happening on
the terminal with a more careful eye, as you attempt to follow the events on the
screen in order to create that word picture.

 ww

But... the first rule is to start out simply. Don't get too fancy, and don't try to do
too much with the first draft of a script. I prefer a modular approach to script
writing, where one can add features and functions simply by adding a new
procedure to a basic script. In this way, a first draft script can be kept quite
simple, and then have other routines added to it as they are written and tested.

However, this does not preclude increasing the size of the main (or any)
procedure. Once a procedure has been tested and found to work properly,
particularly if it is to be called only one time, I will simplify the structure of the
script by removing it as a separate procedure. It is then added to the procedure
where it was called initially, making it part of that procedure.

Basically, when I begin work on a new script, or on a new procedure to be added
to a script, I make sure of two things... 1) that I have lots of paper to rough out in
English, flow chart, and code information, and, 2) that I have plenty of disk
space available for various versions of the code being tested along with backups
of the new code, just in case!

I remember one time when I was away from my computer for the weekend and
brought with me a printout of the code I was working on, and a pad of paper to
use
when working on the modified code. My daughters complained bitterly that I had
to have destroyed three trees writing that relatively small piece of code because I
used so much paper writing it. This brings up another routine that I use
frequently. Rather than physically testing the code while on line, I often use
diagrams, flow charts, and logical analysis to work out on paper, what should
happen. This procedure will test the logic of the script before actually compiling
it and running the code.

The logic of the script can be supremely important when trying to track down a
bug or mistaken action. One of the main benefits of using English coding, and
flow charting a script is that it tends to improve the logic of that script. Rather
than bouncing here and there, from one procedure to another, it becomes easier
to write the various procedures and routines in a more logical fashion. This
makes the script
easier to follow later, if a problem develops, or you choose to change some
section of it. A logical arrangement of sub-procedures and routines within a
procedure makes it far easier to locate a section of code should you decide you
want (or need) to change.

To that end, I also attempt to use descriptive variable names and
procedure/function names, where ever possible. As example, in my PCB Freedom
script, the procedure which does the physical dialing of a system and manages
the on line functions is called "proc dial_boards". The procedure which it

 ww

creates, a dialog box to edit system settings while off line, is called "proc
edit_dlgs". The routine to add a new system to the configuration list is called
"proc add_item".

I am sure that you can see how this might prove advantageous. On a little script
like a basic log on script, this is not of great importance, as the script is fairly
short. My GHOST BBS script is currently around 9,500 lines of Wasp code.
Locating a particular section within that 9,500 lines can be quite difficult without
some sign posts. I try to use descriptive variable and procedure names, with a
logical connection to what they are for, as my sign posts .

I also use the search and replace feature of my editor as frequently as possible.
No, I don't use the editor shipped with PCP/Win 2.0... I am a long time Norton
DeskTop user, and simply prefer the familiar, Norton's DeskTop Editor. Often
times, a variable, or procedure may start life with a particular name, descriptive
of it's purpose and place within the logic of the script. However, as the script
takes on new features and functions, that descriptive name may no longer be
valid, or useful. When this happens, search and replace allows for easy change of
one name or variable in use into another that is more informative.

The thing to remember is that there are no set rules for methods or procedures to
write a good script. What works best for one code maven may be deadly to
another. I know my old CompScience Prof. from many years back would
probably have a fit about that comment. He constantly emphasized following
traditional rules when coding. However, in the real world, I have found that
some of those rules don’t always work.

That Prof. used to regularly tell us to never use a GOTO label, but to always call
a sub-routine instead. Theoretically, this may work, but in the real world, there
are many occasions when you do not want the script to return to a given spot, but
rather to branch off through a different set of code. GOTO works rather well for
this, while calling a sub-routine can be tricky to do the same sort of thing. Since
Wasp is neither Fortran nor Cobol, or do I run Procomm on a mainframe, the
rules he used to drill into us are not necessarily applicable.

There is another thing that I find important when breaking the rules... you just
might discover something that helps execute the code! The trick is that,
sometimes, what conventional wisdom - the rules says can't be done, - just might
be possible. But you will never discover these code segments if you follow all of
the rules. In both FREEDOM and GHOST, there are several bits of code which,
when first written, were discarded because examination on paper proved that
they wouldn’t do. But, when all else failed, or the conventional methods grew too
cumbersome, I would invariably fall back on the "impossible" code, and
generally, found that what appeared impossible on paper, worked quite well
when compiled.

 ww

Remember that there is a corollary to this "trick. Sometimes what appears, at
first test, to work, is really impossible and can bite when you least expect it. One
pitfall to being a ground breaker is that sometimes you find that, instead of
breaking new ground, you are over the edge of the cliff with an anvil for a
parachute.

Never discount the impossible... fairly early in the beta of FREEDOM, I ran into
a problem with some very strange responses being sent by the script. The code
was written to delete all characters from the string variable resulting in a null
string and nothing being sent. When I discussed it with the folks from Datastorm,
I was told that what I claimed to have happening was impossible, and that
deleting one by one, the
characters of a string HAD to result in a null string when the last character was
deleted.

Further testing, careful observation and notes of what was being sent when
nothing should have been sent, showed me that somehow the string, once all
characters were deleted, was being assigned a value. That value seemed to be the
central six characters from the LAST string variable accessed before the current
string variable had it's last character deleted !! Does this make sense?? The
solution: When the last character was supposed to be deleted from the string,
instead of actually deleting it, I began assigning the system variable $NULLSTR
to the string variable. Now, impossible or not, the string variable actually was a
null when I wanted and expected it to be one.

In other words, never say never, and always suspect that what is not possible for
a script to do, just may be possible. Further, never turn your back on a
completed and fully tested script.... they can be mean, vicious and downright
despicable!

I suppose that is enough rambling on and lecturing for now... in our next column,
we'll go back to dear old George, and help him develop his simple log on script
into something more generic, and more useful.

Gregg Hommel is a communications consultant for Delrina. He hosts several of the
Procomm conferences and co-hosts the Rime Windows conference. He has been a
Procomm beta tester and is the author of the Aspect scripts Freedom and Ghost .

