
CRESCENT
SOFTWARE, INC,

The Graphics Workshop
Graphics Primitives for
Microsoft Compiled Basic

Entire contents Copyright© 1989-1994 by Brian C. Giedt, Ethan Winer and Crescent Software.

This manual was written by Brian C. Giedt, with contributions by Ethan Winer and Don Malin. This manual
was designed and typeset by Jacki W. Pagliaro.

No portion of this software or manual may be duplicated in any manner without the written permission of
Crescent Software, Inc.

CRESCENT SOflWARE, INC.
11 BAILEY AVENUE
RIDGEFIELD, CONNECTICUT 06877-4505
(203) 438-5300
FAX: (203) 431-4626
Crescent's Support BBS: (203) 426-5958
Second Prinhng 11 /94)

LICENSE AGREEMENT

Crescent Software grants a license to use the enclosed software and printed
documentation to the original purchaser. Copies may be made for back-up
purposes only. Copies made for any other purpose are expressly
prohibited, and adherence to this requirement is the sole responsibility of
the purchaser. However, the purchaser does retain the right to sell or
distribute programs that contain Graphics Workshop routines, so long as
the primary purpose of the included routines is to augment the software
being sold or distributed. Source code and libraries for any component
of the Graphics Workshop program may not be distributed under any
circumstances. This license may be transferred to a third party only if all
existing copies of the software and documentation are also transferred.

WARRANTY INFORMATION

Crescent Software warrants that this product will perform as advertised.
In the event that it does not meet the terms of this warranty, and only in
that event, Crescent Software will replace the product or refund the amount
paid, if notified within 30 days of purchase. Proof of purchase must be
returned with the product, as well as a brief description of how it fails to
meet the advertised claims.

CRESCENT SOFTWARE'S LIABILITY IS LIMITED W THE PURCHASE
PRICE. Under no circumstances shall Crescent Software or the authors
of this product be liable for any incidental or consequential damages, nor
for any damages in excess of the original purchase price.

Table of Contents

■ ■ ■

The Graphics Workshop TABLE OF CONTENTS

Chapter 1 - Introduction

Introduction . 1-1
Overview 1-1
Starting with Graphics Workshop . 1-2
Naming Conventions . 1-3
Functions . 1-4
Multiple Screens . 1-4
Screen Modes 1-5
Different Coordinate Systems . 1-6
Passing Parameters . 1-8
Standard Code . 1-9
Why use COMMON.OW? 1-11
Multi-Tasking Menus 1-13

Chapter 2 - Demonstration Programs

Demonstration Programs . 2-1
ABOUTPCX.BAS 2-1
DEMOBOX.BAS 2-1
DEMOBYTE.BAS 2-1
DEMOCIRC.BAS 2-1
DEMOCURS.BAS 2-1
DEMODIGI.BAS 2-2
DEMOEDIT.BAS 2-2
DEMOEURO.BAS 2-2
DEMOFADE.BAS 2-2
DEMOFONT.BAS 2-2
DEMOFX.BAS . 2-2
DEMOGW.BAS 2-3
DEMOHERC.BAS 2-3
DEMOINTR.BAS 2-3
DEMOLTS.BAS 2-3
DEMOMENU.BAS 2-3
DEMOMOUS.BAS 2-3
DEMOMOVE.BAS 2-4
DEMOPAL.BAS 2-4
DEMOPLMS.BAS 2-4
DEMOPULL.BAS . 2-4
DEMOSAVE.BAS 2-4
DEMOSCRL.BAS 2-5

CRESCENT SOFfWARE, INC. ■ i

TABLE OF CONTENTS The Graphics Workshop

DEMOSCRN.BAS 2-5
DEMOSHAD.BAS 2-5
DEMOVERT.BAS . 2-5
FONT64.BAS . 2-5
GWDEMO.BAS 2-5
QSEGUE.BAS 2-6
SCRNDUMP.BAS 2-6
VIEWPCX.BAS 2-6

Assembly Routines

Section 1:
PCX Files and Palettes . 3-1

DispPCXC . 3-2
DispPCXH . 3-3
DispPCXVE . 3-4
DispPCXV256 . 3-5
GetPaletteVGA % 3-6
GetPalTripleVGA 3-7
GWFileSize& 3-8
OpenPCXFile% 3-9
PCXArrayC 3-11
PCXArrayH 3-12
PCXArrayVE 3-13
PCXArrayV256 3-14
PositionPCXVE 3-15
QBinaryLoad% 3-16
SavePCXC 3-18
SavePCXH 3-19
SavePCXVE 3-20
SetPaletteEGA 3-21
SetPalTripleVGA 3-22

Section 2:
BASIC Graphics Replacements 3-24

Circle VE 3-25
ClsVE 3-27
DrawPointH 3-28
Draw Po int VE 3-29
DrawPointVEOpts 3-30
GetPointH% 3-32
GetPointVE% 3-33

■ ii CRESCENT SOFTWARE, INC.

The Graphics Workshop TABLE OF CONl'ENTS

GPrint0C2 3-34
GPrint0H 3-35
GPrint0V256 3-36
GPrint0VE 3-37
GPrintlVE 3-38
GPrint2VE 3-40
GPrint3V256 3-41
GPrint3VE 3-43
LineBF2VE 3-45
LineBFVE 3-46
LineBVE 3-47
LineStepVE 3-48
LineToVE 3-50
LineToStepVE 3-51
Line VE 3-52
Screen0 3-53
Screen! 3-54
Screen2 3-55
Screen3 3-56
Screen? 3-57
Screen9 3-58
Screen 11 3-59
Screen12 3-60
Screenl3 3-61

Section 3:
General Screen Manipulation Routines 3-62

ClearScreenArray 3-63
Clear VE 3-64
Draw Byte VE 3-65
DrawByteVEOpts 3-67
Fade2EGA 3-69
FadeEGA 3-71
GetCharacter % 3-73
GetLastXCoord % 3-74
GetLastYCoord% 3-75
GetScreenMode % 3-76
GMovelVE 3-77
GMove2VE . 3-79
GMove3VE 3-81
GMove4VE 3-83
GScrollVE 3-85

CRESCENT SOFTWARE, INC. ■ iii

TABLE OF CONTENTS The Graphics Worbhop

MakeAddressVE% 3-86
MultMonitor% 3-87
PaintBits 3-88
PaintByte 3-90
ScrnDump2 3-92
SetDestPage 3-95
SetGWPages 3-96
SetLastCoord 3-97
SetSourceP..ige 3-98
SlideDown 3-99
SlideLeft 3-100
SlideRight 3-101
SlideUp 3-102
SplitHorizontal 3-103
TransferEGA 3-104

Section 4:
Mouse Routines 3-106
Using a Mouse with a graphics mode application 3-106

ButtonPress 3-108
GetCursor 3-109
GrafCursor 3-110
HideCursor 3-111
InitMouse 3-113
Motion 3-114
Mouse 3-115
SetCursor 3-116
ShowCursor 3-117

Section 5:
Routines from QuickPak Professional and P.D.Q. 3-118

AltKey% 3-119
FindLast% 3-120
HercThere% 3-121
InStat% 3-122
PDQTimer& 3-123

Chapter 4: BASIC Routines

CircleBAS . 4-2
Copylmage . 4-3
Digitize . 4-4

■ iv CRESCENT SOFTWARE, INC.

The Graphics Work»hop TABLE OF CONTENTS

DisplayBox . 4-5
DisplayBoxFill . 4-6
DisplayPCXFile 4-7
DisplayPCXFile2 . 4-8
DoSeguel . 4-9
DoSegue24-10
DoSegue34-11
DoSegue44-13
DoSegue54-14
DoSegue6 4-15
Draw3DButton4-16
DrawCursor 4-17
DrawText4-18
FullZoom4-19
GEditor 4-20
GetCountLocation%4-21
GetMouseCount%4-22
GetOutlineWidth%4-23
GetWidth%4-24
GPaintBox4-25
HandlePCXPalette4-26
Interlude!4-27
Interlude24-28
LineBAS4-29
LoadFont4-30
LoadOutlineFont4-31
LtsMenuG4-32
Lts2MenuG4-33
MsgBoxG4-34
Nightfall 4-36
OutlineText4-37
PCXCAP4-38
PositionBox 4-39
PullDownG4-40
PullDnMSG 4-42
RandomFade 4-44
SetGPFont4-45
SetGPSpacing4-46
SetGWFont4-47
SetGWSpacing4-48
SetVideo4-49

CRESCENT SOFTWARE, INC. ■ V

TABLE OF CONTENTS The Graphic■ Workshop

ShadeH4-50
ShadeHorizontal4-51
ShadeV4-52
ShadeVertical4-53
StepText4-54
VertMenuG4-55
WhichPCXScreen4-57

Other Files on the Disk4-58

Chapter 5: QuickSegue

About The Script Language . 5-1
Details About The Script Language 5-1

CLEAR buffer 5-1
INTERLUDE number "anystring" 5-2
LOAD "filename" buffer 5-2
LOCATE horizontal vertical . 5-2
SEGUE seguetype subtype color delay 5-3
SEND buffer . 5-3
PAUSE . 5-3

Segue Types . 5-4

Chapter 6: Vector Fonts

Using the Vector Font Editor 6-2
Using the Menu System 6-2

Detailed Function Description Of Menu Items 6-3
Items on the Files menu . 6-3
Items on the Edit menu . 6-4
Items on the Draw Menu . 6-5
Items on the Help Menu . 6-6

Using Vector Fonts With Your Program 6-6

APPENDICES

Appendix A
A PCX Primer A-1

Header portion A-1
Data Portion A-2

■ vi CRESCENT SOFTWARE, INC.

The Graphics Workshop TABLE OF CONTENTS

Appendix B:
The Palette . B-1

How The Palette Works . B-1
How The EGA Stores Palettes . B-1
How The VGA Stores Palettes . B-2
What Can You Use Palettes For? B-2

Appendix C:
The GPDat%0 Array From GraphPak C-1

Description of the GPDat%0 Array C-1
Elements Used By Graphics Workshop C-2
Detailed Listing Of Elements Used In Graphics Workshop C-3

Appendix D:
Converting From QuickPak or GraphPak Professional D-1
Converting from QuickPak Professional D-1
Combining with GraphPak Professional D-3

Appendix E:
Improving Pixel Access Using A Cache Buffer E-1

GetCacheVE% E-3
ReDrawVE E-4
ResetCache E-5

CRESCENT SOFTWARE, INC. ■ vii

Chapter 1: Introduction

■ ■ ■

The Graphics Workshop Introduction

INTRODUCTION

The Graphics Workshop contains the low level graphics routines needed
for today's interactive, graphics-based applications. These routines are
designed for use with Microsoft QuickBASIC 4.x and BASIC 7. There
are three key components to Graphics Workshop:

I. Assembly language routines that provide a dramatic improve­
ment over what is possible by using BASIC alone. Some of the
routines improve on BASIC's speed and code size, while others
have significant capabilities not available in BASIC.

2. BASIC subprograms and functions that serve as examples and
perform a variety of chores that would be tedious or difficult to
write yourself.

