
CRESCENT
SOFTWARE, INC.

Graphics QuickScreen
Version 1.10

Software Copyright© 1992 by Phil Cramer and Crescent Software.

This manual was written by Phil Cramer and Jonathan Waldman w~h portions excerpted from Don Malin's
specifications, The Gr3jlhics WorkShop, and QuickPak Professional. This manual was designed and typeset by
Jacki W. Pagliaro.

All rights reserved.

No portion of this software or manual may be duplicated in any manner without the written permission of Cres­
cent Software.

QuickBASIC is a trademark of Microsoft Corp.

CRESCENT SOFTWARE, INC.
11 BAILEY AVENUE
RIDGEFIELD, CT 06877
(203) 438-5300
April, 1994

-I
0 n

Graphics QuickScreen Table of Contents

Introduction
Introduction . 1-1

Thanks! 1-1
Registration & Upgrades 1-1
Acknowledgments 1-2
Graphics QuickScreen Overview . 1-3

Users of QuickScreen 1-3
Graphics Mode Screen Designer 1-3

BASIC Modules 1-5
Displaying Screens . 1-5
Data Entry . 1-5

Additional Utilities 1-5
Compatibility . 1-6

System 1-6
Compiler Versions . 1-6

Using This Manual 1-6
Intended Audience . 1-6
Notational Conventions . 1-7

Technical Support . 1-8

Installation Instructions
Installation Instructions . 2-1

Installation . 2-1
Setting The DOS Path 2-3
The Readme File . 2-4
Major Files Of Graphics QuickScreen 2-4
Copying And Backing Up . 2-6

QuickStart
Quick Start . 3-1
Running The Demos . 3-1

The Screen Designer
The Screen Designer .. .
The Drawing Palette

Selecting a Color
General Notes On Drawing
Lines
Polar Mode Line Drawing
Box
Radius Box
Filled Box
Arcs • • • • • · ·
Circle/Ellipse

CRESCENT SOFTWARE. INC.

4-1
4-1
4-2
4-2
4-3
4-3
4-4
4-4
4-4
4-4
4-5

■ i

Table of Contents Graphics QuickScreen

Polygons . 4-5
Sketch 4-7
Paintbrush . 4-7
Flood Fill . 4-8
Zoom Editor . 4-8
Recolor . 4-9
Copy/Move4-10
Print Text 4-11
Push Button4-12

Drawing Aids 4-13
Controlling The Mouse Cursor4-13
Grid Snap 4-14
Painting Fields4-15

The Pulldown Menu System4-16
Menu System Contents 4-17
Keyboard4-18
Mouse4-19
General Comments4-20

Dialog Boxes 4-20
Keyboard4-20

Text Box 4-21
Multi-Line Text Box 4-21
List Box 4-21
Check Box 4-21
Option Button 4-21
Command Button4-21

Mouse4-21
Single and Multi-line Text Boxes4-21
List Box4-22
Check Box4-22
Option Button4-22
Command Button4-22

Menu Item Information4-22
File Menu 4-22

New Screen4-22
Open...4-23.
Save4-24
Save As4-26
Save Paste Buffer...4-26
Load Paste Buffer...4-27
Print Screen...4-27
DOS Shell 4-28
Exit 4-28

Edit Menu4-28

• ii CRESCENT SOFTWARE, INC .

Graphics QuickScreen Table of Contents

Copy Block 4-29
Move Block 4-29
Paste 4-29
Flip Horizontal/Vertical 4-29
Measure 4-30

Draw Menu 4-30
Print Text 4-31
Draw Text 4-31
Tile 4-33
Open/Closed Curve4-34
Horizontal/Vertical Scroll Bars .4-35

Settings Menu 4-36
Cursor 4-36
Line Type 4-37
Palette 4-38
Status Box 4-39
System4-39

Block Options:4-40
Status Display: 4-40
Snap Settings: 4-40
Pixel Grid On4-41
Show Grid4-41
Clear on Delete 4-41
Corner Radius4-41
Brush Size 4-41
Mouse Sens.4-41

Set Paths4-42
Compose Fields Menu4-42

Enter Field Definitions...4-43
Move Fields 4-43
Copy Fields 4-43
Rearrange Data Fields...4-44
Print Field Definitions.. 4-44
Make Demo... 4-44
Try Data Entry in Form 4-46

Function Keys 4-46
Special Keys4-46
Fields 4-47

Field Types 4-48
String 4-48
Proper String4-48
Upper Case String4-48
Numeric 4-48
Scrolling Text 4-49

CRESCENT SOFTWARE, INC. ■ iii

Table of Contents Graphics QuickScreen

Multi Line Text4-49
Logical 4-49
Integer4-49
Long Integer4-49
Single Precision 4-49
Double Precision4-49
Currency4-50
Date MM-DD-YYYY 4-50
Date DD-MM-YYYY4-50
Phone Number4-50
Zip Code4-50
Social Security Number4-50
Relational 4-50
Multiple-Choice Array 4-50
Mouse Field 4-50
Push Button4-51
Horizontal/Vertical Scroll Bars 4-51

Field Settings 4-53
Currency Symbol4-54
Decimal Places 4-54
False Character4-54
Field Name4-54
Formula4-54
Help Message4-55
Highlight Color 4-55
Indexed Field4-55
Key Code4-55
Large Change4-56
No Formatting4-56
Protected Field4-56
Range4-56
Relational Field4-56
Small Change4-56
Tab Color 4-57
Text Color 4-57
Toggle4-57
True Character4-57
Numeric Formulas4-57

Scroll Bars 4-60

Creating Screens
Creating Screens . 5-1

■ iv CRESCENT SOFIWARE, INC.

Graphics QuickScreen Table of Contents

Creating Data Entry Forms
Creating Data Entry Forms . 6-1

Defining Fields . 6-1
Rearranging Fields . 6-2
Printing Field Definitions 6-3
Saving A Form . 6-4
Files created by Graphics QuickScreen 6-4

Graphics QuickScreen Routines
Graphics QuickScreen Routines . 7-1

Procedure Reference Section . 7-1
Integers . 7-1
Parameters . 7-1
Arguments . 7-2
Action 7-2
Form$() Array . 7-3
Type Variables And Constants . 7-4
SETUP.BAS 7-4
FLDINFO.BI 7-4
EDITFORM.BI 7-8

Graphics QuickScreen Routines ... 7-11
BCopy 7-15
ButtonPress 7-17
CalcFields 7-18
Date2Num 7-19
DispPCXVE 7-21
EditFormG 7-22
EndOfForms 7-24
Evaluate 7-25
Exist 7-27
FGet 7-28
FixDate 7-29
FldNum 7-30
FOpen 7-31
Format 7-32
FSeek 7-33
GArraySize 7-34
GetFldDefG 7-35
GetGMP 7-36
GetRec 7-37
GMove2VE 7-38
GMove4VE 7-40
GPrint0VE 7-42
H ideCursor 7-43

CRESCENT SOFfWARE, INC. ■ V

Table of Contents Graphics QuickScreen

InitMouse 7-45
KeyDown 7-46
LibGetFldDefG 7-47
LibGetGMP 7-48
LibNumFieldsG 7-49
LibShowForm 7-50
ListBox 7-53
Message 7-55
Motion 7-56
MultMonitor 7-57
NumFieldsG 7-58
Num2Date 7-59
OpenFiles 7-60
OpenPCXFile 7-61
PositionPCXVE 7-62
PrintArray 7-63
QEdit 7-64
SaveField 7-71
SaveRec 7-72
Scrollln 7-73
SetPaletteEGA 7-76
SetPalTripleVGA 7-77
SetUp 7-78
ShowCursor 7-79
Show Form 7-80
Tokenize 7-82
UnPackBuffer 7-83
Value 7-84
WholeWordln 7-85

Developing In The Basic Environment
Developing In The Basic Environment 8-1

Programs that use Push Buttons or
Mouse Fields . 8-2
Displaying Screens From Your Program 8-3
Displaying EGA Screens With A WipeType 8-6
Displaying .GMP Files 8-7
Storing .PCX, .FRM, and .GMP files in a .GSL library 8-8

Creating a Custom .GSL library 8-8
Accessing data in a .GSL library . 8-9

Performing Data Entry
Performing Data Entry . 9-1

■ vi CRESCENT SOFTWARE, INC.

Graphics QuickScrecn Table of Contents

General Concepts . 9-1
Data Entry . 9-1

General Procedures . 9-1
DemoAnyG.BAS 9-2

Detailed Procedures . 9-4
Setting Up A Form 9-4
Specify Include Files . 9-4
The COMMON.BI Include File 9-4
Dimension Mandatory Arrays . 9-5
Load The Form . 9-5
Initialize Field And Form Elements 9-6
Setting The Insert Status . 9-6
Setting Up Multiple-Choice Fields 9-6
Setting List Box Colors . 9-7
Creating Default Field Values . 9-8

Using EditFormG . 9-9
Form$() . 9-9
Fld() TYPE Array . 9-9
Frm TYPE Variable 9-10

Navigating A Form 9-11
Random-Access File 1/0 9-12
Random Access File Setup 9-12

Retrieving Records 9-12
Saving Records 9-13
Clearing A Form 9-13

Notes Fields 9-14
Using Notes 9-14
Saving And Retrieving Notes Data 9-14

Relational Fields 9-15
Indexed Fields 9-15
Multi-Page Forms 9-16

Implementation 9-17
Programming Tips 9-18

Manually Manipulating Form Data at Runtime 9-18
Assigning Variables To Refer To Fields 9-19
Updating Form Data Using SaveField 9-19
Recalculating Fields Using CalcField 9-20
Converting Formatted Strings to Numbers 9-20
Redisplaying Form Data Using PrintArray 9-20
Handling Mouse Fields 9-20
Handling Push Buttons 9-21
Handling Scroll Bars 9-21
Changing The Color Of The Mouse Cursor 9-23

CRESCENT SOFfWARE, INC. ■ vii

Table of Contents Graphics QuickScreen

Creating Standalone Programs
Creating Standalone Programs ... 10-1
MAKE Files 10-1
Compiling Modules 10-1
Linking 10-1

Graphics Quickscreen Utilities
Graphics Quickscreen Utilities 11-1

Screen Capture Program 11-1
Converting From QuickScreen To Graphics QuickScreen 11-2
Quick Library Make Utility 11-3

Product Compatibility
Compatibility With The Graphics Workshop, GraphPak

Professional, and db/Lib 12-1
Graphics Workshop 12-1
GraphPak Professional 12-2
db/LIB 12-3

Trouble Shooting
Trouble Shooting 13-1

Appendix A
The GPDat%O Array A-1

Glossary

Tutorial

■ viii CRESCENT SOFTWARE, INC.

■

1

■

Graphica Quick.screen Introduction

INTRODUCTION

Thanks!

Thank you for purchasing Graphics QuickScreen from Crescent Software!

We have put every effort into making this the finest and most powerful
Graphic Screen building product available. We sincerely hope that you
love it. If you have a comment, a complaint, or perhaps a suggestion for
another product you would like to see, please let us know. We want to be
your favorite software company.

Registration & Upgrades

Please take a few moments to fill out the enclosed registration card. Doing
this entitles you to free technical support by phone, as well as insuring that
you are notified of possible upgrades and new products. Many upgrades
are offered at little or no cost, but we cannot tell you about them unless
we know who you are!

Also, please mark the product serial number on your disk labels. License
agreements and registration forms have an irritating way of becoming lost.
Writing the serial number on the diskette will keep it handy.

You may also want to note the version number in a convenient location,
since it is stored directly on the distribution disk in the volume label. If
you ever have occasion to call us for assistance, we will probably need to
know which version you are using. To determine the version number for
any Crescent Software product simply display a directory of the original
disk. The first thing that appears is similar to:

Volume in drive A is GQS 1.10

We are constantly improving all of our products, so you may want to call
periodically to ask for the current version number. Major upgrades are
always announced, however minor fixes or additions generally are not. If
you are having any problems at all, even if you are sure it is not with our
software, please call us. As a registered user of one of our products, we
provide support for all versions of QuickBASIC and BASIC PDS and can
often provide better assistance than Microsoft.

CRESCENT SOFl'WARE, INC. ■ 1-1

I

■ Introduction Graphics QuickScreen

Acknowledgments

Graphics QuickScreen was written by Phil Cramer using Microsoft BASIC
PDS 7. I and library routines from Crescent's QuickPak Professional and
Graphics Workshop libraries.

I would like to thank Don Malin for his assistance and advice in developing
Graphics QuickScreen. Don wrote the original QuickScreen text mode
screen designer that inspired this program. In addition, several of Don's
QuickScreen modules were adapted for this graphics version, including
the main EditFormG subroutine.

I would also like to thank Brian Giedt for creating many of the graphic
assembler routines that make Graphics QuickScreen possible. Several of
these routines are derived from Crescent's Graphics Workshop library.
Graphics Workshop is highly recommended to anyone interested in further
enhancing their graphic applications beyond what BASIC and Graphics
QuickScreen alone can accomplish.

- Phil Cramer

■ 1-2 CRESCENT SOFTWARE, INC.

Graphics QuickScrecn Introduction

Graphics QuickScreen Overview

Graphics QuickScreen is both an EGA/VGA graphic screen design tool
and data entry forms library. The screen design component lets you create
your own graphic screens-called display-only screens-using a sophisti­
cated paint program. Screens are saved in the popular .PCX format and
can easily be transported to and from other paint programs. Scanned
images saved in .PCX format can also be incorporated into your screens.
These screens can be displayed from your BASIC programs at any time.

With Graphics QuickScreen, you can also create screens to be used as data
entry forms which we refer to as data entry screens or forms. This
powerful feature lets you to quickly design screens which gather informa­
tion on a field-by-field basis from a user. Of course, your own BASIC
program can control the form and read the values it contains.

Forms are extremely flexible, and data from them can be saved to disk
either as simple random access files, or using data base management
utilities such as the BASIC PDS ISAM System. Graphics QuickScreen is
also fully compatible with AJS Publishing's db/LIB product and Novell's
Btrieve library.

Users of QuickScreen
If you are already using Crescent's QuickScreen, you will find the
conversion to Graphics QuickScreen to be relatively simple. The screen
painting portion of the screen designer is of course different from
QuickScreen's text mode counterpart, but the field definition process is
virtually identical. In addition, the subroutines that handle your forms use
the same or similar calling syntax. Many of the subroutines also have
similar names to their QuickScreen counterparts but with the letter G (for
Graphics) appended to distinguish between them.

You should also be aware of the QS2GQS.EXE conversion utility. This
utility converts QuickScreen text mode screens to graphics modes suitable
for use with Graphics QuickScreen. See the section Graphics Quick­
Screen Utilities for more details.

Graphics Mode Screen Designer
To make the task of designing screens as effortless as possible, Graphics
QuickScreen's interactive editor is mouse-driven and offers a variety of
features:

CRESCENT SOFTWARE, INC. ■ 1-3

I

■ Introduction Graphics QuickScreen

Unique pop-up drawing palette.

Box, radius box, circle, ellipse, arc, polygon and line drawing.

Multiple line types including user defined.

, User defined grid snap settings.

Tile palette containing 127 additional dithered colors and 28 tiled pat­
terns.

Moveable status box indicating the current drawing color, drawing
cursor coordinates (relative or absolute), and grid snap status
(on/oft).

Block operations such as Copy, Move, and Paste. Any block can be
easily centered horizontally or vertically.

Any block of text may be entered using standard text fonts.

Scaleable fonts for captions and titles can be displayed at any angle.

Zoom editor to easily edit individual pixels.

, Palette editor to let you easily assign any of the EGA's 64 colors or
the VGA's 256,000 colors to the available 16 color palette.

Data entry screens are created with the help of 23 pre-defined.field types,
such as a zip code and dollar value. Additionally, fields can be further
customized:

Fields can be protected from being changed; they can also be in­
dexed and formatted in any way.

Fields can support range checks and field calculations based on sup­
plied formulas.

Unique help messages can be associated with each field in a data
entry screen.

, A special data-entry test mode lets you try out the current form
during editing. Forms can be generated in two formats.

■ l-4 CRESCENT SOFTWARE, INC.

Graphics QuickScrcen Introduction

BASIC Modules

Graphics QuickScreen's BASIC modules allow you to manage both
display-only and data-entry screens.

Displaying Screens
To display screens from BASIC you may use a variety of methods:

Screens may be displayed directly from disk to video.

EGA Screens can be displayed from video memory using impressive
screen wipe effects.

Partial screen images saved in bitrnapped format can be loaded and
displayed from memory.

Data Entry
Managing data entry screens from BASIC is one of the more appealing
features of Graphics QuickScreen. The supplied BASIC modules let you
do the following:

Control data entry screens automatically based on a form definition.

Handle data entry and movement between fields automatically.

Perform range checks and field calculations for applicable fields.

Generate custom help messages for each prompt.

Support multiple-page forms.

Polling lets you take special actions based on the user's activity
without having to modify Graphics QuickScreen's data entry routines.

Enable programmers to preset and modify field values, as well as
change the cursor position within a form, even at run time.

Support a mouse without additional programming.

Additional Utilities

Graphics QuickScreen is shipped with two additional utilities you are sure
to find useful. The first is a TSR called PCXCAP, a utility which is used

CRESCENT SOFTWARE. INC. ■ 1-5

■

■ Introduction Graphics QuickScreen

to capture any BASIC- supported graphics screen. Screens captured from
EGA or VGA 16-color high resolution screen modes can be later loaded
and displayed in the Graphics QuickScreen editor to make further enhan­
cements. Captured screens can be displayed from your BASIC programs
using the supplied BASIC modules.

The second utility is QS2GQS.EXE - This program is for owners of
QuickScreen and it converts existing .SCR and .QSL text mode screens
to graphics modes suitable for use with Graphics QuickScreen. If the
screen also contains field definitions, the form definition file (.FRM) is
converted as well.

Graphics QuickScreen supports db/LIB, a third-party add-on from AJS
Publishing. This library provides routines to read and write dBASE-com­
patible data files, and, when combined with Graphics QuickScreen's
forms, lets you create a powerful graphical database system.

Compatibility

System
Graphics QuickScrcen requires an EGA or VGA color monitor and will
run on IBM XT, AT, PS/I- and PS/2-class machines and compatibles that
contain at least 2561 of video memory. At least one megabyte of expanded
memory is recommended but not required. DOS 2.0 or above is needed
as well as a Microsoft compatible mouse.

Compiler Versions
Graphics QuickScreen is available for users of Microsoft compiled BASIC
only: QuickBASIC version 4.x; BASCOM, version 6.x; and the BASIC
Professional Development System, version 7. x. If you own an earlier
version of BASIC we suggest that you contact Microsoft for an upgrade.
We will be happy to assist you in making a decision to upgrade.

Using This Manual

Intended Audience
This manual is designed for users familiar with QuickBASIC and with the
concepts of using libraries and compiling to create stand-alone programs.
We have not attempted to unnecessarily duplicate information which is
QuickBASIC-related and appears in the QuickBASIC documentation, but
do explain necessary steps for using this product effectively.

■ 1-6 CRESCENT SOFTWARE, INC.

Graphics QuickScrccn Introduction

Notational Conventions
We have used some variations in type style mainly so that the manual is
clear and more enjoyable to read. The purpose for most type styles is
clear (i.e., for topic headings, computer text, and so forth.), however there
are some uses which may require further explanation:

Examples of computer program code are printed in a fixed-spaced
font. For instance, consider the DO loop below:

'pause for a key press
DO
LOOP UNTIL LEN(INKEY$)

Notice also the use of vertical ellipses to convey that more program
instructions may follow and the use of BASIC's single-quote REM symbol
(') to present comments.

Examples taken from screen displays are printed as graphic images.

, Pulldown commands are printed in boldface for clarity using this syn­
tax:

(Menu name) pulldown menu command

For example, "(File) New Screen ... " refers to the File menu and the New
Screen ... pulldown command within that menu. When a menu is dis­
cussed alone, the menu name, such as File, is in boldface.

DOS directories, file names, acronyms, and BASIC commands are
printed in uppercase letters. For example:

"The PCXCAP.EXE program is a TSR."

Instances when the computer input or output may vary (depending on
your hardware, software, etc.) are shown in italics. For example, the
QuickBASIC Quick Library support module will have a slightly dif­
ferent name depending on its version number. We therefore would
refer to such a file as in the example below:

LINK PROGNAME.OBJ,,BQLB45 /Q

Notice that not only is "45" italicized, but also the program name, which
is specified by the user, is italicized. Italics in the main text often represent
terms which are defined in the glossary.

CRESCENT SOFTWARE. INC. ■ 1-7

I

I Introduction Graphics QuiclcScreen

In some examples there may be optional features in the syntax.
These features will be shown in square brackets. For example, the
LET statement is optional in QuickBASIC:

[LET) A= 10

Keys on the keyboard are represented as the key name in bold face.
Key names are taken from the standard IBM extended keyboard.
Certain keys are mentioned in terms of general function. For ex­
ample, the direction keys typically include the up-, down-, left-, and
right-arrow keys, and sometimes the PgDn and PgUp keys as well.
When we need to refer to all of these keys as a group, we will refer
to them as direction keys.

Technical Support

If you require technical support for Graphics QuickScreen, you will need
your serial number before calling us at (203) 438-5300, between 9:00 a.m.
and 5:00 p.m. EST, Monday through Friday. Please gather as much detail
as possible about the problem before you call. Be prepared to provide the
Graphics QuickScreen version number as well as the BASIC version
number. We can assist you best when you are able to describe the precise
nature of any difficulties.

■ 1-8 CRESCENT SOFfWARE, INC.

I

2

■

Graphics QuickScrccn Installation

INSTALLATION INSTRUCTIONS

Installation

Graphics QuickScreen is distributed using the popular and efficient .ZIP
compression format. To help simplify the process of extracting specific
files from the archive, we've created a front-end installation program
named INSTALL. Upon starting, this program shows the number of bytes
the extracted files will occupy, and even allows you to select those files
you wish to extract.

To begin installation, place the Graphics QuickScreen distribution diskette
in a disk drive. Then, log to that drive and type INSTALL (this example
assumes the floppy is in A:):

C:\ A:
A:\ INSTALL

If you start INSTALL from a drive and/or directory different from the one
containing the INSTALL.EXE program, the current drive and directory
is used as the installation destination.

When the program starts, it displays its main screen (see Figure 1), and
also the name of the product .ZIP files. The second line of the screen
displays the available function-key commands. Below this is a field where
the installation destination drive and path may be specified. To the right
of this is a display field where the amount of free disk space is displayed
for the specified target drive. The bottom-left portion of the screen
contains a bar menu where the available .ZIP files are displayed along
with the disk space required for installation. The bottom line of the menu
displays the total disk space needed to install all selected files in the menu.
The bottom line of the screen displays comments about the currently-high­
lighted file.

CRESCENT SOFfWARE, INC. ■ 2-1

I

I
Installation Graphics QuickScreen

A •

WMtidtwhm:mtii ■m • 3M®flilffll\11t1iH • •
Files 11111 be installed In the Drive and Directory llsted below. tr the
specified Directory does not exist, It 111111 be created autOM.tlcally during
Installation. Press Ent.er or Tab to MJve to the f lie 111enu below.

File
J' GQS .ZIP
J' DEMOS .21P
J' GQSSUBS.ZIP
J' GQSLIBS.ZIP

Required Space
780,288
557,056
300,592
113,3b0

Tota I Reriu ired: 1,670,82-1

1.iu,le%1J
Graphics Qu lckScrcen

Screen Des lgncr and ut 111 ties

Software lnstal latlon Progru

Ent Ire Contents

CoplJl'lght (cl 1'92
Crescent Soft..are, Inc.

Connents: Screen design progran and support

Figure I: The Installation Stan-Up Screen

Several function keys are operable from INSTALL. They are summarized
in Table 1.

The Destination Drive/Path field contains a default drive and path where
the selected files will be installed. We suggest that you use \GQS as the
destination directory. However, you can choose any valid DOS path name.
If you specify a path which does not exist, it will be created during
installation. If you change the drive letter, the amount of free space on
that drive is displayed to the right after moving from this field.

~
F2

F3

F4

■ 2-2

Function
Info On
Zip File

Begin
Install

Exit

Displays the contents (i.e., file names and sizes)
of the currently highlighted file. After viewing
or selecting individual files, you can press Esc
to go back to viewing the actual .ZIP files.

Once you are satisfied with the selected files,
you can start the installation process.

Quits the installation program and returns to
DOS.

Table 1: Installation Function Keys

CRESCENT SOFfWARE, INC.

Graphics QuickScrccn Installation

The Tub and Shift-Tab keys move the cursor between the Destination
Drive/Path field and the File Display box. Within the File display, the
Space Bar or Enter key will toggle a check mark (I/) on or off. You can
check entire .ZIP files or you can press F2 to check individual files within
ZIP files. If you are checking individual files, simply press Esc to go
back to the .ZIP file list. When you are finished, all checked files are
installed when F3 is pressed.

The number of bytes displayed to the right of each file name is the space
required on the destination drive to install that file. This number is the
uncompressed size of the file-rounded up to the nearest cluster.

After the Destination Drive/Path has been specified and files have been
selected, you can press F3 to begin installation. If the total expanded size
of all selected files exceeds the available disk space, you will be asked
whether to continue. You may answer "Y" for Yes if you are sure there
is enough space on the target drive. This would be the case if you are
installing a newer version of Graphics QuickScreen in the same directory
as the one that already exists.

If you are installing to an existing directory you will be asked if you wish
to be prompted before existing files are overwritten. We suggest answer­
ing Yes if you are not sure about overwriting certain files.

After responding to the prompts mentioned above, the screen is cleared
and installation continues. As files are installed, messages from the
PKUNZIP.EXE decompression utility are displayed. If another diskette
is required, you will be prompted to change the disk in the source drive.
After doing this, you can select new files and proceed as before.

Once all selected files have been installed, the program displays a message
indicating a successful installation.

Setting The DOS Path

In order to make QuickBASIC and its support files available from any
directory, you can set the PATH environment variable from your
AUlDEXEC.BAT file. Setting the PATH merely lets you list the direc­
tories where your compiler and other executable programs are located. If
you are working on a system where several drives are available, you will
want to specify the drive letter as well in your PATH statement.

If you install Graphics QuickScreen on C: \GQS, but your version of
QuickBASIC is in D:\QB, the DOS PATH variable should be set as follows:

CRESCENT SOFTWARE, INC. ■ 2-3

■

■
Installation Graphics QuickScreen

SET PATH=D:\QB

If your system uses multiple drive letters for several disk partitions, we
suggest including the drive letter of each directory in your PATH statement.
Doing this ensures that the directory can be properly located.

Some users will need to specify several paths so that QB and BC are
properly found. In the Microsoft BASIC Professional Development
System, the QBX executable and BC are in separate subdirectories by
default: \BC7\BIN and \BC7\BINB, respectively. In this case, you would
need to specify both paths:

SET PATH=D:\BC7\BIN;D:\BC7\BINB

Notice that multiple paths are separated by semicolons. This way, many
drive/directory combinations can be searched:

SET PATH=D:\QB;C:\DOS;C:\WINDOWS;E:\GAMES

The sequence in your PATH statement is significant, because it indicates
the order in which the paths are to be searched. And of course, the more
entries you have, the longer it may take DOS to complete its search.

To see the current 11\TH setting, simply type PATH at the DOS prompt.

The Readme File

After installing Graphic QuickScreen, you may want to check for the
presence of a README file. Helpful information, as well as additions
or changes to this manual, appear in such a file.

After logging onto your Graphics QuickScreen directory, simply enter the
following DOS command to view it. (Ctrl-S pauses the output until a key
is pressed):

TYPE README

Major Files Of Graphics QuickScreen

The following files are on your distribution diskette; similar file types are
grouped together for clarity:

■ 2-4 CRESCENT SOFTWARE, INC.

Graphics QuickScrccn

File Name

GQS.EXE

PCXCAP.EXE

DBLIB_G.BAS

DEMODBLG.BAS

DEMOANYG.BAS

DEMOCUSG.BAS

DEMOINVG.BAS

DEMOPAGG.BAS

EVALUATE.BAS

EDITFORM.BAS

FRMFILE.BAS

GQSCALC.BAS

GDISPLAY.BAS

NOCALCG.BAS

NOMULlG.BAS

NONOfESG.BAS

NOSCROLLB.BAS

NOSCROLL.BAS

GFORMS.LIB

GFORMS7.LIB

CRESCENT SOFTWARE. INC.

Installation

Description

Graphics QuickScreen executable

TSR screen-capture program

db/LIB® support module

Demo of db/LIB support routines

Demo which loads a screen and form

Demo of random-access and form-editing tech­
niques

Demo containing fields with multiple-choice
array, calculated fields, and multi-line text

Demo illustrating the use of a two-page form

Double-precision equation handler

Form data entry handler

Loads information from form (.FRM) files

Used for calculated fields in a form

.PCX screen display module

Used to exclude support for calculated fields

Used to exclude support for multiple-choice
fields

Used to exclude support for notes fields

Used to exclude support for scroll bars

Used to exclude support for scrolling text fields

Graphics QuickScreen assembler library file for
QuickBASIC 4.x or BASIC 6.0

Graphics QuickScreen assembler library file for
BASIC PDS 7.x

■ 2-5

■

■
Installation

GFORMS.QLB

GFORMS7.QLB

TILEPAL.GM4

TPAL.TIL

*.BI

*.FRM

*.MAK

Graphics QuickScreen

Graphics QuickScreen quick library file for
QuickBASIC 4.x or BASIC 6.0

Graphics QuickScreen quick library file for
BASIC PDS 7 .x

Tile Palette bitmap

Random file containing tile definitions for the
Tile Palette

BASIC Include files

Graphics QuickScreen Form files

Graphics QuickScreen Make files

File names that start with the letters NO are used to exclude support for
certain features, and serve a similar function as the stub files that come
with some versions of BASIC. Stub files replace selected modules with
others having the same name but have reduced functionality. This lets you
reduce the size of your programs when certain features (such as calculated
fields) are not needed.

Copying And Backing Up

Before you start to use the program you should first make a copy of the
original diskette and then work with the copy. We know we don't have to
tell you this, but reminding you may prevent a very frustrating situation
should your distribution diskette become damaged.

■ 2-6 CRESCENT SOFIWARE, INC.

I

3

I

Graphics Quicl:Screcn Quick Start

QUICK STARf

If you are familiar with QuickBASIC and add-on libraries, you can get
started quickly by running the Graphics QuickScreen demonstration
programs. These programs are liberally commented so you can easily see
how they work and how the Graphics QuickScreen routines are set up and
called.

Running The Demos

Graphics QuickScreen includes several demonstration programs. We
encourage you to both experiment with these programs and copy state­
ments from the demos into your own programs.

Starting with the simplest among them, the programs are:

• DEMOANYG.BAS

This is a basic example of how to load a form definition file, display a
screen, and allow the user to perform data entry. We've called it
DEMOANYG since the program can work with any standalone screen
(.PCX) and form (.FRM) file.

• DEMOALLG.BAS

This example is particularly useful because it displays a form which
contains each Graphics QuickScreen field type.

• DEMOCUSG.BAS

This example provides a customer information form, and shows how to
store and retrieve information using random access file techniques. This
program also provides a technique for clearing all fields so that a fresh
form can be presented to a user.

• DEMOINVG.BAS

This demonstration shows an invoice form and the special features which
make Graphics QuickScreen so powerful, such as the use of multiple­
choice, calculated, and note fields. Examples of advanced polling are
demonstrated which report the user's activity on the form and make certain
fields change their characteristics based on user-defined options.

CRESCENT SOFrWARE. INC. ■ 3-1

■

■

Quick Start Graphics QuickScreen

• DEMOPAGG.BAS

Demonstrates using EditFormG to allow data entry on a multi-page form.
This program also demonstrates loading screen and form files from a
custom .GSL library.

• DEMODBLG.BAS

This demonstration of an employee information form requires db/LIB, a
product by AJS Publishing, which allows BASIC programmers to read
and write dBASE-compatible files.

To run a demonstration program, you can follow these steps:

I. Change to your Graphics QuickScreen directory:

CD \GQS

2. Start BASIC, making sure to specify the appropriate quick
library, such as GFORMS.QLB:

QB /L GFORMS

For BASIC 7 .x, use the following:

QBX /L GFORMS7

These Quick Library files contain the various assembly language sub­
routines used by the Graphics QuickScreen modules. Therefore, they are
needed to run any of the supplied programs.

If you need to use additional routines from other libraries to your program,
you can use the MAKEQLB utility that comes with Graphics QuickScreen
to create them.

3.

4.

■ 3-2

Select the (File) Open menu command, then choose the
demonstration you wish to run from the dialog box which
appears.

Once the program has been loaded, you can press Shift-FS to
run it.

CRESCENT SOFTWARE, INC.

I
4

I

Graphics QuickScreen The Screen Designer

THE SCREEN DESIGNER

Graphics QuickScreen's editor, referred to as a Screen Designer, is
provided as a compiled executable program called GQS.EXE. It is
possible to start this program immediately from the DOS prompt simply
by typing "GQS".

Once the program begins you should be able to use Graphics QuickScreen's
intuitive interface right away. If you have a mouse, it will be recognized
and used automatically. Also, a help screen showing the action of various
keys is available by pressing Fl.

Graphics QuickScreen's user-interface is based on a convenient pop-up
Drawing Palette, a comprehensive pulldown menu system and dialog
boxes. The Drawing Palette allows instant access to the color palette and
to the most commonly used drawing tools. The menu system organizes
the major command categories as menu titles and pulldown commands.
Dialog boxes query the user for additional information before certain
commands are performed. These features are described in detail in the
sections that follow.

The Drawing Palette

The Drawing Palette is used to select the drawing color and other
commonly used drawing and editing tools that you will use to create your
screens. It has been designed as a pop-up to let you to see the entire screen
when it is not in use.

During drawing and editing, the right mouse button and the Esc key both
work as toggles to turn the Drawing Palette on and off. The Drawing
Palette always pops-up beneath the graphic cursor and it remains active
until a drawing tool has been selected or the right mouse button is clicked.
Once a tool has been selected, you can continue to draw or edit using the
left mouse button. To cancel the current tool, click the right mouse button
to return to the Drawing Palette.

Figure 2: The Drawing Palette

CRESCENT SOFfWARE, INC. ■ 4-1

I

. I

The Screen Designer Graphics QuickScreen

The Drawing Palette may be accessed at any time through a series of no
more than three right mouse clicks.

Selecting a Color
To select a drawing color from the Drawing Palette, place the cursor over
the desired color and click the left mouse button. The selected color will
appear in the lower right corner of the Drawing Palette. The color will
also appear in the Status Box if it is active. In addition, you may select a
color by pressing its corresponding numeric key. Numeric keys cor­
respond to the standard color assignments as used by BASIC where O =
black, 1 = blue, 2 = green, 3 = cyan, and so on. To access colors 10
through 15, hold down the Shift key as you press the numeric keys 0
through S.

Colors may be changed during any of the drawing operations, even in the
middle of a paint or sketching procedure by typing its assigned color
number. (Numeric color keys are not supported when typing text selected
from the T icon or from the (Draw) Print Text menu because they are
used to enter the actual numbers as text.)

General Notes On Drawing
All drawing procedures are handled in a similar fashion. To begin a
procedure position the cursor and click the left mouse button. This will
produce a ~rubberbrnd" line, circle, or box that can be positioned as you
like. Once you are satisfied with the placement of the item, complete it
by clicking the left mouse button. You may continue to draw using the
same tool, or you can exit back to the Drawing Palette by clicking the right
mouse button.

In general, the left mouse button is used to initiate or complete an action
while the right mouse button is used to cancel it. Once a drawing or editing
operation is canceled, one more right mouse click will return you to the
Drawing Palette.

The mouse cursor can also be controlled from the keyboard by using the
various cursor keys. The Enter and Esc keys perform the same function
as the left and right mouse buttons.

Any edits you make can be undone by pressing FlO. This will restore the
screen to its condition just before the last drawing tool or menu item was
selected.

■ 4-2 CRESCENT SOFI'WARE, INC.

Graphic, QuickScrcen The Sc rccn Designer

Lines
-+ To draw a line:

I. Select the line icon from the Drawing Palette.

2. Place the cursor where you want the line to start and click the left
mouse button.

3. Move the cursor to the desired end point and click the left mouse
button.

Line drawing will continue from the last endpoint until you click the right
mouse button. A single right click lets you start a new line and two clicks
returns you to the Drawing Palette.

Polar Mode Line Drawing ~

Polar Mode allows you to draw lines a specified length and at a specified
angle.

To draw lines in polar mode:

I. Select the line icon from the Drawing Palette.

2. Select a starting point.

3. Press the P key at any time during the line drawing procedure
and a dialog box will appear.

4. Enter the desired length (in pixels *) and the angle in degrees
separated by a comma and then click "OK". The length should
always be a positive value but degrees may be specified as any
positive or negative whole number.

5. Click the left mouse button to accept the line and to continue
drawing in polar mode. Clicking the right mouse button will undo
the line and return you back to conventional I ine drawing.

End coordinates that would place the line off-screen are not allowed. In
this case, a beep warning will sound and Graphics QuickScreen will revert
back to normal line drawing.

*Ona VGA monitor (640x480) where the aspect ratio is I: I (10 vertical
pixels appear the same length as 10 horizontal pixels) the length at any
angle will be consistent. When using an EGA monitor where the aspect
ratio is approximately . 73: I, 10 horizontal pixels do not represent the

CRESCENT SOFTWARE, INC. ■ 4-3

■

I

The Screen Designer Graphics Quick.Screen

same length as 10 vertical pixels. In this case the length specified is in
horizontal pixels regardless of the angle specified.

Box
To draw a box:

[]]
I. Select the box icon from the Drawing Palette.

2. Place the cursor at any corner where you wish to start the box and
click the left mouse button.

3. Move the cursor until the box is the size desired and click the left
mouse button.

You may continue to draw boxes or return to the Drawing Palette by
clicking the right mouse button.

Radius Box [[]
The procedure for drawing a radius box is the same as for normal box
drawing. The radius for the corners is measured in pixels and is set from
the System dialog box. If the box dimensions are less than two times the
radius of the arc, the radius is automatically reduced to fit the dimensions.
A very large radius therefore enables you to draw virtually any size oval
without readjustinr the radius.

Filled Box [!]
The procedure for drawing a filled box is the same as for box drawing.
Also see the section Painting Fields for more information.

Arcs
To draw an arc:

I. Select the arc icon from the Drawing Palette.

2. Position the cursor at the center of the arc and click the left mouse
button.

3. Locate the starting point of the arc with the cursor and click the
left mouse button. A circle will appear defining the possible path
for the arc and an "X" will appear at the selected starting point for
the arc.

■ 4--4 CRESCENT SOFfWARE, INC.

Graphics QuickScrcen The Screen Designer

4. To define the end point for the arc, place the cursor such that the
"rubberband" radius intersects the circle at the desired end point,
and then click the left mouse button. This point can be anywhere
on the screen, even inside the circle. The circle and the "X" mark
will disappear and an arc will be drawn counterclockwise from the
starting point to the specified endpoint.

If you prefer to draw arcs clockwise from the starting point, press the A
key while in the arc drawing mode. The cursor will change color (from
white to yellow if on a black background) and a beep will sound to
acknowledge your selection. Arcs will then be drawn clockwise from the
starting point. Pressing A again will toggle back to counterclockwise
operation. Elliptical arcs are not directly supported but can be simulated
by using the Draw Polygon procedure.

