Document 0094 DOCN M9550094 TI Relative binding free energies of peptide inhibitors of HIV-1 protease: the influence of the active site protonation state. DT 9505 AU Chen X; Tropsha A; Laboratory for Molecular Modeling, School of Pharmacy, University; of North Carolina, Chapel Hill 27599. SO J Med Chem. 1995 Jan 6;38(1):42-8. Unique Identifier : AIDSLINE MED/95139034 AB Hydrogen bonding plays an important role in the stabilization of complexes between HIV-1 protease (HIV-1 PR) and its inhibitors. The adequate treatment of the protease active site protonation state is important for accurate molecular simulations of the protonation state is important for accurate molecular simulations of the protease-inhibitor complexes. We have applied the free energy simulation/thermodynamic cycle approach to evaluate the relative binding affinities of the S vs R isomers of the U85548E inhibitor of the protease. Several mono- and diprotonation states of the catalytic aspartic acid residues of the protease active site were considered in the course of molecular simulations. The calculated difference in binding free energy of the S vs R isomers strongly depended on the location of proton(s), but in all cases the binding free energy of the S inhibitor was higher. On the basis of our calculations, we propose that in the HIV-1 PR-inhibitor complex only one catalytic aspartic acid residue is protonated and that the binding free energy of the S isomer is ca. 2.8 kcal/mol higher than that of the R isomer. The accuracy of these predictions shall be evaluated when binding affinities of both isomers become available. DE Amino Acid Sequence Aspartic Acid/METABOLISM Binding Sites Comparative Study Energy Transfer HIV Protease/*CHEMISTRY/*METABOLISM HIV Protease Inhibitors/*CHEMISTRY Models, Chemical Molecular Sequence Data Oligopeptides/CHEMISTRY/METABOLISM Peptides/*CHEMISTRY/*METABOLISM Protein Binding Protons Solutions Stereoisomers Support, Non-U.S. Gov't Thermodynamics JOURNAL ARTICLE SOURCE: National Library of Medicine. NOTICE: This material may be protected by Copyright Law (Title 17, U.S.Code).