3. This manual, which provides insights on some of the more
advanced topics in graphics programming.

All of the programs include heavily commented source code, not only to
show how they are used, but also to explain how they work.

Overview

QuickBASIC has always been a simple and easy-to-use language for
creating graphics applications. Built into QuickBASIC from the beginning
have been the capabilities to create simple graphics on most of the currently
popular display types. It has the ability to draw lines, circles, manipulate
graphics images and display text in graphics mode. While these basic
abilities are adequate for simple graphics applications, QuickBASIC
doesn't have the ability to display pre-created images, such as PCX files
created in PC PaintBrush. QuickBASIC doesn't give you the ability to
scroll a region of the graphics screen in any direction. QuickBASIC
doesn't have the ability to draw lines using one of the arithmetic operations
such as XOR. The XOR technique operates by retaining the old informa­
tion on the screen so that a successive XOR operation will replace the
original image on the screen.

Among the deficiencies found in QuickBASIC for graphics applications
are the following: Although QuickBASIC can print text in the graphics
modes, the process is slow and a programmer cannot specify the back­
ground color of the text. Some of the other graphics routines QuickBASIC
provides are also slow, particularly reading and writing a single pixel. In
terms of code size, if you have ever tried to create an .EXE version of a
program using QuickBASIC graphics routines, you will find that it turns
into a very large program.

CRESCENT SOFTWARE. INC. ■ 1-1

Introduction The Graphics Worbhop

Should all these limitations make you think twice about using QuickBASIC
for your graphics programs? The answer is "No". Graphics Workshop
supplies you with the capabilities QuickBASIC lacks. Graphics Workshop
has the ability to display PCX files created from Hercules, CGA, EGA,
and VGA graphics modes. Graphics Workshop gives you a routine to
scroll any region of the screen in any direction you choose. Graphics
Workshop gives you a line routine that is faster than QuickBASIC's LINE
statement and also has the ability to specify XOR, OR, AND, operators
or simply a straight replacement (the BASIC LINE statement allows only
straight replacement). Graphics Workshop gives you a way to print strings
to the screen in any foreground and background color, and at up to 10
times the speed ofQuickBASIC's PRINT statement. Graphics Workshop
also gives you equivalent but faster routines to replace QuickBASIC's
POINT and PSET, statements. These statements are GetPointVE% and
DrawPointVE. In addition, the Graphics Workshop's GetCacheVE%
routine uses a simple cache so that it does not always have to go to video
memory to get the color of the pixel on the screen or even use multiplica­
tion to find the pixel's location. This provides a dramatic increase in the
speed of getting a pixel's color off the screen.

Finally, because Graphics Workshop provides low level routines to set
screen modes and manipulate pages, you may be able to fulfill all of you
graphics needs without using QuickBASIC's SCREEN statement, thereby
coming out with mrch smaller executable programs.

Starting with Graphics Workshop

This manual covers the many important topics you will need to know to
effectively use Graphics Workshop. In addition to providing a listing of
each routine and its calling syntax, many other details are described in
depth.

However, if you are familiar with BASIC programming and want to get
started right away, simply start QuickBASIC 4 with the GW.QLB Quick
Library like this:

QB /L GW.QLB

If you are using BASIC 7, start it and specify the GW7.QLB Quick Library
as follows:

QBX /L GW7. QLB

Once your version of BASIC has been started, with the appropriate library
you may run any of the Graphics Workshop demonstration programs to
quickly see what the various routines do, and how they are called. Most
demonstration programs start with the letters DEMO, which makes them

■ 1-2 CRESCENT SOFTWARE. INC.

The Graphics Workshop Introduction

easy to identify from the QuickBASIC editor Files menu. All of the
demonstration programs are documented in Chapter 2.

After examining the demo programs, the next step would be to use the
routines in a program of your own. Before using the routines, it's
advisable to read a few of the important sections of this manual.

■ Naming Conventions (Chapter 1)
This section will help you to understand which routines are meant to be
used with which screen modes.

■ Multiple Screens (Chapter 1)
This section talks about video memory and how most video adapters have
enough memory for two complete graphics screens.

■ Different Coordinate Systems (Chapter 1)
This section talks about the different coordinate systems used by Graphics
Workshop, and explains a coordinate system used by Graphics Workshop
with which not everyone is familiar.

■ Passing Parameters (Chapter 1)
This section explains how most of the routines in Graphics Workshop pass
information. It explains that including the file GWDECL.BAS will
alleviate any problems.

■ Standard Code (Chapter 1)
This section goes over the standard code which should be added to your
programs to use the different routines in Graphics Workshop.

■ The GPDat%() array (Appendix C)
This section goes over an array that is used to share information between
routines. It explains the different elements of the array and how their
values can be utilized.

If you are already a Crescent Software customer and are using either
QuickPak Professional or GraphPak and want to add Graphics Workshop
routines to your existing programs, we suggest you read:

■ Converting from QuickPak or GraphPak
(Appendix D)
This section talks about the differences and what is required in converting
from one system to another.

Naming Conventions

In this manual and in all of the routines there is a standard naming
convention used to specify the screen mode with which the routine is to

CRESCENT SOFrWARE. INC. ■ 1-3

Introduction The Graphics Workshop

be used. A majority of the routines work for both the VGA and EGA
high-resolution screen modes. These routines have names like
GMovel VE and GPrint0VE. You'll notice that both routines have the
letters VE at the end of the routine name. This specifies that the routine
is used for the VGA and EGA high-resolution screen modes. The routines
which work for only the EGA screen modes have the letters EGA at the
end of the routine name. Those routines which work only with VGA
256-color mode have the letters V256 at the end of the routine names.

Functions

An interesting capability of QuickBASIC 4 and BASIC 7 not present in
earlier versions of the BASIC compiler is that user-defined functions can
execute statements not related to calculating the result of the function.

Beginning with QuickBASIC 4 and BASCOM 6, functions may also be
written in assembly language. In the past, the only way an assembler
routine could return information was to pass it a variable, and then examine
the variable when the routine finished.

Now, however, assembly routines may return a value directly. This feature
is used extensively in Graphics Workshop in those cases where returning
a value is appropriate. It is important to understand that assembler
functions must be declared before they can be used. For example, consider
the HercThere% function which checks to see if the MSHERC.COM or
QBHERC.COM is resident in memory:

IF NOT HercThere% THEN PRINT ""MSHERC not loaded""

If the function hasn't first been declared, BASIC would have no way to
know that HercThere% isn't simply an integer variable.

All of the DECLARE statements you will need for routines contained in
Graphics Workshop are in the file GWDECL.BAS. Including
GWDECL.BAS does not increase the size of your compiled program.

Multiple Screens

All IBM-compatible graphics hardware, the Hercules, CGA, EGA, and
VGA display cards, have both text and graphics modes. Text mode is the
normal mode of operation for these cards and supports only text output.
Graphics mode is an optional mode that supports the use of both bit­
mapped and object graphics operations. Some graphics modes have the
ability to store more than one complete graphics screen in memory. Each
complete individual screen is considered a page of video memory and each
page is assigned a distinct screen number starting with page 0. Page 0

■ 1-4 CRESCENT SOFTWARE, INC.

The Graphics Workshop Introduction

starts out as the visible or foreground screen. Any other pages can be
considered background screens as they are not visible at this time. It is
not necessary to draw on the visible page; drawing operations can be
performed on any of the video pages. QuickBASIC maintains both a
visible page and an active page. The visible page is the currently displayed
screen. The active page is the page with which all the BASIC graphics
statements work whenever they are executed. Using this simple but
little-known feature of QuickBASIC, screens can be drawn in the back­
ground and then displayed instantaneously. The active page can be set as
a parameter of the BASIC SCREEN statement.

In all modes on the Hercules, CGA and EGA graphics adapters, there is
sufficient memory to store at least two graphics screens. VGA high-resolu­
tion graphics modes, however, don't have enough memory for two graphics
pages. Early VGA adapters had only 256K of memory, which simply isn't
enough memory to store two of its high resolution screens. One high
resolution screen requires 640 x 480 x 4 bits to store the information.
That's 80 x 480 x 4 bytes, or 132K. Two screens would then require 264K,
which exceeds the memory a VGA adapter has to work with. Unfortunate­
ly, in the PC world programmers are required to work for a least common
denominator. This means that even though the hardware designers fixed
their mistake and later released VGA cards with more memory, there is a
significant number of VGA cards which simply are not capable of two
video pages.

Screen Modes
QuickBASIC uses the SCREEN statement to set the appropriate graphics
mode. The format for the screen statement is as follows:

SCREEN Mode, ColorSwitch, ActivePage, VisualPage

CRESCENT SOFTWARE, INC. ■ 1-5

Introduction The Graphics Worbhop

The Mode value can be selected from the following table:

MODE I MONITOR I SCREEN SIZE I COLORS I PALETTE

0 Color Text (80x25)

CGA 320x200 4 2 sets

CGA 320x200 4 I set
(mode I with a ColorSwitch of I)

2 CGA 640x200 2 16

8 EGA 320x200 16 64
10 EGA 640x200 16 64

7 EGA 640x350 2 64
9 EGA 640x350 16 64

II VGA 640x480 2 256,000
12 VGA 640x480 16 256,000

13 VGA 320x200 256 256 000
All references to 256,000 colors made in this manual actually refer tc
262,144 different colors which are available.

Hercules Graphics Mode is not a supported standard in the IBM PC BIOS.
QuickBASIC provic1es support using a TSR (terminate and stay resident;
program. A Mode value of 3 is used when setting the Hercules graphic!
mode.

Graphics Workshop has a replacement routine for each of these screer
modes, induding a Hercules screen statement that does not require a TSR
program.

When programming you can set the visual page to other than the activi
page, and then after you have drawn everything in the invisible back­
ground, change the visible page. This gives the appearance of drawin~
complex screens instantaneously.

Different Coordinate Systems

The most common coordinate system is that used by conventional texl
screens. These screens have 80 horizontal coordinates and 25 vertical
coordinates. When you specify a coordinate, you use a number between
I and 80, or I and 25 respectively.

Graphics screens have many more coordinate possibilities. The VGA
screen has a resolution of 640 by 480 pixels. When specifying a coordinate

■ 1-6 CRESCENT SOFTWARE. INC,

The Graphics Workshop lnlroduction

on an VGA graphics screen, the values range from Oto 639, and from 0
to 479. Charts and graphs usually stan from some center point. This
point appears at 0, 0 on the number line. To keep graphing simple,
graphics mode screens use the upper-left corner of the screen (position 0,
0) as the base coordinate.

If you've tried working with both graphics and text, you'll notice that
graphics modes run slower. This is to be expected. It's not that people
create less efficient code for graphics mode programs. Rather, in graphics
mode there is considerably more work done to place information on the
screen. In addition, there are simply more bytes of information to
manipulate. A typical character mode screen is an 80x25 matrix or
approximately 2,000 (2K) bytes. A typical high resolution VGA screen
has 640x480x4 bits, or 132K. It takes more CPU power, and thus more
time, to manipulate 132K as opposed to 2K.