Circle/Ellipse
To draw a circle or an ellipse:

I. Select the circle icon from the Drawing Palette.

2. Position the cursor at the center of the circle and click the left
mouse button.

3. Move the cursor until the circle is the size desired and press the
left mouse button. To ensure a true circle, drag the mouse just out
side of the circle before releasing the mouse button.

4. To draw an ellipse, hold the mouse button down and push or pull
the circle into an ellipse. The type of ellipse drawn will depend on
where the cursor is when you press the button. If pressed at
approximate! y I 2 o'clock or 6 o'clock you can draw a horizontal
ellipse. If you press at approximately 3 o'clock or 9 o'clock you
will draw a vertical ellipse. If you press at approximately I :30,
4:30, 7:30 or 10:30 then you will be able to draw either a vertical
ellipse or a horizontal ellipse, depending on the position of the cur­
sor as you drag it inside the encompassing circle. Release the
button to complete the ellipse.

Polygons

The polygon routine will draw a polygon with from 3 to 99 sides at virtually
any size and at any angle. You can also specify an aspect ratio to stretch
the polygon either vertically or horizontally. You can also limit the number
of sides of the polygon that are displayed.

CRESCENT SOFJWARE, INC. ■ 4-5

I

■

The Screen Designer Graphica QuickScreen

---+ To draw a polygon:

Select the triangle icon from the Drawing Palette. A dialog box will appear
prompting you for the following information:

Number of sides:

Starting Angle:

■ Example:

The total number of sides in the polygon *.

The angle where drawing starts. The default
angle is O and corresponds to the 3 o'clock
position. Angles are then measured from this
point counterclockwise with 90 degrees being
vertical (12 o'clock), 180 being horizontal (9
o'clock), and so forth. The desired angle can
be any whole angle, positive or negative.

To draw a standard isosceles triangle with the base at true horizontal,
specify three sides and a starting angle of 90. A standard square can be
drawn by specifying four sides and a starting angle of 45 degrees or you
can draw a diamond by leaving the starting angle at 0.

Sides to display:

X/Y Ratio:

■ Example:

The number of sides to display. This can be
any number from Oto the total numberof sides.
A value of zero will display all sides as will a
value equaling the total number of sides. Any
other value less than the total number of sides
will display only that portion of the polygon
beginning at the starting angle.

The aspect ratio of the polygon. This
parameter allows you to stretch the polygon.
An aspect greater than 1 stretches the polygon
horizontally, while a value less than 1 stretches
the polygon vertically.

By changing the aspect ratio and the starting angle of a triangle you could
easily create different triangle styles as arrow heads. You could also
change the aspect ratio, specify a relatively large number of sides and
display only a portion of the total number of sides to simulate an ellipti.cal
arc. Many other interesting shapes are possible with various combinations
of these parameters.

* Numbers greater than 20 or so produce what essentially appears to be
a circle and the "rubberbanding" effect in that case is considerably slower
than using the circle command.

■ 4-6 CRESCENT SOFTWARE, INC.

Graphics QuickScreen The Screen Designer

Sketch

The Sketch routine lets you draw freehand images by dragging the mouse
or by using the various cursor keys.

I. Select the sketch icon from the Drawing Palette.

To sketch lines using a mouse:

2a. Position the cursor where you want the line to begin and hold
down the left mouse button. As long as the button is down, a
continuous line will be drawn as you drag the mouse. Releasing
the button will complete the line.

-+ To sketch lines using the keyboard:

2b. Position the cursor where you want the line to begin and press
Enter. Line drawing is controlled by pressing the various direction
keys. The mouse can still be used to control line drawing but it is
not necessary to hold down the left mouse button. Pressing Esc or
clicking the right mouse button will complete the line.

You can continue to sketch lines or click the right mouse button to return
to the Drawing Palette.

Paintbrush

The Paintbrush routine lets you paint lines of nearly any thickness by
dragging the mouse or by using the various cursor keys. The brush size
can be set from the System dialog box.

-+ To use the Paintbrush:

I. Select the paintbrush icon from the Drawing Palette. A rectangular
cursor will appear indicating the size of the paintbrush.

To paint using a mouse:

2a. Position the cursor where you want to begin painting. The
paintbrush is activated whenever the left mouse button is held
down.

CRESCENT SOF!WARE, INC. ■ 4-7

■

■

The Screen Designer Graphics QuickScreen

--+ To paint using the keyboard:

2b. Position the cursor where you want to begin painting and press
Enter. The paintbrush is controlled by pressing the various direc­
tion keys. The mouse can still be used to position the paintbrush
but it is not necessary to hold down the mouse button. Pressing
Esc or clicking the right mouse button will stop the paint flow.

You can continue to paint or click the right mouse button to return to the
Drawing Palette.

Flood Fill

The Flood Fill routine allows you to quickly and easily paint entire regions
of any shape. The region being filled must be entirely surrounded by a
single color to contain the flood of paint. When you click on an area to
be filled, the routine first checks the color beneath the cursor and then
looks to the right to find the first occurrence of a different color. It assumes
that the second color it finds is the surrounding color and floods the entire
region surrounded by that color.

To flood fill a region:

1. Select the paint bucket icon from the Drawing Palette. The cursor
will change from white to black.

2. Locate the cursor within the surrounding color and click the left
mouse button.

You may continue to flood fill regions or return to the Drawing Palette by
clicking the right mouse button.

Zoom Editor

The Zoom Editor allows you to zoom in on a region of the screen and
easily edit individual pixels. You may select any rectangular region of the
screen up to approximately l-112 square inches depending on the monitor
size and screen mode. The region will be identified with a surrounding
box and the enlarged portion will automatically display near the selected
region. The screen will be updated simultaneously to reflect any edits you
make.

■ 4-8 CRESCENT SOFTWARE, INC.

Graphics QuickScreen The Screen Designer

To edit individual pixels:

I. Select the magnifying glass icon from the Drawing Palette. A
drawing cursor will appear.

2. Draw a box surrounding the area to be magnified following the box
drawing procedure. If the region is within range, it will be mag­
nified and you may begin editing. A beep will sound if the selected
region is too big to be enlarged, In that event, simply select a
smaller region.

3. Editing is performed by clicking the left mouse button at the
desired location in the enlarged image. Colors are selected by
using the number keys as explained in the Selecting a Color section
of this manual. The Status Box can be used to display the current
drawing color.

You can undo any edits by pressing FlO while the zoom window is still
active.

Recolor

The Recolor option lets you change any color in a specified region to a
new color.

-> To recolor a region:

I. Select the color wheel icon from the Drawing Palette. A color
palette will appear replacing the Drawing Palette and the prompt
"Pick the color to change" is displayed.

2. Pick the color to change by clicking on it with the left mouse
button. The selected color will appear in the lower right window
of the color palette and the message will change to "Now pick the
new color".

3. Select the new color by clicking on it with the left mouse button.
The color palette will disappear and a drawing cursor will appear.

4. Draw a box surrounding the region to be recolored following the
box drawing procedure. The area will be recolored as soon as the
box is completed.

CRESCENT SOFTWARE, INC. ■ 4-9

■

■

The Screen Designer Graphics QuickScreen

Figure 3: The ReColor Palette

You may continue to recolor portions of the screen or you can return to
the color palette to select new colors to change by clicking the right mouse
button. One more right mouse click will return you to the Drawing Palette.

Copy/Move

The Copy/Move option allows you to copy or move any region of the
screen to memory (up to 64k) or to any place on the screen. The image
can also be saved to disk using the Save Paste Buf ... " option from the
pull-down menu or later recalled by selecting the Paste option from the
Edit menu.

The Move option lets you grab an image and move it anywhere on the
screen leaving the background color* in its place. The Copy option lets
you make multiple copies of an image without deleting the original. The
default mode when selected from the Drawing Palette is Copy. You can
switch the default to Move by changing the setting on the System dialog
box. Copy and Move are also available separately from the Edit
pull-down menu. Regardless of what mode was used to capture a region,
the image will remain in the paste buffer even after loading a new screen
or until one of the following occur:

I. A new image is captured

2. The Tile Palette is selected

3. "Try data entry in form" is selected

To copy or move a region:

I. Select the copy/move icon from the Drawing Palette. A drawing
cursor will appear.

2. Draw a box surrounding the area to be copied or moved using the
box drawing procedure. Click the left mouse button to capture the

■ 4-10 CRESCENT SOFTWARE, INC.

Graphic11 QuickScrecn The Screen Designer

image. You can center the image horizontally or vertically by
pressing the H or V keys respectively.

3. Locate the image where desired and click the left mouse button. If
Copy is selected, you can continue to make copies by clicking the
left mouse button. If Move is selected, a single left click will
complete the procedure.

The captured image is moved over the screen using XOR. As the image
is moved, you see a combination of the copied image and the underlying
background with colors inverted as they are XORed together. When
pasted, the image will return to its original colors. (XOR off). Checking
"XOR on" on the System dialog box under the Settings menu will instead
use XOR when pasting the image. This is particularly useful when the
background of the captured image is black. In this case, only the colored
portion of the captured image will be copied; the rest of the image remains
transparent. Unwanted color changes in the pasted image can be corrected
using the recolor command.

* Since graphic modes do not directly support both foreground and
background colors, one must be specified in this case. The background
color for the move option is assigned in the System dialog box found under
the Settings menu. The default color is black but can be assigned to any
of the sixteen colors.

Print Text

This option lets you enter text using your computers internal font at
standard row and column coordinates. The text is printed without disturb­
ing the underlying screen.

-+ To print text:

1. Select the desired text color and click on the T icon from the Draw­
ing Palette. A blinking text cursor will appear.

2. Point the mouse cursor at the desired row and column and click the
left mouse button.

3. Type in the desired text. Text can be erased without affecting the
underlying screen using either the Spacebar or Backspace key as
long as you remain on the same line.

The following table lists the keys that can control the cursor while printing
text.

CRESCENT SOFfWARE. INC. ■ 4-11

■

-I

The Screen Designer

Left arrow
Right arrow
Up arrow
Down arrow
Tab
Shift+ Tab
Ctrl+ Left
Ctrl + Right
Home
End
PgUp
PgDn

Push Button

Action

One space to the left
One space to the right
Up one row
Down one row
8 spaces to the right
8 spaces to the left
20 spaces to the left
20 spaces to the right

Graphic• QuickScreen

Moves the cursor to the first column
Moves the cursor to the last column
Moves the cursor to the top row of the screen
Moves the cursor to the bottom row of the screen

Table 2: Text Cursor Control Keys

The Push Button will draw a 3-dimensional push button in the color
specified. Creating the 3D effect requires the use of three shades of the
same color: one for the highlight, one for the button color, and one for
the shaded portion. The default palette provides two shades of gray plus
high-intensity white. This is an ideal combination for push buttons and is
perhaps why gray buttons are so common. You can of course draw push
buttons using any combination of colors from the EGA or VGA color
palette.

The default palette offers two intensities of blue, green, cyan, red, violet,
and brown, which you can also use to draw push buttons. When a color
is selected from the Drawing Palette, the high-intensity shade will be used
as the highlight color and the low-intensity shade will be used as the actual
button color. The shaded portion of the push button will always be painted
dark gray. For the best effect, the dark gray portion of the button should
be changed to a darker shade of the button color. Since this darker color
does not exist in the standard palette, one of the other colors will have to
be modified to replace it. This can be accomplished by using the Palette
Editor to select the new color. Use the Recolor option to replace the dark
gray portion with the new color.

You can also draw any image or place text on the push button as long as
its border is at least 2 pixels from the highlighted or shaded portion of the
push button. Please refer to Figure 4.

■ 4-12 CRESCENT SOFTWARE, INC.

Graphics Quick.Screen The Screen Designer

To draw a push button:

I. Select the push button icon from the Drawing Palette.

2. Place the cursor at any corner where you wish to start the push
button and then click the left mouse button.

3. Move the cursor until the box is the size desired and then click the
left mouse button. The push button will be drawn in the selected
color.

You may continue to draw push buttons or return to the Drawing Palette
by clicking the right mouse button. Note that at this point the button is
just a graphic image and needs to be defined as a field* before it will
actually function as a push button.

*We recommended that you draw push buttons with the grid snap on. This
greatly simplifies the process of later defining them as fields.

Hig hlight Color ~ --I -2 piH

1..
els

i

Bu tton Color Shade Color

Figure 4: Pushbutton Detail

Several other drawing tools are available, but they can be accessed only
from the pull-down menu. See the section Using the Menu System for
information on using these tools.

Drawing Aids

Controlling The Mouse Cursor
The Graphics QuickScreen drawing program works best when controlled
with a mouse. However, all commands as well as control of the graphics
cursor can be accessed from the keyboard.

CRESCENT SOFlWARE, INC. ■ 4-13

■

II

The Screen Designer Graphics QuickScreen

The following table lists the keys that control the mouse cursor during any
of the drawing or editing procedures. The X and Y snap space refer to
the current spacings set for Grid Snap.

~
Left/Right arrow

Up/Down arrow

Tab
Shift+ Tab
Ctr! + Left/Right
Ctrl + Up/Down
Home

End

PgUp

PgDn

Enter
Escape

Grid Snap

Action
If snap is on, moves cursor one X snap space
right or left; if snap is off moves cursor one
pixel right or left
If snap is on, moves cursor one Y snap space
up or down; if snap is off, moves cursor one
pixel up or down
Moves cursor 80 pixels to the right
Moves cursor 80 pixels to the left
Moves cursor 72 pixels to the left or right
Moves cursor 4 rows up or down
Moves the cursor to the left-most pixel, on the
current row
Moves the cursor to the right-most pixel, on the
current row
Moves the cursor to the top of the screen in the
current column
Moves the cursor to the bottom of the screen,
in the current column
Same as left mouse click
Same as right mouse click

Table 3: Cursor control keys

The Grid Snap option allows you to set the X and Y increments allowed
for cursor movement. Increments are specified in terms of pixels and can
be set to virtually any number. This can greatly simplify the process of
making accurate drawings.

To set the grid snap spacing:

I. Select System from the Settings pull-down menu. A dialog box
will appear.

2. Set the desired spacings in the text boxes labeled XSnap spacing
and YSnap spacing.

Grid Snap can be toggled on and off at anytime during drawing or editing
by pressing the S (Snap) key. If active, the Status Box will indicate the
current snap status by showing the labels in upper case if snap is on, or

■ 4-14 CRESCENT SOFTWARE, INC.

Graphics QuickScreen The Screen Designer

lower case if it is not. On start-up or after selecting a new screen mode,
X and Y Grid Snap spacings are automatically set to correspond with the
standard text size for the current screen mode.

Painting Fields
Data entry fields use your computer's internal ROM fonts to display text.
The width of these fonts is always eight pixels but their height will vary
based on the screen mode you select. For 25, 30, 43, and 60-line modes,
the height will be 14, 16, 8, and 8 pixels high respectively.

When designing forms, it is common to paint the data entry fields a unique
color so that users can clearly see where the fields begin and end. Graphics
QuickScreen makes this a simple process by allowing you to define grid
snap spacings that correspond exactly to the standard text spacings. With
the proper settings you can use the Filled Box routine to paint regions that
correspond exactly to the size required by the data input routines. The
color you select for painting these regions will become the field's back­
ground color. The field's foreground color is assigned during the field
definition process.

The table below lists the grid snap settings to use when painting fields for
the different screen modes.

Screen Mode

640x350 EGA
640x350 EGA
640x480 VGA
640x480 VGA

• Text size in ixels

Number Of Rows Text Size*

25 8x14
43 8x8
30 8x16
60 8x8

X /Y GridSnap

X = 9, y = 15
X = 9, y = 9
X = 9, y = 17
X = 9, y = 9

Table 4: Grid Snap Settings for Painting Fields

You can set these values in the System dialog box, or they can be set
automatically by pressing the F key while drawing or editing. The F (Field
Paint) key toggles between the current grid snap settings and the ap­
propriate settings from the table above. As you press the F key, you will
hear two different beep tones. When you hear the higher pitch, grid snap
is set to match text coordinates. The Status Box will display a black
rectangle when grid snap settings correspond to the current text size.

Note that when using the Filled Box routine with these settings, a special
condition applies. The height and width of the filled box will be one pixel
less than with any other setting. This is necessary to duplicate the exact

CRESCENT SOFTWARE, INC. ■ 4-15

I

■

The Screen Designer Graphics QuickScrecn

size of the background for the font that will be used for data entry fields.
This condition applies only to the settings that correspond to the text size
for the currently selected screen mode.

In the following example, it is assumed that we are working in VGA 25
line mode. The drawing on the left shows the effect of the Filled Box
routine when grid snap settings correspond to the current text size: 9 and
17 (in pixels). Note how the painted box is one pixel less than the actual
snap coordinate on the bottom and right sides, and that adjacent boxes do
not overlap. The drawing on the right shows the effect of the Filled Box
routine when grid snap coordinates are different from the text size. In
this case the painted region corresponds exactly to the grid snap settings.

r----,-8 Phi e Is

r
17

"I:_

Figure 5: Effect of Grid Snap settings on Filled Box

We recommend that you draw with grid snap on whenever possible.
Drawing will be faster and more accurate, since mouse movement needs
to be less precise. Cursor movement will also be faster when using the
direction keys since the cursor moves in increments that correspond to the
current grid snap settings. Defining push buttons, mouse fields, and scroll
bars as fields is greatly simplified when defined using the same grid snap
settings used to draw them.

The Pulldown Menu System
Figure 6 shows the Graphics QuickScreen display with an active menu
system. The menu system is said to be active whenever the menu bar is
visible. On the first line of the screen appears the menu bar, and under
each menu bar option is a unique pulldown menu. Most major commands
in Graphics QuickScreen are available by accessing this menu system, or
by using shortcut keys which execute a command with one keystroke when
the menu system is not active.

■ 4-16 CRESCENT SOFrWARE, INC.

Graphics Quick.Screen

r..d t vraw ~ettinqs Cor,i ose e1os

Qpen ...
~auc
Sai,c ~s ...

~auc Paste Bur .. .
~oad Paste Bur .. .

fr Int Screen .. .

DOS Shell
i:xtt Proara111

Figure 6: File Pulldown Menu

Menu System Contents

The Screen Designer

Table 5 below summarizes the pulldown menu features. The menu system
reflects a user-interface with which you are most likely already familiar.
Very much like BASIC's own menu system, Graphic's QuickScreen menus
may be used with the keyboard or mouse. For this reason, these
discussions are presented separately below.

CRESCENT SOFTWARE, INC. ■ 4-17

I

. I

The Screen Designer

Menu Name

File

Edit

Draw

Settings

Compose Fields

Graphics QuickScreen

Pulldown Menu Command Features

This menu includes load and save options in two
formats, prints the screen, executes a DOS
shell, and exits Graphics QuickScreen.

This menu contains routines to Copy, Move and
Paste images, flip images horizontally or verti·
cally, and it also measures screen coordinates .

This menu lets you print text using standard
ROM fonts, print text using scalable fonts that
can printed at any angle, draw smoothed open
or closed curves, and draw horizontal or vertical
scroll bars.

This menu selects the drawing cursor, line type,
Palette Editor, Status Box, System settings, and
Set Paths dialog boxes.

From this menu you may define, move, copy,
rearrange and print data field definitions. You
may also generates a BASIC source file to
display and edit your forms.

Table 5: Summary of Menu Commands

Keyboard
The keyboard interface to the menu system is very extensive. In general,
the direction keys are used to select a menu and a pulldown command.
Once a command is chosen, Enter is pressed to execute it, or Esc is
pressed to abandon the choice. Although it is common to rapidly develop
a "feel" for the menu system, the summary in Table 5 may assist you in
learning even faster. Please notice that some keys have more than one
function.

If you press the Alt key when Graphics QuickScreen begins, the menu
bar depicted in Figure 6 will appear. At this point you may scan across
the menu bar by using the Left and Right direction keys. Once the desired
menu (such as File) is selected, you may press the Up and Down keys
until the desired command (such as New Screen ...) is highlighted. To
execute the command simply press Enter, or press the highlighted letter
corresponding to the command of your choice.

■ 4--18 CRESCENT SOFIWARE, INC.

Graphics Quick.Screen The Screen Designer

Once the screen editor is in use, the menu system is deactivated and the
menu bar will no longer be visible at the top of the screen. At this point
you may activate it by pressing Alt, or by clicking the left mouse button,
which will show the last pulldown menu used. Alternatively, you may
access a particular pulldown menu by pressing Alt plus the first letter of
the desired menu name. For example, to access the File pulldown menu,
press Alt-F.

Mouse
When pressed, the left mouse button toggles the menu bar on and off the
screen. Once the menu bar is displayed you may move the mouse cursor
over a menu item and press the left mouse button. To choose a pulldown
menu command, simply move the mouse cursor over the desired option
and click the left mouse button.

Some users may find that "dragging" the mouse produces better results:
Move the mouse cursor over the desired menu bar title and press and hold
down the left mouse button. You may then select different pulldown menu
commands simply by moving the mouse cursor along the pulldown menu.
If the mouse button is released while the mouse cursor is over a command,
then the command selected will be executed. You may also drag the mouse
cursor along the menu bar to view other pulldown menus before making
a selection.

Key(s)

Alt

Alt-char

char

Right/Left

Up/Down

Enter

Action on Menu System

Displays the menu bar; highlights the menu hot
keys

Generates the menu of the menu bar option
starting with the character pressed; executes a
command having the hot key of the character
pressed

When the pulldown menu is displayed, pressing
a character accesses and executes the pulldown
menu command having the same highlighted or
underlined letter as the character pressed.

Selects menu options on the menu bar

Selects commands in a pulldown menu

Generates the pulldown menu of the menu bar
option selected; executes the pulldown menu
command selected

Table 6: Menu. System KeyBoard Interface Summary

CRESCENT SOFTWARE. INC. ■ 4-19

■

■

The Screen Designer Graphics QuickScreen

If you do not wish to choose a command after you have activated the menu
system, simply move the mouse cursor away from the menu system. Then
either click or release the left mouse button or press Escape.

General Comments
Note that some pulldown menu commands are black while others are gray.
The black commands are active; the gray commands are inactive and will
produce no effect if selected. Once a form is loaded into the Graphics
QuickScreen editor many of the inactive choices will become active. For
example, under the File menu, the Save Paste Buffer ... command will
not be active until something is loaded into the paste buffer.

Dialog Boxes

A pulldown menu choice followed by ellipses usually generates a dialog
box. Dialog boxes provide an effective way to gather information from
the user, and makes it easy to enter information or to select options.

Figure 8 depicts the Open File dialog box and highlights three major dialog
box input elements: the text box, list box, and command buttons. The
text box accepts a string of characters from the keyboard and allows the
entry of a path and file name. The list box presents items in a columnar
list. List boxes may hold many items and their contents may be scrolled
using the direction keys or scroll bar. The command buttons carry out the
designated command when chosen. Note that pressing Enter or Esc is
equivalent to clicking either the OK or Cancel command buttons respec­
tively.

Following is a brief summary of the keyboard and mouse interface used
by the Graphics QuickScreen dialog box input elements.

Keyboard
When a dialog box is first presented the cursor will rest on a particular
input element. This cursor, or input focus, may be moved to the next input
element by pressing Tab, or to the previous input element by pressing
Shirt-Tab. The input focus may also be directed to a particular input
element by pressing the underlined or highlighted hot key for that element.
To direct input focus while in a text or list box use the Alt-hot key
combination.

■ 4-20 CRESCENT SOFTWARE, INC.

Graphics Quid::Screcn The Sc rcen Designer

Aside from these general directions, there are more specific ways to use
each dialog box input element with the keyboard:

■ Text Box

The Text Box accepts text which is typed by the user. When you first enter
a text field, typing any text character will clear the field and start a new
word. If you wish to edit the current contents of the text box without
clearing the field, press any of the direction keys before entering any text.
Selecting the field with the mouse also allows editing the existing text
without first clearing the field. You can also clear the field by pressing
Ctrl-C or restore the original contents by pressing Ctrl-R.

■ Multi-Line Text Box

The multi-line text box accepts text which is typed by the user. Text is
automatically word-wrapped as it is entered. Standard editing keys such
as Home, End, PgUp, PgDn and direction keys are also supported. You
can delete an entire line of text by pressing Ctrl-Y. Deleted text may be
inserted by pressing Shirt-Ins.

■ List Box

List box items are selected with the direction keys or by using the scroll
bar. When the desired item is selected you may press Enter to accept it.

■ Check Box

The check box is toggled by pressing the Spacebar.

■ Option Button

An option button is selected for a specific group by pressing the Up and
Down cursor direction keys.

■ Command Button

You may execute the highlighted Command Button at any time by pressing
Enter. You may also use Tub to access a particular command button and
press Enter. Further, pressing the underlined or highlighted hot key of
a command button will also execute it.

Mouse
If you have a mouse, you may access dialog input elements by clicking on
the desired element. More detailed instructions are summarized below.

■ Single and Multi-line Text Boxes

The mouse is not useful for entering information into a text box. You may,
however, direct the input focus to or locate the cursor in a text box by
clicking on it.

CRESCENT SOFTWARE, INC. ■ 4-21

I

I

The Screen Designer Graphics QuickScreen

■ List Box

A list box item may be selected by double-clicking on it. Double-clicking
refers to pressing the left mouse button twice in rapid succession. If a list
box has more information, its contents may be scrolled by clicking the
mouse on the scroll bar. You can also select an item by pressing a key
that corresponds to the first letter of a menu item.

■ Check Box

The check box is toggled by clicking it with the mouse.

■ Option Button

An option button is selected by clicking on it with the mouse.

■ Command Button

You may execute a command button by clicking it with the mouse. Clicking
the right mouse button exits the dialog box as if Cancel had been selected.

All dialog box elements can be accessed by pressing the underlined or
highlighted hot key. If you are currently in a text box, multi-line text box
or list box, you must press Alt in addition to the hot key.

Menu Item Information

This section presents an overview of the menu system commands. Menu
bar options are organized into subsections; corresponding pulldown
commands are listed next to round bullets. The underlined letter in the
commands discussed below represents the hot key for the command. These
hot keys appear on-screen as underlined or bright letters depending on the
screen mode, and they allow immediate access to an item merely by
pressing the highlighted key. Finally, pulldown menu choices followed by
ellipses usually present an editing palette or a dialog box for further input.

This section attempts to be exhaustive. Further explanation, however,
may be encountered when a particular command is discussed later in the
manual.

file Menu
The File menu allows you to load and save full and partial screen images
in two formats. The File menu also lets you print the screen, execute a
DOS shell, and exit the Graphics QuickScreen program.

■ ~ewScreen

The New Screen option is used when you wish to start a new screen or
change to a different screen mode. You may select from EGA 16-color

■ 4-22 CRESCENT SOFTWARE, INC.

Graphics QuickScrcen The Screen Designer

640x350 resolution with either 25 or 43 text rows or VGA 16-color
640x480 resolution with either 30 or 60 text rows.

If a screen is currently being edited and has been altered since it was last
saved, Graphics QuickScreen will prompt you to save before continuing.
Once the screen is successfully saved, the screen will be cleared to the
current background color. (The background color is set from the System
dialog box under the Settings menu.) All previously defined fields are
cleared from memory. The color palette will not be reset unless you
change to a different screen mode. This lets you use the color palette from
any other screen.

You can optionally display a grid of dots corresponding to the internal
ROM text height and width for the selected screen mode by checking the
Show Grid check box on the System dialog box before selecting New
Screen. This grid is useful because it helps you to visualize your forms
while they are being designed. Some monitors will occasionally lose the
mouse cursor after New Screen ... is selected. In this case, the cursor can
be restored by pressing Ctrl-Fl.

■ Qpen ...

Select Screen Mode

@'VGA 610 x ·180, ·30 Lines\ !lK
0 'v!iA .. 610. x ·180, .. 60. Lines
O ~GA 610 x 350, 25 Lines I Cancel!
0 EGfl 610 x 350, 13 Lines

Figure 7: New Screen Dialog Box

The Open selection is used to retrieve a screen which has already been
designed and saved on disk. The required extension for Graphics Quick­
Screen screens in the file selection dialog box is .PCX. Any screen which
had been saved using the Graphics QuickScreen (File) Save ... command,
(File) Save As ... command, QS2GQS conversion utility, or any other high
resolution EGA- or VGA-compatible .PCX file may be loaded and dis­
played using this option.

If the screen being loaded was saved by Graphics QuickScreen in a
different screen mode, Graphics QuickScreen will ask you if you want to
change to the appropriate mode. If you select No, the .PCX file will be
displayed in the current screen mode. Some monitors will occasionally

CRESCENT SOFI'WARE, INC. ■ 4-23

I

. I

The Screen Designer Graphics QuickScreen

lose the mouse cursor after a new screen is loaded. In this case, the cursor
can be restored by pressing Ctrl-Fl.

File t!a111e

c:,GQS
Files:

:,..PCX

CPALETTE. PCX •
:'°DEFMENU. PCX ..

DEMOALL.PCX
DPALETTE.PCX
DRAWINGP.PCX
DRAWMENU.PCX
EDITMENU.PCX
FILEMENU.PCX
GQSBW.PCX •

Open File

QK I !;;ancel j

Figure 8: Open File Dialog Box

■ Save ...
The Save option saves the screen currently being edited and creates a file
with the extension .PCX. (Graphics QuickScreen saves full or partial
graphic screens as .PCX files. This format uses a data compression
algorithm to minimize the amount of disk space used to store graphic
images.) If this is the first time a screen is being saved, a dialog box will
appear prompting you for a file name. This dialog box is shown in Figure
9.

■ 4-24

file Na111e:
c:,GQS

Saue File
WORKING.PCX

D ~aue partial .PCX I111age QK I I !;;ancel !

Figure 9: Save File Dialog Box

CRESCENT SOFTWARE. INC.

Graphics QukkScrecn The Screen Designer

If you wish to save only a portion of the screen you can check the Save
Partial .PCX Image check box. Upon exiting the dialog box, you will
be prompted to identify the region to be saved. A drawing cursor will
appear as soon as you move the cursor allowing you to define the region
by drawing a box around it. (Note that partial .PCX images can only be
saved and restored using a mixed coordinate system of text columns and
pixel rows.)

If you have defined any fields for your screen, a Form (.FRM) file with
the same base name as your screen is also created. The .FRM file contains
information about the various fields that you have defined such as their
location, field name, field type, and so on. You may also save this
information in a BASIC source module that can be called from your
program by checking the Create BASIC .FRM tile box. (The .FRM file
will still be created as it is needed later to load the form back into the
Graphics QuickScreen editor.)

If a file name has already been assigned to your screen, selecting Save
will save the screen without prompting you for a new file name .

. PCX files employ a 128 byte header. This header contains information
about the size of the image, number of color planes, bits per pixel, and
palette information. Of the 128 bytes, only the first 67 are needed.
Graphics QuickScreen uses several bytes in the unused portion of the
header to store the screen mode and the height in pixels of a standard text
character for the current screen mode. This information tells Graphics
QuickScreen and the ShowForm subroutine the screen mode and number
of text rows to set. (Although it is possible to determine the correct screen
mode from the original .PCX file header, it is not possible to determine
the number of screen rows.)

If a partial .PCX file is saved, the upper left corner coordinates of the
image are saved into the header as well. There is no recognized standard
for partial .PCX image coordinates, so these bytes are unique to .PCX
screens saved by Graphics QuickScreen.

This data is placed in the .PCX header starting at byte 85 and is assigned
as follows:

CRESCENT SOFTWARE, INC. ■ 4-25

■

■

The Screen Designer

85

86

87

88

Graphics QuickScreen

Data

The current screen mode as indicated by
GPDat%(31). GPDat%(31) is assigned a value
of 5 for EGA 640x350 screens, and 8 for VGA
640x480 screens.
The height in pixels for a standard text character
in the current screen mode. This value along
with the screen mode lets Graphics QuickScreen
and the ShowForm subroutine determine the
correct number of screen rows.
The upper-left pixel row of the saved image
{partial .PCX images only)
The upper-left text column of the saved image
{partial .PCX images only)

Table 7: Graphics QuickScreen .PCX header bytes

■ SaveAs ...

Save As is similar to Save and it differs only in that a dialog box is always
presented allowing you to enter a new file name. Save As ... is useful if
you have changed a screen and want to save it under a different name to
avoid overwriting the original version.

■ Sa:11e Paste Buffer ...

This option lets you save the current contents of the paste buffer as a
bit-mapped image with a .GMP (Graphics bit MaP) extension. Images
are placed in the paste buffer by using the Move or Copy commands
selected from the Edit menu or from the Drawing Palette. The paste buffer
is limited to storing graphic images 64k or smaller and thus determines
the maximum size for the saved image.

There are several advantages when using the .GMP format for saving small
screen images. Bitmapped images are not restrained by the mixed
coordinate system of text columns and pixel rows and can therefore be
easily restored to any X/Y pixel coordinate. They can also be displayed
more rapidly than partial .PCX images because they do not have to be
decompressed as they display. They can also be recalled into the Graphics
QuickScreen editor and easily pasted onto other screens.

Disadvantages are that the .GMP format requires more memory to store
a given image than the .PCX format, and that .GMP images do not contain
any palette information.

■ 4-26 CRESCENT SOFrWARE, INC.

Graphics Quid:Scrccn The Screen De~igncr

This method is best suited for displaying small graphic images very
quickly. (.GMP images are used to display some of the more elaborate
tool icons on the Drawing Palette.)

■ load Paste Buffer ...

This option retrieves images that were saved with Save Paste Buffer ...
option and it stores them in the paste buffer. These images can then be
placed anywhere on the screen by selecting the Paste option of the Edit
menu.

■ lrint Screen ...

This option takes a "snapshot" of the current screen and sends it to either
a 9-pin Epson compatible dot matrix or a Hewlett-Packard compatible
laser printer. The default printer port is set to I, but may be changed from
the System dialog box under the Settings menu. A dialog box will appear
prompting you for the following information:

Dot Matrix or
Laser

Portrait Mode

Tiled Colors

Swap Colors

Laser Scaling

Select whichever is appropriate for your printer.

Images will be printed in landscape mode
(sideways) unless this option is checked.

With this option checked, colors will be trans­
lated to representative tile patterns. If uncheck­
ed, all colors are printed as solid black and black
portions of the screen are not printed.

With this option checked, white will be printed
as black and black will not be printed.

This feature applies only to Laser printers and
determines the size of the printout. 75 DPI
produces the largest image while 300 DPI
produces the smallest. (Acceptable values are
75, 100, 150, and 300.)

Note that this option gives you a dot-for-dot reproduction of what appears
on the screen. Since the resolution for a video monitor and most printers
are different, the aspect ratio of the printed image may be somewhat
distorted. This is particularly true of EGA adapters at 640x350 resolution.
(The pictures shown in this manual were created with the Graphics
QuickScreen editor on a VGA display and printed on a laser printer at
either 100 or 150 DPI.)

CRESCENT SOFTWARE, INC. ■ 4-27

I

. I

The Screen Designer Graphics QuickScreen

Print Screen

r ~~:tii:~:iii~er l Laser Sea ling -
@ :l5 Dots per Inch
O !00 Dots per Inch
0 !50 Dots per Inch

□ Portrait 111ode 0 ;!00 Dots per Inch
□ Tiled colors
□ Swap colors I OK I J Cancel I

Figure 10: Print Screen Dialog Box

■ .[!OSShell

The DOS Shell lets you perform DOS functions while Graphics Quick­
Screen remains in memory. In order for this feature to work properly, the
file COMMAND.COM should reside on the root directory of your boot
drive. You may specify where COMMAND.COM resides by using the
COMSPEC command in your AU1DEXEC.BAT file. For example, if
COMMAND.COM is on C:\DOS you may place the following command
in the AU1DEXEC.BAT file:

COMSPEC=C:\DO5

As always, if you change the COMSPEC setting using AU1DEXEC.BAT,
you must either run it again or reboot your computer before the change
will take effect.

■ Exit
Exit ends your session with Graphics QuickScreen. If the current screen
has been changed since it was last saved, then Graphics QuickScreen will
prompt you to save the screen before exiting. (Ending the program also
creates a configuration file in the current directory. This file is named
"GQS.CNF" and stores the current path for icon, font, and tile files as
well as several other user settings such as the selected printer port, current
background color, mouse sensitivity, and so on.

fdit Menu
The Edit menu lets you access a number of Graphics QuickScreen's graphic
editing tools.

■ 4-28 CRESCENT SOFTWARE, INC.

Graphics QuickScrcen The Screen Designer

Figure 11: The Edit Menu

■ .CopyBlock
This option allows you to capture an image from your screen and make
one or more copies of it anywhere you like. See Copy/Move/Paste under
The Drawing Palette section of this manual for more details.

■ MoveBlock

This option allows you to capture an image from your screen and move it
to a new location. The background color defined in the Settings menu is
used to replace the image once it has been moved. See Copy/Move/Paste
under The Drawing Palette section of this manual for more details.

■ faste
This option recalls the image that is stored in the paste buffer. When
selected, the image will appear in the upper left-hand corner of the screen
and it may be placed anywhere on the screen as if you had captured it with
the Copy procedure.

■ Flip Horizontal~ertical

The Flip Horizontal or Flip Vertical choices let you select any rectangular
portion of the screen and graphically flip it horizontally or vertically.

To Flip a region:

1. Select Horizontal or Vertical Flip from the Edit pull-down menu.
A drawing cursor will appear.

2. Draw a box surrounding the region to be flipped, using the box
drawing procedure.

3. The image will be flipped as soon as you click the left mouse
button.

CRESCENT SOFIWARE, INC. ■ 4-29

■

I

The Screen Designer Graphic& QuickScreen

Note that even though the horizontal and vertical flipping algorithms are
very similar, flipping an image horizontally is considerably slower than
flipping it vertically because of the way video memory is organized.

■ Measure

The Measure option allows you to measure distances by row and column
or by X and Y pixels. Measurements are taken from the last point clicked.
Distances are displayed in the Status Box.

To take a measurement:

I. Select Measure from the Edit pull-down menu. The Status Box
will appear if it is not already active. A drawing cursor will also
appear.

2. Click the mouse on whatever starting point you desire. The Status
Box will display the distance as you move the mouse cursor.

Pressing the T key will toggle between Text (row and column) and pixel
(x and y) coordinates.

Draw Menu
The Draw Menu is used to access additional drawing tools not found on
the Drawing Palette.

~ ... ,...... nrz I
Tile ...
2J,cn C:W-ue
Closed CurYC
Scroll Bir

Figure 12: The Draw Menu

■ 4--30 CRESCENT SOFTWARE, INC.

Graphici. QuickScreen The Screen Designer

■ frint Text

This option allows you to type text onto the screen using standard row and
column coordinates. This routine uses the same ROM font used by your
computer but prints without disturbing the underlying screen. See Print
Text under The Drawing Palette section in this manual for more details on
using this option.

■ llrawText

This option is used to print text in a selected font anywhere on the screen
at any angle and in any color. The text may optionally be scaled and/or
italicized.

To draw text:

I. Select Draw Text from the Draw pull-down menu and a dialog
box will appear.

2. The dialog box prompts you for the following information:

Text: Enter the text to be printed, up to 10 lines.

Font: Select the desired font. Five pre-defined fonts are available,
or you can select from fonts that you have created using the GPFont
editor utility program*.