To make it simple to understand which type of coordinate system - text or
graphics - we are dealing with in the Graphics Workshop routines, we are
going to define the variable names that refer to each system. For text
mode coordinate systems we will call the variables Row% and Col%. Any
variables like Row!% and Cols% also refer to this system. This doesn't
mean that Graphics Workshop uses text mode, but it does have the ability
to use the text mode coordinate system while running in graphics mode.
To talk about a graphics coordinate system, we will use variables like
XPos % , Y 1 % , XPixels % , or YPixels % .

The graphics system of an EGA has 224,000 different pixels on the screen.
To change every pixel on the screen would take an exorbitant amount of
time. The organization of EGA memory stores 8 pixels in every location
of memory. If we could generalize what we want to do with the pixels we
could work with these 8 pixels at a time. The 8 pixels are all in a row
horizontally on the screen. This allows for 80 groups of these 8 pixels on
a row. On a text screen there are 80 columns. This makes it possible to
mix coordinate systems. You might ask, "Why mix coordinate systems?"
The answer comes from understanding how a computer stores graphics
memory. The advantage in working with a screen 8 pixels at a time is, of
course, speed. For an example of a major graphics program which mixes
coordinate systems, look at either Windows or Presentation Manager. If
you create a DOS window and place it in a re-sizable window on the screen
you will notice that you can't move it just one or two pixels to the left or
right, though you can move it any number of lines up or down. Microsoft
could have made it possible to position it at any pixel, but they chose this
method to preserve speed.

CRESCENT SOFTWARE. INC. ■ 1-7

Introduction The Graphics Work.ahq

Similarly, Graphics Workshop has many routines designed to take ad·
vantage of this speed as well. This mixed system will use text modE
columns and graphics mode lines for its coordinates. The routines whict
use this new system will use variables like Cols% and Lines% to defim
the region. Graphics modes using this mixed system will have 8(
horizontal coordinates. The EGA high-resolution mode has 350 lines
Similarly the VGA high-resolution mode has 480 lines. It is important tc
understand that the 80 column resolution is just for positioning. You ca,
still have a different pixel color anywhere on the screen.

Each of the different coordinate systems has been placed in the file
GWDECL.BAS. Each of the coordinate systems has been given a name
relating to the types in this file. We will refer to the text mode coordinate
system as system 0. Then the graphics mode system will be called systen
I. The last system is the mixed system with text columns and pixel lines
This system will be called system 2. There are two TYPE definitions fo
each system. One is the type which holds the coordinates for a singl,
spot. This is called Coord0, Coord I, or Coord2. The other is a variabl,
type which defines a window on the screen. This is called Window0
Window!, or Window2. There is also a definition for a WindowlD am
a Window2D which will be described below.

There are two ways to describe a window (box) using these coordinat,
systems. The first is probably more familiar as it defines the window witl
absolute coordinates for the upper-left and lower-right corners of th,
window. The second window system uses the coordinate of the upper-lef
corner of the box and the width and height of the box to define a windo\li
The width and height can be referred to as being delta values from th,
upper-left corner to the lower-right corner of the region. This coordinat,
system allows low-level assembly routines to skip the step of calculatinJ
how many locations on the screen exist between one side of the windov
and another. We will refer to these window systems as Window!D am
Window2D. The "D" stands for the delta values which it utilizes.

Passing Parameters

The routines in Graphics Workshop were designed with speed in mind.
is for that reason that many of them pass parameters using the BYVAI
keyword in QuickBASIC. When a DECLARE statement is made, certai1
parameters can be preceded by the BYVAL keyword. For an explanatio1
of how this can make a program faster, take a look at th,
DEMOBNCH.BAS program which demonstrates the speed differences.

QuickBASIC doesn't automatically understand that a routine ha:
parameters which are meant to be passed using the BYVAL keyword. Bu

■ 1-8 CRESCENT SOFTWARE, INC

The Grophics Workshop lnlroduction

if you include the file GWDECL.BAS at the beginning of EVERY one of
your programs and modules, you will not have any problems. The
GWDECL.BAS file contains DECLARE statements for every assembly
routine in Graphics Workshop. Below is an example of how the BYVAL
keyword is placed into a DECLARE statement:

DECLARE SUB DrawPointVE (BYVAL X%, BYVAL Y%, BYVAL PointColor%)

Standard Code
Two forms of standard code will be covered in this section. The first form
is for the main program file. The second form is for all of the modules.
Below is the standard code for your main program:

DEFINT A-Z 'Makes all variables integers
'$INCLUDE: 'GWDECL.BAS' 'Includes standard declarations
'(Insert other DECLARE statements here)

'$INCLUDE: 'GETVIDEO.BAS'

'$INCLUDE: 'GPFDNT .GW'
FontFi le$ = "HELV12"
CALL SetGPFont (I)
CALL LoadFont(FontFi le$)

'$1 NCLUDE: 'GWFDNT. GW'
FontFi le$ = "HELV"
CALL SetGWFont (1)
CALL Load0utlineFont(FontFile$)

CALL SetVideo

'Determines monitors attached

'GraphPak Fonts

'Specify loading font number 1
'Load font into the Font$() array

'Graphics Workshop Vector Fonts

'Specify loading font number 1
'Load font into the
'OutlineFont$() array

'Sets the screen mode

The first line is very important. All of the Graphics Workshop routines
expect integer values. The DEFINT statement ensures that all variables
are stored and passed in this format. Placing a ! or # symbol after a
variable you want to be considered as a floating point number will override
the DEFINT for that variable. However, remember that integer math is
always faster than floating point math.

As a safeguard, we have provided a BASIC file named GWDECL.BAS
that you should include at the very beginning of all your programs and
modules. This file contains appropriate declaration statements for all of
the Graphics Workshop routines. If you have included this file and then
attempt to call a program incorrectly, QuickBASIC will warn you.

Although you don't always have to include all of the above lines of code,
the file GWDECL.BAS won't increase the size of your finished program,
so it is advisable tu include it always. GETVIDEO.BAS determines the
monitor you have and dimensions the bare minimum size variables (i.e. I

CRESCENT SOFCWARE, INC. ■ 1-9

I

lntroduclion The Graphics Worbhap

element per array) that are necessary for using some of the BASIC routines
supplied with Graphics Workshop.

SetVideo is a routine which sets the screen mode. The screen mode is set
based upon the value in GPDat%(31). The GPDat%0 array is described
in fuller detail in Appendix C. You can modify the value in this variable
prior to calling SetVideo. You could, for instance, force an EGA
hi-resolution mode to be set.

There are two font systems supplied with Graphics Workshop. One is the
GraphPak fonts which are small scale fonts. The other is Graphics
Workshop's Vector fonts which can be made as large as is possible on the
screen. If you are not going to use either of the font systems, you don't
need any of the rest of the above lines except the call to Set Video which
is described below. If you are not going to use the Vector (also referred
to as Outline) fonts, then don't include the GWFONT.GW file and remove
the lines which call LoadOutlineFont. It's as simple as that.

Below is the standard code for all of your modules. When you use the
File Load option on the QuickBASIC menu system, it gives you the option
to load a module. Any modules loaded in this fashion should utilize the
standard code below. There are only three things which should always be
added.

DEFINT A-Z
'$INCLUDE: 'GWDEcL.BAS'
' (Insert other DECLARE 's here)

'$INCLUDE: 'CDMMDN.GW'

Once again it is always best to have a DEFINT statement everywhere.
There is no need to use floating point arithmetic when integer arithmetic
is much faster. In addition, all of the Graphics Workshop routines expect
integers.

GWDECL.BAS should be included at the very beginning of all your
programs and modules. This file contains appropriate declaration state­
ments for all of the Graphics Workshop routines. If you have included
this file and then attempt to call a program incorrectly, QuickBASIC will
warn you. It will add not increase the size of your final compiled progr;ims
to have this tile included in every module.

COMMON.GW holds BASIC COMMON statements used for sharing
variables between routines. The variables shared include font information
and the GPDat%0 array discussed in Appendix C which is a general
purpose array for storing all sorts of useful variables. The following

■ 1-10 CRESCENT SOFTWARE, INC.

The Graphics Workshop Introduction

section describes how to use COMMON.GW and why it should be used
in all of your modules.

The Graph Pak and Graphics Workshop Vector font systems have the ability
to display characters in the extended character set. In character mode
applications, the most useful portion of the extended character set seems
to be the line drawing characters. In graphics mode, we have a better
method of drawing lines: the Line VE routine. So, in graphics mode, the
most useful portion of the extended character set is its foreign characters.

The font files EURO.GFN and EURO.QFN work with the GraphPak and
Graphics Workshop font systems respectively, and are demonstrated by
the DEMOEURO.BAS example program. To enable the European fonts
(which requires enlarging the font arrays enough to contain the extended
character set), set the variables EuroGPFonts% and EuroGWFonts% to
-1 at the locations shown below in the standard code:

DEFINT A-Z
'$INCLUDE: "GWDECL. BAS"
'$INCLUDE: 'GETVIOEO. BAS'

EuroGPFonts% = -1

'$INCLUDE: 'GPFonts.GW'
CALL SetGPFont (1)
CALL LoadFont ("EURO"

EuroGWFonts% = -1

'$INCLUDE: 'GWFonts.GW'
CALL SetGWFont (1)

'Set this before reaching the GPFont.GW
'include file

'Set this before reaching the GWFont.GW
'include file

CALL LoadOut l ineFont ("EURO")

Why use COMMON.CW?

When you create a SUB in BASIC, any variables you use there are local
to that subroutine. This means that you can use the variable T% even if
you are using the same letter T% in some other subroutine or in your main
program. This is beneficial in most cases, because you don't have to worry
what names you've used elsewhere. But there are times when you want
to access variables from other routines within your subroutine. Essentially
what you want is a variable name which is global. One way to do this
would be to have every routine that needed the variable to have it passed
as a parameter. The problem is that if a simple routine was nested inside
two, three or even more subroutine calls, each of those routines would
need to have the variable passed. Take, for example, the variable Global%
which we've created in the example below. It needs to be passed to the
routine TestGlobal, but we start in routine A.

CRESCENT SOFTWARE, INC. ■ I - II

I

Introduction

SUB A (Global%)

CALL B(Global%)

END SUB

SUB B (Global%)

CALL C(Global%)

END SUB

SUB C (G loba 1%)

CALL TestG1obal(Globa1%)

END SUB

The Graphics Workshop

As you can see a lot of extra, and unnecessary, passing of information is
taking place. If all that needed to be passed was a single variable it would
be acceptable, but if it was eight arrays filled with font information, and
global information about the screen mode, it would be burdensome. It's
hard to imagine adding eight parameters to every routine, not to mention
how hard it would be as a programmer to get anything accomplished.

Luckily, QuickBASlC has the answer. It's called the COMMON state­
ment. It allows you to make certain variables global. Its only restriction
is that it must be placed in every module within your program. Also, it
requires that it sees the same set of COMMON statements in every module
of your program. That would be a great deal of typing, which is why
we've created COMMON.GW. COMMON.GW is a BASIC include file
which you must place at the top of all of your routines should you decide
to use either of the font systems within Graphics Workshop, or if you use
the GPDat%() array inside your program. Note that the GPDat%0 array
is created automatically inside the include file GETVIDEO.BAS, shown
in the "Standard Code" section in this chapter. Shown below are the
contents of the COMMON.GW file. If you're already using COMMON
statements of your own, we suggest you combine the two sets of COM­
MON statements into one indude tile.

COMMON SHARED GPOat%(), Font$(), FontWidth%(), FontHeight%()
COMMON SHARED OutL ineFont$(), FontSize%(), OutL ineHeight%()
COMMON SHARED Tile$(), AltTile$()

The keyword SHARED should also appear on each line as shown above.
Note, the COMMON.GW include file is just part of what we have
recommended you place at the top of every one of your modules. See the
"Standard Code" section for more details.

■ I - 12 CRESCENT SOFTWARE, INC.

The Graphics Work.shop Introduction

Multi-Tasking Menus
One of the more exciting capabilities we have provided in Graphics
Workshop is a system of menus that can run in the graphics modes. These
routines create menu systems that appear to be running just as if they were
running in the text modes. A special shadow feature has been duplicated
using an advanced routine which can change many pixel colors at a time.
This shadow effect can be turned off by commenting out the two lines
which call the routine GPaintBox.

These menus have a multi-tasking feature which allows your program to
be doing things while the menu system is waiting for the user to make a
selection. Where most menu programs simply sit in an idle loop waiting
for a key press. both the pull-down and vertical menu subprograms let you
continue your program if you wish to do so.

To accomplish this, an "Action" parameter (Action%) has been added to
the calling sequence. Depending on the setting of this variable, the menus
can be instructed to operate in a number of different ways.

The Action variable has six different possible settings which tell PullDown­
G and VertMenuG how they are to behave. Each of the possible Action
values is described in detail below.

If Action is set to zero, the menu will operate the way you would expect
a "normal" menu to work. The underlying screen is first saved, then the
menu is displayed, and finally an 1NKEY$ loop repeatedly waits for the
user to press a key or a mouse button. Once a key or a mouse button has
been pressed, the original screen is restored and control is returned to the
calling program. The Choice variable(s) may then be examined to see
what selection the user chose.

When Action is set to I, both PullDownG and VertMenuG save the screen
and display themselves. Control is then returned to the calling program
immediately and Action will be set to 3 for subsequent calls. Since Action
3 is how you will be polling the menu subsequently, this saves you an extra
step.

Setting Action to 2 lets you re-display the menu in those cases where it
may have been overwritten by another possibly overlapping menu. Action
2 also resets itself to 3 for subsequent calls.

If the menus are called with Action 3, the keyboard and mouse are merely
polled to see if a key or button has been pressed. If Action is still set to
3 when the menu returns, it means that no keys or mouse buttons were

CRESCENT SOFrWARE. INC. ■ 1-13

I

I Introduction The Graphics Workahop

pressed. If Action is returned set to 4, the user either made a selection or
pressed Escape. In this case, the Choice, Menu, and Ky$ variables should
be examined. Look at the programs DEMOPULL.BAS and
DEMOVERT.BAS to see how !hes~ variables can be examined.

The last Action value is S which tells VertMenuG or PullDownG to remove
itself and restore the original screen.

If you intend to create stacked menus, you should be aware of one important
point. Because each menu saves its own underlying screen, the screen
that was saved first will be destroyed when the menu is called again. This
means that it is up to you to save and restore each screen in succession
manually, except for the last one.

DEMOMENU.BAS provides complete demonstration of using PullDown­
G and VertMenuG in a typical programming context.

■ 1-14 CRESCENT SOFTWARE, INC.

Chapter 2: Demonstration Programs

• • •

The Graphics Work.shop Demonstration Progralll!I

DEMONSTRATION PROGRAMS

ABOUTPCX.BAS
ABOUTPCX.BAS displays all the information contained in a .PCX file's
header. It is an excellent tool for testing the use of a .PCX file on a
particular monitor. ABOUTPCX tells the version of the file, the image
size, and suggests which type of monitor it was created on.

DEMOBOX.BAS
DEMOBOX.BAS shows the operation of the exclusive-oring (XOR)
boxing routine for defining a region on the screen. A complete routine,
PositionBox, is demonstrated here. This routine accepts keyboard input
using the cursor keys to adjust the size of the box. Adjustments are made
for one of two corners, upper-left and lower-right. To toggle between
these corners, use the SpaceBar.

DEMOBYTE.BAS

DEMOBYTE.BAS shows how to use the DrawByteVE routine to display
pixels, draw patterns, simulate the LINE statement in BASIC and more.
The DrawByteVE routine can draw up to 8 pixels at a time, but all using
the same color. If these requirements fit your needs, then the DrawByteVE
routine can be a fast way to draw images.

DEMOCIRC.BAS

DEMOCIRC.BAS shows the use of the Circle VE routine within Graphics
Workshop. Use this routine to emulate the BASIC CIRCLE statement
when creating programs that don't use the BASIC SCREEN statement, or
when you want to use its OR, AND, or XOR logical operation abilities.
Also, the Circle VE routine does not require floating point arithmetic so
your programs will be smaller.

DEMOCURS.BAS

DEMOCURS.BAS shows the use of the graphics cursor routines contained
in CURSOR.BAS. The routine DrawCursor XORs a graphics cursor at
the position you specify. A value is maintained that keeps track of whether
or not the cursor is currently visible. DrawCursor also demonstrates
positioning within a proportional font string.

CRESCENT SOFTWARE, INC. ■ 2-1

Demonstration Program1 The Graphic• Worbhop

DEMODIGI.BAS

DEMODIGI.BAS shows the screen digitizing routines in DIGITIZE.BAS.
These routines take a portion of the screen and lower the apparent
resolution. This can be used to create an artistic effect for the screen it
is used on.

DEMOEDIT.BAS

DEMOEDIT.BAS shows how the GEditor routine can provide a complete
field editor within graphics mode. The routine uses the DrawCursor
routine to implement a graphics mode cursor, and uses the GPrintOVE
routine to accomplish printing the text information within the string.

DEMOEURO.BAS

DEMOEURO.BAS shows how to use the GraphPak and Graphics
Workshop fonts systems with characters extending through the entire
ASCII character set. Many of the characters in the extended character set
are used in European languages.

DEMOFADE.BAS
DEMOFADE.BAS shows the FadeEGA routine in action. The FadeEGA
routine is the most complex of the graphics transfer routines. FadeEGA
brings an image to the visible screen randomly, 4 pixels at a time. The 4
pixels are arranged in the form of a 2x2 square. Two uses of the FadeEGA
routine are demonstrated.

DEMO FONT.BAS

DEMOFONT.BAS presents all the fonts available in Graphics Workshop.
Both the Vector Fonts described in Chapter 6 and the fonts provided from
GraphPak may be drawn at any size, and at any angle. Also demonstrated
is the use of multiple fonts on the same screen.

DEMOFX.BAS

DEMOFX.BAS demonstrates the GMovel VE and GMove3VE routines
for moving images on and off the screen. The GMovel VE routine is used
by BASIC subroutines to slide images onto the screen. The GMove3VE
routine is used by a BASIC subroutine to split the image and move to the

■ 2-2 CRESCEl\fl' SOFJWARE, INC.

Tho Or■phic■ Worbhap Demon■lralion Program,

screen in too parts. The GMovelVE routine can also be used to create a
mirror image of an image on the screen.

DEMOGW.BAS
DEMOGW. BAS demonstrates many of the routines in Graphics Workshop,
and gives a variety of methods for using them.

DEMOHERC.BAS
DEMOHERC.BAS shows the graphics primitives that can be used on a
Hercules monitor without requiring the use of the TSR MSHERC.COM.

DEMOINTR.BAS
DEMOINTR.BAS shows the "interludes" available for adding to the
QuickSegue demo (QSEGUE.BAS). Two interludes are shown. One uses
a movie clicker to display a title. The other provides an interesting
background effect which can be placed behind titles to add motion to a
static image.

DEMOLTS.BAS

DEMOLTS.BAS demonstrates the too Lotus-style menu programs, Lts­
MenuG and Lts2MenuG, which come with graphics workshop.
DEMOLTS.BAS demonstrates how to initialize the menu arrays and set
up the display to use the routine.

DEMOMENU.BAS

DEMOMENU.BAS shows the use of the PullDownG, VertMenuG, and
MsgBoxG routines together as a complete system. The multi-tasking
feature of the PullDownG and MsgBoxG routines are implemented here.

DEMOMOUS.BAS

DEMOMOUS.BAS shows the use of mouse routines for graphics mode.
It demonstrates the proper use of the HideCursor and ShowCursor routines
when programming for mouse support in the graphics modes. It also
demonstrates the abilities of all of the other mouse routines provided with
Graphics Workshop.

CRESCEJ\rl" SOFl'WARE, INC. ■ 2-3

Demonstration Program1 The Graphics Worbhop

DEMOMOVE.BAS

DEMOMOVE.BAS shows how to use the GMovelVE and GMove2VE
routines to duplicate images, simulate the GET and PUT in BASIC with
a major speed improvement, and how subroutines can be created to flip
images or manipulate images in almost any fashion. The GMovel VE and
GMove2VE routines do not require setting up a large array like the GET
and PUT statements in BASIC; all work is done entirely in video memory.

DEMO PAL.BAS
DEMOPAL.BAS shows how using the palette can increase the impression
of a presentation. It also demonstrates how to simulate motion using the
palette. Finally, it demonstrates the need for a proper set of colors when
creating a real-life image.

DEMOPLMS.BAS

DEMOPLMS.BAS shows the use of a Windows(tm)-like graphics pull­
down menu system. The routine GPrint0VE is a vital part of the
PullDnMSG menu system for graphics mode. It allows the text to have a
background color, which is not possible with BASIC's PRINT statement
while running in graphics mode. Another vital routine is GMove2VE,
which is used to save and restore parts of the graphics screen which lie
beneath the pull-down menus.

DEMOPU LL. BAS

DEMOPULL.BAS shows the use of graphics pull-down menus. The
routine GPrint0VE is a vital part of the PullDownG menu system for
graphics mode. It allows the text to have a background color, which is
not possible with BASIC's PRINT statement while running in graphics
mode. Another vital routine is GMove2VE, which is used to save and
restore parts of the graphics screen which lie beneath the pull-down menus.

DEMOSAVE.BAS
DEMOSAVE.BAS shows the use of SavePCXVE for storing a graphics
screen into the .PCX file format. The routine SavePCXVE is written in
assembly and is therefore very fast.

■ 2-4 CRESCENT SOFIWARE, INC.

The Graphic■ Workahop Demonstration Program■

DEMOSCRL.BAS
DEMOSCRL.BAS shows the GScrollVE routine in action. Four windows
are scrolled simultaneously with and without a delay. In the next portion
of the demo, four items placed on the screen are moved inward toward
each other to form one object in the middle.

DEMOSCRN.BAS
DEMOSCRN.BAS shows how the KeepData% parameter available with
all of the Graphics Workshop Screen mode routines can be used when
swapping between graphics mode to text mode and back again.