Scale: Enter the scaling factor. The range for scaling is from
approximately . 75 to 50, and can be any fractional value in
between. A value of 1 produces a font in the point size specified.
Values less than . 75 are acceptable but generally produce poor
results. As the font is scaled up the apparent resolution goes down.
This condition is inherent in almost any scaled font.

Text Angle: Enter the desired angle at which to draw text. A value
of O draws text horizontally. Positive angles rotate the text
clockwise while negative angles rotate the text counterclockwise.

• Italics Angle: Enter the desired italics angle. A value of 90
produces normal text, while values between 60 and 70 degrees
produce typical italicized text. Virtually any angle can be used and
you can even slant text backwards by using angles greater than 90
degrees. Note that if a text angle other than O is specified, italics
is disabled.

3. When all the information is correct click the OK button. A
rectangle will appear indicating the size of the text to be printed

CRESCENT SOFTWARE, INC. ■ 4-31

■

(not counting decenders). If a text angle is specified, a drawing
cursor will appear instead.

4. Position the rectangle/drawing cursor where you would like to
place the text and click the left mouse button. The drawing cursor
positions the upper left corner of the text. Text color can be
changed by pressing the number keys. If you make a mistake you
can clear the text by pressing FlO.

To create bold fonts, print the text as usual but do not move the cursor.
With grid snap off, press the Right or Left arrow key to move the cursor
one pixel to the right or left, and then press Enter. The text will be drawn
again offset by one pixel creating a bold effect. Shadowed or embossed
text can be created by changing colors before drawing the text a second
time.

* If you also have Crescent's Graphics Workshop or GraphPak Profes­
sional, you can create additional fonts using the font editor supplied with
them. Save the fonts using the names User!, User2 and so forth. as found
on the Draw Text dialog box. Place them in your Graphics QuickScreen
directory and they may then be accessed from the Draw Text dialog box
as well. The following font files are provided:

HELV8.GFN
HELVl2.GFN
TROM12.GFN
FUTURA.GFN
OLDENG.GFN

Iext: !text to be displayed

8 point helvetica
12 point helvetica
12 point Times Roman font
14 point Futura font
14 point Old English Font

Draw Text

l
o Helvetica Bpt O gld English 12pt I
0 ~•ucttc~ 1.?Pt O U~er 1 §cale: ;a DO
@l.fr.ites Ro...an Ia,etl O !Jser Z Iext Angle:
O ~utura O Us~r 3 !tal.Angle: 8 I C~nccl I

Figure 13: Draw Text Dialog Box

The drive and directory for these files can be specified in the Set Paths
dialog box. The default location is the current directory unless the
configuration file (GQS. CNF) indicates otherwise.

■ 4-32 CRESCENT SOFl"WARE, INC.

Gnphii:11 QuickScrccn The Sc rccn Dc9igncr

■ Jile

The Tile palette gives you access to an additional 119 dithered colors and
28 different tile patterns using only the 16-color palette.

A dithered color is produced by selecting any two colors and alternating
them every other pixel to produce a different apparent color. This is
accomplished by using a technique known as "tiling", where a 16x16 pixel
pattern is defined and then repeated much like tiles on a wall. These tiles
are generally used as fill colors when 16 colors are inadequate, or to
produce interesting backgrounds for your screens.

The tiling procedure works just like the Flood Fill option on the Drawing
Palette, and it will fill an entire area contained within a single color. (See
Flood Fill under The Drawing Palette section for more details.)

To tile a region:

I. Select Tile from the Drawing pulldown menu. The Tile Palette
will appear at its last used location. The Tile Palette can be
placed anywhere on the screen by clicking the bar at the bottom of
the palette and dragging it to the desired position.

2. Select a tile by clicking on it with the left mouse button. The Tile
Palette will disappear. Paint the region by pointing and clicking
the mouse as you would for the Flood Fill procedure.

Figure 14: Tile Palette

You may continue painting with the current tile, or you may return to the
Tile Palette by clicking the right mouse button. One more right click will
return you to the Drawing Palette.

The Tile Palette image is stored as a bit map in the TILEPAL.GM4 file.
The tiles are stored in the file TPAL.TIL. These files should reside in the
current directory or in the directory specified in the Set Paths dialog box.

CRESCEITT SOFTWARE, INC. ■ 4-33

I

I

■ Open/dosed Curve
The Open/Closed Curve options let you easily draw smooth curves of
almost any shape.

To draw an open/closed curve

1. Select Open Curve or Closed Curve from the Draw menu and a
drawing cursor will appear.

2. Draw lines that roughly define the shape of the curve, similar to
the line drawing procedure. You are allowed up to 100 line
segments to define the shape.

3. Click the right mouse button when you have completed the rough
outline to end line drawing. If you change your mind or make a
mistake when defining the outline, click the right mouse button
again to delete the line segments and start a new curve. If you are
satisfied with the shape, click the left mouse button and the line
segments will disappear. A hyperbolic smoothing algorithm is
applied to the shape you have defined, and a "smoothed" version of
your outline will be drawn.

An open curve differs from a closed curve only in that the endpoint will
be smooth! y joined to the starting point. This can be an important
difference depending on the desired result.

Open Curve Closed Curve

Figure 15: Effect of Smoothing Algorithms

■ 4-34 CRESCENT SOFTWARE, INC.

Graphic1 QuickScrecn The Screen De1igncr

You may continue to draw smoothed lines or you may return to the Drawing
Palette by clicking the right mouse button.

■ Horizontal/Vertical Scroll Bars
Scroll bars provide an easy way for users to enter a number from a range
of values in your programs. Like push buttons, they can be drawn in any
color but require three shades of the same color for the best 3D effect.
See Push Button under the Drawing Palette section of this manual for a
more detailed description on using colors. The sliding range of the scroll
bar can be changed to any other color as well.

To draw a vertical or horizontal scroll bar:

I. Select Scroll Bar from the Draw pulldown menu. A drawing
cursor will appear.

2. Place the cursor at any corner where you wish to start the scroll
bar and then click the left mouse button.

3. Move the cursor until the box is the size desired and click the left
mouse button. If the box is wider than it is high, a horizontal
scroll bar is drawn. If the box is higher than it is wide, a vertical
scroll bar is drawn. The scroll bar will be drawn in the selected
color.

4. If you wish to use a different color for the sliding portion of the
scroll bar, use the Flood Fill routine from the Drawing Palette to
paint the new color.

You may continue to draw scroll bars or return to the Drawing Palette by
clicking the right mouse button.

Note that at this point the scroll bar is just a graphic image, and needs to
be defined as a field* before it will actually function as a scroll bar.

'~::::!~ ::=::=I ============================~::;::@ H ~ ~
____ @ I _____ W bJ WW

Figure 16: Scroll Bars

CRESCENT SOFfWARE, INC. ■ 4-35

■

-I

The Screen Designer Graphics QuickScreen

Scroll bars may be almost any size but the length should be no less than
49 pixels to allow room for the two push buttons and the scroll pointer.

* We recommend that you draw scroll bars with grid snap on. This greatly
simplifies the process of defining them later as fields .

.Settings Menu

F1 e t:d1t Draw Conpose Helds I

,bine Type... FS
~alcttc... F3
Status Box
~yste111. ~.
Set Paths ...

FB
F6

Figure 17: The Settings Menu

The Settings menu allows you to set several global parameters that affect
how the drawing and editing routines operate.

■ Cursor ...
This option lets you pick the style of cursor to use during drawing and
editing operations.

To select a drawing/editing cursor:

1. Select Cursor ... from the Settings pulldown menu. A dialog box
will appear allowing you to pick one of four cursor styles:
Crosshair, Full Crosshair, XCrosshair or Square.

The Crosshair is the default drawing/editing cursor. The Full Crosshair
extends to the full height and width of the screen and can help make it

■ 4-36 CRESCENT SOFTWARE, INC.

Graphics QuickScrcen The Screen Designer

easy to line one object up with another. You will notice that when drawing
vertical or horizontal lines with either the Crosshair or the Full Crosshair
that the part of the cursor that is over the "rubberband" line appears in a
different color. It also changes as the background color changes.

This is a side effect of the XORing .technique used to draw both the line
and the cursor. This will rarely cause a problem and is often useful when
trying to locate the cursor precisely at an edge where two different colors
meet. If for some reason this is a problem, you can use the X Crosshair
instead. The square cursor is primarily used for the paintbrush routine,
but it can be used for drawing as well. Its size will correspond to the
Brush Size specified in the Settings dialog box.

Select Cursor

@[~ross Hair! OX
O Fu II C!:OSS Hair
O ~ Cross Hair j Cancel I
0 Squa!:e

Figure 18: Cursor TyPe Dialog Box

■ lineType
The Line Type dialog box selects the line style to be used to draw I ines,
boxes and polygons. You can select from seven pre-defined line types or
define your own custom line style. Custom line types are created by
defining a 16-bit line mask where each bit corresponds to a pixel on the
screen. A value of one will plot a point while a value of zero will not.
This pattern is then repeated every sixteen pixels for the length of the line.
To create a simple dashed line, select the Custom Mask option button and
enter a text string such as:

1111110000111111
or

1111111100000000

Select Line Type

@[A IO~· DI]
0 !! 0 [··-·-·-··-·-··-··-·
0 !;--------------- O §--------------- I !;ancel !
0 !! -------- 0 Custo10 !!ask

Custo10 Line !!ask: !1111111111111111!

Figure 19: Drawing Line TyPe Dialog Box

CRESCEITT SOFfWARE, INC. ■ 4-37

■

I

The Screen Designer Graphics QuickScreen

All subsequent line, box and polygon drawing will be performed using the
selected line type. You can easily toggle between the selected line type
and solid line drawing by pressing the backslash (\ I) key. A single beep
indicates that solid line drawing is in effect, while two beeps indicate that
a broken line type is in effect.

■ falette
The Color Palette lets you assign any of the EGA palette's 64 colors or
any of the VGA palette's 256k colors to any of the 16 drawing palette
colors. Use of the proper colors can greatly enhance the appearance of a
well designed screen.

To select or edit a color:

I. Select Palette from the Settings pulldown menu. Either an EGA
or VGA palette editor will appear, depending on the current screen
mode. The Palette Editor can be placed anywhere on the screen by
clicking the bar at the bottom of the editor and dragging it to the
desired position.

2. Select the color to change or edit by clicking on it with the mouse,
or by pressing the corresponding numeric key. The selected color
will appear in the larger window on the right side of the editor.

3. Cycle through the 64 EGA colors by using the scroll bar at the
bottom of the editor. The new color will be assigned to whichever
color you select.

The VGA palette editor allows you to mix your own colors by providing
three scroll bars to control the red, green, and blue components of the
color. These values can range from O (off) to 63 (full intensity). The
selected color will be assigned to whatever color you create. When
controlled from the keyboard, scroll bars are accessed by pressing Tab or
Shirt-Tab and are controlled using the cursor direction keys.

VGA palette editor

Figure 20: Color Palette

■ 4-38 CRESCENT SOFTWARE, INC.

Graphics QuickScreen The Screen Designer

■ Status .llox

The Status Box can be used to display the current setting of several
different drawing and editing parameters. It can be placed anywhere on
the screen by clicking on it with the mouse and then dragging it to the
desired position as long as no other pop-ups are active.

The Status Box displays the following parameters:

1. Current drawing color

2. Mouse cursor position

You can toggle between standard row and column coordinates, or X
and Y pixel coordinates by pressing the T (Text) key.

3. Snap status (on/oft)

Coordinate labels are shown in upper case if snap is on or lower case
if snap is off. You can toggle snap on and off with the S (Snap) key.

4. Relative Mode (on/oft)

When on, cursor coordinates are displayed relative to the last
position clicked. A CHR$(7) Dot will appear in the Status Box
just to the left of the row or Y label. Coordinates are relative to
the upper left corner of the screen when Relative Mode is off.
Row and column coordinates start at 1, I while X and Y pixel
coordinates start at 0, 0. You can toggle the status on and off with
the R (Relative) key.

-urrent Color

I !X:385 y:34311
Relative Mode On

■ System Figure 21: Status Box

The System option allows you to set several default settings that affect
how specific drawing and editing procedures operate.

To change a system setting:

1. Select the System ... option from the Settings pulldown menu. A
dialog box will appear prompting you for the following information:

CRESCENT SOFJ'WARE, INC. ■ 4-39

I

The Screen Designer

- Block Options:
Copy/Move Block

BG Color

■ XOR on

- Status Display:
Text/Pixel

Status On

- Snap Settings:

X Snap

Y Snap

Snap On/Off

■ 4--40

Graphics QuickScreen

Determines whether copy or move is active
when the Copy/Move icon is selected from the
Drawing Palette. The default setting is for copy.

Specifies the background color (0 - 15) to use
when replacing an area that has been moved.
The default background color is black (0).

Selects whether or not the pasted image will be
placed as either an XORed image or as an
opaque image. With XOR on, any black portion
of the copied or moved image will appear
transparent when pasted. All other colors in the
pasted image will be XORed with the underlying
screen as well. This will cause any color other
than black or white to vary with the underlying
screen colors. The default is set to XOR off.

Selects whether the Status Box will display
screen coordinates in text rows and columns or
in X/Y pixels. This option can also be toggled
from the keyboard by pressing the T key when­
ever the Status Box is active.

When checked, the Status Box is displayed.

Set the desired X Grid snap spacing (0 - 99) in
pixels. When painting fields this setting should
be set to 9.

Set the desired Y Grid Snap spacing (0 - 99) in
pixels. When painting fields this value should
be set to your screen modes text height (in
pixels) plus 1.

When checked, Grid Snap will be on. Grid
Snap can also be toggled on and off at any time
during drawing or editing by pressing the S key.
The default is Grid Snap On.

CRESCENT SOFTWARE, INC.

Graphic• QuickScreen

- Pixel Grid On

- ShowGrid

- Clear on Delete

- Corner Radius

- Brush Size

- Mouse Sens.

The Screen Designer

This option determines whether or not grid
lines will be displayed in a zoomed image.
Generally, grid lines are an aid when editing an
enlarged image. If they are not required un­
check this option.

When checked, this option causes a dot grid
corresponding to the size of a standard text
character to appear whenever New Screen ...
is selected from the File menu. The default
setting is off.

When checked, fields will be cleared to the
current background color when they are
deleted during the Enter Field definitions
procedure.

Sets the desired corner radius in pixels to be
used with the radius box drawing procedure.
Values can range from 1 to 999 pixels. The
default value is 15.

Determines the size in pixels of the paintbrush.
This setting also controls the size of the square
drawing cursor.

Determines the sensitivity of the mouse cursor.
This setting can range from 1 to 99, but its
useful range is from 1 to about 30. Values
above 30 or so are hopelessly insensitive. As
a reference, the mouse sensitivity setting within
the QuickBASIC editor defaults to about 10
while the Graphics QuickScreen default is set
to 4.

Systell Settings

r
Block Options ~
@ Copy B!ock !!G Color: [QI 1 ~ I l;ancel !
O ~ove Block D !!OR On

'--------------' 181 Pixel Grid On

r
Status D lsp lay □ Show Gr id
O _Text_ Coords__ I 181 Clear on J!elete
® !Pixel Coords JD Status On

Corner Radius: ~S

r
Snap Settings-------, Brush Size: 8
X Snap Space: ~ I Mouse Speed: S
X Snap Space: IE) 181 S!!ap On P!:inter Port: 1

Figure 22: Systems Dialog Box

CRESCENT SOFfWARE, INC. ■ 4-41

■

-I

The Screen Designer Graphics QuickScrccn

S.et Paths
The Set Paths option lets you specify the new drive and directory where
the various Graphic QuickScreen support files are located. These files are
the Drawing Palette icon files (SCRIBBLE.GMP, PBRUSH.GMP, BUCK­
ET. GMP, and CLRWHEEL.GMP), the TIie Palette bit-map and its related
tile file (fILEPAL.GM4, TPAL.TIL), and the font files used by the Draw
Text option (files with a .GFN extension). This lets you run GQS from
any other directory and still have access to the required support files.

The new path should be entered without a trailing backslash:

C:\GQS\FONTFILE
C:\GQS\MISC

The new paths are stored in the GQS. CNF configuration file that is created
whenever you end the program. This file is saved in the current directory
and loaded automatically whenever GQS is run again from the same
directory.

Set Paths
!con CI les: jjgruf

J'lle flies: ::(C:~,G=QS'.:::==========:::'.
[ont files: o,,IC·,o,,,G,,.gs,__ ____ __J

Ow

Figure 22a: Set Paths Dialog Box

.Compose Fields Menu
Graphics QuickScreen has the ability to manage a large group of pre­
defined fields. This feature allows data entry screens to be quickly and
easily developed.

■ 4-42

p,=~-a!IIIB!iiiiiiiiiiiiii'-7
l~E::i .. ,.. I

t,lntflel(Del'loltlln•
""lrpe,., ..

• !lot.tot lnr""'

Figure 23: The Compose Fields Menu

CRESCENT SOFCWARE, INC.

Graphics QuickScrccn The Screen Designer

■ Inter Field Definitions ...

This command defines fields to be added to the current screen thereby
creating what ultimately is to be a complete form. Each field may be
defined to accept very specific information. For example strings, num­
bers, or dates.

■ Move Fields

This selection allows you to move a field or range of fields anywhere on
the screen. Fields are moved using a procedure very similar to the graphic
Move Block procedure found on the Drawing Palette or under the Edit
menu. Move Fields differs from Move Block in that if the area selected
contains previously defined fields, the field definitions are moved along
with their graphic images.

Only those fields whose four corners fall completely inside the encom­
passing box will be moved. Moved images are replaced with the current
background color. The background color is set in the System dialog box
found under the Settings menu.

You may use any Grid Snap settings to identify and move the region.
However, if the region contains any text entry fields, Graphics Quick­
Screen will limit movement such that the field can only be placed at
standard text rows and columns. Mouse fields, push buttons and scroll
bars can be moved to any pixel location. Text fields cannot be moved to
the bottom screen row.

■ Copy Fields

This selection copies a field or range of fields to eliminate the need to
manually type in duplicated information. Fields are copied using a
procedure very similar to the graphic Copy Block procedure found on the
Drawing Palette or under the Edit menu. Copy Fields differs from Copy
Block in that if the area selected contains previously defined fields, the
field definitions are copied and moved along with their graphic images.
Unique field names are automatically created for each new field. Only
those fields whose four corners fall completely inside the encompassing
box will be copied.

You may use any Grid Snap settings to identify and move the region.
However, if the region contains any text entry fields, Graphics Quick­
Screen will limit movement such that the field can only be placed at
standard text rows and columns. Mouse fields, push buttons and scroll
bars can be copied and placed at any pixel location. Text fields cannot be
copied to the bottom row of the screen.

CRESCENT SOFfWARE, INC. ■ 4-43

I

I

The Screen Designer Graphics QuickScreen

This feature provides an extremely fast way to generate new fields without
going through the entire field definition process.

■ Rearrange Data Fields ...

This selection allows previously-defined data fields to be moved from their
data entry order (when Enter or Tab are pressed).

■ frint Field Definitions ...

This option creates a printed listing of all field definitions for the current
form and thus serves as a handy documentation utility. This printout
information is sent to any printer port. The printer port can be assigned
from the System dialog box under the Settings menu. The default port
is LPTI.

■ Make.!!emo ...

This selection creates write a BASIC source file that you can use as a
starting point to help develop your own source code. The code produced
will run as if Try Data Entry in Form had been selected.

If push buttons or scroll bars have been defined, appropriate SELECT
CASE statements will also be generated so that you need only write code
that responds to the values that they return. If multiple choice fields have
been defined, the Choice$() array will be set up to provide temporary
choices for the list boxes. You will have to modify this code to contain
the actual choices your program requires. (See Setting Up Multiple-Choice
Fields for more information.)

When you select Make Demo ... a dialog box will appear prompting you
for the following information:

Use .FRM File

Use BASIC module

Demo name

■ 4--44

This option causes the form definition file to be
loaded from disk. This provides the smallest
.EXE size but requires that the .FRM file be
distributed along with your program.

This option creates and assigns the form defini­
tions from a BASIC module. This allows you
to include the form definition file directly into
your final . EXE program but results in a some­
what larger program compared to loading the
field definitions from disk.

Enter the desired name of the demo without a
path or extension. The name will default to the
word DEMO plus the first four letters of the
form name.

CRESCENT SOFTWARE, INC.

Graphic• QuickScreen The Screen Designer

When you are satisfied with the demo settings, click OK to generate the
BASIC code. A .MAK file that includes all of the required modules for
your form will be created, as will a main module that calls up your screen
and form definition file. These files will be placed in the current working
directory. To run the demo, follow these steps:

1. Save your form and exit Graphics QuickScreen

2. Log on to your working directory and start BASIC with the
appropriate library:

QB /L GFORMS (for QB4.0 through BASIC 6.0)
or

QBX /L GFORMS7 (for BASIC 7.0 or later versions)

3. Check the DEMONAME.MAK file to make sure all of the
required modules and the form's .PCX file are in the current
directory. If you work from the Graphics QuickScreen directory,
the required files will already be there. If you work from any other
directory the required modules will have to be copied into your
working directory before the demo will run.

4. Load the demo using the Open command from the File pulldown
menu.

5. Once loaded, the demo can be run by pressing Shift-FS

Make De1110

OJ<

I Cancel !
!!e111onstrat ion File Na111e: !DEMOWORJ<!

Figure 24: Make Demo Dialog Box

CRESCEl'IT SOFfWARE, INC. ■ 4-45

■

-

■

The Screen Designer Graphics QuickScreen

■ Iry Data Entry in Form

The Graphics QuickScreen editor lets you test how a form will operate
when run from QuickBASIC. After choosing this command, the Graphics
QuickScreen environment will allow you to enter data in any field of the
form. When you have finished, simply press Esc in order to return to the
screen editing mode.

Function Keys

Function keys can be used to execute a number of the common! y used
menu commands. Their functions are listed in the table below:

~

Fl

F2

F3

F4

FS

F6

F7

F8

F9

FIO

Special Keys

Action

Display a help screen listing the various special
key and function key assignments

Display the Tile Palette

Display the Palette Editor

Display the Select Cursor dialog box

Display the Line Type dialog box

Display the System Settings dialog box

Display the Draw Text dialog box

Toggles the Status Box on and off. May be
accessed anytime during drawing or editing

Display current memory status

Undo any drawing or editing performed since
the last time the Drawing Palette or PullDown
menu was invoked

Table 8: The Function Keys

Several keys have been defined to serve as toggles for changing the status
of the various drawing and editing parameters. These keys and their
functions are listed in the table below:

■ 4-46 CRESCENT SOFfWARE, INC.

Graphics Quid,Scrcen The Screen Designer

~ ;..:A:..::c.ccti"'o""n _________________ ___,

S Toggles Grid Snap on and off. This key can be used
during any drawing or editing operation. Note that when
Grid Snap is on, labels in the status box are displayed in
upper case.

T

R

I' I

A

F

Fields

Toggles the Status Box display between Text
(Row/Column) coordinates and pixel (X/Y) coordinates.

Toggles the Status Box display between Relative and
absolute screen coordinates. Absolute coordinates are
measured from the upper left-hand corner of the screen.
Pixel coordinates start at 0, 0 while text coordinates start
at I, I. Relative coordinates are measured from the last
point selected.

Toggles the line type for drawing lines, boxes and
polygons between solid and the previously selected line
type. A single beep indicates that solid line drawing is
in effect while two beeps indicate that the previously
selected line type is active.

Toggles Arc rotation. Arcs can be drawn either clock­
wise or counterclockwise from the selected starting point
to the selected end point. Assuming a black background,
the drawing cursor will appear white to indicate
counterclockwise rotation or yellow to indicate clockwise
rotation. This key is active only during the Arc drawing
procedure.

Toggles between the current Grid Snap settings and Grid
Snap settings that correspond to the current text size. A
black box "■" will appear in the Status Box when snap
coordinates correspond to the current text size.

Table 9: Special Keys

Graphics QuickScreen has the ability to create fields which gather user
input when a form is used from BASIC. A screen with field definitions
is called a form. When using forms from BASIC, field information may
be passed to and from a calling program.

CRESCENT SOFTWARE, INC. ■ 4-47

■

■

The Screen Designer Graphics QuiclcScreen

In order to understand the use of fields in Graphics QuickScreen we will
first present the many field types available. Next, the Field Settings dialog
box is discussed, since each field may be customized to a certain extent.
The next section discusses the power in using numeric formulas. And
last, the entire process of defining fields is described.

Field Types
The field type describes the data which is to be entered at a particular
field. For example, there is a Social Security Number field type which
accepts numerical information only in the fonn ###-##-####. Graphics
QuickScreen contains built-in logic for each field type, making additional
formatting or syntax-checking by the calling program unnecessary.
Graphics QuickScreen also supports four additional field types that do not
accept data but must be defined as fields for them to function. These are:
mouse fields, push buttons, horizontal and vertical scroll bars.

Certain field types are fixed-length and generate mask characters. These
are simply delimiting characters such as the dashes in a social security
number that help to format a field on the screen. Graphics QuickScreen
inserts mask characters for you and skips over them automatically when
the field is being used in a fonn.

Following is a description for each field type available in Graphics
QuickScreen.

■ String

Alphanumeric characters, both upper-case and lower-case are accepted.
This field is useful for collecting any general single-line string information.

■ Proper String

Alphanumeric characters are accepted and the first letter in each word is
automatically capitalized during data entry. This field is useful for names
and addresses.

■ Upper Case String

Alphanumeric characters are accepted, and all characters are automatically
converted to upper-case during data entry. This field is useful for
abbreviations, state codes and part numbers.

■ Numeric

Numeric characters are accepted but are treated as strings. This field is
useful for telephone numbers and zip codes.

■ 4-48 CRESCENT SOFTWARE, INC.

Graphics QuickScrccn The Screen Designer

■ Scrolling Text

Lines of text longer than the actual defined text window may be entered.
You may also specify what type of text is to be accepted from 5 options:

I . All characters

2. Integer characters only (0123456789)

3. Single or Double precision characters only (01234567890+- ,.ED)

4. All letters are capitalized

5. Proper strings where the first letter of each word is capitalized

See the documentation for SCROLLJN .BAS for more information on
selecting the desired option.

■ Multi Line Text

Several lines of alphanumeric characters are accepted. This field is ideal
for notes.

■ Logical

A pre-defined "true" or "false" character is accepted. This field is
therefore useful for yes/no or check/uncheck fields.

■ Integer

An integer number in the default range -32768 to 32767 is accepted. This
field is useful for entering an integer value such as the quantity of items
in a sale.

■ Long Integer

A long-integer number in the default range -2,147,483,648 to
2,147,483,647 is accepted. This field is useful for entering a very large
integer number.

■ Single Precision

A single-precision number in the default range 3.402823 E+ 38 to
1.401298 E-45 is accepted. This field is useful for general decimal
numbers.

■ Double Precision

A double-precision number in the default range I. 7976931 D + 308 to
4.940656 D-324 is accepted.

CRESCENT SOFTWARE, INC. ■ 4--19

I

I

The Screen Designer Graphics QuickScreen

■ Currency

An amount of money in the double-precision range is accepted. The
currency symbol for the field may be defined so that dollars, yen, or other
currencies may be used. Note that this field does not use the Currency
data type.

■ Date MM-DD-YYYY

A date in the default range 01-01-1900 to 01-01-2065 and in the American
format (MM-DD-YYYY) is accepted. The dash (-) mask character is
added automatically.

■ Date DD-MM-YYYY

A date in the default range 01-01-1900 to 01-01-2065 and in the European
format (DD-MM-YYYY) is accepted. The dash (-) mask character is
added automatically.

■ Phone Number

A phone number in the form (###)###-####is accepted. The parentheses
and dash mask characters are added automatically.

■ Zip Code

A zip code in the form#####-#### is accepted. The dash mask character
is added automatic, II y.

■ Social Security Number

A social security number in the form ###-##-#### is accepted. The dash
mask characters are added automatically.

■ Relational

Allows you to specify what file and which field in that file is to be used
for the current field. Although Graphics QuickScreen does not process
these fields automatically, relational fields allow a calling program to
access data in other form files.

■ Multiple-Choice Array

Presents a vertical menu of choices. This menu is defined in a string array
by the calling program and then displayed whenever the field is accessed.
Menu colors are set in the GPDat% O array.

■ Mouse Field

Mouse fields allow you to define rectangular regions on the screen that
will return a single user-defined key code whenever they are selected in
a form.

A mouse field is activated by clicking on it with a mouse, moving to the
field and pressing Enter, or pressing the key which has been assigned to

■ 4-50 CRESCENT SOFfWARE, INC.

Graphics QuickScrccn The Screen Designer

it. The field can be outlined when it is the current field and can also be
highlighted in any color when activated. The field may also be set up to
function as a toggle such that each selection highlights or un-highlights
the field.

When defined as a toggle, a mouse field will occupy one byte in a data
file. Otherwise, a mouse field contains no data and will not occupy space
in a data file.

■ Push Button

Push buttons return a single user-defined key code whenever they are
selected in a form. Common example push buttons are OK and Cancel,
which would typically return the key codes for Enter and Esc, respective­
ly. Although the button fields may show any words or pictures and return
any keycode you choose, they always return a single value.

A push button is activated by clicking on it with a mouse, moving to the
field and pressing Enter, or pressing the key which has been assigned to
it.

Push buttons do not have any data associated with them and thus do not
occupy space in a data file.

■ Horizontal/Vertical Scroll Bars
Scroll bars provide an easy way for users to enter a number from a range
of values in your programs. The numbers that they may represent can
range anywhere from -32768 to 32767 and can be returned in any step
increment. See Scroll Bars for more detailed information.

Table IO presents a summary of Graphics QuickScreen's twenty-three field
types. The field type names appear in the Field Types dialog box shown
in Figure 25 and are encountered when defining fields using the steps
outlined under the section Creating Data Entry Fields.

CRESCENT SOFTWARE, INC. ■ 4-51

■

I

The Screen Designer Graphics QuickScreen

• String
String Alphanumeric characters

Proper String Alphanumeric characters; the first letter of each
word will be capitalized

Upper case String Alphanumeric characters; each alphabetic char­
acter will be capitalized

Numeric

Multi Line Text

Scrolling Text

Numeric

Numeric characters only

Alphanumeric characters; several lines of text
may be entered and edited

Single line text that may be scrolled left or right

Integer -32768 to 32767

Long Integer -2,147,483,648 to 2,147,483,647

Single Precision 3.402823 E+38 to 1,401298 E-5

Double Precision 1.7976931 0+308 to 4.940656 D-324

Currency 1.7976931 0+308 to 4.940656 D-324

General

Logic A "true" or "false" character

*Date (US) MM-DD-YYYY (MM=month, DD=day,
YYYY=year) 01-01-1900 to 11-17-2065

*Date (European) DDD-MM-YYYY 01-01-1900 to 11-17-2065

*Phone Number (###) ###-####

*Zip Code #####-####

*Social Security ###-###-####

Special

Relational Relates the current field to a field in another file

Mutt-Choice Array Presents a vertical menu of choices

Push Button Returns user assigned key code when activated

Mouse Field

Horizontal
Scroll Bar

Returns user assigned key code when activated

-32768 to 32767

Vertical Scroll Bar -32768 to 32767

Fields designated with an asterisk (*) generate mask characters

Table 10: Field Types

■ 4--52 CRESCENT SOFTWARE, INC.

Graphic, QuickScreen The Screen Designer

Select Field Type

I Current Fieldl: 1 I LEE:] I ~ancel I
Text Fields - ForJ'l'latted
O S!ring O C!,!rrency
O !'roper String 0 Date MM-DD-!:
@[QCase_String I 0 Date D]!-MM-Y
O Nuner ic Te~t 0 !'hone Nunber
0 t!ultiLine Text O ~ip Code
O Sc!:oll ing Text O ~ocial Security

Nurraeric Special
O !,ogical O !le Jationa I ...
O !nteger O t!ultiple Choice
0 !,ong Integer O Mous!, Region
O ~ingle Precision O !'ush Button
O]!ouble Precision 0 ~croll Bar

Figure 25: Field Type Dialog Box

Field Settings
Each field has a group of user-assigned attributes that collectively are
called Field Settings. These attributes are set using dialog boxes, one of
which is depicted in figure 26. This figure shows an example Field
Settings dialog box which is generated for the Currency field type. It is
important to realize that certain fields will generate dialog boxes containing
slightly different options. For example, the push Button field type dialog
box queries for a key code value to be returned when activated.

The following pages present an alphabetized list of input elements which
are encountered for the Field Settings dialog box.

CRESCENT SOFTWARE, INC. ■ 4-53

I

■

The Screen Designer

Field ~al'le: ~­
Text Color: 15
Dec Places:
Cutrency:

Currenc" Fie ldl 1

0 ~rotected
0 !ndexed

Graphics QuickScreen

!,oRange: fl. 79769313186231D+30BI HIJ:!ange:)1, 7976'3313186231D•30B I

Fo,eula, I I
L,._ _______________ ..J

!:!elp !Enter the current sales price
Nessage .

Figure 26: Currency Field Dialog Box

■ Currency Symbol
The symbol to be used when displaying currency values, such as $ for
dollars or ¥ for Yen.

■ Decimal Places

Number of digits to be displayed after the decimal point. The value of the
number presented will be rounded based on the internal decimal repre­
sentation.

■ False Character

The character to be accepted as False in a logical field. The space bar
will toggle True and False characters.

■ Field Name
A unique name, up to eight-characters in length, for the current field.
This name is generated automatically but can be changed to any name you
feel is appropriate. The name may be used as a variable or a string, and
can appear in field formula calculations.

Realize that a constant, function, or operator name such as ARCSIN
represents a reserved word and should not be used as a field name unless
it will not be used in calculated fields.

■ Formula
Formulas are considered to be string formulas if they are associated with
non-numeric fields.

Formulas are considered to be numeric formulas and define calculated
fields if they are assigned to numeric fields. Numeric fields include:
integer, long integer, single precision, double precision, US date,
European date, and horizontal or vertical scroll bars.

■ 4-54 CRESCENT SOFIWARE, INC.

Graphics QuickScreen The Screen Designer

While string formulas are limited to string concatenation, numeric for­
mulas may use a variety of functions, constants, and operators. Please
see the next section, Numeric Formulas for more detail.

■ Help Message
The text specified in the Help Message text box is the field-sensitive help
which is presented in a window on the form when Fl is pressed.

■ Highlight Color
The highlight color specifies the color to use when a mouse field is
selected. Since the specified highlight color will be XORed over the
existing color, the actual color will vary with the underlying color. A
value of 0 will not display a highlight. To determine a specific highlight
color over a given background color use this simple formula:

Color = (Existing Color) XOR (Desired Highlight Color)

For example, if the mouse region is blue and you want the highlight to
appear red:

COLOR COLOR# COLOR # (BINARY)

Blue I 00000001
XOR Red XOR4 XOR 00OO0lQQ

Violet 5 00000101

You would therefore assign color 5 (normally violet) as the highlight color
in the field definition dialog box. You can use the BASIC editor's
Immediate mode to calculate the appropriate value: PRINT I XOR 4.

■ Indexed Field

This input element should be checked if the current field is to be indexed.

Indexed fields are not processed by Graphics QuickScreen; however, this
information can be used as a flag by the calling program to determine
which fields in a form are to be indexed. Note however that the Fld(N).ln­
dexed variable is also used to hold the small change value for scroll bars.
If you are testing to see if a field has been indexed on a form that has scroll
bars, make sure that scroll bars are excluded in the search.

■ KeyCode

The key code that is to be returned when a push button is pressed. The
value should correspond to the character's ASCII code. Extended keys
are defined as the negative value of the character's ASCII code without

CRESCENT SOFfWARE, INC. ■ 4-55

■

I

The Screen Designer Graphic, QuickScreen

the leading CHR$(0). Some common key codes are shown in the following
example:

.!!!L Key Code

Enter 13
Esc 27
A 65
FlO -68
PgUp -73

■ Large Change

When a scroll bar is active, this value indicates the amount of change when
clicking on the sliding portion of the scroll bar or when pressing PgUp or
PgDn.

■ No Formatting

This input element should be checked if a number is to be displayed as it
was entered by the user. If this option remains unchecked, then numbers
are right-justified.

■ Protected Field

This input element ,hould be checked if the current field is to be protected
against modification. That is, the field will be a display-only field. Any
field type can be protected but there must be at least one non-protected
field on each form.

■ Range
Specifies the upper and lower limits for numeric input, or the date range
for date input between which entered values must fall before being
accepted in a form.

■ Relational Field

This option lets you specify a file and field name for a relational field. A
calling program may use this information to form a relational link to data
in another data file.

Relational fields are not processed by Graphics QuickScreen; however,
the related file name and the related field number are available to the calling
program. See the discussion of the FieldlnfoG TYPE variable under
FLDINFO.BI in the Routines section for further information.

■ Small Change

For scroll bars, this value indicates the amount of change when the cursor
keys are used or the up/down scroll buttons are clicked.

■ 4-56 CRESCENT SOFI'WARE, INC.

Graphics QuickScrecn The Screen Designer

■ TabColor

For Mouse fields, the color to use in order to indicate the outline of the
field whenever tabbed to or selected with a mouse. A value of O will not
display an outline. Since the specified Tab color will be XORed over the
existing color, the actual color will vary with the underlying color. To
determine a specific outline color over a given background color use this
simple formula:

Color= (Existing Color) XOR (Desired Tab Color)

For example, if the background region is blue and you want the outline to
appear red:

COLOR COLOR# COLOR # (BINARY)

Blue 1 00000001

XOR Red XOR4 XOR 00000100

Violet 5 00000101

You would therefore assign color 5 (normally violet) as the Tab color in
the field definition dialog box.

■ TextColor

Specifies the text foreground color for the field. The text background
color will be whatever color the field was painted.

■ Toggle

When checked, a mouse field will toggle between the highlight color and
the original color each time the field is activated. (When highlighted,
Form$(N, 0) will contain an "X", otherwise it will hold a single space.)

■ True Character

The character to be accepted as true in a logical field. The space bar will
toggle between true and false characters during operation.

■ Numeric Formulas

Field calculation formulas in Graphics QuickScreen use the same syntax
that BASIC uses. For example, you would calculate the total price for an
item which costs PURCHASE dollars (where PURCHASE is a field name)
and is taxed at 6 % as follows:

PURCHASE+ (PURCHASE• .06)

Notice that parentheses may be used to group parts of a formula to develop
a mathematical hierarchy. Although this is a very simple example. the

CRESCENT SOFTWARE, INC. ■ 4-57

■

■

The Screen Designer Graphics QuickScreen

formula can use a variety of functions, constants, and special operators.
These are summarized below:

, Functions

Graphics QuickScreen supports many functions available in BASIC as well
as several that are not. The available functions are summarized in Table
II.

Name

ARCSINH
ARCCOSH
ARCTANH
ARCSECH
ARCCSCH
ARCCOfH
ARCSIN
ARCCOS
ARCSEC
ARCCSC
ARCCOf
SINH
TANH
SECH
CSCH
COfH
csc
car
SEC
SIN
cos
TAN
ATN
LOG
EXP
SQR
CLG
!
ABS

Value

Inverse Hyperbolic Sine
Inverse Hyperbolic Cosine
Inverse Hyperbolic Tangent
Inverse Hyperbolic Secant
Inverse Hyperbolic Cosecant
Inverse Hyperbolic Cotangent
Inverse Sine
Inverse Cosine
Inverse Secant
Inverse Cosecant
Inverse Cotangent
Hyperbolic Sine
Hyperbolic Tangent
Hyperbolic Secant
Hyperbolic Cosecant
Hyperbolic Cotangent
Cosecant
Cotangent
Secant
Sine
Cosine
Tangent
Arc Tangent
Natural Log
Exponent
Square Root
Common Log
Factorial
Absolute value

Table 11: Graphics QuickScreen Field Functions

■ 4-58 CRESCENT SOFTWARE. INC.

Graphics QuickScrccn The Screen Designer

, Constants

Several constant names may be used in a formula expression. The field
constants available are summarized in Tobie 12.

Name

Pi

E

Value

3.14159265358979323846

2.718281828459045

Table 12: Graphics QuickScreen Field Constants

, Math Operators

Table 13 presents the Graphics QuickScreen math operators which may
be used just like BASIC's.

, Relational Operators

Relational operators, presented in Table 14, compare numerical values.
When true, the formula expression evaluates to -1; when false the result
is 0.

Operator

*
I
\
MOD
+

Purpose

Power
Multiplication
Division
Integer Division
Module
Addition
Subtraction

Table 13: Graphics QuickScreen Field Math Operators

Operator

>
<

Purpose

Equal
Greater than
Less than

Table 14 Graphics QuickScreen Field Relational Operators

CRESCENT SOFTWARE, INC. ■ 4-59

■

. I

The Screen Designer Graphic• QuickScreen

Boolean (Logical) Operators

You may use Boolean operators in a numerical formula to evaluate
expressions to True, which is -1, or False, which is 0. Table 15
summarizes Graphics QuickScreen's Boolean operators.

Boolean Operators

AND
NITT
OR

Table 15: Graphics QuickScreen Field Boolean Operators

Scroll Bars
Scroll bars allow the user to enter a number from a range of values. Upper
and lower limits can be set to any values ranging from -32768 to 32767.
Numbers can be returned in any step increment that you specify.

Two different step sizes are available for each scroll bar. These are
specified in the field setting dialog box in the Small Change and Large
Change text boxes. The Small Change value specifies the amount of
change when using the Up/Down/Left/Right cursor arrow keys or when
clicking on the direction scroll buttons. The Large Change value specifies
the amount of change when clicking on the sliding portion of the scroll
bar or when pressing PgUp or PgDn. In addition, pressing the Home key
selects the low limit while the End key selects the high limit.

The lower limit must always be less than the upper limit. To make the
scroll bars read backwards such that the high value is indicated when the
scroll pointer is at the top or left of a scroll bar, subtract Fld(N). Value
from Fld(N).HiRange. See Handling Scroll Bars for more information.

■ 4-60 CRESCENT SOFTWARE, INC.

5 ■

I

Graphics QuickScrecn Creating Screens

CREATING SCREENS

Graphics QuickScreen's editing features make it very easy to create screens
and embellish them with sophisticated graphics and color. Its user
interface allows you to paint your data entry screens much as you would
paint screens in a conventional paint program.

Because Graphics QuickScreen screens are saved in the popular .PCX
format, you may also import scanned . PCX images or use screens created
in any other paint program that uses the .PCX format. The imported
screens must also have been saved in either the 640x350 or 640x480 16-
color mode. These screens can then be loaded into the Graphics Quick­
Screen editor for further enhancements and the addition of data entry
fields.

It is important to understand that the graphic image of the forms you create
and the field definitions themselves are stored in two completely separate
and independent files. The screens that you paint are simply blankfonns
on which to perform data entry. What you draw affects only what
background color is used for text fields and identifies the placement and
color for push buttons and scroll bars.

The screen image can be displayed with or without field definitions-data
entry can be performed with or without the original screen-it simply uses
whatever colors are present for text background colors and uses the
previously defined foreground color for the actual text. Of course, it is
intended that you display the correct screen along with its related form
definition.

The process for creating data entry screens in the Graphics QuickScreen
editor can be broken down into four basic steps:

I. Design and draw/paint the blank form
2. Define the fields
3. Test the form
4. Generate BASIC source code

Graphics QuickScreen's interface allows you to perform these steps in
almost any order, but there are several points to consider.

When designing your screens it is helpful to indicate the boundaries of
data entry fields by painting them a specific color. This helps you to
identify field boundaries when defining fields within the Graphics Quick­
Screen editor but more importantly indicates to your users where fields

CRESCENT SOFTWARE, INC. ■ 5-1

■

I

Creating Screens Graphics QuickScreen

begin and end. When your program runs, the EditFormG subroutine reads
the existing background color from the screen for each field as it is
encountered. EditFormG uses whatever background color it finds when­
ever printing text to the field.

Since all text entry fields must be located at standard text rows and
columns, you must be careful when painting fields to locate the field's
coordinates correctly. This is easily accomplished by setting Grid Snap
values that correspond to the current screen mode's text size. (See Painting
Fields for more information.) Mouse fields, push buttons, scroll bars,
and constant text are not restricted by text rows and columns and can be
placed at any pixel location.

■ 5-2 CRESCENT SOFTWARE, INC.

I

Graphics QuickScrccn Creating Data Entry Forms

CREATING DATA ENTRY FORMS

Defining Fields

The following sequence shows the steps needed to define any data field:

I. Choose the Define Data Fields command
2. Position the cursor
3. Choose a field type
4. Adjust the field size
5. Complete field settings

To create a field, first choose the (Compose-Fields) Define Data Fields
menu option. Second, move the cursor to the starting position of the field
you are defining, and then press Enter or double click the mouse. If you
are defining mouse fields, push buttons, or scroll bars, the initial starting
point is irrelevant since it will be redefined after the next step.

Third, choose a field type from those presented. Fourth, adjust the field
size, keeping in mind that you must allow enough space to hold the field's
data. You should consider that dashes, commas, and other "mask"
characters occupy space in the field and should be considered when
adjusting the size.

If you are using a form and notice that a numeric field is filled with percent
(%) symbols, then the data in that field is exceeding the field's size. This
usually indicates that the field must be made larger.

If you selected mouse field, push button or scroll bar, you will be prompted
to define the field by drawing a box around it. For push buttons and scroll
bars to function properly, this box must overlay exactly the black outline
of the image. When the size is correct, all sides of the encompassing box
will appear yellow.

The last step is to complete the field settings by specifying the field name,
text foreground color (if applicable), associated formula, help message,
and other available options. Field names are assigned automatically by
Graphics QuickScreen, but they may be changed to any other unique name.

The field definition procedure outlined becomes cyclic: step 5 is followed
by step 2. This cycle continues until either Esc or FlO is pressed after
step 5. The final step 5 presents a dialog box which is appropriate for the
field being defined. This dialog box, therefore, is not always the same.

CRESCENT SOFfWARE. INC. ■ 6-1

■

I

Creating Data Entry Forms Graphics QuickScreen

Try to define the fields in the same order you wish them to be used in the
form. This reduces the likelihood that you will need to use the field
Rearrange features, discussed later in this section.

Often, you will notice ways that the form can be improved once you create
it. Editing fields already on the screen is easy. Simply access the
(Compose-Fields) Define Data Fields menu option. You can use the +
and - keys to access the next and previous fields, respectively, in the form.
Pressing Del deletes a field from the form, while pressing Ins inserts a
field before the current field.

You can also directly access any predefined field during step 2 by pressing
the Tub key, or by clicking on the field's number shown in the dialog box.
The field's number will become a text box allowing you to enter the desired
field number. Press Enter or click the mouse anywhere outside of the
field number's text box to jump to the specified field. Entering a number
greater than or equal to the highest field number will select the last field.

Rearranging Fields

If you need to rearrange the order of fields on a form you will use the
(Compose-Fields) Rearrange Data Fields ... command. This generates
the dialog box similar to the one shown in Figure 27.

Rearrange Fields
Select the field to 111oue:

Fields:

I I a1L...i1r•w•- ♦ OK
EDATE

'- I Cancel I PHONE
ZIP
SOCSEC
MONE'/
INT
'IESNO ..

Figure 27: Rearrange Fields Dialog Box I
Fields may be re-ordered in the Rearrange dialog box by first selecting
a field in the list box and then clicking the OK push button. You will then

■ 6-2 CRESCENT SOFTWARE, INC.

Graphics QuickScrccn Creating Data Entry Fonns

be able to position the selected field above or below another field in the
list box. Clicking OK again inserts the selected field at the indicated
position. Clicking Cancel will instead exit the dialog box.

Printing Field Definitions

The field definitions for the current screen can be printed* by using the
(Compose-Fields) Print Field Definitions command. If the printer is
ready then the fields will be printed. The heading of the report will contain
the field file name, the record length, and the current date and time. Page
numbers will appear at the upper-right corner for your convenience. The
default printer port is LPTI, though this may be changed from the System
dialog box under the Settings menu.

The remainder of the report consists of a columnar table containing the
headings summarized in Table 16.

Heading Name

Fld
Offset

Name
Type

FldLen

RecLen
Located

Related File
Index

Prot
Range

Formula

Meaning

The field number
The integer pointer representing a byte offset
of this field in the entire field structure
The field name up to eight characters
The field type; See Table 20, FieldlnfoG FType
constants. If a push button field, the key code
to be returned is also displayed
For text fields, the field length in bytes; for
mouse fields, push buttons, and scroll bars, the
height and width in pixels of the field
The record length in bytes
For text fields, the row and column coordinates
of the field; For mouse fields, push buttons
and scroll bars, the X/Y coordinates in pixels
of the upper left corner of the field
The file name for relation
Yes or No; tells whether the field is to be
indexed
Yes or No; tells whether the field is protected
For numeric fields, the upper and lower range
for allowable input; for scroll bars, the maxi­
mum and minimum values to be returned
The defined field formula

Table 16: Field Report Headings

CRESCENT SOITWARE, INC. ■ 6-3

I

I

Creating Data Entry Forms Graphics QuickScreen

* The LPT? number is specified in the System dialog box under the
Settings menu. The default is for LPTI.

Saving A Form

Creating a data entry screen usually takes both care and time. You will
want to save often while designing or making changes to your form by
using the (File) Save ... menu command.

It is important to understand that Graphics QuickScreen provides a
safeguard to protect you from destroying an existing form (.FRM) file
inadvertent) y. If you load a form and make changes to it, Graphics
QuickScreen first checks to see if a data file exists which has the same
name as the form. For instance, if you are editing MYFORM.FRM and
the file MYFORM.DBF or MYFORM.DAT exists, then Graphics Quick­
Screen will not overwrite the existing .FRM file (since doing so could
make the existing data file unreadable). Instead, a file with the extension
of .NEW is created. In this example, MYFORM.NEW would be created
instead of MYFORM.FRM.

Files created by Graphics QuickScreen

When you save sc;eens created with the Graphics QuickScreen editor,
several files are created. The screen image is saved in compressed form
in the .PCX format. Information describing the fields you have defined
will be saved in a separate .FRM file, and can optionally be saved as a
BASIC source file. A .BI (Basic Include) file containing a TYPE
definition that corresponds to the field types in your form is also created.

To display and edit forms in your program, you will first need to assign
the form definitions arrays from either the .FRM file or the .BAS source
file. The GetFldDefG BASIC subroutine is provided to read the .FRM
file and assign it to two arrays, FldO and Form$Q.

If you prefer to code the field definitions directly into your source code,
you can instead call the BASIC subroutine optionally created when you
saved your form. This source file will have the same name as your form's
.PCX file, but with a .BAS extension. When called, it performs the same
function as the GetFldDefG subroutine.

The FldO array is a TYPE array that contains field attributes such as the
field's row, left column, right column, field type, and so on. See the
FLDINFO.BI TYPE structure definition for more information.

■ 6-4 CRESCENT SOFTWARE, INC.

Graphics QuickScrccn Creating Data Entry Forms

The Form$0 array is a three-dimensional string array that contains field
formulas, help messages, and also holds the actual data that is assigned to
or entered into each field. The information contained in element I of each
of the arrays relates to field I on your form, element 2 relates to field 2,
and so forth.

Element 0 of both the FldO TYPE array and the Form$() array contain
general form information. The Fld(0).xxx elements contain information
such as the total number of fields, total length of the form, and the number
of text rows. Form$(0, 0) is of particular interest because it contains all
field input combined into a single string ready to be written to disk.
Numbers are placed into Form$(0, 0) as IEEE formatted strings. This
string can then be copied directly into a variable of the TYPE structure
defined in the .BI file created when you saved your form. The entire form
can then be saved as a record in a random file by PUTing this TYPE
variable to disk.

After the field definitions have been assigned, forms are displayed by
calling the Show Form subroutine. This routine first sets the proper screen
mode, color palette, and number of screen rows, and then displays the
screen.

Once the form definitions have been loaded and the screen displayed, data
is entered into the form by calling the EditFormG subroutine. EditFormG
is a pollable routine that reads the field information and handles all user
input while editing the form. It also returns several variables that may be
examined to determine the current editing status.

Since EditFormG is meant to be called in a loop, the calling program can
monitor all editing as it occurs. This gives the calling program the ability
to test for specific keys or conditions and act upon them independently,
instead of having to wait for the user to press Enter or Escape. The
current field number, last key pressed, insert status, and the current mouse
X and Y coordinates are just some of the parameters that can be monitored
at any given moment.

All data entered into your form is stored as a string in the Form$(N, 0)
array. (N represents the field number.) Numeric fields are stored literally
as they appear on the screen. Field data is also stored in Form$(0, 0) as
a single continuous string that has numbers and dates formatted as IEEE
formatted strings.

CRESCENT SOFrWARE. INC. ■ 6-5

■

I

Creating Data Entry Forms Graphics QuickScreen

When editing is complete, all user input in the form is contained in the
Form$() array. If you wish to save your form as a record in a random file,
the SaveRec and GetRec routines are provided to save and retrieve this
data.

■ 6-6 CRESCENT SOFTWARE, INC.

7

■

I

Graphics QukkScrccn Routines

GRAPHICS QUICKSCREEN ROUTINES

Procedure Reference Section

Graphics QuickScreen allows the programmer to generate screens and
process forms from BASIC using a variety of options. This flexibility
necessarily brings some complexity. In order to make this section most
useful, we first present some terms and concepts with which you should
be familiar. Then we introduce the important Include files which you will
use in your calling programs. Next, we examine the variables which play
a vital role in using Graphics QuickScreen from BASIC and which appear
in the demonstration programs. Finally, we present documentation for the
Graphics QuickScreen BASIC and assembler routines you will be using.

Integers
Throughout the remainder of this manual we will make reference to several
important integer variables, such as Action and ErrorCode. As you may
know, such variables are represented in BASIC with a trailing percent sign
(%). Thus, X% refers to an integer variable. You will notice, however,
that many examples and discussions which use integer variables omit the
percent symbol. The reason is that our sample programs and program
fragments assume the presence of a DEFINT A-Z statement, which
ensures that variables lacking a type identifier are integers by default.

We have retained the type identifier when showing the calling syntax for
the Graphics QuickScreen routines to clearly show which parameters are
integers.

Parameters
A parameter is a variable which appears at the top of a subprogram or
function heading. For example:

SUB GPrintOVE(Row%, Col%, Text$, Colr%)

Here, Row%, Col%, Text$ and Colr% are variables in the parameter list.
There must always be a one-to-one correspondence in both number and
type for the arguments and the parameters used when implementing a
routine. For instance, if a particular routine was designed to accept 5
parameters, then you must pass exactly 5 arguments to the routine when
you call it. And if the first parameter expects an integer, you must use an
integer as the first argument.

CRESCENT SOFfWARE, INC. ■ 7-1

I

I

Roulines Graphics QuickScreen

Arguments
An argument is a variable or value used when calling a subprogram or
invoking a function. For example:

CALL GPrintOVE(Row%, Col%, Text$, Colr%)

Here, Row%, Col%, Text$ and Colr% are the argument list. The variable
Text$ could be replaced by the literal "Hi there!" if desired. Similarly,
the integer argument Colr% could be replaced with the integer constant
12. Arguments are passed to and used by the subroutine being called.
When arguments are variable names (rather than numbers or strings) the
subroutine being called may modify them and make their new values
available to the calling program.

Action
The action parameter is used by many of Crescent Software's pollable
routines. The integer value contained in Action tells the called subprogram
what it should do. Graphics QuickScreen uses a pollable routine called
EditFormG which serves as the core forms-processing subroutine. When
using EditFormG, Action may be set to 1, -1, -2 or 3. Table 17 summarizes
how these values affect the operation of EditFormG.

Action Value
1

-1

-2
3

Meaning to EditFormG
Initializes the current form for editing; pads all
Form$() elements to their proper lengths and
formats; displays the contents of all fields in
the form; resets Action to 3
Same as Action I except it resets the push
button and mouse field status
Restores a push button to its non-active state
Keeps polling the current form while editing
continues

Table 1 7: Action Values for EditFormG

Note that Action -1 is used only when a push button or highlighted mouse
field is used to call up another form. This prevents the push button or
mouse field from the first form from being restored (displayed) on the
second form.

Action -2 is used only to restore a pushbutton to its non-active state after
it was used to display another partial form over the existing one.

■ 7-2 CRESCENT SOFTWARE. INC.

Graphics QuickScrcen Routines

Form$() Array
The Form$0 array is a conventional (not fixed-length) 3-dimensional
string array used to store information both about a form and about the
fields it contains. The first subscript must be dimensioned to the total
number of fields in the form; the second subscript is always dimensioned
to 2.

A special area of the Form$0 array called the form buffer is stored in the
array element Form$(0, 0). The form buffer collects information from
all fields and formats them into a single fixed-length structure. This lets
you use random file commands to quickly load and save form information.

All of the fields in the form are stored in the Form$(0, 0) array element
with one exception: data from notes fields are stored in separate notes files
having a .Nor extension. (A multi-line text field is considered a note
field.) When a notes field is in the form buffer, four bytes are reserved
to hold an offset into the . Nor notes file. The position in the .Nor file
pointed to contains a two-byte integer value which gives the length of the
note. In this way a linked list is created between the form buffer and the
current notes file.

Form$(N, 0) contains the value of field N; Form$(N, 1) contains the help
message for field N; and Form$(N, 2) contains the formula for field N.
Note that some fields will not have a help message or formula, and, in
such cases, Form$(N, 1) and Form$(N, 2) would be null.

The organization of the Form$() string array is summarized in Table 18.

Form$0 Element

Form$ (0, 0)

Description

Holds all data from fields as a contiguous string
with numbers as IEEE formatted strings

Form$ (FieldNo, 0) Holds data (numbers are stored as formatted
strings)

Form$ (FieldNo, 1) Holds help message string

Form$ (FieldNo, 2) Holds formula for calculated fields

Table 18: Form$() Layout

CRESCENT SOFTWARE, INC. ■ 7-3

■

I

Routines Graphics QuickScreen

Type Variables And Constants
Recall that Include files are ASCII text files containing BASIC source
code. In general, they contain source code which is used by more than
one program. Placing such code in external files makes it easy to include
them in a program without having to retype their contents each time. Also,
if changes are made to an Include file, all of the programs that reference
it will be updated the next time they are compiled. The $INCLUDE
metacommand may be inserted anywhere in a program using this syntax:

'$INCLUDE: '[d:l[\Path\lFILENAME.EXT'

When this line is encountered by the compiler, the contents of the path
and file name enclosed in single quotes are read and compiled. If the file
cannot be found on the directory specified, then the path stored in the
INCLUDE environment variable is accessed. If the file still cannot be
located, then the compiler reports an error.

There are three important Graphics QuickScreen-related Include files:

SETUP.BAS
FLDINFO.BI
EDITFORM.BI

The .BI extension is a Microsoft conventions and stands for "BASIC
Include".

SETUP.BAS
SETUP.BAS is an include file that should be entered as the first executable
statement in your programs. It determines the current monitor type and
sets up the GPDat%0 array. The GPDat%0 array is a COMMON
SHARED array that contains useful information about the current form
and screen mode. This information is used by several of the Graphics
QuickScreen subroutines. See Appendix A for a complete description of
the GPDat % () array.

FLDINFO.BI
FLDINFO.BI includes the field information TYPE array and several
constant assignments. This user-defined TYPE is required by a calling
program to obtain information about a field in the current! y-active form.
The Fldinfo TYPE structure looks like this:

TYPE FieldinfoG
Fields AS INTEGER
Row AS INTEGER

■ 7-4 CRESCENT SOFTWARE, INC.

Graphics Quiel.Screen Routines

LCol AS INTEGER
RCol AS INTEGER
StorLen AS INTEGER
FType AS INTEGER
RelFile AS STRING* 8
RelFld AS INTEGER
Indexed AS INTEGER
FldName AS STRING• 8
Decimals AS INTEGER
RelHandle AS INTEGER
Protected AS INTEGER
Scratch! AS INTEGER
LowRange AS DOUBLE
HiRange AS DOUBLE
ScratchS AS STRING• 8
Value AS INTEGER

END TYPE

As in the demonstration programs, you must create and dimension the
Fld() TYPE array as follows so that it is defined as the FieldinfoG TYPE:

REDIM Fld(O) AS FieldlnfoG

Dimensioning any array to zero elements simply defines the array while
committing the smallest block of memory possible. The Fld() array will
be redimensioned later to the actual number of fields in the current form
using the NumFieldsG function or by calling the optional form definition
BASIC module. This way the array will be made only as large as it needs
to be.

When a form is loaded, the calling program may obtain specific informa­
tion about each field using the Fld() TYPE array. For example, to find
out whether the field number 3 is protected the calling program would use
a statement like:

IF Fld(3).Protected THEN ...

The program can also access a field's position on the screen and for
applicable fields, its low and high ranges for acceptable data entry. As
you can see by examining the TYPE definition, many other field charac­
teristics are available to your program as well.

In addition to examining the contents of the Fld() TYPE array, a calling
program may also change these values. This means that a field can be
protected or unprotected at runtime as the form is being processed. Or,
based on values entered somewhere else on the form, low and high ranges
for certain fields can be adjusted.

The Fld() TYPE array reserves element 0 for special use. For example,
Fld(0).StorLen contains the record length, in bytes, of the entire current

CRESCENT SOFfWARE, INC. ■ 7-5

■

■

Routines Graphics QuiclcScreen

form. However, Fld(l).Row contains the row position for field I on the
form. Only Fld().Fields, Fld().Row, Fld().LCol, Fld().StorLen,
Fld(). Value and Fld().Indexed make use of the zero element, however.

Table 19 summarizes the FieldinfoG TYPE elements. When "N" is
mentioned, it applies to the subscript in the Frm() array: for Frm(0), N
is equal to 0.

FieldinfoG's FType element constants are summarized in Table 20.

Element

Fields

Row

LCol

RCol

StorLen

FType

RelFile

RelFld

■ 7-6

Description

When N = 0, the number of fields in the form;
when N > 0, the field's integer offset position
within the Form$(0, 0) element

When N = 0, the upper row of a partial .PCX
screen; when N > 0, the screen row position
for field N; for mouse fields, push buttons, or
scroll bars, the upper left row of the field in
pixels

When N = 0, the left column of a partial .PCX
screen; when N > 0, the screen left column of
the field; for mouse fields, push buttons and
scroll bars, the upper left column of the field
in pixels

When N = 0, the width in columns of a partial
.PCX screen; when N > 0, the right column
of the field. For mouse fields, push buttons
and scroll bars, RCol returns the right column
of the field in pixels

When N = 0 the record length of the form;
when N > 0, the number of bytes required to
store the contents of field N on disk

The field type number (see table 20)

If a relational field, the base name of the file
for relation

If a relational field, the number of the relational
field; for scroll bars, this component stores the
large change value (Continued .. .)

CRESCENT SOFTWARE, INC.

Graphics QuickScrccn

Indexed

FldName

Decimals

RelHandle

Protected

Scratch!

LowRange

HiRange

ScratchS

Value

Routines

0 when field is not indexed; -1 if field is
indexed; for scroll bars, this component stores
the small change value

The name of the current field

When N = 0, the height in pixels of a partial
.PCX screen; when N > 0, the number of
decimal places used for numeric fields; if -1,
numbers are not formatted; for Scrolling text
fields, the text input filter (l-5) is set or
returned

The BASIC file number for the related file; this
number may be used for GET # and PRINT #
statements; for scroll bars, the current screen
pointer position

0 if field is protected, -1 if it is not

For mouse fields, push buttons and scroll bars,
the bottom right corner row of the field; for
Scrolling Text fields, the character to display
at the left of the edit window; for Multi Line
text fields, the bottom screen row of the field;
unused for all other field types

For numeric fields, the low range limit, for
scroll bars, the minimum value to be returned;
for toggling mouse fields, LowRange holds a
value of -I or -2. -2 indicates that the field is
currently highlighted.

For numeric fields, the high range limit; for
scroll bars, the maximum value to be returned

The currency type character for Currency
fields. It can be used by you for other fields to
store miscellaneous information such as flags,
etc.

For text fields, the text foreground color; for
mouse fields and push buttons, the keycode that
is to be returned; for scroll bars, the current
scroll bar value

Table 19: FieldlnfoG TYPE elements

CRESCENT SOFfWARE, INC. ■ 7-7

I

I

Routines Graphics QuiclcScreen

The constant assignments in the FLDINFO.BI file make it easy to use the
FTYPE element of the FieldlnfoG TYPE. For example, if you need to
know if the current field is a Proper String, you could use a statement
similar to:

IF Fld(CurField).FType = PropstrFld THEN

CONSTANT
CONST StrFld = 1
CONST PropStrFld = 2
CONST UCaseStrFld = 3
CONST NumericStrFld = 4
CONST NotesFld = 5
CONST ScrollFld = 6
CONST LogicalFld = 7
CONST IntFld = 8
CONST LonglntFld = 9
CONST SngFld = 10
CONST DblFld = 11
CONST MoneyFld = 12
CONST DateFld = 13
CONST EuroDateFld = 14
CONST PhoneFld = 15
CONST ZipFld = 16
CONST SoSecFld = 17
CONST Relational = 18
CONST MultChAFld = 19
CONST MouseFld = 20
CONST PButton = 21
CONST HScrollFld = 22
CONST VScrollFld = 23

DECLARATION
String
Proper string
Upper case string
Numeric string
Notes (multi-line text)
Scrolling text (single-line)
Logical
Integer
Long integer
Single precision
Double precision
Currency
US date
European date
Telephone number
Zip code
Social security number
Relational
Multiple choice array
Mouse field
Push button
Horizontal scroll bar
Vertical scroll bar

Table 20: FieldlnfoG FType Constants

EDITFORM.BI
EDITFORM.BI contains constant assignments and the user-defined TYPE
FormlnfoG which is constructed as follows:

TYPE ForminfoG
StartEl AS INTEGER
FldNo AS INTEGER
PrevFld AS INTEGER
FldEdited AS INTEGER
KeyCode AS INTEGER
TxtPos AS INTEGER
InsStat AS INTEGER
Presses AS INTEGER
MRow AS INTEGER

■ 7-8 CRESCENT SOFTWARE, INC.

Graphics Quid,Scrcen Routines

MCol AS INTEGER
Button AS INTEGER
Mx AS INTEGER
My AS INTEGER
DoingMult AS INTEGER
Edited AS INTEGER

END TYPE

The FormlnfoG TYPE elements are explained in Table 21. You will use
the following statement to create the Frm TYPE variable:

DIM Frm as ForminfoG

The Frm TYPE variable is used by a calling program to set the current
field to be edited, to examine the last key pressed, to toggle the insert
status of the forms editor and to determine when data in a form has been
altered.

This last item, Edited, because it lets you know if any of the information
on the form has been changed. Each time you update a record in the file
you should set Frm.Edited to 0. Then, if any field values are changed,
Frm.Edited will be set to -1, letting you know that it is necessary to write
the form record to the file again.

You may read or set any of the Frm TYPE elements in your program.
However the elements Presses, Mx, My, MRow, and MCol should only
be read-altering them will have no affect on the form.

FormlnfoG Element

StartEl
FldNo
PrevFld

FldEdited
KeyCode

TxtPos
InsStat

Presses
MRow
MCol
Button
Mx
My
DoingMult

CRESCENT SOFTWARE. INC.

Description

Starting (base) element of the current form.
Current field number
Previous field number (different from FldNo
only when first moving to a new field
Set to -1 if a field has been changed
ASCII value of the last key pressed; extended
keys return a negative value (for example, Fl
= -59)
Cursor position relative to current field
Current insertion mode status (-1 = insert status
is On)
Number of mouse presses since last press
Mouse row number at last press
Mouse column number at last press
Current mouse button
Current mouse X position
Current mouse Y position
Set to -1 if handling a multiple choice field

■ 7-9

■

■

Routines

Edited

Graphics QuiclcScreen

Set to -1 if any field on the form has changed
by the user

Table 21: FormlnfoG lYPE Elements

To summarize, there are several important variables. The GPDat%O array
contains system environment and color information. The Fld() TYPE
array provides information for each field in a form. The Frm TYPE
variable gives information about the form itself and about user-oriented
events.

■ 7-10 CRESCENT SOFTWARE, INC.

Graphics QuickScrcen Routines

GRAPHICS QUICKSCREEN ROUTINES

Several BASIC modules are supplied with Graphics QuickScreen that you
will call from your programs. The listing which follows shows the
supplied module (file) names and the subroutines they contain. Note that
module names are shown in uppercase, while subprogram names are given
as mixed-case.

EVALUATE.BAS: Expression evaluation routine for calculated fields

Evaluate Returns the value of an expression

EDITFORM.BAS: For handling data entry on a form

EditFormG

EndOfForms

FixDate

FldNum

Format

Message

PrintArray

PressPButton

ReleasePButton

SaveField

Shadow Box

CRESCENT SOFTWARE. INC.

The main routine for data entry

Returns last field on a form/forms (for multi­
page)

Turns dates such as "2-3-1991" into "02-03-
1990"

Returns a field number given a field name

Places a formatted version of a number into the
form

Used to display/clear a message box

Displays the contents of the Form$() array on
form

Simulates pushing a push button

Simulates releasing a push button

Formats data and saves it to the Form$(0, 0)
buffer

Draws a 3D rectangle (used with Message)

■ 7-11

I

I

Routines

UnPackBuffer

Value

Graphics QuickScrecn

Copies data from Form$(0, 0) into individual
elements

Returns value of a formatted numeric string
like "$1,200.00"

FRMFILE.BAS: For loading .FRM form definition files

GetFldDefG

NumFieldsG

Loads an .FRM file into the supplied arrays

Determines the number of fields contained in
a .FRM file

GQEDITS.BAS: Multi-line edit routine

QEdit Multi-line edit routine used for Notes fields

GQSCALC.BAS: Support routines for performing field calculations.

CalcFields

Tokenize

WholeWordln

Recalculates dependent fields based on a given
field

Resolves field name references in a formula to
their field numbers

Searches a string for a Whole Word version of
a sub-string

GDISPLAY.BAS: Support routines for displaying screens

ShowForm

MoveFrm

LIBFILE.BAS:

FindLibFile

LibGetFldDefG

■ 7-12

Main routine for displaying screens

Repositions field coordinates for partial
screens

For loading .PCX, .GMP, and .FRM files from
a custom .GSL library.

Returns the specified file's size and offset
within the .GSL library

Loads an .FRM file contained in a custom
. GSL library into the supplied arrays

CRESCENT SOFIWARE, INC.

Graphics QuickScreen Routines

LibGetGMP Loads the specified .GMP file from a custom
.GSL library into an array.

LibNumFieldsG Determines the number of fields in an .FRM
file contained in a custom .GSL library

LibShowForm Displays the specified .PCX screen from a
custom .GSL library

LISTBOX.BAS: Vertical menu routine used for multiple choice fields

ListBox Menu subroutine used for multiple-choice
fields

Not all modules or subprograms and functions will be useful to you.
However, a few in particular are required for certain tasks. Table 22 lists
which modules and calls are required when working with certain types of
Graphics QuickScreen files.

Method Module(sl You Call
Display Screens GDISPLAYBAS ShowForm
(.PCX)
(.PCX in .GSL Library) LIBFILE.BAS LibShowForm

Screen Files (.GMP) GETGMP.BAS GetGMP
(.GMP in .GSL library) LIB FIi LE.BAS LibGetGMP

Form Files FRMFILE.BAS NumFieldsG
(.FRM) GetFldDefG
(.FRM in .GSL library) LIBFILE.BAS LibNumFieldSG

LibGetFldDefG
Perform Data Entry EDITFDRM.BAS Ed~FormG

Form Files MYFORM.BAS MyForm
.BAS EDITFDRM.BAS EditFormG

Table 22: Ways to Display Screens and Handle Forms

Table 23 lists the files needed for certain key Graphics QuickScreen
features as well as the equivalent files that remove those features when
they are not needed. Please understand that one of these files is needed to
successfully link your program. For example, if you need the calculated
fields feature in a program that you are writing, then you must compile
the GQSCALCG.BAS and link that with your main program. Otherwise,
you should compile the NOCALCG.BAS "stub" file and link that with
your program instead.

CRESCENT SOFfWARE, INC. ■ 7-13

■

I

Routines Graphics QuickScreen

Note that no harm is done if you use the full-featured version of a file,
even when a particular feature is not needed. However, your final .EXE
program will be larger than necessary because code that is not needed is
added to it.

Calculated Fields:

GQSCALC.BAS (For support)
NOCALCG.BAS (To remove support)

Multiple Choice Fields:
LISTBOX.BAS (For support)
NOMULTG.BAS (To remove support)

Multi-Line Notes Fields:

GQEDITS.BAS (For support)
NONOfES.BAS (To remove support)

Scroll Bars:

SCROLLB.BAS (For support)
NOSCROLB.BAS (To remove support)

Scrolling Text Fields:
SCROLLIN.BAS (For support)
NOSCRO'-L.BAS (To remove support)

Table 23: Graphics QuickScreen optional modules

There are a number of BASIC and assembler subroutines that you may
call from your programs. The following pages present an alphabetic
summary of these routines. Each routine is discussed separately and we
have provided information about its program type (subroutine or function),
purpose, and calling syntax.

Following the calling syntax is a brief explanation of the routine's
arguments. Then, a detailed discussion of the routine and each argument
is presented. Fi nail y, we have concluded each routine with either an
example program segment or a reference to an example.

Some routines which are used by Graphics QuickScreen internally have
been documented here so that they may be called directly from your own
programs. These routines are not necessary for you to display or manage
Graphics QuickScreen screens, but they may be useful to you in some
other capacity.

■ 7-14 CRESCENT SOFIWARE, INC.

Graphics QuickScrccn Routines

BCopy
assembler subroutine contained in GFORMS.LIB

■ Purpose

BCopy copies of a block of memory (up to 64K in size) to a new location.
It is used primarily to copy information from Form$(0, 0) to a TYPE
structure.

■ Syntax
CALL BCopy(FromSeg%, FromAddr%, ToSeg%, ToAddr%,

NumBytes%, Direction%)

■ Where

FromSeg%: Segment of the source location of the block

FromAddr % : Address of the source location of the block

ToSeg%: Segment of the destination

ToAddr % : Address of the destination

NumBytes % : Number of bytes to be copied

Direction%: Specifies direction of the copy (0 is forward; -1 is
reverse)

■ Comments

BCopy is useful in a variety of situations, such as when copying an array
or duplicating a range of elements. When using the routine with forms,
you will find it helpful when working with random access file 1/0. As
you know, you can create a TYPE structure for your form when saving
forms from the Screen Designer. For instance, in the supplied CUS­
TOMG .FRM file, the Customer TYPE is saved to CUSTOMG.BI, and
looks like this:

TYPE CUSTOMG
IDNO AS INTEGER
DATEIN AS INTEGER
NAME AS STRING . 32
COMPANY AS STRING • 32
ADDRl AS STRING . 32
ADDR2 AS STRING • 32
CITY AS STRING• 20
STATE AS STRING• 2
ZIPCODE AS STRING• 10
WPHONE AS STRING• 14
HPHONE AS STRING• 14
NOTES AS LONG

END TYPE

CRESCENT SOFfWARE, INC. ■ 7-15

■

I

Routines Graphics QuickScreen

CalcFields
BASIC subroutine contained in GQSCALC.BAS

■ Purpose

CalcFields is used to recalculate a field which is dependent upon other
field values.

■ Syntax
CALL CalcFields(StartOfForm%, FldNo%, Form$(),

Fld() AS FieldinfoG)

■ Where

StartOfForm % : Start of the form, equal to O for single-page forms; for
multi-page forms, this number is equal to the offset in
the Fld0 TYPE array needed to point to first field of
the desired form

FldNo%:

Form$():

Fld():

■ Comments

Number of the field you wish to recalculate

Form string array (See the section Form$() Array)

Field information TYPE array (see FWINFO.Bl)

CalcFields should be used when information related to a calculated field
is changed. CalcFields looks at the value of the specified field (contained
in FldNo) and recalculates all other fields which depend on it.

CalcFields is useful only when you need to recalculate specific fields in a
form.

■ Example

This example recalculates all fields that depend on the fifth field in the
current form:

CALL CalcFields(O, 5, Form$(), Fld AS FieldinfoG)

■ 7-18 CRF.SCENT SOFTWARE. INC.

Graphics Quick.screen Routines

Date2Num
assembler function contained in GFORMS.LIB

■ Purpose

Date2Num converts a date in string form to an equivalent integer variable.

■ Syntax
Days%= Date2Num%(D$)

■ Where:

Days%:

■ Comments

The number of days before or after 12/31/79, and D$
is a date in the form "MMDDYY" or "MM-DD-YY"
or "MM/DD/YYYY", or any similar combination

Because Date2Num has been defined as a function, it must be declared
before it may be used.

Date2Num is a very powerful routine with two important uses. Besides
allowing what would otherwise be an eight-character string to be packed
to only two bytes, it also provides an easy way to perform date arithmetic.

Date2Num will operate on any date that is within the range 01-01-1900
to 11-17-2065. Invalid dates that fall outside of that range will return
-32768 to indicate an error.

■ Example

Once a date has been converted to the equivalent integer value, you may
add or subtract a number of days, and then use the companion function
Num2Date to convert the result. The example below shows this in context.

DEFINT A-Z
DECLARE FUNCTION Date2Num(X$)
DECLARE FUNCTION Num2Date(Dat)

D$ = "09-17-88"
Start= Date2Num(D$)
Later= Start+ 30
After30 = Num2Date$(Later)
PRINT "Thirty days after "; D$; " is "; After30

Because Date2Num and Num2Date are set up as functions they may also
be used within a print statement directly, along with optional calculations:

PRINT "30 days after "; D$; " is "; Num2Date$_
(Start+ 30)

CRESCENT SOFTWARE. INC. ■ 7-19

I

I

Routines Graphics QuickScreen

Date2Num and Num2Date are also useful for verifying if a given date is
valid, which eliminates tedious calculations that you would have to perform
to take possible leap years into consideration.

The only requirement for the date validation example below is that the
original date must be in the form MM-DD-YYYY, because this is the
format returned by Num2Date.

DEFINT A-Z
DECLARE FUNCTION Date2Num%(X$)
DECLARE FUNCTION Num2Date%(Dat)

INPUT "Enter a date in the form MM-DD-YYYY: "; D$
Oat= Date2Num%(D$)
IF Num2Date$(Dat) = D$ THEN

PRINT D$; " is a good date!"
ELSE

PRINT "Please try again."
END IF

This program asks for an original date and then converts it to an equivalent
number. If after converting it back to a string the result is the same, then
the date that was entered is valid.