DEMOS HAD.BAS
DEMOSHAD.BAS shows the Shade Vertical and ShadeHorizontal routines
that provide a flowing transition of color to any window. Use these routines
to add a background to demonstration images or titles.

DEMOVERf.BAS

DEMOVERT.BAS shows the use of graphics vertical scrolling menus.
The routine GPrintOVE is a vital part of the VertMenuG menu system for
graphics mode. It allows the text to have a background color, which is
not possible with BASIC's PRINT statement while running in graphics
mode. Another vital routine is GMove2VE, which is used to save and
restore the graphics screen which lies beneath the vertical scrolling menus.

FONT64.BAS

FONT64.BAS is a font editor written in QuickBASIC to create vector
fonts. It demonstrates use of the pull-down menu system for graphics,
and provides an excellent way to create new fonts. It accepts GraphPak
fonts as a base font which you can outline to form new fonts.

GWDEMO.BAS

GWDEMO.BAS is the demo program the Graphics Workshop demo disk.
It includes an example of "mousable" three-dimensional buttons, and
introduces some different fade types. Benchmarks are also shown com­
paring the speed improvements over BASIC's equivalent routines.

CRESCENT SOFTWARE. INC. ■ 2-S

Demonstration Progra1111 The Graphics WorkshCf

QSEGUE.BAS

This program called QuickSegue is a complete graphics slide show
program. It accepts a script consisting of commands from an ASCII input
file, used to load graphics files and send them to the screen. The
QuickSegue script language is described in detail in Chapter S.

SCRNDUMP.BAS

SCRNDUMP.BAS shows the print routine ScrnDump2 in action. This
routine can print any graphics screen to either an EPSON or compatible
dot-matrix, or to a Hewlett Packard LaserJet in either Portrait or
Landscape mode. If you're printing to the LaserJet, there is also an option
to perform rudimentary scaling.

VIEWPCX.BAS

VIEWPCX.BAS loads a .PCX graphics file, determines the screen mode
used to store the screen (EGA, VGA, CGA, or HERC), and then sends
the graphics file to the screen. Pressing any key returns to DOS. The
program also reads the palette information from the .PCX file and adjusts
the palette accordingly.

■ 2-6 CRESCENT SOFIWARE, INC.

Chapter 3: Assembly Routines

■ ■ ■

The Graphics Workshop Assembly Routine,

Virtually all of the assembly routines rely on some support material. The
support material is generally shared data locations in memory. Data like
the segment to use for the proper video page, and local data which
otherwise would be duplicated for each routine are contained in the file
GWVARS.ASM. The assembler file GWVARS.ASM holds the common
variables used by most of the routines in this chapter. This file is contained
in GW.LIB and GW7 .LIB and will be required by most programs created
with Graphics Workshop.

SECTION 1: PCX FILES AND PALETTES

A PCX file is a graphics file format created by ZSoft, the makers of PC
PaintBrush. The routines in this section are used to access and display
PCX images. Information about the PCX file format is contained in
Appendix A. Information about the Palette and how it is used is contained
in Appendix B.

CRESCENT SOFTWARE, INC. ■ 3-1

Assembly Routinea

DispPCXC

■ Purpose:

The Graphics Workshop

Assembler
subroutine contained in CW.LIB

DispPCXC continues the loading process started by OpenPCXFile% and
displays the image to a CGA specified video page.

■ Syntax:

CALL DispPCXC (BYVAL VideoPage%)

■ Where:

VideoPage% is O for the default first display page (Visual Display Page).
A value of I specifies the second display page.

Comments:

All parameters for this routine are passed by value to provide the maximum
speed. Including the file GWDECL.BAS at the beginning of all programs
or modules which use this routine will insure proper operation.

The function OpenPCXFile% must be called first, as it opens the PCX
file and loads the header information to determine which screen mode the
PCX file is intended for.

Due to the nature of the CGA's video memory, this routine will work on
both the CGA 2-color graphics mode and the CGA 4-color graphics mode.
Loading a CGA 4-color graphic image while the computer is in the CGA
2-color mode, will translate the image into a tiled 2-color image.

Use of this routine is demonstrated in the VIEWPCX.BAS example
program and the BASIC routine DisplayPCXFile.

■ See Also:

OpenPCXFile%

■ 3-2 CRESCENT SOFIWARE, INC.

The Graphic, Workahc,p

DispPCXH

■ Purpose:

Auembly Routira

Assembler
subroutine contained in CW.LIB

DispPCXH continues the loading process started by OpenPCXFile% and
displays the image to a Hercules specified video page.

■ Syntax:
CALL DispPCXH (BYVAL VideoPage%)

■ Where:

VideoPage% is O for the default first display page (Visual Display Page).
A value of 1 specifies the second display page.

Comments:

All parameters for this routine are passed by value to provide the maximum
speed. Including the file GWDECL.BAS at the beginning of all programs
or modules which use this routine will insure proper operation.

The function OpenPCXFile% must be called first, as it opens the PCX
file and loads the header information to determine which screen mode the
PCX file is intended for.

The Hercules screen mode is of an odd size, 720x348 pixels when created
with the use of MSHERC.COM. You can replace the BASIC SCREEN
3 statement in your program with the Screen3 routine provided with the
Graphics Workshop to set the Hercules into graphics mode. This method
does not require the use of the TSR program MSHERC.COM, yet it
affords full compatibility.

Use of this routine is demonstrated in the VIEWPCX.BAS example
program and the BASIC routine DisplayPCXFile.

■ SeeAlso:

OpenPCXFile%

CRESCENT SOFI'WARE, INC. ■ 3-3

Assembly Routines

DispPCXVE

■ Purpose:

The Graphic• Worbhop

Assembler
subroutine contained in CW.LIB

DispPCXVE continues the loading process started by OpenPCXFile% and
displays the image to a VGA or EGA specified video page.

■ Syntax:

CALL OispPCXVE (BYVAL VideoPage%)

■ Where:

VideoPage% is O for the default first display page (Visual Display Page).
A value of 1 specifies the second display page.

Comments:

All parameters for this routine are passed by value to provide the maximum
speed. Including the file GWDECL.BAS at the beginning of all programs
or modules which use this routine will insure proper operation.

The function OpenPCXFile% must be called first, as it opens the PCX
file and loads the header information to determine which screen mode the
PCX file is intended for.

The DispPCXVE routine works equally well when BASIC is operating in
SCREEN 7, 8, 9. 11, and 12 since the video memory for all of these
modes is identical. This routine works for all the screen modes which
utilize the plane system created for EGA and VGA graphics. The EGA
and VGA 2-color graphics modes do not utilize the plane scheme most of
the other EGA and VGA screens use. The DispPCXVE routine will still
work equally as well on those. Also, note that PaintBrush for Windows
version 2 saves only three of the four graphics planes in the file (leaving
out the intensity plane). This routine will load those files properly as well.

Use of this routine is demonstrated in the VIEWPCX.BAS example
program and the BASIC routine DisplayPCXFile.

■ SeeAlso:

OpenPCXFile%

■ 3-4 CRESCENT SOFTWARE, INC.

The Graphic• Worlcahop

DispPCXV256

■ Purpose:

Aaaembly Routine•

Assembler
subroutine contained in CW.LIB

DispPCXV256 continues the loading process started by OpenPCXFile%
and displays the image to a VGA 256-color mode specified video page.

■ Syntax:

CALL DispPCXV256 (BYVAL VideoPage%)

■ Where:

VideoPage% is O for the default first display page (Visual Display Page).
A value of 1 specifies the second display page.

Comments:

All parameters for this routine are passed by value to provide the maximum
speed. Including the file GWDECL.BAS at the beginning of all programs
or modules which use this routine will insure proper operation.

The function OpenPCXFile% must be called first, as it opens the PCX
file and loads the header information to determine which screen mode the
PCX file is intended for.

Use of this routine is demonstrated in the VIEWPCX.BAS example
program and the BASIC routine DisplayPCXFile.

■ SeeAlso:

OpenPCXFile%

CRESCENT SOFTWARE, INC. ■ 3-5

A■aembly Routine■ The Graphic■ Worklhop

GetPaletteVGA% Assembler
function contained in CW.LIB

■ Purpose:

GetPaletteVGA % returns the current value of the palette register specified.
This routine is used for the EGA and VGA screen modes, but only if you
are using a VGA video adapter.

■ Syntax:

Colr% = GetPaletteVGA%(BYVAL Pa1Register%)

■ Where:

Pa1Register% is one of the 16 available colors for the EGA screen modes
(use O through 15).

Colr% is the value returned and is between O and 63 which represents the
color value from the palette.

Comments:

Because GetPaletteVGA % has been designed as a function and passes a
parameter by value, it must be declared before it can be used. Including
the file GWDECL.BAS at the beginning of all your programs will avoid
any problems as it contains a declaration for this function.

The short example below shows how to get the palette value of color 1 on
a VGA monitor.

DEFINT A-Z
0 $INCLUDE: 'GWDECL. BAS" 'required for BYVAL' s
SCREEN 12 'sets monitor in a VGA mode

Pa letteVa lue% = GetPa letteVGA%(I)

The EGA video registers are write-only. There is no way to read the EGA
registers which contain the palette information. Therefore, getting an
EGA palette value is not a simple task. There are two options to determine
the current palette settings. One, if you are setting the palette registers,
you can maintain a list of what values you have set. Then you will know
what is the value of each palette register. Two, there was an excellent
article in the March 1990 issue of Programmer's Journal which discussed
a method of re-mapping the EGA's palette.

■ SeeAlso:

SetPaletteEGA

■ J-6 CRESCENT SOFIWARE, INC.

The Graphic ■ Workshop A1sembly Routinea

GetPalTripleVGA Assembler
subroutine contained in GW.LIB

■ Purpose:

GetPaITripleVGA returns the Red, Green, and Blue values which make
up the specified palette. This routine can be used only in the VGA screen
modes.

■ Syntax:
CALL GetPalTripleVGA(BYVAL Pa1Register%, Red%, Green%, Blue%)

■ Where:

Pa1Register% specifies one of the 256 available colors for the VGA screen
modes (use O through 255), or one of the 16 available colors for the higher
resolution screens (use O through 15).

Red%, Green%, and Blue% return values between O and 63 for each of
the color planes for that palette register.

Comments:

One parameter for this routine is passed by value to provide the maximum
speed. Including the file GWDECL.BAS at the beginning of all programs
or modules which use this routine will insure proper operation.

To get the palette information for the color 3 on a VGA screen mode, use
the following code fragment:

DEFINT A-Z
'$INCLUDE: 'GWDECL.BAS' 'required for BYVAL's
SCREEN 13 'sets monitor in a VGA mode

GetPa lTrip leVGA(3, Red%, Green%, Blue%)

Palette values read from .PCX files are shifted two bits to the left. The
routine HandlePCXPalette does an integer divide by 4 to shift the values
two bits to the right.

■ SeeAlso:

SetPalTripleVGA, HandlePCXPalette

CRESCEm' SOFTWARE, INC. ■ 3-7

Assembly Routine,

GWFileSize&

■ Purpose:

The Graphic, Worbhop

Assembler
function contained in CW.LIB

GWFileSize& will quickly return the length of a named file.