Understand that while days before 12-31-1979 are returned by Date2Num
as negative values, ,1dding and subtracting will still be performed correctly.

Please see also the companion functions Num2Date and FixDate.

■ 7-20 CRESCENT SOFIWARE, INC.

Graphics QuickScreen Routine11

DispPCXVE
assembler subroutine contained in GFORMS.LIB

■ Purpose

DispPCXVE continues the loading process started by OpenPCXFile% and
displays the image to a VGA or EGA specified video page.

■ Syntax
CALL DispPCXVE (BYVAL VideoPage%)

■ Where

Video Page%: 0 for the default first display page (Visual Display
Page); a value of I specifies the second display page

■ Comments

The parameter for this routine is passed by value to provide the maximum
speed.

The function OpenPCXFile% must be called first, as it opens the PCX
file and loads the header information to determine which screen mode the
PCX file is intended for.

The DispPCXVE routine works equally well when BASIC is operating in
SCREEN 7, 8, 9, 11 or 12 since the video memory for all of these modes
is identical. This routine works for all the screen modes which utilize the
plane system created for EGA and VGA graphics. The EGA and VGA
2-color graphics modes do not utilize the plane scheme most of the other
EGA and VGA screens use. The DispPCXVE routine will still work
equally well on those. Also, note that PaintBrush for Windows version 2
saves only three of the four graphics planes in the file (leaving out the
intensity plane). This routine will load those files properly as well.

■ Example

See Show Form for an example of how to use DispPCXVE.

CRESCENT SOFTWARE. INC. ■ 7-21

I

I

Routines Graphics QuickScreen

EditFormG
BASIC subroutine contained in EDITFORM.BAS

■ Purpose

EditFormG is the core data entry routine that handles all user input, cursor,
and mouse activity when processing forms. This routine is pollable so
the calling routine can monitor user input as it occurs.

■ Syntax
CALL EditForrnG(Forrn$(), Fld(), Frrn, Action\)

■ Where

Form$(): Form string array (see Form$() array)

Fld(): Field information TYPE array (see FLDINFO.Bl)

Frm: Form information TYPE variable (see EDIIFORM.Bl)

Action%: A flag used to control how the form behaves when
called (see Action)

■ Comments

The EditFormG suhprogram is a major routine in Graphics QuickScreen.
It will allow calling programs to process forms, making additional
programming virtually unnecessary.

When EditFormG is called, it uses information in Form$(), Fld(), and
Frm. Form$() is a conventional (not fixed-length) two-dimensional string
array. The first subscript must be dimensioned to the total number of fields
in the form. The second subscript must be dimensioned to 2. Fld() is a
TYPE array which is dimensioned using the FieldlnfoG TYPE definition.
Both Form$() and Fld() may be dimensioned using the NumFieldsG
function as shown below.

Size%= NurnFieldsG%(ForrnNarne$)
REDIM Forrn$(Size%, 2)
REDIM Fld(Size%) AS FieldinfoG

Once the form arrays are properly sized, they can be initialized and loaded
using the GetFldDefG routine:

CALL GetFldDefG(FrrnNarne$, StartE1%, Fld(), Form$())

To continue with the list, Frm is a TYPE variable which is DIMed to the
FormlnfoG user-defined TYPE (please see EDIIFORM.Bl).

■ 7-22 CRESCENT SOFTWARE, INC.

Graphics QuickScrccn Routines

Action is either -2, -1, I or 3, as discussed earlier (please see Action).

■ Example

The most effective way to poll EditFormG is to wait for a particular
keypress, such as Esc, to occur. When this happens, the form may be
cleared from the screen and processing may continue.

In the example below we present a DO loop showing how to poll
EditFormG. The DO loop is terminated when Esc is pressed.

ACTION= 1
DO

CALL EditForrnG(Forrn$(), Fld(), Frrn, Action)
LOOP UNTIL Frrn.KeyCode = 27 'Keep editing until

' user presses Esc

When the user finally presses Esc, the data entered into the form may be
accessed by examining the contents of the Form$0 string array.

CRESCENT SOFTWARE, INC. ■ 7-23

I

I

Routines Graphics QuickScreen

EndOfForms
BASIC function contained in EDITFORM.BAS

■ Purpose

EndOfForms returns the number of the last field on any form.

■ Syntax
LastFld%

■ Where

LastFld%:

Fld():

■ Comments

EndOfForrns%(Fld())

The value of the last field on the form

Field information TYPE array (see FWINFO.Bl)

Because EndOfForms has been defined as a function, it must be declared
before it may be used.

This function can be used to determine the last field number on a form,
and is particularly useful for a multi-page forms.

■ 7-24 CRESCENT SOFTWARE, INC.

Graphics QuickScrecn Routines

Evaluate
BASIC function contained in EVALUATE.BAS

■ Purpose

Evaluate is a full-featured expression evaluator that accepts a formula in
an incoming string, and returns a double-precision result. Capitalization
is ignored (in keywords such as LOG and SIN), except for the "E" used
for scientific notation: to Evaluate, a lowercase "e" represents the
constant, and an uppercase "E" is for the exponent.

■ Syntax
Answer#= Evaluate#(Expression$)

■ Where

Expression$: A string containing a mathematical expression, with
optional parentheses, operation keywords (such as ABS
or SIN), and numbers; if the string expression is
invalid, the string is returned in Expression$ with a
leading percent sign(%) appended

Answer#: Receives the computed answer

■ Comments

Because Evaluate has been defined as a function, it must be declared before
it may be used.

Scientific notation is supported using "E" (but not "e", "D" or "d").
What follows is a list of operations supported by Evaluate:

ABS
AND
ARCCOS
ARCCOSH
ARCCITT
ARCCITTH
ARCCSC
ARCCSCH
ARCTANH
ARCSEC
ARCSIN
ARCSINH
ATN
CLG

cos

CRESCENT SOFTWARE, INC.

Absolute Value
Logical AND
Arc Cosine
Arc Hyperbolic Cosine
Arc Cotangent
Arc Hyperbolic Cotangent
Arc Cosecant
Arc Hyperbolic Cosecant
Arc Hyperbolic Tangent
Arc Secant
Arc Sine
Arc Hyperbolic Sine
Arc Tangent
Common Log (base 10,
what LOG really is)
Cosine

■ 7-25

I

I

Routines

COT
csc
CSCH
EXP
LOG

NOT
OR
SINH
SECH
SEC
SIN
SQR
TAN
TANH

Cotangent
Cosecant

Graphics QuiclcScreen

Hyperbolic Cosecant
Exp
Natural Log (base e, what
BASIC calls LOG)
Logical NOT
Logical OR
Hyperbolic Sine
Hyperbolic Secant
Secant
Sine
Square Root
Tangent
Hyperbolic Tangent

The following list shows math operators supported by Evaluate:

■

*

+

<

>
Example

Factorial
Exponentiation
MultiplicationR
Division
Integer Division
Addition
Subtraction (or unary
minus, such as -15)
Less than
Equal to
Greater than

X = EVALUATE("l0 * (12'3+(4E-13))/LOG(8)")

■ 7-26 CRESCENT SOFIWARE, INC.

Graphics QuickScrccn Routines

Exist
assembler function contained in GFORMS.LIB

■ Purpose

Exist will quickly determine the presence of a file.

■ Syntax
There%= Exist%(FileName$)

■ Where

FileName$: File name or file specification

There%: Assigned to -I if FileName$ exists; 0 if FileName$
does not exist

■ Comments

Because Exist has been designed as a function, it must be declared before
it may be used.

The main purpose of Exist is to prevent the error caused by trying to open
a file for input when it does not exist. Rather than having to set up an ON
ERROR trap just prior to each attempt to open a file, Exist will directly
tell if the file is present.

In the past, programmers have tried to avoid an error by opening a file for
random access, which does not cause an error. Then the BASIC LOF
function would be used to see if the file's length is zero, meaning it was
not there. The problem with that approach, besides being a lot of extra
work-is that an empty file could be created in the process. For this
reason, we recommend using the Exist function.

It is important to know that FileName$ may optionally contain a drive
letter, a directory path, and either of the DOS wild card characters.

■ Example

This example returns -1 if there are .BAS files on the \STUFF directory
of the B drive:

There%= Exist%("B:\STUFF*.BAS")

CRESCENT SOFfWARE, INC. ■ 7-27

■

I

Routines Graphics QuickScreen

FGet
assembler subroutine contained in GFORMS.LIB

■ Purpose

FGet reads data from a disk file in a manner similar to BASIC's binary
GET command, but it returns an error code rather than requiring the use
of ON ERROR.

■ Syntax
CALL FGet(Handle%, Destination$)

■ Where

Handle%: Handle assigned when the file was opened

Destination$: String that is to receive the data; the length of Destina­
tion$ determines how many bytes are to be read

■ Comments

FGet reads data from the specified file at the location held in the DOS file
pointer. The current pointer location is established by the most recent read
or write operation or by using the supplied FSeek routine.

The length of Destination$ is used to tell FGet how many bytes it is to
read to ensure that sufficient room has been set aside. If FGet had been
written to expect a separate variable to specify the number of bytes, it
would be possible to corrupt string memory by failing to first assign the
string to a sufficient length.

Only two errors are likely when using FGet: either the DOS handle number
was invalid, or the destination string was null.

■ Example

This example gets one byte of information from the current file, at the
location specified by the DOS file pointer.

XS= SPACE$(1) "set one byte aside
CALL FGet (Handle%, XS) 'read the byte value from .

' the file

■ 7-28 CRESCENT SOFfWARE, INC.

Graphics QuickScrecn Routines

FixDate
BASIC subroutine contained in EDITFORM.BAS

■ Purpose

FixDate changes the format of a date string.

■ Syntax
CALL FixDate(Dat$)

■ Where

Oat$: String containing the date in a variety of string formats

■ Comments

This subprogram ensures that dates are formatted in a consistent manner.
For instance, FixDate forces all months and days to have two numerical
digits (single-digit months or days will have a leading zero). It also ensures
that a century is entered as two digits. Thus, "3-4-91" will become
"03-04-1991" after calling FixDate.

■ Example
CALL FixDate(Dat$)

CRESCENT SOFfWARE, INC. ■ 7-29

I

I

Routines Graphics QuickScreen

FldNum
BASIC function contained in EDITFORM.BAS

■ Purpose

FldNum returns the field number corresponding to a specified field name.

■ Syntax
FldNumber% = FldNurn%(FldName$, Fld())

■ Where

FldNumber%: Number of the field named by FldName$

FldName$: String containing the field name

Fld(): Field information TYPE array (see FI.DINFO.Bl)

■ Comments

■

Because FldNum has been defined as a function, it must be declared before
it may be used.

FldNum makes it easy to obtain the number of a field if all you have
available is its name. The routine is useful for creating programs which
do not have to be rrodified as your data entry form changes. It also makes
source code more intelligible by allowing long variable names to refer to
short field names.

Example

This example finds which field is named "DIS CRATE" (the discount rate).
Then, the field number is used to obtain the value of a field.

DiscountRateFld = FldNurn(""DISCRATE"", Fld())
DiscountRate = VAL(Forrn$(DiscountRateFld, 0))

■ 7-30 CRESCENT SOFTWARE, INC.

Graphics QuickScrccn Routines

FOpen
assembler subroutine contained in GFORMS.LIB

■ Purpose

FOpen is used to open a disk file in preparation for reading or writing
using the FGet or FSeek routines.

■ Syntax
CALL FOpen(FileNarne$, Handle%)

■ Where

FileName$:

Handle%:

■ Comments

Name of file to be opened

Handle assigned by DOS for all subsequent access; if
an error occur when trying to open the file, Handle%
returns 0

FOpen will open any file and will also accept an optional drive or directory
as part of the file name. However, it will not create a file. If you are not
sure whether a file exists you should first use the Exist function.

It is up to your program to store the handle number that DOS assigns and
to use that handle whenever you access the file again.

■ Example

This example opens the file MYFORM.FRM and assigns an integer file
handle number to it.

CALL FOpen("MYFORM.FRM", Handle%)

CRESCENT SOFTWARE. INC. ■ 7-JI

I

I

Routines Graphics QuickScreen

GArraySize
BASIC function contained in GARRAYSZ.BAS

■ Purpose

GArraySize returns the number of bytes required by BASIC's graphic GET
statement to hold a specified region of the screen.

■ Syntax
Size&= GArraySize&(Xl, Yl, X2, Y2)

■ Where

Xl and YI define the upper-left corner and X2 and Y2 define the lower
right corner of the region to be saved.

■ Comments

GArraySize& can be used in any BASIC supported graphics mode.

■ Example

REDIM IntArray%(GArraySize&(45, 25, 500, 125) \ 2)

■ 7-34 CRESCENT SOFTWARE, INC.

Graphics Quid,Screen Routines

GetFldDefG
BASIC subroutine contained in FRMFILE.BAS

■ Purpose

GetFldDefG retrieves information from a form file and places it in a
structure for later reference by other routines. It also loads formulas and
help messages into the Form$0 data array.

■ Syntax
CALL GetFldDef(FrrnNarne$, StartE1%, Fld(), Form$())

■ Where

FrmName$: Name of the form (.FRM) definition file

StartEl % : Starting element in the FldO array in which the form
information is to be loaded

Fld(): Field information TYPE array (see FWINFO.B[)

Form$(): Form string array (see Form$() array)
■ Comments

This routine allows a calling program to load a .FRM file so that it may
be properly processed by EditFormG. The NumFieldsG function should
be used before this routine in order to properly dimension the Fld() and
Form$() arrays.

■ Example

An example of this routine is shown in the section DemoAnyG. BAS under
Performing Data Entry.

CRESCENT SOFTWARE, INC. ■ 7-35

I

I

Routines Graphics Quick.Screen

GetGMP
BASIC subroutine contained in GETGMP.BAS

■ Purpose

GetGMP loads .GMP image files from disk into an array.

■ Syntax
GetGMP(Narne$, GMPFile$, Array%(), Errcode%)

■ Where

GMPFile$: The name of the GMP file to display; the GMP
extension is not required

ArrayO:

ErrCode%:

■ Comments

An integer array that will be used to hold the image
(rediminsioned to O before the call)

Returns a value that indicates whether or not the image
was loaded successfully; a value of 1 indicates that an
error occurred opening the file; a value of 2 indicates
that the file was not found

GetGMP lets you display .GMP files created with the Save Paste Buff ...
option from the File menu from your own programs.

■ Example

Before calling the GetGMP subroutine, you must first create an ArrayO
to hold the image:

REDIM Array(0)
CALL GetGMP("Pencil", Array(), ErrCode)

After the image is loaded, it can be placed anywhere on the screen with
BASIC's graphic PUT command:

PUT (10, 10), Array, PSET

■ 7-36 CRESCENT SOFTWARE, INC.

Graphics Quick.Screen Routines

GetRec
BASIC subroutine contained in RANDOMG.BAS

■ Purpose

GetRec retrieves a specified record and any associated notes from a
database.

■ Syntax
CALL GetRec(RecNo&, Form$(), Fld())

■ Where

RecNo&: Record number to retrieve

Form$(): Form string array (see Form$() array)

Fld(): Field information TYPE array (see FWINFO.Bl)

■ Comments

GetRec loads the specified record into the form buffer held in Form$(0,
0). Once this is done, it is necessary to call the UnPackBuffer routine so
that the remaining elements in the Form$() array are properly filled.

The data which is read by this routine is expected to be in a file with a
.DAT extension, while any associated notes fields are read from a .NOT
notes file.

Usually, the OpenFiles routine is called before using either GetRec or
SaveRec.

■ Example

See the section Random Access File Operations for more information about
using the routine.

CRESCENT SOFrWARE, INC. ■ 7-37

I

I

Routines Graphics QuickScreen

GMove2VE
assembler subroutine contained in GFORMS.LIB

■ Purpose

GMove2VE will save and restore any rectangular region of the screen to
a video memory location which you specify.

■ Syntax
DestSegment% = &HA800
CALL GMove2VE (BYVAL FromCol%, BYVAL FromLine%

BYVAL Cols\, BYVAL Lines%, BYVAL DestSegment%~
BYVAL Direction\)

■ Where

FromCol % : The upper left column (in text columns) of the region
to be moved

FromLine%: The upper left row (in pixels) of the region to be moved

Cols%:

Lines%:

The width of the region to be moved (in text columns)

The height of the region to be moved (in pixels)

DestSegment% :Provides the routine with a location to send the infor­
mation; the segment value should be within the range
of EGA or VGA graphics memory available

Direction%:

■ Comments

Specifies whether the image will be saved or restored;
a zero saves the image, any other value will restore the
image.

This routine uses screen memory to store the image. This approach has
two advantages: Graphics saves and restores require one-fourth the
instructions of other save and restore routines, and graphics memory is
often not used and is therefore less costly to the programmer than using
general memory.

All parameters for th is routine are passed by value to provide the maximum
speed.

■ Example

The following example saves and restores the upper-left comer 10 column
by 100 lines region of the screen.

DEFINT A-Z
DECLARE SUB GMove2VE (BYVAL FromCol%, BYVAL _

■ 7-38 CRESCENT SOFIWARE, INC.

Graphics QuickScrecn Routines

FromLine% BYVAL Cols%, BYVAL Lines%, BYVAL
Destsegment%, BYVAL Direction%)

SCREEN 12 'sets the monitor in VGA mode

LINE (0,0) - (79,99), 1, B

'save the image
CALL GMove2VE (1, 0, 10, 100, &HAA00,0)

CLS
'restore the image
CALL GMove2VE (1, 0, 10, 100, &HAA00, -1)

The beginning of the EGA's high-resolution second screen starts at
&HAS00. On the EGA display there is a 128K free for the storage of
images.

The VGA high-resolution mode doesn't have a second screen per se, but
you still can use this routine. For the VGA, the first unused graphics
segment would be &HAA00 as shown in the above code example. The
VGA has only 96K available memory for the storage of images.

The following formula will help to calculate the amount of memory used
by an image saved with this routine:

MemUsed% =Cols%* Lines%* 4

To determine the next segment where graphics images can be stored, use

NextSegment% = ThisSegment& + MemUsed% \ 16 + 1

where ThisSegment% is the segment where the current graphics image is
being stored.

This routine is a vital part of saving graphics images for use in the graphics
GQSMenu menu and in the ListBox routine.

CRESCENT SOFTWARE. INC. ■ 7-39

I

I

Routines Graphics QuickScreen

GMove4VE
assembler subroutine contained in GFORMS.LIB

■ Purpose

GMove4VE will save and restore any rectangular region of the screen to
an array you specify.

■ Syntax
CALL GMove4VE (BYVAL FromCol%, BYVAL From Line%,

BYVAL Cols%, BYVAL Lines%, BYVAL DestSegrnent%,
BYVAL Direction%)

■ Where

FromCol % : The upper left column (in text columns) of the region
to be moved

FromLine%: The upper left row (in pixels) of the region to be moved

Cols%: The width of the region to be moved (in text columns)

Lines%: The height of the region to be moved (in pixels)

DestSegment%:Pr•wides the routine with a location to send the infor­
mation. This segment value is determined by finding
the segment of a pre-dimensioned array. The segment
of an array can be found as follows:

Direction% :

■ Comments

REDIM Array%(0 to 5000)
DestSegrnent% = VARSEG(Array(0))

Determines whether the image will be saved or res­
tored; a value of zero saves the image, any other value
will restore the image.

All parameters for this routine are passed by value to provide the maximum
speed.

The memory location must be declared prior to saving the image into the
array. To calculate the amount of memory required use the following
formula:

MemoryNeeded% = Columnsused% • Linesused% • 4 + 4

Once the amount of memory required has been calculated, you will
dimension an integer array with half of the elements contained in Memory-

■ 7-40 CRESCENT SOFTWARE, INC.

Graphics QuickScreen Routines

must then run BASIC with the / Ah parameter and compile your programs
with this parameter as well. In addition, you will need to create and pass
this routine a long integer array where each element will provide 4 bytes
of memory space. To make an array holding 128K of memory, dimension
it as follows:

REDIM LongArray&(O to 32767)

■ Example

The following example saves and restores a region 10 columns wide by
100 lines high in the upper-left hand corner of the screen.

DEFINT A-Z
DECLARE SUB GMove4VE(BYVAL Col, BYVAL ScrnLine,

BYVAL Cols, BYVAL DestSegment, BYVAL Direction)
SCREEN 12 'sets the monitor in VGA mode

LINE (0,0)-(79,99), 1 B
'save the image
MemNeeded% = 10• 100 • 4 + 4
DIM A%(MemNeeded% \2) 'each integer counts for 2

bytes
CALL GMove4VE(l,O, 10, 100, VARSEG(A%(0)),))
WHILE INKEY$ = "":WEND

CLS
'restore the image
CALL GMove4VE (1, 0, 10, 100 VARSEG(A%(0)), -1)

CRESCENT SOFfWARE. INC. ■ 7-41

I

I

Routines Graphics Quick.Screen

GPrintOVE
assembler subroutine contained in GFORMS.LIB

■ Purpose

GPrint0VE prints a string on the 16-color EGA and VGA high-resolution
graphics screens in a specified color.

■ Syntax
CALL GPrintOVE (BYVAL Row%, BYVAL Column%, Text$,

BYVAL TextColor%)

■ Where
Row% The normal coordinates used by the BASIC LOCATE
and Column%: statement

Text$: Any text string

TextColor%: Holds the combined foreground and background
colors; the following formula can be used to set the
colors used:

TextColor% =Foreground%+ (Background* 256)

■ Comments

Numeric parameters for this routine are passed by value to provide the
maximum speed.

■ Example

The following example shows how to print a string to the VGA using the
color blue for the foreground, and the color gray for the background.

DEFINT A-Z
DECLARE SUB GPrintOVE (BYVAL Row, BYVAL Col, BYVAL

Column, Text$, BYVAL TextColor)
SCREEN 12 'sets the monitor in

VGA mode

GPrintOVE 1, 10, "This is on row l", 1 + 7 * 256

This routine is many times faster than the BASIC PRINT statement. It
also allows you to specify a background color for the text string.

■ 7-42 CRESCENT SOFfWARE, INC.

Graphics QuickScrecn Routines

HideCursor
assembler subroutine contained in GFORMS.LIB

■ Purpose

HideCursor turns off the mouse cursor.

■ Syntax
CALL HideCursor

■ Comments

Any program that is to be "mouse aware" will need to turn on the mouse
cursor before expecting a user to access the mouse. Likewise, it is only
common courtesy to turn it off again before returning them to the DOS
prompt. Also, for graphics programming, you must turn the mouse off
before drawing something on the screen.

One very important point to be aware of regarding the HideCursor routine
is how the current on and off status is maintained internally by the mouse
driver. Unlike the normal text cursor that is turned on or off with the
BASIC LOCATE command, the mouse cursor keeps track of how many
times it was turned on or off. Thus, if you call HideCursor twice in a row,
you will need to call ShowCursor twice before it will be visible again.

In graphics mode, when you want to draw something at the location of the
mouse, it is necessary to turn off the mouse cursor temporarily while you
are drawing. In graphics mode, the mouse has a copy of the screen image
beneath itself. If you draw over the cursor with the cursor on, when the
cursor moves, the mouse driver will re-draw the previous image, without
what you drew.

This is why you see the mouse flicker in large graphics applications. These
applications turn the mouse off and on many times while drawing to the
screen. It is for this reason that the above mentioned characteristic of the
HideCursor routine can be useful. If you have multiple routines drawing
graphics on the screen, it is necessary that each routine turn the mouse
cursor off before drawing and turn it back on before leaving. However,
due to the nature of graphics programming, a routine cannot always expect
to be called from another routine which has previously turned off the
mouse. For example, a routine designed to draw an entire face might call
a routine to draw an eye. If the eye routine were to be called separate! y,
it should turn off the mouse cursor itself. If it is called from within another
routine which has already turned off the cursor, then it should not turn on
the cursor when it is finished. Instead the count maintained by the mouse

CRESCENT SOFTWARE, INC. ■ 7-43

I

I

Routines Graphics QuickScreen

driver is merely decremented when the eye routine calls ShowCursor to
turn the cursor back on.

■ SeeAlso

ShowCursor.

■ 7-44 CRESCENT SOFTWARE, INC.

Graphics QuickScreen Routines

lnitMouse
assembler subroutine contained in GFORMS.LIB

■ Purpose
InitMouse is used to determine if a mouse if present in the host PC, and
to reset the mouse driver software to its default values.

■ Syntax
CALL InitMouse(HaveMouse\)

■ Where
HaveMouse%: Receives -1 if a mouse is present, or O if no mouse is

installed

■ Comments

Because InitMouse resets the mouse driver values (the mouse cursor color,
its travel range and sensitivity, etc.), it would probably be called only once
at the start of a program.

Understand that InitMouse doesn't actually detect the physical presence
of the mouse hardware. Rather, the mouse driver software must be
installed before a mouse will be detected. Newer versions of Microsoft's
mouse driver software actually detect if the mouse is physically attached
to the machine, and will not load the driver unless the mouse is connected.

CRESCENT SOFTWARE, INC. ■ 7-45

I

I

Routines Graphics QuiclcScreen

KeyDown
assembler function contained in GFORMS.LIB

■ Purpose

KeyDown reports if any keys are currently being pressed.

■ Syntax
KeyisDown = KeyDown%

■ Where

KeyisDown: Returns -1 (True) if a key is currently being pressed,
or 0 if no keys are pressed

■ Comments

Because KeyDown has been designed as a function, it must be declared
before it may be used. KeyDown must also be installed before it will
operate, and this is done by calling the InstallKeyDown routine.

Key Down is useful in a variety of situations. It is used by the EditFormG
subroutine to detect when a key that was pressed to activate a push button
or mouse field has been released.

In order to detect when keys are pressed and released, KeyDown takes
over the keyboard interrupt. This is why it must be installed. KeyDown
automatically removes itself from the interrupt chain automatically when
your program ends.

However, a bug in QBX (the QB editor that comes with BASIC 7 PDS)
prevents the automatic de-installation from working correctly. Therefore,
you must call DeinstallKeyDown manually before ending your program if
you are using QBX. De-installing is not necessary with QuickBASIC 4.0
or 4.5, nor with programs that are compiled to .EXE files.

Note that when multiple keys are pressed (such as Alt-F), Keydown returns
-I when Alt is first pressed. But as soon as either combination key is
released KeyDown returns 0.

■ Example

See EditFormG for an example of using Key Down.

■ 7-46 CRESCENT SOFTWARE, INC.

Graphics QuickScrecn Routines

LibGetFldDefG
BASIC subroutine contained in LIBFILE.BAS

■ Purpose

LibGetFldDefG retrieves information from a form file contained in a
custom .GSL library and places it in a structure for later reference by other
routines. It also loads formulas and help messages into the Form$O data
array.

■ Syntax
CALL LibGetFldDef(LibName$,

Fld(), Form$(), ErrCode%)
FrmName$, StartE1%,

■ Where

LibName$: Name of the custom .GSL library; the .GSL extension
is assumed and does not need to be entered

FrmName$: Name of the form (.FRM) definition file

StartE1%:

Fld():

Form$():

ErrCode%:

■ Comments

Starting element in the FldO array in which the form
information is to be loaded

Field information TYPE array (see FLDINFO.Bl)

Form string array (see Form$() array)

Returns a value that indicates whether or not the form
definition was loaded successfully; a value > I indi­
cates that an error occurred opening the library file; a
value of I indicates that the file was not found in the
specified library

LibGetFldDefsG is used to replace the GetFldDefsG subroutine when the
form definition file is stored in a custom . GSL library. Note that the calling
syntax for LibGetFldDefsG is identical to that used by GetFldDefsG except
for the addition of the LibNames$ and ErrCode% arguments and the need
to include the .FRM extension in FrmName$.

■ Example

This example loads the form information for "MyForm" from a library
named "MyLib.GSL".

CALL LibGetFldDefsG("MyLib", "MyForm.FRM", O,
Fld(), Form$(),ErrCode%)

CRESCENT SOFTWARE, INC. ■ 7-47

■

I

Routines Graphics QuickScreen

LibGetGMP
BASIC subroutine contained in LIBFILE.BAS

■ Purpose

LibGetGMP loads .GMP files from a custom .GSL library into an array.

■ Syntax
LibGetGMP(LibName$, GMPFile$, Array%(), ErrCode%)

■ Where

LibName$: Name of the GSL library; the .GSL extension is
assumed and does not need to be entered

GMPFile$:

ArrayO:

ErrCode%:

■ Comments

The name of the GMP file to display; the .GMP
extension must be included

An integer array that will be used to hold the image
(rediminsioned to O before the call)

Returns a value that indicates whether or not the image
was loaded successfully; a value > I indicates that an
error occurred opening the library file; a value of 1
indicates that the file was not found in the specified
library

LibGetGMP is used to replace the GetGMP subroutine when the .GMP
files are read from a custom . GSL library. Note that the calling syntax
used by LibGetGMP is identical to that for the GetGMP subroutine except
for the addition of the LibName$ argument and the need to include the
.GMP extension in GMPFile$.

■ Example

Remember that before calling the LibGetGMP subroutine, you must first
create an Array() to hold the image:

REDIM Array(O)
CALL LibGetGMP (MyLib$, "Pencil.GMP"' Array(),

ErrCode)

After the image is loaded, it can be placed anywhere on the screen with
BASJC's graphic PUT command:

PUT (10, 10), Array, PSET

■ 7-48 CRESCENT SOFTWARE, INC.

Graphics QuickScrccn Routines

LibNumFieldsG
BASIC function contained in LIBFILE.BAS

■ Purpose

LibNumFieldsG returns the number of fields in a form contained in a
custom .GSL library.

■ Syntax
N% = LibNumFieldsG%(LibName$, FormName$)

■ Where

LibName$: Name of the GSL library; the .GSL extension is
assumed and does not need to be entered

N%: Number of fields in FormName$; if an error occurs,
N% is set to -1

FormName$: String containing the full path and file name of the form
definition file; the . FRM extension must be included

■ Comments

LibNumFieldsG is used to replace the NumFieldsG function when the
form definition file is stored in a custom . GSL library. Note that the calling
syntax for LibNumFieldsG is identical to that used by NumFieldsG except
for the addition of the LibNames$ argument and the need to include the
.FRM extension in FormName$.

LibNumFieldsG is used to dimension the FldO TYPE array and Form$O
data array to the proper number of elements before calling LibGetFldDefG.

Because LibNumFieldsG has been defined as a function, it must be
declared before it may be used.

■ Example

This example returns the number of fields in the MYFORM.FRM file:

NumFields% = LibNumFieldsG%("MyLib", "MYFORM.FRM")

CRESCENT SOFTWARE. INC. ■ 7-49

I

I

Routines Graphics QuiclcScreen

LibShowForm
BASIC subprogram contained in LIBFILE.BAS

■ Purpose:

LibShowForm displays any .PCX screen that you design with the Graphics
QuickScreen screen editor and is stored in a custom .GSL library. It sets
the proper screen mode, number of text rows, and adjusts the color palette.
The row and column arguments allow you to position partial screen images.

■ Syntax:
Call LibShowForm (LibName$, FileName$, Fld(),

Row%, Col%, VPage%, ErrCode%)

■ Where:

LibName$: The name of the custom .GSL library; the .GSL
extension is assumed and does not need to be entered

FileName$: The name of the .PCX file to be displayed; the .PCX
extension must be included

Fld(): An array containing the form's field definitions; the
array is loaded using either the LibGetFldDefG sub­
routine or by using the FileName* BASIC subroutine
that is created when you save your forms; the Fld() array
is used to pass the following information:

Fld(0). Value: Contains the screen mode to use when display­
ing the screen; the value is either 5 for EGA
SCREEN 9, or 8 indicating VGA SCREEN 12

Fld(0).lndexed: Contains the text height in pixels of the required
ROM font (8, 14 , 16); this value along with the
screen mode tells LibShowForm how many text
rows to set.

If you are repositioning a partial .PCX image that has field definitions,
the Fld(N).Row, Fld(N).LCol, Fld(N).RCol, and Fld(N).ScratchI vari­
ables are automatically updated for each field to their new coordinates.

Row:

■ 7-50

The Y screen coordinate (in pixels) for the upper left
corner of a partial screen; any valid screen row may be
specified as long as the bottom-most field is fully
displayed; to display a full screen image set this value
to 0

CRESCENT SOFTWARE, INC.

Graphics QuickScreen Routines

■

Col: The upper left column for displaying a partial screen
image; any valid screen column may be specified as
long as the right-most field is fully displayed; to display
a full screen image set this value to 0

VPage: Specifies which video page to use when loading an EGA
(640x350) image; VPage set to O loads the image to the
visible video page; VPage set to I loads the image to
the background video page where it can be restored to
the visible page with one of the wipe routines contained
in EGAWIPES.BAS; the VPage% parameter is ignored
by VGA (640x480) screens

ErrCode: Returns a value that indicates whether or not the image
was loaded sucessfully; a value of I indicates that an
error occurred when opening the library file; a value
of 2 indicates that the specified file was not found in
the library; a value of 3 means that you attempted to
display the file an an incompatible monitor, and a value
of 4 indicates that an error occurred while loading the
screen.

* A BASIC module and subroutine are optionally created when you
save your screens using the same name as your form.

Comments:

LibShowForm is used to replace the Show Form subroutine when the .PCX
files are read from a custom . GSL library. Note that the calling syntax
for Lib Show Form is identical to that used by Show Form except for the
addition of the LibNames$ argument and the need to include the .PCX
extension in FileName$.

LibShowForm can be used to display any EGA 640x350 or VGA 640x480
16-color .PCX file that is stored in a custom .GSL library. If you are
displaying a .PCX file with no field definitions, the Fld() array can be
dimensioned to O elements. If all values in the FldO array are set to 0,
the screen mode will be set and the image displayed in whatever screen
mode is indicated by the value of GPDat%(31). You can also force a
specific screen mode for display-only screens by assigning appropriate
values to Fld(O). Value and Fld(O).lndexed.

GPDat%(31) is set in the SETUP.BAS $INCLUDE file to indicate the
current monitor type. See Appendix A for more information on the
GPDat%() array.

CRESCENT SOFTWARE, INC. ■ 7-51

I

I

Routines Graphics QuickScreen

■ Example

This example displays the "Screen! .PCX" image stored in "Cus­
tom.GSL".

CALL LIBShowForm("Custom", "Screenl.PCX",
Fld(), O, O, O, ErrCode'ii)

■ 7-52 CRESCENT SOFTWARE. INC.

Graphic.s QuickScrccn Routines

ListBox
BASIC subroutine contained in LISTBOX.BAS

■ Purpose

ListBox is a comprehensive menu subprogram with many importan,
capabilities including full support for a mouse. It can optionally save t.'le
underlying screen to conventional or video memory. If there are more
choices than can be displayed in the specified number of rows, a scroll
bar will be added to the menu. ListBox is used to support multiple-choice
fields in a form and is also used in the Graphics QuickScreen File Open ...
dialog box.

■ Syntax
CALL ListBox(Itern$(),

Hk% (), Action%)
Choice%, MaxLen%, Rows%, Ky$,

■ Where

Item$:

Choice%:

MaxLen%:

Rows%:

Ky$:

Hk%Q:

Action%:

■ Comments

Conventional (not fixed-length) string array containing
the list of menu choices.

Indicates which choice was selected, and may also be
pre-loaded to force a given choice to be highlighted
initially

Maximum length of any menu choice, thus establishing
the menu width (choices longer than Max Len% will be
displayed truncated)

The number of lines to display in the ListBox

Holds the last key that was pressed by the user

Integer array of hotkeys; this array is used only by the
dialog box routine in Graphics QuickScreen and should
be dimensioned to 0

Tells how ListBox should be used (see comments
below)

Displaying a list of items in a window is only one of the features ofListBox.
Its real power comes from the use of the Action variable, and the its ability
to be polled.

The Action variable has nine different possible settings that tell ListBox
how it is to behave. Each of the possible Action values is described below.

CRESCENT SOFfWARE, INC. ■ 7-53

I

I

Routines Graphics QuickScreen

If Action is set to zero, then the menus will operate the way you would
expect a "normal" menu to work. That is, the menu is displayed, and an
INKEY$ loop repeatedly waits for the user to press a key or a mouse
button. Once a key or mouse button has been pressed, control is returned
to the calling program. The Choice variable may then be examined to see
what selection the user chose.

When Action is set to -3, ListBox simply displays the menu without
highlighting a choice and returns control immediately to the calling
program.

When Action is set to -2, -1, or I, ListBox displays the menu and highlights
the specified choice. Action set to -1 first saves the underlying screen to
conventional memory while Action -2 saves the screen to video memory.
Action set to I does not save the underlying screen. Control is returned
to the calling program immediately, however Action is set to 3 for
subsequent calls. Since Action set to 3 is how you will be polling the menu
subsequently, this saves you an extra step.

Setting Action to 2 lets you redisplay the menu, in those cases where you
may wish to change the contents of the menu without having to first exit
ListBox and call it again with the new selections. Action 2 also resets
itself to 3 for subsequent calls. If the menus are called with Action equal
to 3, the keyboard and mouse are merely polled to see if a key or button
has been pressed.

If Action is still set to 3 when the menu returns, it means that no keys or
mouse buttons were pressed.

If Action is returned set to 4, the user either made a selection or pressed
Escape. In this case, the Choice and Ky$ variables should be examined.

If Action is set to 5, List Box will remove itself and restore the original
screen if it had been called initially with Action = -1 or Action = -2.

Use Locate to position the upper-left comer of the listbox.

If you are not using multiple-choice fields you should use the "blank"
ListBox subprogram which is part of NOMULTG.BAS. This resolves
references to ListBox without needing to load the full ListBox source code.

ListBox also requires the SCROLLB.BAS module to manage the scroll
bar.

■ 7-54 CRESCENT SOFTWARE, INC.

Graphics Quid,Screen Routines

Message
BASIC subprogram contained in FORMEDIT.BAS

■ Purpose

Message displays text messages in a box

■ Syntax
CALL Meeeage(Msg$, Row)

■ Where
Msg$: Message string

Row: Top screen row of the message box

■ Comments

This routine quickly displays any text you supply in a conventional
(variable-length) string. When you call Message with a non-null string,
the message is displayed in a box or "window". If you call Message again
with a null string, the window previously displayed is removed, and the
screen image underneath the message will be restored.

■ Example

CALL Message("This is a help message.", 10)

Colors for the various components of the message box are set in GPDat% O
elements 96 - 99:

GPDat%(96) = Background color
GPDat%(97) = Text color
GPDat % (98) = Highlight color
GPDat%(99) = Shade color

CRESCENT SOFTWARE, INC.

'Default = 7 gray
'Default = 0 black
'Default = 15 white
'Default = 8 Dk.gray

■ 1-55

I

I

Routines Graphics QuiclcScreen

Motion
assembler subroutine contained in GFORMS.LIB

■ Purpose

Motion allows a program to establish the sensitivity of the mouse cursor
motion.

■ Syntax
CALL Motion(Value%)

■ Where

Value%:

■ Comments

The desired sensitivity ranging between I and 32767,
with I being the most sensitive

Even though the mouse driver software allows setting the horizontal and
vertical sensitivity separately, Motion uses the same value for both. This
seems to be the most logical way to control a mouse, while eliminating
yet another passed parameter.

The stated upper range for the motion sensitivity is 32767, however values
beyond 100 or so are hopelessly insensitive.

You may be interested to know that Microsoft calls the unit of cursor
distance for the mouse a "Mickey".

■ 7-56 CRESCENT SOFfWARE, INC.

Graphics QuickScreen Routines

MultMonitor
assembler function contained in GFORMS.LIB

■ Purpose

MultMonitor% makes it east to determine the type of display adapter
currently active.

■ Syntax
M% = MultMonitor%

■ Where

MonType%: Integer value representing the detected monitor type
currently in use; a value ofO means no graphics monitor
is attached.

Bit
0
1
2
3
4
5
6
7
8
9

Value
1
2
4
8
16
32
64
128
256
512

Meaning
Hercules adaptor is attached
CGA capable adaptor attached
mono EGA adaptor is attached
color EGA adaptor is attached
mono VGA adaptor is attached
color VGA adaptor is attached
mono MCGA adaptor is attached
color MCGA adaptor is attached
EGA adaptor emulating CGA
IBM 8514/A adaptor is attached

For example, a system which has both a VGA color monitor and a Hercules
monitor connected will return a value of33 (32 for VGA + I for Hercules).

■ Comments

To check if a VGA monitor exists, use the following line of code:

IF (M% AND 32) <> 0 THEN PRINT "Can use VGA"

■ Example

See SETUP.BAS for an example of using MultMonitor.

CRESCENT SOFTWARE, INC. ■ 7-57

I

I

Routines Graphics QuickScreen

NumFieldsG
BASIC function contained in FRMFILE.BAS

■ Purpose

NumFieldsG returns the number of fields in a form.

■ Syntax
N% = NumFieldsG%(FormNameS)

■ Where

N % : Number of fields in Form Name$

Form Name$: String containing the full path and file name of the form

■ Comments

Because NumFieldsG has been defined as a function, it must be declared
before it may be used.

This function is used to dimension the FldQ TYPE array and Form$ data
array to the proper number of elements before calling GetFldDefG.

■ Example

This example retuF1s the number of fields in the MYFORM.FRM file:

NumFields% = NumFieldsG%("MYFORM.FRM")

■ 7-58 CRESCENT SOFTWARE, INC.

Graphics QuickScreen Routines

Num2Date
assembler function contained in GFORMS.LIB

■ Purpose

Num2Date converts a previously-encoded integer date to an equivalent
date string.

■ Syntax
D$ = Num2Date$(Days%)

■ Where

D$: Formatted date string (MM-DD-YYY)

Days%: Integer value from -29219 to 31368

■ Comments

Because Num2Date has been designed as a function, it must be declared
before it may be used.

Please see the Date2Num discussion and example for more information.

CRESCENT SOFTWARE, INC. ■ 7-59

I

I

Routines Graphics QuickScreen

OpenFiles
BASIC subprogram contained in RANDOMG.BAS

■ Purpose

OpenFiles is used to open a random access database (.DAT) file, and
field-format it to the data buffer Form$(0, 0). If there are multi-line notes
fields contained in the form, a Notes database file (.NCJf) is also opened.

■ Syntax
CALL OpenFiles(ForrnNarne$, Form$(), Fld() AS

FieldinfoG)

■ Where

FormName$: Base name of the database file to open (without the
.DAT extension)

Form$(): Form string array (see Form$() array)

Fld(): Field information TYPE array (see FWINFO.Bl).

■ Comments

OpenFiles looks in the current directory for the form name you provide.
If you want to acce,s files on a different drive or directory, then you must
append the path in front of the FormName$.

If the form is found, it and its associated notes file are opened; if the form
file is not found then it is created.

Once the random file is open, Form$(0, 0) is fielded to match the fields
as needed. Fld(0).Re!Handle holds the handle for the .DAT file that was
opened, and Fld(0).ScratchI hold the handle for the Notes file if one was
opened.

The GetRec and SaveRec routines can be used after OpenFiles has been
successful.

■ 7-60 CRESCENT SOFTWARE, INC.

Graphics QuickScrccn Routines

OpenPCXFile
assembler subroutine contained in GFORMS.LIB

■ Purpose

OpenPCXFile % opens the specified PCX file, and loads the header
information, including palette information, into the string specified.

■ Syntax
Array$= SPACE$(68 + 768)
Success% OpenPCXFile%(Filename$, Array$)

■ Where

Filename$: A string containing the name of the PCX file

Array$: A string of length (68 + 768); the first 68 bytes receive
the header information. If the file is a 256-color PCX
file, then the information contained in the last 768 bytes
of this string are the palette information for the 256-
color mode.

■ Comment

After opening the PCX file, the image can be displayed by calling
DISPPCXVE:

Array$= Space$ (68+768)
IF NOT OpenPCXFile% (FileNameS, Array$) THEN

EXIT SUB
END IF
CALL DISPPCXVE(VideoPage%)

CRESCENT SOFfWARE. INC. ■ 7-61

I

I

Routines Graphics QuickScreen

Position PCXVE
assembler subroutine contained in GFORMS.LIB

■ Purpose

PositionPCXVE is used to locate a .PCX image which is loaded with the
DispPCXVE routine. By calling this routine immediately prior to the
DispPCXVE routine, a PCX image can be located at any column and line
combination as defined by the Mixed coordinate system.

■ Syntax
CALL PositionPCXVE (BYVAL Linestart%, BYVAL

Co1Start%)

■ Where

LineStart%: Upper-left row where the image is to be displayed (in
pixels)

Col Start%: Upper-left column where the image is to be displayed
(in text columns)

■ Comments

This routine is used in ShowForm to display partial PCX images.

■ Example

See Show Form for an example of using PositionPCXVE

■ 7-62 CRESCENT SOFTWARE, INC.

Graphics QuickScrcen Routines

PrintArray
BASIC subprogram contained in EDITFORM.BAS

■ Purpose

PrintArray refreshes the screen by redisplaying the contents of fields in
the form.

■ Syntax
CALL PrintArray(FirstFld%, LastFld%, Form$(), Fld())

■ Where

FirstFld % : Starting field to be redisplayed

LastFld%: Ending field to be redisplayed

Form$(): Form string array (see Form$() array)

Fld(): Field information TYPE array (see FWINFO.Bl)

■ Comments

Sometimes it is necessary to alter the contents of a field manually in a
program. Refreshing the screen ensures that the user is aware of the new
contents of each field on the form.

■ Example

This example refreshes only the third and fourth field of the currently-dis­
played form:

CALL PrintArray(3, 4, Form$(), Fld())

CRESCENT SOFfWARE. INC. ■ 7-63

I

I

Routines Graphics QuickScreen

QEdit
BASIC subprogram contained in GQEDITS.BAS

■ Purpose

QEdit is a graphics mode text editor subprogram that may be called as a
pop-up from within a BASIC program.

■ Syntax
CALL GQEdit(ArrayS(), Ky$, Action%, Ed)

■ Where

Array$O:

Ky$:

Action%:

Ed:

■ Comments

Conventional (not fixed-length) string array that will
hold the text being entered or edited

Returns holding the last key pressed

Indicates how QEdit is being invoked (see comments
below)

TYPE variable that controls QEdit (see comments
below)

The QEdit editing window may be positioned anywhere on the screen, and
sized to nearly any number of rows and columns. QEdit can optionally
save the underlying screen and it may be used in the 25-, 30-, 43-, or
60-line screen modes. QEdit also supports word-wrap, a mouse, and
horizontal/vertical scrolling.

All of the standard editing keys are supported. For example, Home and
End move to the beginning and end of a line; the PgUp and PgDn scroll
the screen by pages; and Ctrl-PgUp and Ctrl-PgDn move to the first and
last lines, respectively. The cursor may also be moved to the top or bottom
of the edit window with the Ctrl-Home and Ctrl-End keys.

Similar to the BASIC editor, QEdit uses the Ctrl-Left and Ctrl-Right arrow
keys to move the cursor by words and Ctrl-Y to delete a line of text.

The call for QEdit is fairly simple to set up. Your program will need to
dimension a conventional (not fixed-length) string array to hold the lines
of text. The size to which the string array is dimensioned dictates the
maximum number of lines that may be entered.

If you intend to present a blank screen to your user, then no additional
steps are needed to prepare the array. If you already have text that is to
be edited, it may be placed in the array before QEdit is called.

■ 7-64 CRESCENT SOFTWARE, INC.

Graphics QuickScrecn Routines

The text may also be sent to QEdit as a single long line in the lowest array
element. In that case, it will be wrapped automatically before being
presented for editing. If you intend to read files prepared by a word
processor that places each paragraph on its own line (such as XyWrite),
you will probably want to read each line into every other element in the
string array. This will preserve the spacing between paragraphs, and can
be accomplished as shown below:

OPEN X$ FOR INPUT AS #1
CurLine = 1
WHILE NOT EOF(l)

LINE INPUT Array$(CurLine)
CurLine = CurLine + 2

WEND
CLOSE #1

•open the file
'set current line counter
'read until the end
'get a line
'skip over next line

'close the file

Like ListBox, the current cursor location indicates where to position the
upper-left corner of the editing window. Arguments passed to QEdit are
then used to indicate the width and height of the window, the margins,
colors, and so forth. Let's take a close look at each of these in turn. Here's
the QEdit calling syntax, once again:

CALL QEdit (Text$(), Ky$, Action%, Ed)

The Text$() array holds the text to be edited, as described above.

Ky$ returns the key holding the last key pressed. For example, it will
hold CHR$(27) if the user pressed Esc to exit QEdit.

CRESCENT SOFTWARE. INC. ■ 7-65

I

I

Routines Graphics QuickScreen

The Action argument sets the operating mode for QEdit as follows:

Action = 0 Use the editor in a non-polled mode. QEdit will
take control, and return only when the user
presses the Esc key. If you do not intend to add
features to QEdit or take advantage of its mul­
titasking capability, you may set Action to O and
simply ignore the remaining Action parameters
described below.

Action = -2, -1, or I Initialize the editor for polled mode. The edit
window will be drawn, and the text (if any)
displayed. Control is returned to the caller
immediately without QEdit checking the key­
board. The Action flag is also set to 3 automat­
ically. Action values of -2 and - I first save the
underlying screen to either video or convention­
al memory* respectively.

Action= 2

Action= 3

■ 7-66

Redisplay the edit window and text, but without
resaving the underlying screen. Control is then
returned to the caller immediately without
checking the keyboard. As above, the Action
parameter will be set to 3 automatically.

Calling QEdit with an Action value of2 is useful
when changing the window size or location, to
force QEdit to redisplay the text at the new
location.

Note that if word wrap is on, Actions -2, -1, 0,
I, and 2 will cause the text to be re-wrapped to
the right margin specified in Ed.Wrap (see
below).

This is the "idle state" for QEdit. Each time
QEdit is called with this value, it checks the
keyboard and acts on any keys that were
pressed. It then returns to the caller.

While QEdit is being polled the caller may ex­
amine the Ky$ parameter to determine which, if
any, keys were pressed. The members of the Ed
TYPE structure can also be examined and
changed. Note that if the calling program chan-

CRESCENT SOFTWARE, INC.

Graphic, QuickScreen

Action= 5

Routines

ges any of the Ed values, QEdit should be called
again with an Action of 2 to redisplay the edit
window.

Restores the screen that was saved when QEdit
was called with Action set to 1.

The Ed parameter is a TYPE structure defined as Editlnfo in the file
QEDITYPE.BI. All of the additional parameters for QEdit are contained
in this structure. Therefore, you must include QEDITYPE.BI in your
calling program, and assign the elements needed to establish the window
size, colors, and so forth. Note that passing a pointer to a TYPE variable
this way is much faster and more concise than passing all of these
parameters as part of the call. The following is a list of the elements in
the Editlnfo structure.

Ed.Rows

Ed.Wide

Ed.Wrap

Ed.HTab

Ed.AColor

CRESCENT SOFTWARE, INC.

This sets the number of rows to be displayed in
the window. The default maximum number of
lines for an EGA monitor is 25, or 30 for a VGA
monitor. If WIDTH is used to set more screen
lines before QEdit is called, then the window
may occupy up to 43 (for EGA) or 60 (for VGA)
lines.

This sets the number of columns (up to 80) that
are displayed in the window.

This sets the right margin for word wrapping.
This is independent of the right-most visible
column, and may be set to nearly any value (up
to 255). If the right margin extends beyond the
right edge of the window, QEdit will scroll the
text to accommodate it. Word wrap may also
be disabled entirely by setting Ed. Wrap to 0.

This sets the number of columns to move when
Tab or Shift-Tab is pressed. This parameter
will default to 8 if a value of zero is given.

This sets the color of the edit window. The value
combines both foreground and background
colors into a single integer and is defined as
follows:

Ed,AColor = fgColor + bgColor * 256

■ 7-67

I

I

Routines

Ed.Frame

Graphics QuickScreen

This is not supported, and is included for com­
patibility with the text mode version of QEdit
provided with other Crescent products.

The remaining parameters are intended to be read by your program, and
do not have to be set before QEdit is called.

Ed.LSCol

Ed.LC

Ed.CurCol

Ed.TSRow

Ed.TL

Ed.Cur Line

Ed.UICRow
Ed.UlCCol
Ed.BrCRow
Ed.BrCCol
Ed.CBlock

Ed.Presses

■ 7-68

This holds the current left screen column of the
editable window.

This holds the left-most column of text being
displayed, which will be greater than 1 if text is
scrolled to the right.

This holds the current text column number of
the cursor within the edit window, which is not
necessarily the current screen column.

This holds the top screen row of the editable
window.

Holds the topmost row of the displayed text,
which will be greater than I if text has been
scrolled down.

This holds the current text line number of the
cursor within the edit window, which is not
necessarily the current screen row.

These are not supported in this version

This indicates whether a mouse button has been
pressed, but not handled by the editor. This
information is for your program to use if you
intend to handle mouse presses that occurred
outside of QEdit. Since Ed.Presses is non-zero
only in that situation, you would then examine
the Ed.MRow and Ed.MCol parameters (see
below) to know where the mouse cursor was
when the button was last pressed.

CRESCENT SOFTWARE, INC.

Graphics QuickScreen

Ed.MRow

Ed.MCol

Ed.Insert

Ed.Changed

Ed.LCount

Ed.MErr

Routines

This holds the row where the mouse cursor was
at the time the button was last pressed or if it is
currently being pressed.

This holds the column where the mouse cursor
was at the time the button was last pressed or if
it is currently being pressed.

This is used to determine the current insert state
mode. This will be 1 if QEdit is currently in
the overtype mode or -I if inserting is active.

This is used to see if the text has been changed.
This parameter will be set to -I if any changes
or additions have been made to the text; other­
wise it will be 0. This lets you know whether
the file needs to be saved or not. However, you
must clear this variable once the text has been
saved.

This holds the number of active lines in the text
string array, so you can know how many array
elements need to be written to disk when saving
text.

This is an error flag that signals errors that
occurred within the editor. Ed.MErr will be I
if there is insufficient memory. This could be
caused by running out of string space with a
large document, or not having enough far
memory.

* To store an entire 640x480 16-color VGA screen requires ap­
proximately 154k of memory. Most video boards supply 256k of
video memory leaving 102k of unused memory. When QEdit is
called with action = -I, the underlying screen is saved to this por­
tion of memory. The underlying screen saved by QEdit must there­
fore require no more than 102k of memory for storage, limiting the
maximum size of the edit window to about 2/3 of a full screen.

If you must save larger portions of the screen, you can call QEdit with
action set to -2 which saves the underlying screen in conventional memory.
Since the array that holds the underlying screen will in this case be greater
than 64k, you must start BASIC and compile your program with /ah.

CRESCENT SOFrWARE, INC. ■ 7-69

I

I

Routines Graphics QuickScreen

If you are working in SCREEN 9, most display adapters will have
enough memory to hold two entire screens. You can therefore have
QEdit occupy the entire screen and still save the underlying screen
to video memory with Action set to -2. The advantage of saving to
video memory instead of conventional memory is that the use of
video memory has no affect on the amount of conventional
memory available to your program.

■ 7-70 CRESCENT SOFIWARE, INC.

Graphics QuickScrecn Routines

SaveField
BASIC subprogram contained in EDITFORM.BAS

■ Purpose

SaveField validates and formats a field before placing it in the Form$(0,
0) form buffer. This routine is often used before calling the PrintArray
routine.

■ Syntax
CALL SaveField(FldNo%, Form$(), Fld(), BadFld%)

■ Where

FldNo%: Field to be examined

Form$():

Fld():

BadFld%:

■ Comments

Form string array (see Form${) array)

Field information TYPE array (see FLDINFO.Bl)

Returns 0 when valid; -1 when invalid

This routine first validates the data in the field by checking high and low
acceptable ranges for the data. If the data in the field is not valid (i.e., it
is out of the allowable range for the field, or it is an invalid date), then the
BadFld flag will be set to -1. If BadFld is returned as 0, then the data is
valid and SaveField will have updated the contents of the Form$(0, 0) form
buffer with the current field's data.

■ Example

This example validates data in field three before updating the field buffer:

CALL SaveField(3, Form$(), Fld(), BadFld%)

CRESCENT SOFrWARE. INC. ■ 7-71

I

I

Routines Graphics QuickScreen

SaveRec
BASIC subprogram contained in RANDOMG.BAS

■ Purpose

SaveRec saves information from a form to a specified record in a .DAT
data file. Multi-line notes fields, if present, are written to a notes file
having a .Nor extension.

■ Syntax
CALL SaveRec(RecNo&, Form$(), Fld())

■ Where

RecNo&: Record number to save

Form$(): Form string array (see Form$() array)

Fld(): Field information TYPE array (see FLDINFO.B1)

■ Comments

The data currently in the form buffer Form$(0, 0) is saved to the
random-access .DAT data file and any notes are saved to the .Nor notes
file. SaveRec is limited to one note field per form.

Usually, the OpenFiles routine is called before using either GetRec or
SaveRec.

■ Example

Please Saving Records under Pe/forming Data Entry for an example.

■ 7-72 CRESCENT SOFTWARE. INC.

Graphics QuickScrecn Routines

Scrollln
BASIC subprogram contained in SCROLLIN.BAS

■ Purpose:

Scroll in is a pollable virtual field input routine that allows editing text that
is wider than the window showing on the screen.

■ Syntax:
CALL Scrollln(Edit$, Scroll)

■ Where:

Edit$: The string to be edited, and may range from I to 32000
characters in length

Scroll: A TYPE variable that contains the remaining Scrollin
parameters. These are assigned as follows:

Scroll.Start On entry, specifies which character in Edit$ to
be placed at the left edge of the edit window.

Scroll. Wide The width of the edit window.

Scroll.MaxLen The maximum allowable length of the edited
text; MaxLen must be at least as great as
Scroll.Wide; ifScroll.MaxLen = Scroll.Wide
then scrolling is disabled.

Scroll.Filter Determines the type of text to be accepted by
Scrollln, and may be set to any of the following
values:

0 All keys will be accepted

Integer characters "1234567890- "

2 All numeric characters
"l 234567890ED,. +-/\"

3 User defined*

4 Converts all letters to upper case

5 Capitalizes the first letter of each word

* Characters to be accepted are assigned to the Filter3 CONSTant in the
SCROLLIN.BAS module level code.

CRESCENT SOFTWARE. INC. ■ 7-73

I

I

Routines Graphics QuickScreen

Scroll.Ky: Returns the ASCII code of the last key pressed;
if an extended key was pressed, Scroll.Ky
returns a negative value corresponding to the
key's extended code; if Esc is pressed, Scroll­
In restores Edit$ to its original contents; if the
left mouse button is clicked outside the edit
window, Scrollln responds as if Enter were
pressed but returns a value of 1000

Scroll.EdClr: The color to use while editing; the foreground
and background colors are combined into a
single integer using the following formula:

TextClr =Foreground+ Background
* 256

Scroll. NormClr: The color to use when editing is complete; the
foreground and background colors are com­
bined using the formula shown above

Scroll. Action:

0-Scrollln is
not polled.

1-Scrollln is
polled

Scroll.Row:

Scroll.Col:

Determines how Scrollin is to be invoked:

When called, Scrollln takes control of the
program until a terminating key is pressed
(i.e., Enter, Esc, PgUp and so forth)

When called, control is passed alternately be­
tween Scrollln and the calling program. This
lets the calling program monitor editing as it
occurs.

The screen row for the edit window

The left-most screen column of the edit window

Scroll.CurCol: Current screen column

Scroll.Insert: Sets and returns Scrollln's insert state. -1
Insert ON

Scroll.Changed: Returns -1 whenever Edit$ has been modified

Scroll .KeyChar: Returns the last key pressed as a 2 byte string

The Scroll TYPE variable is defined in the SCROLL.BI include file.

■ 7-74 CRESCENT SOFTWARE, INC.

Graphics QuickScreen Routines

If the length of the text is greater than the size of the edit window, the text
may be scrolled right or left by using the standard cursor keys, or with
the mouse by holding the left mouse button down on the left-most or
right-most character in the edit window. All of the standard editing keys
are supported; in addition Alt-C clears the field and Alt-R restores the
field to its original contents.

The Scroll.Filter argument specifies which set of characters are to be
accepted based on three filter masks. The first two are defined in
SCROLLIN.BAS, using CONST strings named Filter!$ and Filter2$.
You indicate which to use by setting Scroll.Filter to I or 2. If Scroll.Filter
is assigned to 3, then Scrollln will use a filter mask that you define. Simply
define Filter3$ as shown at the start of the SCROLLIN .BAS source file.
In fact, any of the three filter masks can be customized to accept whatever
characters you define. Scrollln will accept only characters contained in
the specified Filter?$ string.

If you do not require a mouse for your application, the block of mouse
code in SCROLLIN.BAS can easily be removed. Simply search for
"MMM" and remove code as the comments indicate.

For Scrollln to work properly, you must also include the SCROLL.BI
include file in whatever module calls Scrollln.

CRESCENT SOFTWARE. INC. ■ 7-75

I

I

Routines Graphics QuickScreen

Setup
BASIC include file contained in SETUP.BAS

■ Purpose

SETUP.BAS is an include file that defines several arrays used by Graphics
QuickScreen routines as COMMON SHARED. It also detects the current
monitor type, initializes the mouse, and sets several of the global
GPDat%() array elements to their default values. (See appendix A for
more information on the GPDat%0 array.)

■ Syntax
'$INCLUDE: 'Setup.BAS'

■ Comments

SETUP.BAS includes the COMMON.BI include file which actually
dimensions the GPDat%0 and Choice$() arrays as COMMON SHARED.
SETUP.BAS then calls MultMonitor to determine the current monitor
type. The value returned by MultMonitor is assigned to GPDat(31).
Next, SETUP.BAS sets default color values in the GPDat% O array for the
pop-up list box and scroll bar used for multiple choice fields. If a mouse
is detected, GPDat%(73) will be set to true (-1).

SETUP.BAS shotld be included in the main module of your program
before the first executable statement. Since SETUP automatically in­
cludes the COMMON.BI include file, you do not need to include
COMMON.BI in your main module.

■ 7-78 CRESCENT SOFTWARE, INC.

Graphics Quick.Screen Routines

ShowCursor
assembler subroutine contained in GFORMS.LIB

■ Purpose

ShowCursor turns on the mouse cursor, making it visible. If the cursor is
currently visible, ShowCursor does nothing, and leaves the mouse cursor
visible.

■ Syntax
CALL ShowCursor

■ Comments

For more information see the comments that accompany the companion
routine HideCursor.

■ SeeAlso

HideCursor

CRESCENT SOFTWARE, INC. ■ 7-79

■

I

Routines Graphics QuickScreen

Tokenize
BASIC subroutine contained in GQSCALC.BAS

■ Purpose

Tokenize replaces field names with a padded fixed-length (23-character)
string containing the field number.

■ Syntax
CALL Tokenize(Calc$, Fld())

■ Where

Cale$: Formula string

Fld(): Field information TYPE array (see FLDINFO.Bl)

■ Comments

This routine is used internally so that field formula strings can be properly
read. By replacing field name strings with field numbers, the routine can
proper I y access data items in a form.

■ 7-82 CRESCENT SOFJWARE, INC.

Graphics QuickScrccn Routines

UnPackBuffer
BASIC subroutine contained in EDITFORM.BAS

■ Purpose

UnPackBuffer copies and formats information contained in the form array
Form$(0, 0) and fills the Form$(FldNo, I) data array for each field.

■ Syntax
CALL UnPackBuffer(FirstFld%, LastFld%, Form$(), Fld())

■ Where

FirstFld%:

LastFld%:

Form$():

Fld():

■ Comments

Starting field to be redisplayed

Ending field to be redisplayed

Form string array (see Form$() array)

Field information TYPE array (see FLDINFO.Bl)

This routine is useful when employing random access files to store and
retrieve the contents of the Form Buffer, Form$(0, 0). If you are not using
random access files then this routine is not needed.

One important note is that UnPackBuffer places information into the
Form$() array only, and does nothing with the screen. To update the screen
with the contents of each field you must also CALL the PrintArray routine.

■ Example

This example fills the Form$(FldNo, I) array element for fields five
through ten with information contained in the form buffer:

CALL UnPackBuffer(S, 10, Form$(), Fld())

CRESCENT SOFTWARE, INC. ■ 7-83

I

I

Routines Graphics QuickScreen

Value
BASIC function contained in EDITFORM.BAS

■ Purpose

Value returns the value of a numeric string.

■ Syntax
StringValue# = Value#(NumStringS, ErrorCode\)

■ Where

NumString$: Numeric string

ErrorCode%: Returns 0 if no overflow occurred; -1 if an overflow
occurred

■ Comments

■

Because Value has been defined as a function, it must be declared before
it may be used.

This function is used to convert a numeric string to a double-precision
number. The numeric string can contain such characters as dollar signs,
commas, exponent signs, and so on. If an overflow occurred when the
string was being ccnverted to a number, then the ErrorCode value will be
-1; otherwise it will be 0.

Example

This example extracts the value 5000 from the string "$5,000":

StringValue# = Value#("SS,000",Errorcode\)

■ 7-84 CRESCENT SOFTWARE, INC.

Graphics QuickScreen Routines

WholeWord In
BASIC subroutine contained in GQSCALC.BAS

■ Purpose

WholeWorldln locates a substring within a string, using math operators
as delimiters.

■ Syntax
CALL WholeWordin(Text$, Word$)

■ Where

Text$: String to be searched

Word$: Word to be search for in Text$

■ Comments

This routine is used internally so that field names and other "words" can
be found in formula strings.

CRESCENT SOFfWARE, INC. ■ 7-85

I

I

8

I -

I -

Graphics QuickScrcen

DEVELOPING IN THE BASIC
ENVIRONMENT

Developing in the QB/QBX Environment

Whether you are using QuickBASIC or the QBX editor that comes with
Microsoft BASIC Professional Development System, you'll need to make
certain environment variables and library routines available to the compiler
environment. The steps needed to prepare the environment properly are
summarized below.

1. Switch to the Graphics QuickScreen directory so that BASIC
source (.BAS) and include (.BI) files are in the current directory.
If include files are elsewhere, be sure to set the INCLUDE
environment variable properly.

2. If you want to create .EXE files from within the environment, you
should place all . LIB files in the same directory. Then, make sure
that the LIB environment variable is set to the correct directory
path. If the linker cannot locate needed .LIB files, it usually
generates an "Unresolved external reference" error.

Environment variables are usually set from a batch file or directly at the
DOS prompt. The suggested method, however, is to add such commands
to your system's AUTOEXEC.BAT file. This way, environment informa­
tion will be established each time the computer is booted.

If you prefer, you can create a batch file in your Graphics QuickScreen
directory which you can run before your Graphics QuickScreen sessions.
An example SET command is:

SET LIB=C:\QB\LIBS

3. In order to run Graphics QuickScreen programs in the environment
it is necessary to load a Quick Library which, at the very least,
contains the assembly language routines that Graphics QuickScreen
requires.

Only one Quick Library can be used, and it must be loaded when starting
BASIC. Furthermore, loading Quick Libraries in either QB or QBX
reduces the amount of conventional RAM available, so it is important to
keep such libraries as small as possible. We suggest using the MakeQLB
utility which we have included.

4. If you are using AJS Publishing's db/LIB® product, you can add it
to a Quick Library by specifying its . LIB file when using
MakeQLB.

CRESCENT SOFTWARE, INC. ■ 8-1

I .

I -

Developing in the QB/QBX Environment Graphics QuickScreen

5.Upon starting QB or QBX, you can load a Quick Library by using
the /L command line switch. The following examples illustrate
how a Quick Library called MYQLB is loaded for QuickBASIC or
QuickBASIC Extended, respectively:

QB /L MYQLB

or

QBX /L MYQLB

6.0nce QuickBASIC is started you should inspect the currently-set
path options. To do this, access the (Options) Set Paths ... menu
command (not all versions of QuickBASIC support this feature).
You should ensure that all shown paths are accurate.

Programs that use Push Buttons or
Mouse Fields

When mouse fields or push buttons are activated from the keyboard, the
KeyDown function is used to determine when the key has been released.
This function is actually a small TSR (Terminate and Stay Resident) routine
that is installed an1 deinstalled by calling the InstallKeyDown and De­
InstallKeyDown subroutines. When you use Make Demo ... to generate
your BASIC source code, declare statements and calls for these subroutines
are automatically added to the code as required. If you generate your
source code from scratch, you will have to declare and call these routines
yourself. The syntax is very simple:

DECLARE SUB InstallKeyDown ()

DECLARE SUB DeinstallKeyDown ()

CALL InstallKeyDown

CALL DeinstallKeyDown
END

Install Key Down should be called anytime before calling EditFormG. The
DelnstallKeyDown subroutine should be called just before you end your
program. Key Down is called internally by EditFormG and therefore
requires no coding on your part.

When you are developing in the QB or QBX environments and break out
of your program, then re-start it, you will find that KeyDown no longer

■ 8-2 CRESCENT SOFTWARE, INC.

Graphics QuickScrcen Developing in the QB/QBX Environment

works. This is because DeinstallKeyDown must be called before your
program ends. If this happens, the only way to get KeyDown to work
again is to exit and then re-start QB or QBX. If your program ends
normally, DeinstallKeyDown will be called as required and the problem
will not occur. See the documentation for KeyDown under the Graphics
QuickScreen Routines section of this manual.

Displaying Screens From Your Program

Screens are displayed in your programs by calling the ShowForm sub­
routine. ShowForm automatically sets the screen mode, adjusts the color
palette to what it had been when the screen was saved and sets the number
of screen rows. Partial .PCX screens saved by Graphics QuickScreen can
be positioned at any row and column by setting the Row and Column
arguments.

Before calling one of these routines, the Fld0 TYPE array must first be
dimensioned and assigned. This is discussed in the section Assigning Field
Definitions. The Fld0 array is passed to the ShowForm routine to let it
change the fields coordinates when partial .PCX screens are repositioned,
and to tell it the number of screen rows to set.

The easiest way to display and edit your forms from a BASIC program is
to select (Compose Fields) Make Demo... . This will create a BASIC
source file that you can run from BASIC and will behave as if Try Data
Entry in Form had been selected. It will also setup appropriate SELECT
CASE statements to handle push buttons and scroll bars as well as generate
temporary choices for multiple choice fields.

A .MAK file is also created that contains all the required support modules
or stub files necessary to display and edit your forms. To run the demo,
exit Graphics QuickScreen and start QB or QBX with the appropriate
Quick Library (GForms.QLB or GForms7.QLB). Use the Open com­
mand from BASIC's File menu to select the demo. Once loaded, you may
run the demo by pressing Shirt-FS, assuming all of the files specified in
the .MAK file are in the current directory. This code serves as an excellent
starting point for creating your own source code .

. PCX screens that do contain any field definitions can also be displayed
by ShowForm, but in this case, you simply dimension the Fld0 TYPE
array to O before the call. In the case of display-only screens, the Fld0
array passes only two useful values to Show Form. These are Fld(O). Value
and Fld(O).lndexed which tell ShowForm the correct screen mode and
number of text rows to set respectively. If these variables are set to 0,
ShowForm will use the current setting of GPDat%(31) to determine what

CRESCENT SOFfWARE, INC. ■ 8-3

I

I -

Developing in the QB/QBX Environment Graphics QuickScreen

screen mode to set. (The GPDat%(31) element holds a value indicating
the current monitor type. See Appendix A for more information about
GPDat % (31) and the GPDat % () array.)

To force a specific screen mode, refer to the table below.

Screen Mode FldO Settings

EGA 640x350 Fld(0).Value = 5

25 lines Fld(0).lndexed = 14

43 lines Fld(0) .Indexed = 8

VGA 640x480 Fld(0). Value = 8

30 lines Fld(0) .Indexed = 16

60 lines Fld(0) .Indexed = 8

Table 23: ShowForm Response to Fld(0) Values

The calling syntax for ShowForm is as follows:

CALL ShowForm (FileName$, Fld(), Row, Column, VPage,
ErrorCode)

Here, Filename$ is the name of the . PCX file to display without an
extension.

Row is the screen row in pixels used to locate the top row of a partial .PCX
image. Since data entry fields must be located using standard text rows
and columns, the number used for the Row argument should be a value
that positions the image such that the fields will still fall on standard text
coordinates. The original row and column coordinates for the upper left
corner of partial .PCX images are stored in the form definition file.
Fld(0).Row holds the screen's upper row in pixels and Fld(0).LCol holds
the screen's left column. These values can be used to position a partial
image in its original position:

CALL ShowForm(FileName$, Fld(), Fld(O).Row,
Fld(O).LCol, VPage%, ErrorCode%)

Any other value can be assigned for the Row% and Col% parameters as
long as the entire form will still display. Showform will automatically
adjust an incorrect Row% value to the nearest pixel in order to maintain

■ 8-4 CRE"SCENT SOFTWARE, INC.

Graphics Quid,Screcn Developing in the QB/QBX Environment

proper alignment. This lets you enter just about any value for Row%, but
it does not necessarily place the image at the exact row specified. To
calculate the exact row, multiply the number of text rows to move by the
height of a standard text character (contained in the GPO at% (71) element).
Then add (or subtract) the result to the original row contained in
Fld(O).Row.

NewRow% = Fld(O!.Row + 5 * GPDat%(71)
CALL ShowForm(FileNarne$, NewRow%, Fld(O).LCol - 4,

VPage%, ErrorCode%)

This example places the image five text rows down and four columns to
the left of its original position.

Column indicates the left column (1-80) position of the partial .PCX
image.

The Row and Column parameters should be set to O when displaying full
screen images.

VPage indicates onto which video page the screen is to be loaded. The
default visible video page is 0. With this setting, you will see the image
wipe down the screen as it is loaded. Setting VPage to I will load the
screen into the second video page without displaying it. This lets you
display the screen with one of several wipe types discussed in the following
section. Since few VGA video adapters contain enough memory for more
than one 640x480 video page, the VPage parameter is ignored by VGA
screens.

ErrorCode returns one of three values to indicate the success or failure of
the display:

0 - No errors, display was successful

I - Trying to display on an incompatible monitor

2 - Error in loading the .PCX file

CRESCENT SOFTWARE, INC. ■ 8-5

I

I -

Developing in the QB/QBX Environment Graphics QuickScreen

The following example indicates the minimum code required for showing
a display-only screen.

DEFINT A-Z
DECLARE FUNCTION MultMonitor%
DECLARE SUB ShowForm (FormName$, Fld() AS ANY, Row,

Col, VPage, Errorcode)

'$INCLUDE: 'Fieldinf.Bi'
'$INCLUDE: 'Setup.BAS'
REDIM Fld(O) AS FieldinfoG

ShowForm "MyScreen", Fld(), O, O, 0, ErrorCode

Displaying EGA Screens With A Wipe Type

Wipe types allow you to display your EGA screens in a number of
interesting ways. They are produced by loading the image onto the
non-active video page and then restoring portions to the visible video page.
Wipe types are not available for high resolution VGA screens because there
is not enough video memory available to allow two video pages, nor are
wipe types available for partial .PCX screens.

To display an EGA screen with a wipe type, use a value of I for VPage
when calling ShowForm. This will load the screen into the non-visible
video page. You can then call the Wipes subroutine to display the image
with one of the available wipe types:

VPage% = 1
CALL ShowForm(FileNameS, Row%, Column%, VPage%,

Errorcode%)
CALL Wipes(WipeType%)

When Graphics QuickScreen generates your source code, it automatically
sets VPage% to I and uses BASIC's PCOPY command to instantly copy
the screen to the active video page. If you wish to use a wipe type, you
must replace the PCOPY statement in the main module with a call to the
Wipes subroutine.

The various wipe types are summarized in Table 24.

■ 8-6 CRESCENT SOFTWARE, INC.

Graphics Quicl,Screcn

WIPETI'PE

1
2
3
4

5
6
7
8
9

10

11

12

13
14
15
16
17
18
19
20
21

Developing in the QB/QBX Environment

EFFEf'T

Displays the screen instantly
Implodes the screen
Builds the screen from 8 pixel blocks
Displays from the upper left corner to the lower

right comer
Builds the screen from a series of squares #1
Builds the screen from a series of squares #2
Builds the screen from a series of squares #3
Builds the screen from a series of squares #4
Builds the screen from a series of squares #5
Pushes the screen down from the top and up from
the bottom simultaneously.
Pushes the screen from the top down and from the
middle of the screen down simultaneous! y.
Pushes the screen down from the top and up from
the bottom simultaneously in four sections.
Displays the screen using a horizontal blind effect #1
Displays the screen using a horizontal blind effect #2
Explodes the screen from the center.
Slides the screen up from the bottom
Slides the screen down from the top
Slides the screen from right to left
Slides the screen from left to right
Slides four quadrants onto the screen from the center
Slides every other pixel line from left to right
and from right to left to merge into a complete
image.

Table 24: EGA Wipetypes

Since you will probably use only a few of these wipes in a given
application, we suggest that you copy and paste only the ones you require
from the EGAWIPES.BAS module into your source code and then call
them directly. (Wipes is a BASIC subroutine contained in
EGAWIPES.BAS)

Displaying .GMP Files

Files created with the Save Paste Buff ... option under the File menu can
be displayed from your BASIC programs using a combination of the
GetGMP subroutine and BASIC's graphic PUT statement. GetGMP loads
the image from disk and places it into an integer array. If an error occurs

CRESCENT SOFfWARE. INC. ■ 8-7

II

I -

Developing in the QB/QBX Environment Graphics QuickScreen

while loading the image from disk, Errcode% will be set to -1. Before
calling the GetGMP subroutine, you must create an array to hold the image
by redimensioning it to O elements:

REDIM Image%(0)
CALL GETGMP(Fi1eName$, Image%(), ErrCode%)
PUT (X, Y), Image%, PSET

If your program uses a mouse, you will need to turn off the mouse cursor
before displaying the image, and then turn it back on afterwards. This is
accomplished by calling HideCursor and ShowCursor respectively:

REDIM Image%(0)
CALL GETGMP(FileName$, Image%(), ErrCode%)
CALL HideCursor
PUT (X, Y), Image%, PSET
CALL ShowCursor

Once the image is loaded into the array, it can be placed at any X/Y position
using PUT as many times as you like. This is the technique used to place
icon images on the Graphics QuickScreen Drawing Palette. The coor­
dinates that you specify must place the entire image on the screen or BASIC
will issue an "Illegal Function Call" error. PUT can also display an image
using one of several display attributes: PSET, PRESET, AND, OR and
XOR. Consult yom BASIC manual for more information on effect of
these attributes.