■ Syntax:

Size&= GWFileSize& (Filename$)

■ Where:

Filename$ is the name of the file.

Size& receives its length in bytes. If the file does not exist Size& is instead
assigned a value of -1.

Comments:

Because GWFileSize& has been designed as a function, it must be declared
before it can be used. Including the file GWDECL.BAS at the beginning
of all your programs will avoid any problems as it contains a declaration
for this function.

The brief example that follows shows how to find the file size of the file
DEMOSHAD.PCX.

Size& = GWFi leSize& ("DEM0SHA0.PCX")

This product's m~in purpose for using GWFileSize& is to determine the
file size of .PCX files. The section on the routine QBinaryLoad% goes
into more detail of the use of this routine.

Those users of QuickPak Professional will note that QuickPak has a
FileSize& routine. The difference between the two routines is that
GWFileSize& does not use the critical error handler that comes with
QuickPak Professional.

■ SeeAlso:

QBinaryLoad%

■ 3-8 CRESCENT SOFIWARE, INC.

The Oraphica Workshop Assembly Routine.

OpenPCXFile% Assembler
function contained in CW.LIB

■ Purpose:
OpenPCXFile% opens the specified PCX file, and loads the header
information, including palette information, into the string specified.

■ Syntax:
Array$ = SPACE$(68 + 768)
Success% = OpenPCXFi le%(Fi lename$. Array$)

■ Where:
Filename$ is a string containing the filename of the PCX file.

Array$ is a string of length (68 + 768). The first 68 bytes receive the
header information. If the file is a 256-color PCX file, then the informa­
tion contained in the last 768 bytes of this string are the palette information
for the 256-color mode.

Comments:

After opening the PCX file with this function, one of the following routines
can be used to display the PCX file: DispPCXC, DispPCXH,
DispPCXVE, DispPCXV256.

The following code fragment will load and display a PCX file whose name
is contained in Filename$. It assumes that the correct screen mode for
the PCX file has already been set.

Array$ = SPACE$(68 + 768)
IF NOT OpenPCXFile%(Filename$, Array$) THEN EXIT SUB

CALL WhichPCXScreen(Array$, WhichScreen%)

CALL HandlePCXPa lette(Array$, WhichScreen%)

IF WhichScreen = 4 OR WhichScreen = 6 THEN
CALL OispPCXC(VideoPage%)

ELSEIF WhichScreen = 2 THEN
CALL OispPCXH(VideoPage%)

ELSEIF WhichScreen = 9 THEN

ELSE

END IF

CALL OispPCXV256(VideoPage%)

CALL OispPCXVE(VideoPage%)
CALL ClearVE

Use of this routine is demonstrated in the VIEWPCX.BAS example
program and the BASIC routine DisplayPCXFile.

CRESCENT SOFTWARE, INC. ■ 3-9

Assembly Routines The Graphic■ Worbhop

■ SeeAlso:

DispPCXC, DispPCXH, DispPCXVE, DispPCXV256, DisplayPCXFile,
HandlePCXPalette, WhichPCXScreen

■ 3-10 CRESCENT SOF1WARE, INC.

The Grarhic1 Workshop

PCXArrayC

■ Purpose:

A111cmhly Routines

Assembler
subroutine contained in CW.LIB

PCXArrayC talces an array containing a PCX file and sends it to the CGA
screen specified by video page.

■ Syntax:
CALL PCXArrayC (BYVAL ArraySegX. BYVAL VideoPageX)

■ Where:

ArraySeg% is the segment of an integer array which already holds the
complete .PCX file, starting at the memory location of the first element
of the array and extending to the last memory location of the array.

VideoPage% is O for the default first display page (Visual Display Page).
A value of I specifies the second display page.

Comments:

Both parameters for this routine are passed by value to provide the
maximum speed. Including the file GWDECL.BAS at the beginning of
all programs or modules which use this routine will insure proper
operation.

The Array% O must be loaded with the QBinaryLoad % routine which loads
a binary file into a specific memory location. A complete example of
using the PCXArrayX routines is shown in context in the comments for
the QBinaryLoad% routine.

Due to the nature of the CGA's video memory, this routine will work on
both the CGA 2-color graphics mode and the CGA 4-color graphics mode.
Loading a CGA 4-color graphic image while the computer is in the CGA
2-color mode will translate the image into a tiled 2-color image.

An example of using this routine is contained in the demonstration program
QSEGUE.BAS.

■ SeeAlso:

QBinaryLoad %

CRESCENT SOFTWARE, INC. ■ 3- II

Assembly Routines

PCXArrayH

■ Purpose:

The Graphics Worbhop

Assembler
subroutine contained in CW.LIB

PCXArrayH takes an array containing a PCX file and sends it to the
Hercules screen specified by video page.

■ Syntax:
CALL PCXArrayH (BYVAL ArraySeg%, BYVAL VideoPage%)

■ Where:

ArraySeg% is the segment of an integer array which already holds the
complete .PCX file, starting at the memory location of the first element
of the array and extending to the last memory location of the array.

VideoPage% is O for the default first display page (Visual Display Page).
A value of l specifies the second display page.

Comments:

Both parameters for this routine are passed by value to provide the
maximum speed. Including the file GWDECL.BAS at the beginning of
all programs or modules which use this routine will insure proper
operation.

The Array% O must be loaded with the QBinaryLoad % routine which loads
a binary file into a specific memory location. A complete example of
using the PCXArrayX routines is shown in context in the comments for
the QBinaryLoad% routine.

The Hercules screen mode is of an odd size, 720x348 pixels when created
with the use of MSHERC.COM. Rather than using MSHERC.COM, you
can replace the BASIC SCREEN 3 statement in your program with the
Screen3 routine provided with Graphics Workshop to set the Hercules into
graphics mode. This method does not require the use of the TSR program
MSHERC.COM, but would allow a program to display a PCX file in the
Hercules mode. See the routine Screen3 for details and restrictions.

An example of using this routine is contained in the demonstration program
QSEGUE.BAS.

■ See Also:
QBinaryLoad%, HercThere%, Screen3

■ 3-12 CRESCENT SOFIWARE, INC.

The Graphic■ Worklhap

PCXArrayVE

■ Purpose:

A■■embly Routines

Assembler
subroutine contained in CW.LIB

PCXArrayVE takes an array containing a PCX file and sends it to the
EGA or VGA screen specified by video page.

■ Syntax:
CALL PCXArrayVE (BYVAL ArraySeg%, BYVAL VideoPage%)

■ Where:
ArraySeg% is the segment of an integer array which already holds the
complete .PCX file, starting at the memory location of the first element
of the array and extending to the last memory location of the array.

VideoPnge% is 0 for the default first display page (Visual Display Page).
A value of 1 specifies the second display page.

Comments:

Both parameters for this routine are passed by value to provide the
maximum speed. Including the file GWDECL.BAS at the beginning of
all programs or modules which use this routine will insure proper
operation.

The Array%O must be loaded with the QBinaryLoad routine which loads
a binary file into a specific memory location. A complete example of
using the PCXArrayX routines is shown in context in the comments for
the QBinaryLoad% routine.

The PCXArrayVE routine works equally well when BASIC is operating
in SCREEN 7, 8, 9, 11, and 12 since the video memory for all of these
modes is identical. This routine works for all the screen modes which
utilize the plane system created for EGA and VGA graphics. The EGA
and VGA 2-color graphics modes do not utilize the plane scheme most of
the other EGA and VGA screens use. The PCXArrayVE routine will still
work equally as well on those. Also, note that PaintBrush for Windows
version 2 saves only three of the four graphics planes in the file (leaving
out the intensity plane). This routine will load those files properly as well.

An example of using this routine is contained in the demonstration program
QSEGUE.BAS.

■ SeeAlso:
QBinaryLoad%

CRESCENT SOFTWARE, INC. ■ 3 -13

Aaaembly Routine•

PCXArrayV256

■ Purpose:

The Graphics Workahap

Assembler
subroutine contained in CW.LIB

PCXArrayV256 takes an array containing a PCX file and sends it to the
VGA screen running in 256-color mode.

■ Syntax:

CALL PCXArrayV256 (BYVAL ArraySeg%, BYVAL VideoPage%)

■ Where:

ArraySeg% is the segment of an integer array which already holds the
complete .PCX file, starting at the memory location of the first element
of the array and extending to the last memory location of the array.

VideoPage% is O for the default first display page (Visual Display Page).
Memory limitations allow only one page on the VGA when in 256-color
mode.

Comments:

Both parameters for this routine are passed by value to provide the
maximum speed. Including the file GWDECL.BAS at the beginning of
all programs or modules which use this routine will insure proper
operation.

The Array% O must be loaded with the QBinaryLoad % routine which loads
a binary file into a specific memory location. A complete example of
using the PCXArrayX routines is shown in context in the comments for
the QBinaryLoad % routine.

An example ofusing this routine is contained in the demonstration program
QSEGUE.BAS.

■ SeeAlso:

QBinaryLoad%

■ 3-14 CRESCENT SOFIWARE, INC.

The Orarhic11 Workshop

PositionPCXVE

■ Purpose:

Assembly Routines

Assembler
subroutine contained in CW.LIB

PositionPCXVE sets the screen location to place the next PCX image on
an EGA or VGA high-resolution screen mode. This routine is called after
OpenPCXFile.

■ Syntax:

CALL Posit ionPCXVE (BYVAL L ineStart%. BYVAL Co]Start%)

■ Where:

LineStart% is a value between O and 479 for a VGA display.

Co1Start% is a column number between l and 80.

Comments:

Both parameters for this routine are passed by value to provide the
maximum speed. Including the file GWDECL.BAS at the beginning of
all programs or modules which use this routine will insure proper
operation.

Proper usage of this routine is shown in the example subroutine
DisplayPCXFile2.

CRESCENT SOFTWARE, INC. ■ 3-15

A11embly Routines The Graphics Worbhap

QBinaryload% Assembler
function contained in GW.LIB

■ Purpose:

QBinaryLoad% loads the PCX graphics file specified by Filename$ into
the integer array so that it can be displayed on the screen at a later time.
If the file is read successfully, this function returns a non-zero value.

■ Syntax:
Success= QBinaryLoad%(Filename$, SEG Array%)
IF NOT Success THEN PRINT "Fi le Error"

■ Where:

Filename$ is a string containing any valid file name. No wildcards should
be used here.

Array%0 is an integer array with half as many elements as there are bytes
in the file. The array can be one-dimensional or two-dimensional. A
two-dimensional array is required if you intend to load files larger than
64K.

Comments:

A method for loading a PCX file to the EGA or VGA high-resolution
screen modes:

DEFINT A-Z
'$INCLUDE: 'GWDECL. BAS'
SCREEN 9

Filename$ = "Gra1hl.PCX"
Size&= GWFileSize&(Filename$)
REDIM Array%(Size& \ 4 + 1. I)
Success= QBinaryLoad(Filename$, SEG Array%(0, 0))
IF Success THEN

ArraySeg% = VARSEG(Array%(0, 0))
CALL PCXArrayVE(ArraySeg%, 0)

ELSE
PRINT "Error Loading Fi le"

END IF

The above code has been simplified to expect the PCX file to be for the
EGA or VGA high-resolution screen modes. To use the PCXArrayC,
PCXArrayH, or PCXArrayV256 routines, simply replace the above line
containing the call to PCXArrayVE.

Code like that in the routine WhichPCXScreen can be used to determine
the screen mode a PCX file was created on. Note that the code in
WhichPCXScreen will not work directly, because it is designed for the

■ 3-16 CRESCENT SOFIWARE, INC.

The Grarhic1 Workshop A1■cmbly Routine,

PCX display routines like DispPCXVE which do not load the entire file
into memory before displaying it. Furthermore, when using the above
code fragment for the array method of displaying PCX files, it is likely
that the screen mode will be known ahead of time.

■ SeeAlso:
GWFileSize&, PCXArrayVE, PCXArrayC, PCXArrayH, PCXArray­
V256

CRESCENT SOFTWARE, INC. ■ 3-17

A■aembly Routine■

SavePCXVE

■ Purpose:

The Graphic, Worbhop

Assembler
subroutine contained in CW.LIB

SavePCXVE saves the current EGA or VGA high-resolution screen to the
.PCX file specified by Filename$.

■ Syntax:
CALL SavePCXVE(Fi lename$)

■ Where:

Filename$ is a string which holds the name of the .PCX file to be saved.
Filename$ must contain the extension ".PCX". If the extension is not
used, then the PCX file will not load properly using the DisplayPCXFile
routine supplied with Graphics Workshop.

Comments:

This routine determines the current EGA or VGA video mode and adjusts
itself to save the appropriate number of video lines.

The short example below demonstrates saving an EGA screen containing
a red circle to the file REDCIRC.PCX.

DEFINT A-Z
'$INCLUDE: 'GWDECL.BAS" 'required for BYVAL's
SCREEN 9 • set the monitor in the EGA mode
CIRCLE (100. 100). 80, 4 'draw a red circle

CALL SavePCXVE ("REOCIRC.PCX")

A demonstration of using this routine can be found in the example program
DEMOSAVE.BAS.

The routine SavePCXVE can also be used as a function. Their are declare
statements in GWDECL.BAS which need to be changed if you want to use
SavePCXVE% as a function. It will return a O if the file operation was
successful, and a non-zero value otherwise.

■ SeeAlso:

DispPCXVE, PCXArrayVE

■ 3-20 CRESCENT SOFTWARE, INC.

The Graphics Workshop Assembly Routine,

SetPaletteEGA Assembler
subroutine contained in CW.LIB

■ Purpose:
SetPaletteEGA sets the color value for the palette register specified. This
routine should be used only in the EGA screen modes. The
SetPa!TripleVGA routine supplies the VGA screen modes with a much
larger palette from which to choose.

■ Syntax:
CALL SetPa letteEGA(BYVAL Pa]Register%, BYVAL Value%)

■ Where:

Pa1Register% is one of the 16 available colors for the EGA screen modes
(use O through 15).

Value% is a number between O and 63 which is used to represent one of
the available colors in the palette.

Comments:

All parameters for this routine are passed by value to provide the maximum
speed. Including the file GWDECL.BAS at the beginning of all programs
or modules which use this routine will insure proper operation.

The code fragment below demonstrates how to change the palette for color
number 1 to be represented as white on the screen.

OEFINT A-Z
'$INCLUDE: 'GWOECL.BAS' 'required for BYVAL's
SCREEN 9 'set the monitor in an EGA mode

CALL SetPaletteEGA (I. 63) '63 represents white

This routine replaces the PALETTE statement in BASIC for use with the
EGA screen modes. If you are not using QuickBASIC's SCREEN
statement, then using BASIC's PALETTE statement would cause an error.
If you are using the Graphics Workshop Screen9 routine or one of the
other Graphics Workshop routines which set the screen mode, use the
SetPaletteEGA routine instead of BASIC's PALETTE statement.

■ SeeAlso:

GetPaletteVGA, SetPalTripleVGA, Screen9

CRESCENT SOFTWARE, INC. ■ 3-21

Assembly Routines

SetPalTripleVGA

■ Purpose:

The Graphics Workshop

Assembler
subroutine contained in CW.LIB

SetPalTripleVGA sets the red, green and blue values for a specified color
in the palette. This routine can be used only in the VGA screen modes.

■ Syntax:
CALL SetPalTripleVGA (BYVAL Pa1Register%, BYVAL Red%, BYVAL

Green%, BYVAL Blue%)

■ Where:

Pa1Register% is one of the 256 available colors for the VGA screen modes
(use O through 255), and one of the 16 available colors for the higher
resolution screen modes (use O through 15).

Red%, Green% and Blue% are all values between O and 63, which specify
the intensity of that color in the overall color generated for this palette
register.

Comments:

All parameters for this routine are passed by value to provide the maximum
speed. Including the file GWDECL.BAS at the beginning of all programs
or modules which use this routine will insure proper operation.

The code fragment below shows how to set color number 13 to be
represented on the screen as white.

DEFINT A-Z
'$INCLUDE: 'GWDECL.BAS' 'required for BYVAL's
SCREEN 12 'sets the monitor into a VGA mode

CALL SetPalTripleVGA (13, 63, 63, 63)

Setting the Red, Green and Blue values to their maximum values (63) will
provide an equal mix of all colors at their brightest intensities, and hence
produce the color of white.

■ 3-22 CRESCENT SOFIWARE, INC.

The Graphic■ Workshop A■sembly Routinea

This routine replaces the PALETTE statement in BASIC for use with the
VGA screen modes. If you are not using QuickBASIC's SCREEN
statement, then using BASIC's PALETTE statement would cause an error.
If you are using the Graphics Workshop Screen 13 routine or one of the
other Graphics Workshop routines which set the screen mode, use the
SetPaletteEGA routine instead of BASIC's PALETTE statement.

■ SeeAlso:
SetPaletteEGA, GetPa!TripleVGA, Screenl3

CRESCENT SOFfWARE, INC. ■ 3-23

A■sembly Routines The Graphic, Worlaihap

Section 2:
BASIC Graphics Replacements

The routines in this section could be used to replace graphics statements
like BASIC's PSET. Most of the routines in this section are much faster
than BASIC's equivalents. These routines also provide more power than
their BASIC equivalents.

Note:

There are also equivalent routines for BASIC's PALETTE statement, but
these are documented in Section I of this chapter.

■ 3-24 CRESCENT SOFIWARE, INC.

The Graphic, Workahop Auembly Routine.

CircleVE Assembler
subroutine contained in CW.LIB

■ Purpose:

Circle VE is a replacement for the BASIC CIRCLE statement that not only
doesn't require using floating point arithmetic, but also has the ability to
use logical operations like XOR, OR, and AND when drawing the circle.

■ Syntax:

CALL CircleVE(BYVAL XCenter%, BYVAL YCenter%, BYVAL _
Radius%, BYVAL Colr%, BYVAL XAspect%, BYVAL YAspect%)

■ Where:

XCenter% and YCenter% define the center of the circle on the screen.

Radius% is the radius of the circle in pixels.

Colr% is the color that the circle will be drawn in. This variable also
serves to tell the routine which of the logical operations should he used.
Add one of the values in the table below to change the logical operation
performed when drawing the circle.

VALUE LOGICAL OPERATION

0 PSET (Replace)

2048 OR

4096 AND

6144 XOR

Any other values will produce unusual (and probably undesirable) effects.

To create a rubber-banding effect with the color grey, you would pass
CircleVE the following color value:

Colr% = 7 + 6144

XAspect% and YAspect% are used to draw ellipses.

Comments:

The standard equation for an ellipse is shown below with an example for
an ellipse.

CRESCENT SOFTWARE, INC. ■ 3 -25

Aasembly Routines

XZ+Y2.=1
a2 b2

.,

The Graphic• Workshop

X-axis

If you take the horizontal as your major axis, the distance a will correspond
to the Radius% specified above. For the desired b use the following
equation to find the value for XAspect%:

XAspect% = (32767& • bl / a

This equation could be done using long integer arithmetic at runtime, or
done in the QuickBASIC interpreter, and the result would then be placed
in your program. Note that ¥Aspect% would be left as zero.

If you flip the elli,ise so that the Y-axis is the major axis, then you would
simply replace YAspecl% into the above equation and leave XAspect%
as zero.

■ See Also:

LineVE

■ 3-26 CRESCENT SOFTWARE, INC.

The Graphics Workshop Assembly Roulincs

ClsVE Assembler
subroutine contained in CW.LIB

■ Purpose:

The routine ClsVE clears the current EGA or VGA video screen.

■ Syntax:
CALL ClsVE

Comments:

The following example will clear the VGA video screen after drawing a
line.

DEFINT A-Z
'$INCLUDE: 'GWDECL.BAS' 'required for BYVAL's
SCREEN 12 'sets the monitor in VGA mode

CALL L ineVE (100, 100, 200, 200, 15)
WHILE INKEY$ = "": WEND

CALL C ls VE

CRESCENT SOFTWARE, INC. ■ 3-27

Assembly Routines The Graphics Worbhop

DrawPointH Assembler
subroutine contained in CW.LIB

■ Purpose:

DrawPointH draws a pixel on a Hercules screen at the specified (X, Y)
coordinate. This routine simulates the BASIC PSET routine, but does not
require that MSHERC.COM be loaded.

■ Syntax:

CALL DrawPointH(BYVAL XPos%, BYVAL YPos%, BYVAL PointColor%)

■ Where:

XPos% and YPos% specify an (X, Y) coordinate on the screen.

PointColor% is a color value either O or l.

Comments:

All parameters for this routine are passed by value to provide the maximum
speed. Including the tile GWDECL.BAS at the beginning of all programs
or modules which use this routine will insure proper operation.

The following brief example shows how to plot a point at coordinate 100,
100 on a Hercules graphics screen without having to use the
MSHERC.COM TSR program.

DEFINT A-Z
'$INCLUDE: 'GWDECL.BAS' 'required for BYVAL's
CALL Screen3 'set the Hercules into graphics mode

CALL DrawPointH (!DD, 100, I)

The DrawPointH routine can be used by the BASIC example routine which
show the algorithm for lines and circles. These routines are
LINEBAS.BAS and CIRCBAS.BAS. Later versions of Graphics
Workshop will have more support for the Hercules screen mode.

■ SeeAlso:

GetPointH%

■ 3 -28 CRESCENT SOFTWARE, INC.

The Graphic ■ Workshop Assembly Routines

DrawPointVE Assembler
subroutine contained in CW.LIB

■ Purpose:

DrawPointVE draws a pixel on an EGA or VGA screen at the specified
(X, Y) coordinate. This routine simulates the BASIC PSET routine.

■ Syntax:
CALL DrawPointVE(BYVAL XPos%, BYVAL YPos%, BYVAL PointColor%)

■ Where:

XPos% and YPos% specify an (X, Y) coordinate on the screen.

PointColor% is a color value from Oto 15.

Comments:

All parameters for this routine are passed by value to provide the maximum
speed. Including the file GWDECL.BAS at the beginning of all programs
or modules which use this routine will insure proper operation.