Storing .PCX, .FRM, and .GMP files in a .GSL library

When you distribute programs created with Graphics QuickScreen, you
must also supply the various screen (.PCX, .GMP) and form definition
files (.FRM) that they require. To avoid distributing many individual
screen and form definition files, you can combine your .PCX, .FRM and
.GMP files all into a single custom library. You then only have to distribute
a single library file along with your final .EXE.

Creating a Custom .GSL library
The GQSLIB utility program is provided to let create your own custom
library for storing the various files created by Graphics QuickScreen. The
library can hold any type of file, but routines to retrieve the information
from the library are provided only for .PCX, .FRM, and .GMP files.

To build the library file, you must first create a list file that identifies the
files you want to place in the library. The format of the list file is very
simple and can be created in any text editor that generates a pure ASCII
text file. (The BASIC editor works nicely). To create the list file, enter

■ 8-8 CRESCENT SOFTWARE, INC.

Graphic, QuickScreen Developing in the QB/QBX Environment

each individual file name on its own 1 ine and include the complete path if
the file is not located in the current directory:

C:\GQS\MyScreen.PCX
C:\GQS\MyScreen.FRM
C:\GQS\ICONS\MailBox.GMP
C:\GQS\InputBox.PCX
C:\GQS\InputBox.FRM
C:\GQS\MsgBox.PCX
Title.PCX

Save this file with a .LST extension. The name of the library that GQSLIB
creates will have the same name as your list file but with a .GSL (Graphics
QuickScreen Library) extension. The files may be listed in any order, and
you can have up to 500 different files in a single library.

To create the library, run the GQSLIB program and specify your list file
as a command line argument.

GQSLIB (Path]MyLib.LST

This example will create a library named MYLIB.GSL. If you later decide
to add or delete files from the library, simply edit your list file as required
and run GQSLIB again.

Accessing data in a .GSL library
Several BASIC subroutines are provided to retrieve the individual file
information from the .GSL library and are contained in the LIBFILE.BAS
module. Each routine in LIBFILE.BAS has the same name as the
equivalent routine used for accessing individual files but is pre-pended
with the letters "Lib". For example, the Show Form subroutine is used to
display individual .PCX files. When the .PCX files are stored in a .GSL
library however, you would instead use the LibShowForm subroutine. The
calling syntax for LibShowForm is identical to that for the ShowForm
routine except that LibShowForm has one additional argument to specify
the name of the library file. Similarly, GetGMP is replaced by
LibGetGMP, GetFldDefG is replaced by LibGetFldDefsG, and Num­
FieldsG is replaced by LibNumFieldsG. For further details, see the
documentation for each routine in the Routines section of this manual.

CRESCENT SOFTWARE. INC. ■ 8-9

I

I -

9

-■

I .

Graphics QuickScreen Performing Data Entry

PERFORMING DATA ENTRY

Forms may be processed from your BASIC programs using several
routines. When you wish to use forms you will need to know how to access
and initialize field data, how to use multiple-choice fields, and how to poll
the EditFormG routine. We suggest studying and experimenting with the
commented demonstration programs included on the distribution diskette.

General Concepts

When using Graphics QuickScreen, it is important to understand that the
screen image and a form with which it may be associated are separate files
and are therefore handled independently. In fact, data entry can still take
place even if the appropriate screen is not displayed. EditFormG simply
uses whatever colors it finds on the screen to use with the current form
definition file. Once a screen is displayed, forms can automatically direct
data entry activity.

Form data can be stored in a three different ways. The first is a standalone
file having the same name as the screen with which it is associated, but
with a .FRM extension. The second is a BASIC module that contains the
field assignments for your form. The third method stores the .FRM file
in a custom .GSL library file.

Data Entry
EditFormG is a BASIC subprogram which handles all aspects of data entry
in a form. It is used in a manner similar to INKEY$. Thus, EditFormG
continually polls for input while in a loop. While looping, a program can
perform other operations before and after each call to EditFormG. In this
manner you can achieve multi-tasking behavior.

EditFormG always furnishes current information to the calling program.
Since you can read fields or even change them, you can tailor the operation
of any field in a form.

General Procedures

The following section explains how to write code to set up and edit
Graphics QuickScreen forms in your BASIC programs. Remember that
this code can also be created automatically by selecting (Compose Fields)
Make Demo ... while still in the Graphics QuickScreen editor.

CRESCENT SOITWARE, INC. ■ 9-1

I

I

Pe"fo"ming Data Entry G['aphics QuickScreen

DemoAnyG.BAS
This program provides a good starting point for understanding how
Graphics QuickScreen forms are used from your own programs. Although
the source code is commented, you will find additional information here.

First, we suggest that you set all numeric variables to integers by default,
and that you declare the required BASIC and assembler routines-espe­
cially functions. These steps are accomplished as follows:

DEFINT A-Z
'-------- Declarations
DECLARE FUNCTION MultMonitor% ()
DECLARE FUNCTION NumFieldsG% (FormName$)
DECLARE SUB EditFormG (Form$(), Fld() AS ANY,

Frm AS ANY, Action)
DECLARE SUB GetFldDef (FormName$, StartE1%, Fld()

AS ANY, Form$())
DECLARE SUB ShowForm (ScreenName$, Fld(), Row%,

Col%, VPage% ErrCode%)

Next, you should load the necessary Include files at the beginning of your
programs. These files supply constant definitions and TYPE variables
that are needed by your programs.

The Include files required for this example are FLDINFO.BI (which
contains the FieldlnfoG TYPE and associated constants), EDITFORM.BI
(which contains the FormlnfoG TYPE and associated constants), and
SETUP.BAS. BASIC source code which Includes these files looks like:

'$INCLUDE: 'FLDINFO.BI'
'$INCLUDE: 'EDITFORM.BI'
'$INCLUDE: 'SETUP.BAS'

Since the DEMOANYG.BAS module uses forms, you will need to
dimension the Frm variable to the FormlnfoG TYPE. This makes
information about the current form available to your program and to the
supporting Graphics QuickScreen routines:

DIM Frm AS ForminfoG 'ForminfoG is a TYPE variable

Before allocating memory to the arrays which are used to control the form,
it is necessary to determine the number of fields that are present. When
using standalone .FRM files (as in this example) you will need to use the
NumFieldsG function. This is demonstrated in the following excerpt:

NumFlds% = NumFieldsG(FormNameS)

■ 9-2 CRESCENT SOFTWARE, INC.

Graphics Quick.Screen Performing Data Entry

The integer value assigned to NumFlds % is used to dimension the Fld0
and Form$0 arrays.

Another array which can be dimensioned at this time is Choice$0. This
array's first subscript provides the maximum number of choices you will
need for any multiple-choice field, while the second subscript is one less
than the total number of multiple-choice fields in the form. If your form
has no multiple-choice fields, the Choice$0 array must be dimensioned
to zero elements.

REDIM Fld(NumFlds) AS FieldinfoG
REDIM Form$(NumFlds, 2)
REDIM Choice$(0, 0)

The next step is to load the form definition file. Once again the routine
you'll use depends on how the form was stored. For standalone (.FRM)
files, you will need to use the GetFldDefG routine:

CALL GetFldDefG(FormNameS, Zero%, Fld(), Form$())

If you instead assign the form definitions from the BASIC subroutine use
this:

CALL MyProg(Fld(), Form$, Start%)

Next you can display the screen image with ShowForm:

CALL ShowForm(FormName$, Fld(), Row%, Col%,
VPage%, ErrorCode%)

At this point, the form has been displayed and its field definitions loaded.
In order to allow input, the form has to be activated. This is done by
calling EditFormG with an Action of I, which sets up internal pointers
and displays initial field values from the Form$(N, 0) array elements.

After the first call to EditFormG, Action will be automatically set to 3,
allowing polling to continue. It is up to you to examine Frm.KeyCode so
that certain keypresses can be recognized. In this example, both Esc
(which has a keycode value of 27) and F2 (which has a keycode of -60)
are used to terminate the form:

Action= 1
DO

CALL EditFormG(Form$(), Fld(), Frm, Action)
LOOP UNTIL Frm.KeyCode = 27 OR Frm.KeyCode = -60
END

CRESCENT SOFfWARE, INC. ■ 9-3

. I

I

Performing Data Entry Graphics QuickScreen

Detailed Procedures

The prior section covered the fundamentals of the DEMOANYG program.
The following sections provide slightly more detailed discussions for using
forms.

Setting Up A Form
Before a form can be processed, there are some suggested as well as
required steps which must be taken. The optional steps involve such
details as clearing the screen before generating the form, printing explicit
instructions to the user, and setting the insert status or other features in
the Frm TYPE variable. It is beyond the scope of this user's guide to
cover all such optional aspects of programming. Instead, we'll provide
the basics below, and encourage you to experiment on your own, using
portions of the included demonstration programs as building blocks for
your own programs.

The best way to process forms in QuickBASIC is to follow the steps
outlined below and discussed next.

I. Specify the necessary Include files
2. Dimension the mandatory arrays
3. Load and display the form
4. Initialize the field and form elements

Specify Include Files
As discussed earlier, you must make certain TYPE declarations, constant
assignments, and COMMON SHARED variables available to the calling
program. In addition, if you have generated .BI Include files for your
forms, you may want to specify them at the top of your program.

The BASIC statements for required include files are summarized below:

'$INCLUDE:
'$INCLUDE:
'$INCLUDE:
'$INCLUDE:

'FLDINFO.BI'
'EDITFORM.BI'
'SETUP.BAS'
'MYFORM.BI' 'this Includes the TYPE

' structure for your form

The COMMON.Bl Include File
The COMMON.BI include file contains two COMMON SHARED arrays
that are required by the routines that you will use to display and edit your
forms. This file is automatically included and initialized in the mandatory

■ 9-4 CRESCENT SOFfWARE, INC.

Graphics QuickScrecn Performing Data Entry

SETUP.BAS include file placed at the beginning of your program. It is
also included in the routines that we supply, but you may want to include
it in some of your own modules as well.

If your program requires any additional COMMON SHARED variables,
they should be added to this file and included in all of your modules that
need to access them. QuickBASIC and BASIC PDS require that all
COMMON SHARED variables be listed in the same order for each module
that uses them. Placing COMMON SHARED variables in a single file
and including it in your code insures that their order will always be the
same.

The two arrays declared as COMMON SHARED in the COMMON.BI
file are GPDat%0 and Choice$0. The GPDat%0 array holds information
that affects how your forms operate. See Appendix A for more specific
information on the contents of the GPDat%() array. The Choice$0 array
holds the choices that appear in multiple choice list boxes. See Setting
Up Multiple-Choice Fields for more information on the Choice$0 array.

Dimension Mandatory Arrays
The arrays which must be dimensioned are among those discussed in the
section called Arguments. Although these arrays are dimensioned to zero
elements at the start, you should realize that all are rediminsioned later
when needed.

The required dimension statements are shown below, and they rely on the
Include files mentioned in the previous section:

DIM Frm AS ForminfoG
REDIM Fld(O) AS FieldlnfoG
REDIM Form$(0, 0)
REDIM Choice$(0, 0)

Load The Form
Form information is loaded into the form arrays using GetFldDefG or by
calling the BASIC MYFORM subroutine optionally created when the form
was saved. The GetFldDefG routine uses the Fld() and Form$0 array
variables and requires that each be dimensioned before the call. These
arrays are dimensioned using information from the NumFieldsG function.
If you have Graphics QuickScreen create the BASIC subroutine for you,
the arrays are dimensioned automatically.

Once the form is loaded, its screen image is displayed using the Show Form
subroutine discussed earlier.

CRESCENT SOFTWARE. INC. ■ 9-5

I

I

Performing Data Entry

These program instructions are summarized below.

StartE1% = 0
Size%= NumFieldsG%(FormName$)
REDIM Fld(Size%) AS FieldinfoG
REDIM Form$(Size%, 2)

Graphics QuiclsScreen

CALL GetFldDef(FormName$, StartE1%, Fld(), Form$())
'now display the screen

Initialize Field And Form Elements
Before and while a form is being used you may set certain field and form
values. For example, you could use the Form$0 array to assign default
values to particular fields. Or you could use the Frm TYPE variable to
set the form's insert status. These form variables were presented in the
Arguments section of this manual. We have chosen to illustrate here how
to optionally set the insert status of the form, how to set a multiple-choice
array, and how to create a few default field values.

Setting The Insert Status
To set the insert status you will need to use the Frm TYPE variable. The
following statement initially sets a form's insert status to off:

Frm.Insert = 0 'set insert off

Setting Up Multiple-Choice Fields
If you are using multiple-choice fields in your form, there are certain
measures which you must take for them to work properly. First, you must
include the module LISTBOX.BAS instead of NOMULTG.BAS. This way
the full ListBox subprogram will be available to your program.

Multiple-choice fields require initializing the COMMON SHARED string
array Choice$0. (Note that this array has already been defined as
COMMON SHARED in the COMMON.BI file). Choice$◊ is a two­
dimensional array which is dimensioned as follows:

REDIM Choice$(MaxChoices%, NumChoiceFields%)

MaxChoices% is the maximum number of choices which any list box
would need to hold. The first subscript element (that is, Choice$(0, N))
is always reserved for the field number(s) to which the multiple-choice
array is will linked.

■ 9-6 CRESCENT SOFTWARE, INC.

Graphics QuickScreen Performing Data Entry

The second subscript, NumChoiceFields%, tells how many unique mul­
tiple-choice menus are needed. NumChoiceFields% begins at element 0
(some fields share the same multiple-choice information, so there could
be more multiple-choice fields than this subscript indicates).

For example, suppose a form has only 2 multiple-choice fields and that
the first, field number 2, is for soft drink selections while the second, field
number 6, is for T-Shirt sizes. Let's also suppose that there are 5 soft
drinks and 3 T-shirt sizes available.

One way to redimension and initialize the Choice$0 array for this example
would be:

REDIM Choice$(0
Choice$(0, 0)
Choice$(1, 0)
Choice$(2, 0)
Choice$(3, 0)
Choice$(4, 0)
Choice$(5, 0)

to 5, 0 to 1)
"2" 'Choices for field 2
"Pepsi"
"Coke"
"Dr. Pepper"
"7-Up"
"Canada Dry"

'Choices for fields 6, 15 and 16
' choice array
Choice$(0, l) "6, 15, 16"
Choice$(1, l) "Small"
Choice$(2, l) = "Medium"
Choice$(3, l) = "Large"

As you can see, Choice$0 element (0, N) shows which field uses the list
of choices in subscripts (I, N), (2, N), (3, N), and so forth. Further, this
element can specify that several fields will share the same series of items.
This keeps the Choice$0 array as small as possible.

Setting List Box Colors
You can define a single set of colors for all list boxes on the form or allow
each list box to use the colors assigned to its associated field. The setting
of the COMMON SHARED variable GPDat(90) determines what set of
colors are to be used for the text portion of the list box.

For a single set of list box colors, set GPDat% (90) to O before calling
EditFormG. You can then specify the list box text colors by setting the
following GPDat%0 array elements:

GPDat% (9 I) = Normal text color + background color * 256

GPDat%(92) = Highlight text color + background color* 256

By default, GPDat%(91) and GPDat%(92) are assigned in the

CRESCENT SOFTWARE, INC. ■ 9-7

I

I

Performing Data Entry Graphics QuickScreen

SETUP.BAS include file to use black text on a gray background for list
boxes. SETUP.BAS include file.

If GPDat%(90) is set to -1, the list box will appear in the same colors as
its associated field. (These colors are inverted to create the highlight bar.)

The list box will display a scroll bar if the number of choices exceeds the
value of GPDat(99). The default value is set to seven, but you may specify
any number greater than six. You can change the colors used for the list
box scroll bars by changing the settings of the following GPDat% array
elements. The default color assignments in SETUP.BAS are for standard
gray.

GPDat% (87) = Scroll bar push button color (7)
GPDat%(88) = Scroll bar highlight color (15)
GPDat% (89) = Scroll bar shadow color (8)
GPDat% (98) = Scroll bar slide color (7)

Creating Default Field Values
To assign default values into fields you will assign elements in the Form$O
array (see Form$() array). You will generally modify only the field data
in Form$O; however you may also change the help text and formulas as
well.

For instance, suppose that field 1 holds the current date and field 4 holds
a tax rate. The calling program could initialize these fields like this:

Forrn$(1, 0) = DATE$
Forrn$(4, 0) = "7.5%"

One last comment regarding Form$() is that for notes (or multi-line text)
fields the entire field is returned as a single string. Blank lines embedded
in notes fields are returned as a CHR$(20).

If you modify the contents of a field in the Form$O array after editing has
begun, you must call either EditFormG with Action set to 1 or PrintArray
with the appropriate field number to display the new contents. EditFormG
redisplays the contents of the entire form while PrintArray can be used to
redisplay only a specified range of fields.

■ 9-8 CRESCENT SOFTWARE, INC.

Graphics QuickScreen Performing Data Entry

Using EditFormG
Once a form is properly initialized, you will call EditFormG to perform
data entry. EditFormG works much like BASIC's INKEY$, and, as such,
it is designed to be called repeatedly in a loop. When a routine is called
in this way it is said to be polled. Polling offers a tremendous level of
flexibility since the calling program becomes an extension of the process­
ing logic. For instance, polling lets you modify a form on-the-fly, that is,
while the form is being used.

EditFormG processes each keystroke or mouse event immediately, and
then returns to the calling program. Often, however, EditFormG receives
no input whatsoever, and simply returns to the calling program for its next
iteration. What's important is that control is returned to the calling
program between keystrokes and mouse events, so you can monitor input
as it occurs.

Earlier we discussed the form variables: the Form$0 string array, the field
information Fld0 TYPE array, and the form information Frm TYPE
variable. Each variable contributes or provides information about a form,
and, together, these variables can be both accessed and changed while a
form is being used.

These important form variables are reviewed below, in the context of how
they can be used with EditFormG.

Form$()
In general, the Form$0 string array (see Form$() array) is used to pre-fill
a form or to examine data provided by the user. If needed, data in other
fields can be changed based on information already entered. For example,
if one field on your form is for Gender, and accepts "F" for Female and
"M" for Male, then a subsequent field for a Salutation could be automat­
ically pre-filled with "Mrs." or "Mr.", respectively. Doing this with
EditFormG is easy, as you 'II see later.

Fld() lYPE Array
The Fld0 TYPE array (see FWINFO.Bl) determines and controls field
attributes. Changing this array lets you protect fields or change valid data
ranges for specific fields. For instance, an invoice form might ask for a
salesperson number. After this field is complete, you could protect it so
that once the order is taken, the salesperson's code cannot be changed.

CRESCENT SOFfWARE. INC. ■ 9-9

I

I

Performing Data Entry Graphics QuickScreen

Frm lYPE Variable
The Frm TYPE (see EDIIFORM.B[) variable provides more general
information about a form, such as whether any information on it has
changed, which field is currently-active, and which key was last pressed.
Often it is desirable to change where the cursor is on a form, based on
certain data. For example, if an order form allows purchases with a credit
card, it usually also has fields for the credit card number and its expiration
date. However, if the sale is paid for by check, you may want to
automatically skip over the credit card fields and jump to the Check
Number field.

In the following program fragment, EditFormG is initially called with an
Action of I, which fills and initializes the form. Then, after each polling
cycle, the program checks to see if the user has left the current field. This
test is accomplished by comparing the value ofFrm.PrevFld (the previous
field number) with Frm.FldNo (the current field number). This test is
true for one polling cycle only-after this, Frm.PrevFld becomes
Frm.FldNo. If the test is in fact true, the program enters a SELECT CASE
block which examines the value of Frm.PrevField to see which field the
user just left.

In this example, the program checks whether "F" or "M" has been entered
into the Gender field (field number 5). If the field is null, then no action
is taken. If it contains an "F", then the Salutation field (field number 8)
is set to "Mrs.". It is likewise set to "Mr." if the Gender field contains
an "M":

■ 9-10

Action%= 1
DO

CALL EditFormG(Form$(), Fld(), Frm, Action%)
IF Frm.PrevField Frm.FldNo THEN

SELECT CASE Frm.PrevField
CASE 5 'did we just leave field 5?

IF Frm.FldEdited
IF Form$(5, 0) = "F" THEN
Form$(8, 0) "Mrs."

ELSE
Form$(8, 0)

END IF
END IF
Action%

CASE ELSE

1

"Mr."

'this forces the next call to
' EditFormG to refresh the form

'CASE ELSE is needed with QB 4.0 only
END SELECT

CRESCENT SOFTWARE, INC.

Graphics Quick.Screen Performing Data Entry

END IF
LOOP Until Frm.KeyCode = 27

There are many tricks you can perform by manipulating the Graphics
QuickScreen form variables which have been presented. One common
example is building shortcut keys into a form so that a user can skip large
portions over several fields at a time. For complex forms this is useful.
To illustrate, you could decide that field IO is to be associated with the F2
key, while field 20 is to be associated with the F3 key. This way, you
could examine Frm.KeyCode each time EditFormG is called. You could
then test for F2 or F3 and set Frm.FldNo so it points to a new field. This
would allow a user to move instantly between fields 10 and 20 with a single
keystroke.

SELECT CASE Frm.KeyCode
CASE -60 'They pressed F2

Frm.FldNo 10 'Go to field 10
CASE -61 'They pressed F3

Frm.FldNo 20 'Go to field 20
END SELECT

Navigating A Form

Fields are accessed in a form through a number of methods. Fields may
be selected by clicking on them with the mouse or by using the TAB,
Shift-TAB, or cursor direction keys. The effect of each key is summarized
below:

TAB

Shift-TAB

Right-Arrow

Left-Arrow

Up-arrow

Down-Arrow

Moves forward through a form one field at a
time.
Moves backwards through a from one field at
a time
Moves forward to the next field when the
cursor is at the end of the current field
Moves backwards to the previous field when
the cursor is at the beginning of the current
field.
Moves to the field above the current cursor
position
Moves to the field below the current cursor
position

For the Up and Down arrows keys to work correctly, no field may be
located higher than the first field on the form or lower than the last field
on the form. The Up and Down arrow keys can be disabled by setting
the UpDnArrows constant in the EditForm module to 0.

CRESCENT SOFTWARE, INC. ■ 9-11

I

I

Performing Dala Entry Graphics QuiclcScreen

When you reach the end of a data entry field, the setting of the StayOnField
Constant in the EditForm module determines whether the cursor stays in
the current field or automatically jumps to the next field. When set to
True (-1), the cursor remains in the current field. The default value is
False (0).

Random-Access File 1/0

The most direct way to save and load form information is in random access
files. This method relies on the fixed-length structure of the form buffer,
Form$(0, 0). Using random access files lets you create a single database
file and quickly access any record it contains.

Graphics QuickScreen provides an example of random access files in the
DEMOCUSG.BAS demonstration program.

Random Access File Setup

To use a random access file you will need to open the data (.DTA) file.
This is achieved using the OpenFilesG routine, which also opens as­
sociated notes files and ensures that the form buffer is properly sized to
accommodate random-file data. This step is summarized as follows:

CALL OpenFilesG(FormName$, Form$(), Fld())

Once the data files are open and the form arrays are initialized, you can
use the GetRecG and SaveRecG routines to load and save records,
respectively. Before retrieving records, you should know the upper
limit-that is, the total number of records currently stored. This value is
determined by dividing the current length of the data file by the record
length of the form being used:

LastRecord& = LOF(Fld(O).RelHandle) \ Fld(O).StorLen

Notice that the OpenFilesG routine assigns a BASIC file number for the
associated .DTA file to Fld(0).RelHandle. Although you probably won't
need to access it, OpenFilesG also assigns to Fld(0).Scratchl the handle
for the . NOT notes file.

Retrieving Records
To retrieve a record from the data file, simply call the GetRecG routine
giving a valid record number in RecNo:

CALL GetRecG(RecNo&, Form$(), Fld())

■ 9-12 CRESCENT SOFTWARE, INC.

Graphics QuickScreen Performing Data Entry

This loads only Form$(0, 0) with information. You will need to use the
U nPackBuffer routine to transfer form buffer contents to the individual
form data elements:

CALL UnPackBuffer(FirstFld%, LastFld%, Form$(),
Fld())

To fill the entire form with information from the form buffer, FirstFld
should be I, and LastFld should be assigned to the total the number of
fields in the form. The total number of fields is found in Fld(0).Fields.
If you wish only to fill a portion of the form with information from the
form buffer, you can specify other values for FirstFld and LastFld,
realizing also that several ranges of fields can be filled by calling
UnPackBuffer several times with different values.

One entirely optional step, which serves only to simplify programming
and increase readability of your source code, is to copy information from
the form buffer to a TYPE array corresponding to the current form. This
lets you refer to fields by the name in the TYPE structure, rather than by
accessing the Form$() elements by number. This is shown in the example
that accompanies the BCopy routine description.

The next step is to copy the information in the form data elements onto
the screen. The easiest way to do this is to call EditFormG with an Action
of I (see Action for details). This also ensures that all of the fields that
are displayed on the form are current. You can optionally call the
PrintArray routine, which provides more flexibility by allowing a specific
range of fields to be updated.

Saving Records
Record data is written to disk by calling the SaveRecG routine. All you
need to do is furnish the record number in RecNo:

CALL SaveRecG(RecNo&, Form$(), Fld())

SaveRec writes information to the .DAT and . NOT data files opened earlier
by the OpenFiles routine.

Clearing A Form
The best way to clear a form is to set each Form$(N, 0) element to a null
string. You may then want to pre-assign certain fields in the form before
allowing a new record to be entered. The code fragment below clears the
Form$() data elements, sets the date and time information, and sets Action
to I before EditFormG is called again.

CRESCENT SOFTWARE. INC. ■ 9-13

I

I

Performing Data Entry Graphics QuickScreen

FOR N = 1 TO Fld(0).Fields 'Clear all fields
FormS(N, 0) = ""

NEXT N

Form$(12, 0)
Form$(15, 0)
Action= 1

DATE$
TIME$

'Set date/time info.

'Prepare to refresh with
' EditFormG

Notes Fields

Notes fields (sometimes referred to as MEMO fields) have a variable
length and they are stored in a separate file. Although you could set aside
a certain number of bytes for a notes field in each record database, that
would be wasteful for records that have no notes or only a few characters.

Using Notes
If you plan to use the multi-line notes feature in your form, you will need
to replace the NONOTESG.BAS stub file module with the GQEDITS.BAS
module.

Data entered into notes fields is stored in a separate file with a .NOT
extension. For each note field in a form, the Form$(0, 0) array element
contains a long-integer pointer into the notes data file. This pointer
accesses a two-byte integer in the notes file which gives the length of the
string stored in the following bytes. The next note in the notes file
immediately follows, and also begins with a two-byte integer giving the
length of the note text, and so on. This arrangement keeps the notes file
as compact as possible.

If you want to pre-fill a notes field with data, all you need to do is to fill
the Form$() array with text. Recall that text is stored as a single line of
information, using a CHR$(20) to indicate a blank line. Thus, to pre-fill
field 6 in your form, you would write to Form$(6,0):

Form$(6,0) = "This is line one of a note field
"+ CHR$(20) + "and this is line two."

Saving And Retrieving Notes Data
The best way to both save and recall information from notes fields is to
use the SaveRecG and GetRecG routines in the RANDOMG.BAS BASIC
module.

■ 9-14 CRESCENT SOFTWARE, INC.

Graphics QuickScrcen Performing Data Entry

Relational Fields

Graphics QuickScreen provides ways to store information which can be
used to create relational database fields. These are fields which are
common to two or more forms. For example, a customer number could
be the record key to a customer file, and the same customer number may
also appear as a field in an invoice file. Related fields make it easy to
access information stored in different data files which is linked together
by a common field.

Relational fields eliminate duplication (and thus wasted disk space) in your
data files. As long as the customer number is stored in the Invoice file,
there's no need to also store the customer's name and address there too.
That information can be read from the Customer field when needed, using
the Customer number field in the Invoice file to find the corresponding
record in the Customer file.

While Graphics QuickScreen does not directly support related data files,
it does offer a means by which your own programs can store and access
information for related fields.

If you want to create a related field for field N in the current form, you
would need to store information in the Fld(N).RelFile and Fld(N).RelFld
field array elements. These two type elements describe the related file
and field names, respectively.

If you want to access the related file by its file number rather than by its
name, you can open the file and store its BASIC file number in the
Fld(N).Re!Handle TYPE array element. Using file numbers provides
fast access, but this technique requires the file to be already open.

Indexed Fields

As with related fields, Graphics QuickScreen does not provide support for
field indexing. However, it does provide a way to indicate that certain
fields are indexed. You can use this to know if a given field is indexed
when looking up records in the file. For instance, if field N of the current
form is indexed, you would set Fld(N).Indexed to show that. Indexes are
used to accelerate record searches and sorts, and most books on database
design explain them in detail.

Note that if your form uses scroll bars, the scroll bar's small change value
is stored in Fld(N).lndexed. You should therefore exclude scroll bars
when searching the FldO array for indexed fields:

CRESCENT SOFTWARE, INC. ■ 9-15

I

I

Performing Data Entry Graphics QuickScreen

FOR i = 1 to UBound(Fld) 'For each field
If Fld(i).FType < ScrollBarFld then 'is it a

• scroll bar?
'This must be an indexed field

END IF
NEXT

(ScrollBarFld is a CONSTANT defined in EDITFORM.Bl)

Multi-Page Forms

One important feature of Graphics QuickScreen is its ability to manage
multi-page forms. This feature exploits the ability of the Frm0 and
Form$() arrays to hold several forms at once. Each "page" of a multi-page
form is a standalone screen that is created separately in the Screen
Designer.

Screens are designed so that they appear to visually follow one another­
either from top to bottom (for tall forms) or from left to right (for wide
forms). Using various wipe effects, you can achieve the illusion of moving
up and down through a long form. Thus, pressing PgUp could scroll a
new page down from the top of the screen using the "SlideD" wipe, while
PgDn could make use of the "SlideU" wipe. Even though each screen is
entirely separate, each accesses a unique range in the form arrays, making
multi-page forms possible.

To illustrate the need for multi-page forms, suppose you want to allow 60
lines for item-entry on an invoice form. In 25-line mode, you would need
three different "pages" to contain all of the data. The first page would
contain header information, such as customer information, and would also
begin the columnar section which forms the line-item section of the invoice
(this is where part numbers, descriptions, and price information is
entered). The second page would probably consist entirely of the line-item
section of the invoice. The last page would complete the line-item section,
and also have "footer" information, such as price totals and special
shipping instructions.

The DEMOPAGG.BAS demonstration program shows the basics ofmulti­
page form processing and of course includes commented source code. It
serves as an example, and, as written, is limited to a two-page form stored
at the beginning of a form library file. The discussion which follows
attempts to give a more generic approach to handling multi-page forms
which may exceed two pages.

■ 9-16 CRESCENT SOFTWARE, INC.

Graphics QuickScreen Performing Data Entry

Implementation
From a programming perspective, the concept behind multi-page forms
is simple: place the names of your forms in a string array. This lets you
refer to each screen by number and your program can increment and
decrement a screen counter to access the next or previous screen image,
respectively. When a user presses PgDn, or moves beyond the last field
on the current "page", you will increment the screen counter and display
the next "page" of the form. Likewise, pressing PgUp, or moving beyond
the first prompt, will access the previous "page".

The next step is to fill the Fld0 TYPE array and the Form$() string array
with the field data stored in the .FRM or MYFORM.BAS file.

Now that the form arrays are loaded and properly initialized, you can call
the EditFormG routine. While using EditFormG, if Pg Up is pressed then
Frm.StartEl is assigned to one less than the starting field number for the
current form. If PgDn is pressed then Frm.StartEl is assigned to one
greater than the highest field number on the current form. Thus, a calling
program can check Frm.StartEl to determine whether either PgUp or
PgDn has been struck.

Because a multi-page form creates an extra element in the form arrays for
each form "page", we suggest using the Form$(0, 0) form buffer (rather
than the Form$(N, 0) data elements) when writing or reading from the
data file.

Alternatively, you can also check Frm.Keypress for specific keystrokes
(such as PgUp, PgDn, or function keys you wish to use) to determine
whether the user is trying to access a prior or next "page" in the form.

This first technique (that uses Frm.StartEl) is demonstrated below:

Action%= 1
DO 'Poll the editing procedure

CALL EditFormG(Form$(), Fld(), Frm, Action%)
'If the user pressed PgUp or PgDn or moved off
' the top or bottom of the form, "StartEl" will be

updated by "EditFormG" so we need to check it.
The last value is saved in "LastStartEl 11 for
use as a comparison.

•--Did page change?

CRESCENT SOFTWARE. INC. ■ 9-17

I

I -

Performing Data Entry Graphics Quick.Screen

IF Frm.StartEl <> LastStartE1% THEN
'--Previous page?
IF Frm.StartEl < LastStartE1% THEN

'Yes, set previous page number
Ser%= Ser% - 1

•--Next page?
ELSEIF Frm.StartEl LastStartE1% THEN

'Yes set next page number
Ser%= Ser%+ 1

END IF

•--Display the screen
CALL ShowForm(FormName$(Scr%), Fld(), Row,

Col, VPage, Errorcode%)
•--Save the new "StarEl"
LaststartE1% Frm.StartEl

END IF 'Keep editing until the user
presses the Escape key.

LOOP UNTIL Frm.KeyCode = 27

If you are using the optional BASIC field definition modules to assign field
definitions, you will have to make minor source code modifications to
them to create a multi-page form. The FldO and Form$O arrays are
dimensioned at the beginning of each field definition subroutine. (These
arrays are named Fd() and F$() in the source file.) The module containing
the field definitions for the first page of your form should be modified to
dimension the Fld() and Form$() arrays to the total number of fields in
your multi-page form. You then need to remove the REDIM statements
from the remaining field definition modules. When calling these field
definition modules, you must set the Start% parameter to the appropriate
element within the entire Fld() array so that the field definitions are loaded
into the correct elements.

Programming Tips

The following sections provide additional programming tips which you
may find both interesting and useful.

Manually Manipulating Form Data at Runtime
Since EditFormG is polled, the calling program has the opportunity to
change data and examine keystrokes during data entry. The example below
shows how to update the time on the screen once each second. The time
is printed on the first line near the right margin.

■ 9-18 CRESCENT SOFfWARE, INC.

Graphics QuickScrccn Performing Data Entry

DO
CALL EditFormG(Form$(), Fld(), Frm, Action)
IF CLNG(TIMER) T& THEN 'Display the time

each second to
T& = TIMER
LOCATE 1, 70, 0
PRINT TIME$;

END IF' edited.

show how things
can be done while
a form is being

LOOP UNTIL Frm.KeyCode 27 'Keep editing until
user presses Esc.

When this routine executes, the time is updated while the form is accepting
user input. This example demonstrates how two activities (processing a
form and updating the time) can appear to occur simultaneously.

Assigning Variables To Refer To Fields
The Graphics QuickScreen FldNum function converts field names to
numbers and makes it unnecessary to change program code when your
form is modified.

For instance, if Form$(9, 0) currently refers to a customer phone field,
and you add two new fields before that, the customer phone field would
become Form$(12, 0). If Form$() array subscripts are used to access a
field's data, it would be necessary to change array subscripts throughout
your program. In the example provided, all Form$(9, 0) references would
need to be changed to Form$(12, 0) so that they accurately reflect the new
location of the phone field.

Referring to fields using variable names is easy. Consider this program
fragment:

DateFld% = FldNum%("INVDATE", FLD())

Form$(DateFld%, 0) = DATE$

This example shows how the variable DateFld is assigned to the field
number corresponding to the field called "JNVDATE". If the form
changes and the field position ofJNVDATE is altered, this method ensures
that the correct field receives the DATE$ information.

Updating Form Data Using SaveField
To update the Form$(0, 0) data buffer, the SaveField routine should be
called. Recall that this routine verifies data in the specified field before
copying it to the form buffer.

CRESCENT SOFTWARE, INC. ■ 9-19

I

I

Performing Data Entry Graphics QuickScreen

CALL SaveField(DateFld%, Form$(), Fld(), BadFld%)

Recalculating Fields Using CalcField
If you change a field by changing a Form$(N, 0) element which affects a
calculated value somewhere on the form, you will need to call CalcFields
so that all of the fields are properly recalculated. CalcFields is described
in the Routines section of this manual.

Converting Formatted Strings to Numbers
To quickly convert a formatted string to a double-precision number you
can use the Value function. If you need to extract a number from the IEEE
string imbedded in the form buffer, you can use the appropriate conversion
scheme based on the following:

Num% CVI(MID$(Form$(0, 0), Fld(FldNo).Fields, 2))
Num& CVL(MID$(Form$(0, 0), Fld(FldNo).Fields, 4))
Num! CVS(MID$(Form$(0, 0), Fld(FldNo).Fields, 4))
Num# CVD(MID$(Form$(0, 0), Fld(FldNo).Fields, 8))

In each line above, MID$ is used to access a specific number of bytes
within the form buffer. The starting character position, or offset, into
Form$(0, 0) is supplied by Fld(FldNo).Fields. Then the appropriate
number of bytes are read, such as two for integer values, four for single
precision, and so forth. Once the string is read, the CVx operation
converts the string to a number and assigns the result to Num.

Redisplaying Form Data Using PrintArray
After you have made the desired changes to the form data, you can
redisplay information in the form by calling the PrintArray routine.
PrintArray is described in the Routines section of this manual.

Handling Mouse Fields
Mouse fields are activated by clicking on them with the mouse, pressing
Enter, or by pressing a key that returns the pre-assigned key code when
the button is currently selected. The key code is returned as soon as the
button is released when using the mouse or after pressing Enter and is
returned instantly whenever the pre-assigned key is pressed.

The value is returned in Frm.KeyCode variable and can be used along
with the Frm.FldNo variable to determine when a mouse field has been
activated. The following example assumes that field number 10 is a mouse
field and has been assigned to return a key code of -67 (F9):

■ 9-20 CRESCENT SOFTWARE, INC.

Graphics Quick.Screen Performing Data Entry

IF Frm.Fldno = 10 AND Frm.KeyCode = -67 THEN
'They clicked the push button assigned to F9
' or pressed F9

END IF

If all of the fields in a form are mouse fields, it will probably be
unnecessary for you to test for the field number.

If you are using the mouse field as a toggle check box, the corresponding
Form$(N, 0) array element will hold an X when it is checked or a space
when it is not. To activate a mouse field from code, assign an X to the
corresponding Form$() array element to select (highlight) the field or
assign a space to deselect (un-highlight) it. You must then call EditFormG
with Action set to I or call PrintArray with the appropriate field number
to display the new status.

Handling Push Buttons
Push buttons are activated by clicking on them with the mouse, pressing
Enter, or by pressing a key that returns the pre-assigned key code when
the button is currently selected. The key code is returned as soon as the
button is released when using the mouse or after pressing Enter and is
returned instantly whenever the pre-assigned key is pressed. The value
is returned in Frm.KeyCode variable and can be used along with the
Frm.FieldNo variable to determine when a button has been pressed. The
following example assumes that field number 5 is a push button, and that
it has been assigned to return a key code of -68 (FIO):

IF Frm.Fldno = 5 AND Frm.KeyCode = -68 THEN
'They clicked the push button assigned to FlO or
' pressed FlO

END IF

If all of the fields on the form are buttons, it will probably be unnecessary
for you to test for the field number.

Handling Scroll Bars
Scroll bar values are returned in the Fld(N). Value variable. Simply assign
this value to the appropriate variable in your program. The following
examples assume that a scroll bar has been assigned to field number 25:

Tempo= Fld(25).Value 'Assign the "Tempo" value

In most cases you will only want to respond to the value if it has changed.
In that case, assign a variable to remember the previous value, and compare
it with the current value:

CRESCENT SOFfWARE. INC. ■ 9-21

I

I

Performing Data Entry Graphic• QuickScreen

IF Fld(25).Value <> LastValue
LastValue = Fld(25).Value
Tempo= Fld(25).Value

THEN 'has it changed?
'yes, remember the value
'assign the new tempo

END IF

Normally, a scroll bar returns its maximum value when the pointer is at
the bottom of a vertical scroll bar or at the right side of a horizontal scroll
bar. To make the value of a scroll bar read in the opposite direction,
subtract Fld(Frm.FldNo).Value from Fld(Frm.FldNo).HiRange before
assigning your variables:

IF Fld(Frm.FldNo).Value <> LastValue THEN
LastValue = Fld(Frm.FldNo).Value
Tempo= Fld(Frm.FldNo).HiRange -Fld

(Frm.FldNo).Value
END IF

You may also re-assign any or all of the scroll bar's settings at runtime.
You can set new high and low limits, small and large change values or
reposition the scroll pointer. After changing any of these variables you
must either call PrintArray with the appropriate field number or reset
Action to 1 before the next call to EditFormG. Either of these methods
will reset the scroll bar to its new settings.

IF ChangeValues then
Fld(25).HiRange = 1000
Fld(25).LoRange = -200
Fld(25).Value = 150
Fld(25).Re1Fld = 50

'Set new Scroll values
'Set new upper limit
'Set new lower limit
'New pointer position
'New large change value

Fld(25).Indexed = 1 'New small change value
CALL PrintArray(25, 25, Form$(), Fld()) 'Reset

' scroll bar
END IF

Note that calling PrintArray redisplays only the fields specified. Setting
Action to 1 will accomplish the same thing but redisplays all fields on the
form and is therefore somewhat slower.

You may also reset a scroll bar's value by assigning the desired value to
the Form$(N, 0) array, where N = the scroll bar's field number. In this
case, you must call EditFormG with Action = 1.

The color used when clicking on the scrolling portion of a scroll is assigned
according to the setting of GPDat%(100). The default is to use whatever
color was used for the shaded portion of the scroll bar's push buttons. You
can also disable a highlight color or specify any other color. See appendix
A, The GPD01%() Array for more information on setting GPDat%(100).

■ 9-22 CRESCENT SOFIWARE, INC.

Graphics Quid:Screen Performing Data Entry

Changing The Color Of The Mouse Cursor
The standard mouse cursor appears as a white arrow with a black outline.
That is, color 15 (white) and color O (black). To change the color all you
need to do is change the palette settings for either of these colors. If you
still need to use white or black in your programs, just reassign any of the
other colors to white or black. The Palette Editor makes this very simple.

CRESCENT SOFTWARE. INC. ■ 9-23

I

I

10

I

I

Graphics QuickScreen Creating Standalone Programs

CREATING STANDALONE PROGRAMS
Standalone .EXE programs are created by linking your compiled BASIC
program (object files) using the version of LINK supplied with BASIC.
Compiling programs for standalone use is relatively easy. However, you
must first be aware of BASIC Make files before using the compiler and
linker.

MAKE Files

Make files with a .MAK extension are created by the BASIC environment
whenever a program requiring more than one module has been saved.
They are ASCII files with a . MAK file extension, and they simply list the
names of other modules which must be present in order for the main
module to run. All these modules must be compiled to object files and
then linked together with the GFORMS.LIB library or GFORMS7.LIB
when using BASIC 7 PDS.

Compiling Modules

BASIC source files are compiled using the BC.EXE command line
compiler like this:

BC MYPROG.BAS /0/S;

This will create an object file named MYPROG.OBJ, assuming the
program compiled successfully. You will then need to compile each
BASIC module listed in your program's .MAK file in turn.

Linking

Once you have compiled all of your programs, you need to create a final
standalone .EXE program. This is done by linking object files with the
provided GFORMS.LIB library or GFORMS7.LIB when using BASIC 7
PDS.

If you are compiling and linking manually from DOS, then you will specify
all your BASIC-compiled object modules, along with GFORMS.LIB (or
GFORMS7.LIB), like this:

LINK PROG1.0BJ+PROG2.0BJ,,NUL,GFORMS[7].LIB

CRESCENT SOFTWARE, INC. ■ ,~,

I

I

Creating Standalone Programs Graphics QuickScreen

If you prefer you can start LINK without any options, and wait for it to
prompt you for the information it needs.

You may also specify more than one library when linking. For example,
if you need assembler routines from both GFORMS.LIB and our QuickPak
Professional, you would tell LINK to use both of them:

LINK PROG1.OBJ+PROG2.OBJ,,NUL,GFORMS[7] PRO[?]

You may also add single object modules when linking, even if they are not
present in a I ibrary at all:

LINK PROG1.OBJ+PROG2.OBJ+MYOBJECT.OBJ,,NUL,
GFORMS[7] MYSTUFF

If you prefer to combine several libraries into a single .LIB file, that is
quite easy too. Although the LIB library manager is usually employed to
add or remove object modules, you may also add one or more complete
I ibraries I ike this:

LIB LIBRARY1.LIB+LIBRARY2.LIB+LIBRARY3.LIB

One useful link opt'on you should be aware of is the /E command line
switch. When LINK is invoked with IE, it creates an .EXE file in a special
packed format. Not unlike the various archive programs, the code and
data are compressed to take up less disk space. When the program is run,
the first code that actually executes is an unpacking routine that puts
everything back together again. The /E switch is specified like this:

LINK /E PROG1.OBJ+PROG2.OBJ,,NUL,GFORMS[7]

A packed program will require less disk space, however it of course
requires the same amount of memory when it is run.

■ 10-2 CRESCENT SOFTWARE, INC.

11

■

I

Graphics QuickScreen Utilities

GRAPHICS QUICKSCREEN UTILITIES

Screen Capture Program

PCXCAP.EXE is a TSR (Terminate and Stay Resident) utility that was
written using Crescent's P.D.Q. product. PCXCAP occupies very little
memory and allows you to capture any graphic screen* from within other
application programs.

In order for PCXCAP to run properly, you must start it from DOS before
running the program whose screens you wish to capture. Before running
PCXCAP, you should consider the following points which apply to all TSR
programs:

I. It should not be installed from a program that has shelled to DOS

2. When using more than one TSR program, the last TSR installed
must be uninstalled first

Using PCXCAP consists of a few simple steps which are summarized
below.

I. Run PCXCAP from DOS

2. Start another program from which screens are to be captured

3. When the desired screen appears, press Alt-S

4. Specify a name for the screen, and press Enter

Screen names are limited to eight characters with no extension. Therefore
you can save them to the current directory only, and the program will
append the .PCX extension for you. Since the screens are saved in the
.PCX format, you can easily load them into the Graphics QuickScreen
editor. (This assumes of course that the screens were displayed and saved
in a Graphics QuickScreen compatible screen mode, i.e. 640x350 or
640x480 16 color.)

One note of warning: PCXCAP uses the screen name you specify and does
not caution you if you will overwrite an existing screen with the same
name. For this reason, be extremely careful when naming PCXCAP
screens to be saved.

CRESCENT SOFTWARE, INC. ■ 11-1

I

I

Utilities Graphics QuickScreen

When PCXCAP is no longer required, you may remove it from memory
by exiting all active applications to return to the DOS prompt. Then, run
PCXCAP again using the "/U" command-line switch at DOS like this:

PCXCAP /U

* PCXCap will not work while running under Microsoft Windows.

Converting From QuickScreen To Graphics QuickScreen

The QS2GQS program converts existing QuickScreen text mode screens
and their corresponding .FRM files into equivalent graphics mode screens.
The graphic screen is saved as a .PCX file and the .FRM file is modified
to work with the Graphics QuickScreen editor. Once a screen has been
converted it may be loaded into the Graphics QuickScreen editor for
further enhancements.

When you run QS2GQS.EXE, it displays a dialog box that prompts you
for the following information:

, QuickScreen .SCR or .QSL Files:

Enter the name of the screen (.SCR) file or the screen library
(.QSL) file name. Be sure to include a complete path name if the
file is not in the current directory.

Form Name (for .QSL files only):

No entry is required if you are converting .SCR files. For .QSL
library files, enter the name of the screen you wish to convert. A
path name should not be given.

Convert to (.PCX, .FRM):

Enter the drive, directory, and file name for the converted screen.
Since a modified . FRM file is created, make sure you save the file
to a different name or directory to prevent overwriting the original.

Once you have entered the required information click the OK command
button. The utility will read the screen and its form definition files into
memory. A second dialog box will appear allowing you to select the
desired graphics mode. The dialog box's option buttons will default to
the closest matching screen mode based on the number of screen rows
required. You can of course select any screen mode you prefer.

■ 11-2 CRESCENT SOFTWARE, INC.

Graphics QuickScreen Utilities

If the your screen has more rows than the selected screen mode allows,
the screen will be clipped as necessary at the bottom. Field definitions
that would be located beyond the last row are placed on top of each other
and will have to be relocated manually in the Graphics QuickScreen editor.
If the screen has fewer rows than the new selected screen mode, the
converted screen is positioned at the top of the screen leaving the bottom
portion blank.

Click the OK button and your screen will be quickly converted and
displayed in the graphics mode you selected. Once the conversion is
complete, you may continue with additional conversions or press Esc to
exit the utility.

Note that this utility cannot read QuickScreen . QFL files. You must supply
individual .FRM files for each form that you convert.

Quick Library Make Utility

To simplify the creation of custom Quick Libraries, we've included a utility
called MAKEQLB.EXE. This utility examines a program and all its
dependent modules, and creates a new Quick Library containing only those
routines that are necessary. This is important when the programs you
develop are very large, because it eliminates the wasted memory taken by
routines that are not used. MAKEQLB also lets you easily combine
routines from multiple library files, without having to extract each
individual object module.

MAKEQLB knows which routines are to be included by examining your
main program for CALL statements, and by searching for DECLARE
statements when the CALL keyword is not used. MAKEQLB also
searches include files (even when nested, where one file includes another)
and the .MAK file if one is present, to account for all of the modules in
a complete program.

MAKEQLB also reports any subprograms or functions that have been
declared but are not being used. Of course, those routines will not be
added to the resultant Quick Library. It will also report all subprograms
and functions that are present but never called. As an option, you may
specify a file that contains a list of all the routines that are to be included
in the library, rather than having MAKEQLB examine your source files.

MAKEQLB uses an interface similar to the LINK and LIB programs, and
you may either enter the parameters on a single line, or wait for
MAKEQLB to prompt you for them. The command line syntax is as
follows:

CRESCENT SOFrWARE, INC. ■ 11-3

I

I

Utilities Graphics QuickScreen

MAKEQLB rnainprog, qlbnarne, listfile, libl lib2,
bqlbnarne

You may also specify more than one file name to be examined, by
separating each with a blank space:

MAKEQLB rnainprogl rnainprog2, qlbnarne, listfile,
libl lib2, bqlbnarne

Mainprog is the main BASIC program to examine, with a .BAS extension
assumed. If a file name with a .LST extension is given, MakeQLB will
instead use the procedure names contained in that file when creating the
Quick Library.

The qlbname parameter is the name of the resultant Quick Library. If the
name is omitted, the library will have the same name as the main program,
but with a .QLB extension. If indeed you omit qlbname, be certain to
retain the delimiting comma. If you specify NUL for the qlbname,
MAKEQLB searches for unnecessary DECLARE statements and dead
code, but will not create a Quick Library.

The list file that is created contains a list of all the routines that are being
added to the Quick Library. This file defaults to a .LST extension, and
is in the correct fornat that MAKEQLB requires to create a library from
a list of procedure names. This way, if you need to add a routine or two
to the Quick Library later on, you can simply edit the generated .LST file.
Creating a Quick Library from a list file is of course much faster than
examining an entire BASIC program. If the listfile parameter is omitted,
the same name as the main program will be used, but with an .LST
extension. To tell MAKEQLB not to create a list file, use the reserved
name NUL for that parameter.

The lib! and lib2 parameters are .LIB library files that contain the
procedures being added to the Quick Library. One or more library names
may be specified, with a blank space used to delimit each name. If no
library name is given, the name PRO.LIB is assumed.

The last parameter tells MAKEQLB which "bqlb" support library is to
be specified when linking. The default name is BQLB45.LIB, which is
the library that comes with QuickBASIC version 4.5. For other versions
of BASIC, please see Table 25.

MAKEQLB works by creating an object file that contains the list of
procedure names. By establishing these procedures as External, they will
be included in the Quick Library automatically when MakeQLB invokes

■ 11-4 CRESCENT SOFrWARE, INC.

Graphics Quicl,Screen Utilities

LINK. The dirty work of extracting each routine from the various .LIB
files is thus handled entirely by LINK.

BASIC version

4.0
4.0b
4.5
6.0
7.x

BQLB .LIB File Name

BQLB40.LIB
BQLB41.LIB
BQLB45.LIB
depends on QB version number
QBXQLB.LIB

Table 25: BASIC BQLB .LIB File Names

CRESCENT SOFTWARE. INC. ■ 11-5

I

I

12

. I

I -

Graphics QuickScrecn Product Compatibility

COMPATIBILITY WITH THE GRAPHICS
WORKSHOP, GRAPHPAK PROFESSIONAL,
AND db/LIB

Routines from Crescent's Graphics Workshop or Graphpak Professional
can be easily incorporated into your Graphics QuickScreen programs with
a few simple modifications to the source code.

Graphics Workshop

Use the same standard code as found in the Graphics Workshop manual
(pg 1-12). GETVIDEO.BAS is used in place of the SETUP.BAS include
file. You will need to increase the size of the GPDat% O array from 86 to
100 elements. The GPDat%() array is dimensioned in GETVIDEO.BAS
and should be modified as follows:

REDIM SHARED Tile$(0), AltTile$(0), GPDat%(100)

The SETUP.BAS include file also sets default colors for the help messages,
list boxes, and list box scroll bar colors as follows:

GPDat(76) = 0 + 7 * 256

GPDat(78) = 15 + 0 * 256

GPDat(87) = 7

GPDat(88) = 15

GPDat(89) = 8

GPDat(90) = -I

GPDat(94) = 0

GPDat(95) = 7

GPDat(96) = 15

GPDat(97) = 8

GPDat(98) = 7

CRESCENT SOFTWARE, INC.

Listbox text color

Listbox high! ight color

Listbox scroll bar colors

Highlight

Shaded portion

Use field colors for multiple choice
fields

Message box text color

Message box background color

Message box highlight color

Message box shade color

Sliding portion of scroll bar

■ 12-1

-I

I -

Product Compalibility

GPDat(99) = 7

Graphics QuiclcScreen

Number of list items before
displaying a scroll bar

These values can be added to your GETVIDEO.BAS include file by
copying and pasting them from the SETUP.BAS file, or you may assign
them directly in your source code any time after the '$INCLUDE:
'GETVIDEO.BAS' metacommand. Of course, you will only need to
assign those elements that your program requires; if you are not using any
multiple choice fields, you do not need to assign any Listbox or scroll bar
colors. Message box colors are used when displaying help messages.

Replace the COMMON.BI include file in all modules with the COM­
MON.GW file from the Graphics Workshop. This can be accomplished
by loading all of the required modules into the QB editor and using its
global search and replace capability. You will also need to modify
COMMON .GW by adding the Choice$() array to the list of COMMON
SHARED variables:

COMMON SHARED GPDat%(), Font$(), FontWidth%(),
FontHeight%(), Choice$()

Calling ShowForm performs the same function as calling SetVideo, though
you may still call SetVideo first.

GraphPak Professional

Replace the SETUP.BAS include file with SIMPLE.BAS. You will need
to increase the size of the GPDat%() array from 63 to 100 elements. The
GPDat%() array is dimensioned in GETVIDEO.BAS and should be
modified as follows:

REDIM SHARED Tile$(0), AltTile$(0), GPDat%(100)

The SETUP.BAS include file also sets default colors for the help messages,
List boxes and List box scroll bar colors as follows:

GPDat(76) = 0 + 7 * 256

GPDat(78) = 15 + 0 * 256

GPDat(87) = 7

GPDat(88) = 15

GPDat(89) = 8

■ 12-2

Listbox text color

Listbox highlight color

Listbox scroll bar colors

Highlight

Shaded portion

CRESCENT SOFTWARE, INC.

Graphics QuickScrccn

GPDat(90) = -1

GPDat(94) = 0

GPDat(95) = 7

GPDat(96) = 15

GPDat(97) = 8

GPDat(98) = 7

GPDat(99) = 7

Product Compatibility

Use field colors for multiple choice fields

Message box text color

Message box background color

Message box highlight color

Message box shade color

Sliding portion of scroll bar

Number of list items before
displaying a scroll bar

These values can be added to your GETVIDEO.BAS include file by
copying and pasting them from the SETUP.BAS file, or you may assign
them directly in your source code any time after the '$INCLUDE:
'GETVIDEO.BAS' metacommand. Of course, you will only need to
assign those elements that your program requires; if you are not using any
multiple choice fields, you do not need to assign any ListBox or scroll bar
colors. Message box colors are used when displaying help messages.

Replace the COMMON.BI include file in all modules with the COM­
MON.BAS file from Graphpak Professional. This can be accomplished
by loading all of the required modules into the QB editor and using its
global search and replace capability. You will also need to modify
COMMON.BAS by adding the Choice$() array to the list of COMMON
SHARED variables:

COMMON SHARED GPDat%(), Font$(), FontWidth%(),
FontHeight%(), Choice$() -

Calling Show Form performs the same function as calling Set Video, though
you can still call SetVideo first.

db/LIB
Graphics QuickScreen provides four BASIC subroutines for interfacing
Graphics QuickScreen with AJS Publishing's db/LIB. These routines are:

db2FormG

dbDefineRecG

CRESCENT SOFrWARE. INC.

Transfers and converts data from a db/Lib
record to the Form$() array for editing

Defines a db/LIB record structure from a
Graphics QuickScreen form definition

■ 12-3

. I

I .

Product Compatibility

dbNumericStrG

Form2dbG

Graphics QuickScreen

Converts a formatted numeric string to a form
compatible with db/LIB "N" field type

Transfers and converts data from the Form$0
array to a db/LIB record

These subroutines are contained in DBLIB_G.BAS. See the
DEMODBLG.BAS demonstration program for an example of how these
routines can be used in your program.

If you develop your program in the BASIC environment, you will need to
make a combined Quick Library that contains the required library routines
from both the GForms[7) library and the appropriate library from AJS.
This can be accomplished by using the MAKEQLB utility supplied with
this package. See the QUICK LIBRARY MAKE UTILITY form more
details.

■ 12-4 CRESCENT SOFfWARE, INC.

13

■

II

Graphics QuickScreen Trouble Shooting

TROUBLE SHOOTING

• The Mouse Cursor disappears

Occasionally, the mouse cursor may disappear after the selection of a new
screen mode or after loading a new screen. If this should occur, the cursor
can be brought back by pressing Ctrl-Fl.

Computer hangs up when Try Data Entry in Form is selected or when
EditFormG is called from your program.

This will happen if all of the fields in a form are protected. You must have
at least one non-protected field on your form.

You receive an "Out of stack space" error when EditFormG is called
from your program.

This too will happen if all of the fields in a form are protected. You must
have at least one non-protected field on your form.

You receive an "Out of string space" error when you run your pro­
gram from the BAS! C environment.

You can increase the amount of memory available to your program by
creating a custom Quick library that contains only the routines that your
program requires. A smaller Quick library can be easily created using
the MAKEQLB utility that is described elsewhere in this manual.

If you still receive the error, you can uses the various "No" stub files as
you develop your program. Then when you compile and link your
program, make sure to use the full-featured versions of the subroutines.

• You receive a "Subprogram Not defined" error.

This indicates that the routine being called has not been loaded. If the
message refers to a BASIC routine, you must add the module that contains
it to your program by using the (File) Load command. If the message
refers to an assembler routine, then either the routine is not in the loaded
quick library, or you failed to start BASIC with the required quick library.
You can easily determine whether a routine is BASIC or assembler by
looking up the routine in the Routines section of this manual. The heading
at the top of the routine description indicates that the routine is either a
"BASIC subroutine contained in BASF/LE.BAS" or an "assembler sub­
routine contained in GFORMS.LIB"

CRESCENT SOFTWARE, INC. ■ 13-1 II

I

Trouble Shooting Crescent Artist

You receive the message "Cannot find the drawing palette's
ICON.GMP Files" when activating the drawing palette or a "File not
found" error when trying to access the tile palette or the scalable
fonts.

This indicates that the various support files required by Graphics Quick­
Screen cannot be found. These files are installed initially in your Graphics
QuickScreen directory. If you work from any other directory, change the
path settings in the Set Paths dialog box found under the Settings menu
to point to your Graphics QuickScreen directory (or the directory where
they currently reside). These files are listed below:

Drawing Palette files: SCRIBBLE.GMP,
PBRUSH.GMP,
BUCKET.GMP,
ZOOM.GMP, AND CLRWHEEL.GMP

Tile Palette files: TPAL.TIL, and TILEPAL.GM4

Font Files: FUTURE.GFN,
HELVl2.GFN,
HELV8.GFN,
OLDENG.GFN, AND TROM12.GFN

■ 13-2 CRESCENT SOFTWARE, INC.

A

Graphics QuickScrecn Appendix A

APPENDIX A

The GPDat%0 Array

The GPDat%0 array is a COMMON SHARED array that contains
information used by EditFormG to help process your forms. Users of
Crescent's Graphic Workshop and GraphPak professional libraries are
probably already be familiar with the GPDat%() array. Graphics Quick­
Screen uses the GPDat%(31) and GPDat%(71) elements as assigned by
either of these libraries but expands the array with the addition of elements
87 through 100.

GPDat%(31)

GPDat%(71)

GPDat%(72)

GPDat%(73)

GPDat%(87)

GPDat%(88)

GPDat%(89)

CRESCENT SOFTWARE, INC.

The current monitor type; A value of 5 indi­
cates EGA color; a value of 8 indicates VGA
color; this variable is assigned in the
SETUP.BAS include file

ROM text height; this variable is set by Show­
Form to the height in pixels of the current ROM
font; possible values are 8, 14 and 16

Video address for saving graphic images

Boolean variable indicating the presence of a
mouse; a value of -1 indicates that a mouse was
detected

Scroll bar push button color; This variable sets
the scroll bar push button color when one ap­
pears on a list box; the default value is 7 and is
set in the SETUP.BAS include file

Scroll bar highlight color; this variable sets the
scroll bar highlight color when one appears on
a list box; The default value is 15 and is set in
the SETUP.BAS include file

Scroll bar shadow color; This variable sets the
scroll bar shadow color when one appears on a
list box; the default value is 8 and is set in the
SETUP.BAS include file

■ A-I

Appendix A Graphics QuickScreen

■

GPDat%(90)

GPDat%(91)

Use field colors/GPDat colors for list box; This
is a boolean variable that determines which set
of colors to use when displaying a list box; when
set to -1 the, 1 ist box appears in colors defined
by GPDat%(91) and GPDat%(92); when set to
0, colors assigned to the multiple choice field
are used for the list box; the default value is 0

List Box text color; the default value is black
foreground on a gray background; the two
colors are combined into a single integer using
the following formula:

GPDat%(91) = fgcolor + bgcolor
* 256

Note that GPDat%(90) must be set to -1 for these colors to take effect.

GPDat%(92) List box highlight color; the default value is
white text on a black background and is set in
the SETUP. BAS include file; the two colors are
combined into a single integer using the follow­
ing formula:

GPDat%(92) = fgcolor + bground
color* 256

Note that GPDat% (90) must be set to -1 for these colors to take effect.

GPDat%(93)

A-2

Save to video/conventional memory; this is a
Boolean variable that determines where back­
ground screen images are saved when displaying
list boxes and help messages; If set to -1,
background screens are saved to conventional
memory as an integer array; a value of 0 saves
to video memory; the advantage of saving to
video memory is that this memory is usually
unused and does impinge on memory required
by your program; the default value is 0; the only
time to use a setting of -1 is when you are already
using this memory for other purposes

CRESCENT SOFTWARE, INC.

Graphics QuickScrecn

GPDat%(94)

GPDat%(95)

GPDat%(96)

GPDat%(97)

GPDat%(98)

GPDat%(99)

GPDat%(100)

CRESCENT SOFTWARE, INC.

Appendix A

Message box text color; the default value is 0
(black) and is assigned in the SETUP.BAS in­
clude file

Message box background color; the default
value is 7 (gray) and is assigned in the
SETUP.BAS include file

Message box highlight color; the default value
is 15 (white) and is set in the SETUP.BAS
include file

Message box shadow color. The default value is
8 (dark gray) and is set in the SETUP.BAS
include file

Scroll bar slide color; The default value is 7
(gray) and is set in the SETUP.BAS include file
(for multiple-choice fields only)

Number of menu items before displaying a
scroll bar; sets the maximum number of items
to display in a I ist box before displaying a scroll
bar

The color to use when clicking on the sliding
portion of a scroll bar; values between 1 and 15
establish the color; when set to O the shade color
of the scroll bar's push buttons is used; other
values disable highlighting

■ A-3

Graphics QuickScreen

GLOSSARY

calculated field

Any field in a form for which a formula has been defined.

cursor keys

Glossary

Keys which control the movement of the cursor. These keys typically
include the Up, Down, Left, and Right keys, and sometimes include Pg Up
and PgDn.

dialog box

An input screen which collects information needed for carrying out a
process. For example, Graphics QuickScreen's (File) Open ... pulldown
command uses a dialog box.

dithered colors

A method of creating more than the standard 16 colors by alternating
colored pixels within a block.

form

A screen which has at least one field defined .

. FRM files

A file containing field definitions for a form.

hotkeys

Keys which directly access an item on a menu bar or pulldown menu. The
characters corresponding to hotkeys are usually underlined or highlighted.

insert mode

The edit mode in which each character to the right of the cursor is moved
to the right as new characters are entered.

menu bar

A component of the menu system which presents pulldown menu names
on the top line of the screen.

CRESCENT SOFTWARE, INC. II I

Glossary Graphics QuickScreen

■ 2

menu bar option

One of the menu names on the menu bar. A menu bar option usually
presents a pulldown menu.

paste buffer

An area of memory to which graphic images are temporarily stored and
retrieved.

pollable routine

A routine which may be repeatedly called in a loop. Pollable routines
allow a calling program to carry out other tasks between each polling cycle,
effectively simulating multi-tasking.

pulldown menu

A pop-up list of commands available for a given menu bar option.

ROM font

Your computer's internal font.

CRESCENT SOFTWARE, INC.

-I
C
-I
0
~

> r-

Graphics QuickScreen Tutorial

TUTORIAL

In the following tutorial, clicking on refers to pointing to an item with the
mouse cursor and then clicking and releasing the left mouse button.

When you first start Graphics QuickScreen you are presented with a blank
screen and a standard white arrow cursor. To design a screen with
Graphics QuickScreen you will need to access the various paint and
drawing tools available on the Drawing Palette. Try clicking the right
mouse button several times to toggle the Drawing Palette on and off. The
Esc key will also toggle the Drawing Palette.

Selections are made from the Drawing Palette by clicking on the desired
color or tool icon. The selected color will appear in the lower right comer
of the Drawing Palette. Selecting a tool clears the Drawing Palette and
displays a drawing/editing cursor. Objects (lines, circles, boxes and so
forth) are created by clicking on the desired starting position and then
moving the drawing cursor to size the object. If you make a mistake, click
the right mouse button once to cancel and begin again, or click twice to
return to the Drawing Palette. Finish the object by clicking on the desired
end point.

You may continue drawing with the same tool or you can click the right
mouse button to return to the Drawing Palette. If you make a mistake,
pressing FIO will undo any drawing or editing done since the selection of
the current tool.

Drawing and painting colors may be selected or changed at any time by
pressing the color's corresponding numeric key. To access values above
9, hold down the Shift key to add 10 to whatever numeric key you press.

All of Graphics QuickScreen's features can be controlled from the
keyboard or with a mouse in any combination. The cursor is controlled
from the keyboard using the standard cursor keys. For drawing and editing
procedures, pressing Enter is the same as clicking the left mouse button
while pressing the Esc key is the same as clicking the right mouse button.
In general, a left mouse click initiates or completes an action while a right
mouse click cancels one. After any action has been canceled, the Drawing
Palette can be accessed with one additional right mouse click.

When you select a drawing or editing tool, a drawing cursor will appear.
As you move the cursor around the screen, you will notice that the drawing
cursor does not move smoothly but rather skips from point to point on an
invisible grid. This is called grid snap. On start up, grid snap is ON and

CRESCENT SOFTWARE, INC. ■

Tutorial Graphics QuickScreen

■ 2

is set to spacings that correspond to the height and width of the text font
for the current screen mode. Grid snap spacings can be set to almost any
value but are particularly useful when used with the default settings. The
reason for this requires some explanation.

When you design screens with data entry fields, a field's text is displayed
using the computer's internal ROM font. Text is printed at standard text
row and column coordinates using a solid background color. These fonts
are always 8 pixels wide and are either 8, 14, or 16 pixels high depending
on the screen mode. The text foreground color is defined when you assign
field definitions, but the background color is read from the screen at run
time. (In truth, the background color is set according to the color of the
pixel located at the lower right corner of the first character position in the
field.)

You will often want to paint a field's background using a color that contrasts
with the surrounding screen to identify the field's boundaries. When you
select the Filled Box icon with the default grid snap settings, any box you
draw will be the exact size required to contain standard text.

Select a color and then click on the Filled Box icon (black rectangle) to
select the Filled Box procedure. Try drawing several filled rectangles.
When you are finishc,d you can click the right mouse button to return to
the Drawing Palette. Now select a new color and click on the "T" icon.
A blinking text cursor will appear at its last used location. You can position
the cursor with either the direction keys or the mouse and then begin
typing. Notice that any text you type will line up with the blocks you just
painted.

Grid Snap can be toggled on and off during any drawing or editing
procedure by pressing the S key (grid Snap). Notice that the Up, Down,
Left and Right cursor arrow keys always move the cursor in increments
that correspond to the current grid snap settings. Cursor movement is
therefore much faster from the keyboard when grid snap is turned on.

When the Drawing Palette is off you can click the left mouse button or
press Alt to activate the menu system. When selected with the mouse,
the last menu used will be displayed. Selections are made by clicking on
them with the mouse, pressing the underlined or highlighted hotkey, or
using the Up and Down arrow keys to highlight the desired choice and
then pressing Enter. When activated by the Alt key, only the menu bar
is activated. Menus can be accessed by pressing their underlined hotkey,
pointing and clicking with the mouse, or by using the cursor keys and
pressing Enter.

CRESCENT SOFTWARE, INC.

Graphics QuickScreen Tutorial

When a menu choice followed by an ellipses is selected, a dialog box will
appear to allow you to enter additional information. Most of these dialog
boxes can also be accessed directly without invoking the menu by pressing
a corresponding function key.

Try experimenting with the various drawing and editing tools to get a feel
for how Graphics QuickScreen works before moving to the next section.

Creating Data Entry Fields
For this exercise we will create three fields: a text field, a push button and
a scroll bar. Make sure that grid snap is on and that the settings correspond
to the current ROM font size. You can check the current settings by
pressing FS to display the Status Box. The Status Box displays the current
drawing color, snap status, and the current cursor position. Grid snap is
on whenever the X/Y or RIC labels are displayed in upper case.

If grid snap settings correspond to the current ROM font size (referred to
as text snap), a black rectangle (II) will appear in the Status box next to
the Y or C label. If text snap is off, press the F key to turn it on. This
key toggles between the current grid snap settings and appropriate text
snap settings. You will hear two different beep tones as you toggle the F
key. The higher pitch indicates that text snap is in effect.

If you want to clear the screen before starting this exercise, select (File)
New Screen... . A dialog box will appear allowing you to select a new
screen mode. Click OK after making your selection. The screen will be
cleared to the current background color as assigned in the System dialog
box under the Settings menu.

Activate the Drawing Palette and select the push button icon. Draw a
single push button anywhere you like. If you wish to change colors or
draw a larger push button, select a new color and draw another push button
over the old one. You can also press FlO to clear the image or use the
Recolor option to change the push button's colors.

At this point, the push button is just a graphic image and will not function
as a button until it is defined as a field. This will be discussed shortly.

Now select Scroll Bar from the Draw menu. Draw a scroll bar just as
you drew the push button. If the defining rectangle is wider than it is high,
a horizontal scroll bar is drawn. Otherwise, a vertical scroll bar is drawn.
As with the push button, the scroll bar is just a graphic image until it is
defined as a field.

CRESCENT SOFfWARE, INC. • 3

Tutorial Graphics QuickScreen

■ 4

1+11 l+I

Figure 28: Example Screen

Next you will paint the background for a text entry field. Select the Filled
Box icon (black rectangle) from the Drawing Palette and then draw a filled
box one row high and any number of columns wide. The color you select
will be the field's background color. Your drawing should now look
something like figure 28.

The next step is to define these images as fields. Select (Compose Fields)
Enter Field Definitions... . A message box will appear asking you to
place the cursor at the beginning of the first field. Move the cursor to the
beginning of the text field and double-click the left mouse button or press
Enter. Another dialog box will appear allowing you to select the field
type.

For now, select the default String type field by clicking on the OK button
or by pressing Enter. A third dialog box appears asking you to locate the
end of the field. Use the cursor keys or the mouse to adjust the size of
the field. When you are satisfied with the size, double-click the left mouse
button on the last character in the field or press Enter. A final dialog box
lets you enter specific field settings. Accept the default settings by clicking
the OK button or by pressing Enter.

CRESCENT SOFTWARE, INC.

Graphics QuickScrecn Tutorial

When defining mouse fields, push buttons or scroll bars, the initial starting
position of the field is irrelevant since it is redefined after the next step.
Simply press Enter or double-click the left mouse button when prompted
"Place the cursor at the beginning of the field". Select "Push Button"
and click the OK button or press Enter. A message box then asks you to
"Draw a box around the Push Button". As soon as you press a cursor key
or move the mouse, the message will disappear.

Draw a box that exactly matches the black outline of the push button. With
grid snap on this should be very simple. When the box is completed, the
field settings dialog appears. For now, accept the defaults by clicking the
OK button or by pressing Enter. Define the scroll bar using the same
process but this time select "Scroll Bar" from the Field Type dialog box.

Once fields have been defined the form can be tested by selecting
(Compose Fields) Try Data Entry in Form. Now the push button will
depress when clicked on, the scroll bar will scroll, and you will be able
to enter text in the text entry field. You can move from field to field by
pressing Tub to move forward or Shift-Tub to move backwards through
the form. You can also select any field with the mouse by clicking on it.
When you are finished testing, press Esc to restore the screen and return
control to the screen designer.

One very powerful feature of Graphics QuickScreen is its ability to copy
a field or range of fields. Select the (Compose Fields) Copy Fields
option. A message will appear asking you to define the fields to be copied
by drawing a box around them. The box you draw may be any size, but
only those fields whose coordinates fall completely inside the box will be
copied.

For this exercise, copy the push button. Once you identify and capture
the image, you can make as many copies as you wish. This procedure
copies not only the graphic image of the button but also its field settings.
Unique field names are generated automatically for each new field. Once
you have completed making your copies, you can test the new push buttons
by selecting (Compose Fields) Try Data Entry in Form. As you can
see, this is an extremely fast way to generate duplicated field types.

Once you are satisfied with your form, Graphics QuickScreen can option­
ally generate a BASIC source file that you can run from the BASIC editor.
This file will behave as if Try Data Entry in Form had been selected.
Having Graphics QuickScreen create this portion of a program is a
tremendous time saver because it automatically sets up the correct declare
statements and include files for you. A .MAK file is also created that
specifies all of the modules required to display and edit your form.

CRESCENT SOFrWARE. INC. ■ 5

Tutorial Graphics QuiclcScreen

■ 6

To create a BASIC demo, select (Compose Fields) Make Demo... . A
dialog box will appear asking you to name the demonstration file, and
whether the field definitions are to be loaded from disk (.FRM file) or
hard-coded into your source code (.BAS module). The file name may be
anything except the form name. Click OK to create the demo.

To run the demo, exit Graphics QuickScreen and start your version of
BASIC with the appropriate library-GFORMS. QLB or
GFORMS7.QLB. Use the (File) Open ... command from the BASIC
editor to load the demo. Once loaded, press Shift-FS to run it. Pressing
the Esc key will end the program and return you to BASIC.

At this point, all of the form editing code has been written. You will still
need to add code to handle values returned by mouse fields, push buttons,
and scroll bars and to save or load the form contents.

This tutorial is provided to give you a quick understanding of some of the
fundamentals necessary to use Graphics QuickScreen effectively. Only
by reading the rest of this manual and examining and experimenting with
the demonstration programs will you fully appreciate what Graphics
QuickScreen can do.

CRESCENT SOFTWARE, INC.

	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	0009
	0010
	0011
	0012
	0013
	0014
	0015
	0016
	0017
	0018
	0019
	0020
	0021
	0022
	0023
	0024
	0025
	0026
	0027
	0028
	0029
	0030
	0031
	0032
	0033
	0034
	0035
	0036
	0037
	0038
	0039
	0040
	0041
	0042
	0043
	0044
	0045
	0046
	0047
	0048
	0049
	0050
	0051
	0052
	0053
	0054
	0055
	0056
	0057
	0058
	0059
	0060
	0061
	0062
	0063
	0064
	0065
	0066
	0067
	0068
	0069
	0070
	0071
	0072
	0073
	0074
	0075
	0076
	0077
	0078
	0079
	0080
	0081
	0082
	0083
	0084
	0085
	0086
	0087
	0088
	0089
	0090
	0091
	0092
	0093
	0094
	0095
	0096
	0097
	0098
	0099
	0100
	0101
	0102
	0103
	0104
	0105
	0106
	0107
	0108
	0109
	0110
	0111
	0112
	0113
	0114
	0115
	0116
	0117
	0118
	0119
	0120
	0121
	0122
	0123
	0124
	0125
	0126
	0127
	0128
	0129
	0130
	0131
	0132
	0133
	0134
	0135
	0136
	0137
	0138
	0139
	0140
	0141
	0142
	0143
	0144
	0145
	0146
	0147
	0148
	0149
	0150
	0151
	0152
	0153
	0154
	0155
	0156
	0157
	0158
	0159
	0160
	0161
	0162
	0163
	0164
	0165
	0166
	0167
	0168
	0169
	0170
	0171
	0172
	0173
	0174
	0175
	0176
	0177
	0178
	0179
	0180
	0181
	0182
	0183
	0184
	0185
	0186
	0187
	0188
	0189
	0190
	0191
	0192
	0193
	0194
	0195
	0196
	0197
	0198
	0199
	0200
	0201
	0202
	0203
	0204
	0205
	0206
	0207
	0208
	0209
	0210
	0211
	0212
	0213
	0214
	0215
	0216
	0217
	0218
	0219
	0220
	0221
	0222
	0223
	0224
	0225
	0226
	0227
	0228
	0229
	0230
	0231
	0232
	0233
	0234
	0235
	0236
	0237
	0238
	0239
	0240
	0241
	0242
	0243
	0244
	0245
	0246
	0247
	0248
	0249
	0250
	0251
	0252
	0253
	0254
	0255
	0256
	0257
	0258
	0259
	0260
	0261
	0262
	0263
	0264
	0265
	0266
	0267