The following code fragment shows how to plot a pixel in the color blue
on the VGA screen at location 300, 200.

DEFINT A-Z
'$INCLUDE: 'GWDECL.BAS' "required for BYVAL"s
SCREEN 12 "sets the monitor in a VGA mode

CALL DrawPointVE (300, 200, I)

Draw Point VE is faster than QuickBASIC's PSET routine, as shown in the
DEMOBNCH.BAS demonstration. DrawByteVE can set more than one
pixel at a time, and GetPointVE% will return the color of any pixel.

■ SeeAlso:

DrawByteVE, GetPointVE%

CRESCENT SOFTWARE, INC. ■ 3 -29

Assembly Routines The Graphics Workshop

DrawPointVEOpts Assembler
subroutine contained in CW.LIB

■ Purpose:

DrawPointVEOpts draws a pixel on an EGA or VGA screen at the specified
(X, Y) coordinate. This routine simulates the BASIC PSET routine with
one benefit, the option of using a different logical operation than straight
replacement. Like the LineVE and CircleVE routines, this routine can
use a logical operation like OR, AND, or XOR when placing the pixel on
the screen.

■ Syntax:

CALL DrawPointVEOpts (BYVAL XPos%, BYVAL YPos%, BYVAL PointColor¾J

■ Where:

XPos% and YPos% specify an (X, Y) coordinate on the screen.

PointColor% is a color value from O to 15. If you add one of the values
below to the color, then the associated logical operation will be performed.

VALUE LOGICAL OPERATION

0

2048

4096

6144

PSET (Replace)

OR

AND

XOR
Any other values will produce unusual (and probably undesirable) effects.

Comments:

All parameters for this routine are passed by value to provide the maximum
speed. Including the file GWDECL.BAS at the beginning of all programs
or modules which use this routine will insure proper operation.

The short example below shows how to use the XOR feature to invert the
pixel at location 120, 300 of a VGA screen.

DEFINT A-Z
'$INCLUDE: 'GWDECL.BAS' 'required for BYVAL's
SCREEN 12 'sets monitor in a VGA mode

CALL DrawPointVEOpts (120, 300, 15 + 6144)

The DrawPointVEOpts routine is faster than the QuickBASIC PSET
routine, as shown in the DEMOBNCH.BAS demonstration. The
DrawByteVEOpts routine could be used to set more than one pixel at a

■ 3-30 CRESCENT SOFIWARE, INC.

The Graphics Workshop Assembly Routines

time. The GetPointVE% function will return the color value of any pixel
on the screen.

■ SeeAlso:

DrawByteVEOpts, GetPointVE%

CRESCENT SOFTWARE, INC. ■ 3-31

Assembly Routines The Graphics Worklh<f

GetPointH% Assembler
function contained in CW.LIB

■ Purpose:

GetPointH% returns the color of the pixel at a specified (X, Y) coordinate.

■ Syntax:

V% = GetPointH%(BYVAL XPos%, BYVAL YPos%)

■ Where:

XPos% and YPos% make up the (X, Y) coordinate.

V% will receive a color value of either O or l.

Comments:

All parameters for this routine are passed by value to provide the maximum
speed. Including the file GWDECL.BAS at the beginning of all programs
or modules which use this routine will insure proper operation.

The code fragment below shows how to get the color of the pixel at location
100, 100 on the Hercules graphics screen.

DEFINT A-Z
'$INCLUDE: 'GWDECL.BAS' 'required for BYVAL's
CALL Screen3 'sets Hercules into graphics mode

V% = GetPointH% (100, 100)

The above code fragment also demonstrates the Screen3 routine which
sets the Hercules into graphics mode without the need for the TSR
MSHERC.COM.

■ SeeAlso:

DrawPointH

■ 3-32 CRESCENT SOFTWARE, INC.

The Graphic• Workshop Aaacmbly Routine■

GetPointVE% Assembler
function contained in CW.LIB

■ Purpose:

GetPointVE % returns the color of the pixel at a specified (X, Y) coor­
dinate.

■ Syntax:
V% = GetPointVE%(BYVAL XPos%, BYVAL YPos%)

■ Where:

XPos% and YPos% make up the (X, Y) coordinate.

V% will receive a color value between O and IS for the high-resolution
EGA and VGA screen modes.

Comments:

All parameters for this routine are passed by value to provide the maximum
speed. Including the file GWDECL.BAS at the beginning of all programs
or modules which use this routine will insure proper operation.

The next code fragment shows how to get the color at a specified location
on the EGA high-resolution graphics screen.

DEFINT A-Z
'$INCLUDE: 'GWDECL.BAS' 'required for BYVAL's
SCREEN 9 'sets the monitor in EGA mode

Colr% = GetPointVE% (2D0, 300)

There is also a routine for getting the color of a pixel which utilizes a
special cache. This routine is called GetCacheVE% and is contained
entirely in Appendix E.

■ SeeAlso:

DrawPointVE, GetCacheVE%

CRESCENT SOFTWARE, INC. ■ 3-33

Aaaembly Routinca

GPrintOC2

■ Purpose:

The Graphic, Workahop

Assembler
subroutine contained in GW.LIB

GPrint0C2 prints a string on the 2-color CGA high-resolution screen in
the specified color.

■ Syntax:

CALL GPrint0C2 (BYVAL Row%, BYVAL Column%, Text$, BYVAL TextColor%)

■ Where:

Row% and Column% are the normal coordinates used by the BASIC
LOCATE statement.

Text$ is any text string.

TextColor% holds the combined foreground and background colors. The
following formula can be used to set the colors used:

TextColor% = Foreground%+ (Background • 256)

Comments:

Many parameters for this routine are passed by value to provide the
maximum speed. Including the file GWDECL.BAS at the beginning of
all programs or modules which use this routine will insure proper
operation.

The following example shows how to print a string to the CGA 2-color
screen mode using this routine.

DEFINT A-Z
'$INCLUDE: 'GWDECL.BAS' 'required for BYVAL's
SCREEN 2 'sets the monitor in CGA mode

CALL GPrint0C2 (I. 10, "This text is on row I", I + 0 * 256)

This routine is many times faster than the BASIC PRINT statement. It
also allows you to specify a background color for that text string.

■ SeeAlso:

GPrint0VE, GPrint0H

■ 3-34 CRESCENT SOFIWARE, INC.

The Graphics Workshop Assembly Routines

GPrintOH Assembler
subroutine contained in CW.LIB

■ Purpose:
GPrint0H prints a string on the 2-color high-resolution Hercules graphics
screen.

■ Syntax:
CALL GPrintOH (BYVAL Row%, BYVAL Column%, Text$, BYVAL TextColor%)

■ Where:

Row% and Column% are similar to the coordinates used by the BASIC
LOCATE statement, but provide 90 columns instead of 80 in the Hercules
high-resolution graphics screen.

Text$ is any text string.

TextColor% holds the combined foreground and background colors. The
following formula can be used to set the colors used:

TextColor% = Foreground%+ (Background * 256)

Comments:

Many parameters for this routine are passed by value to provide the
maximum speed. Including the file GWDECL.BAS at the beginning of
all programs or modules which use this routine will insure proper
operation.

The code fragment below shows how to print a string using inverse video
with the Hercules graphics mode.

DEFINT A-Z
'$INCLUDE: 'GWDECL.BAS' 'required for BYVAL's
CALL Screen3 'sets the Hercules in graphics mode

CALL GPrintOH (I. 10, "This Text is on row !", 0 + I • 256)

This routine is many times faster than the BASIC PRINT statement. It
also allows for you to specify a background color for that text string.

■ SeeAlso:

GPrint0VE, GPrint0C2

CRESCENT SOFJ'WARE, INC. ■ 3-35

Assembly Routines

GPrintOV256

■ Purpose:

The Graphics Workshop

Assembler
subroutine contained in CW.LIB

GPrint0V256 prints a string on the 256-color VGA low-resolution graphics
screen in a specified color.

■ Syntax:
CALL GPrint0V256 (BYVAL Row%. BYVAL Column%, Text$, BYVAL TextColor%)

■ Where:

Row% and Column% are the normal coordinates used by the BASIC
LOCATE statement in SCREEN 13.

Text$ is any text string.

TextColor% holds the combined foreground and background colors. The
following formula can be used to set the colors used:

TextColor% = Foreground%+ (Background* 256)

Comments:

Many parameters for this routine are passed by value to provide the
maximum speed. Including the file GWDECL.BAS at the beginning of
all programs or modules which use this routine will insure proper
operation.

The following example shows how to print a string to the VGA using the
color blue for the foreground, and the color grey for the background.

DEFINT A-Z
'$INCLUDE: 'GWDECL.BAS' 'required for BYVAL's
SCREEN 13 'sets the monitor in VGA mode

GPrint0V256 1, 10, "This text is on row l", 1 + 7 * 256

This routine is many times faster than the BASIC PRINT statement. It
also allows you to specify a background color for that text string.

■ See Also:
GPrint0VE, GPrintl VE, GPrint2VE, GPrint3V256, GPrint3VE, G­
Print0C2, GPrint0H

■ 3 - 36 CRESCENT SOFTWARE, INC.

The Oraphica Worbhop Assembly Routine,

GPrintOVE Assembler
subroutine contained in CW.LIB

■ Purpose:

GPrint0VE prints a string on the 16-color EGA and VGA high-resolution
graphics screens in a specified color.

■ Syntax:
CALL GPrintDVE (BYVAL Row%, BYVAL Column%, Text$, BYVAL TextColor%)

■ Where:

Row% and Column% are the normal coordinates used by the BASIC
LOCATE statement.

Text$ is any text string.

TextColor% holds the combined foreground and background colors. The
following formula can be used to set the colors used:

TextColor% = Foreground%+ (Background • 256)

Comments:

Many parameters for this routine are passed by value to provide the
maximum speed. Including the file GWDECL.BAS at the beginning of
all programs or modules which use this routine will insure proper
operation.

The following example shows how to print a string to the VGA using the
color blue for the foreground, and the color grey for the background.

DEFINT A-Z
'$INCLUDE: 'GWDECL.BAS' 'required for BYVAL's
SCREEN 12 'sets the monitor in VGA mode

GPrintDVE I. ID, "This text is on row I", I + 7 • 256

This routine is many times faster than the BASIC PRINT statement. It
also allows you to specify a background color for that text string.

■ See Also:

GPrintlVE, GPrint2VE, GPrint3VE, GPrint0C2, GPrint0H

CRESCENT SOFTWARE, INC. ■ 3 -37

Assembly Routines The Graphic, Workahop

GPrint1VE Assembler
subroutine contained in GW.LIB

■ Purpose:

GPrintl VE prints a string on the 16-color EGA and VGA high-resolution
graphics screens in a specified color. This routine does not modify any
of the background beneath the text.

■ Syntax:
CALL GPrintlVE (BYVAL Row%, BYVAL Column%, Text$, BYVAL TextColor%)

■ Where:

Row% and Column% are the normal coordinates used by the BASIC
LOCATE statement.

Text$ is any text string.

TextColor% holds the combined foreground and background colors. The
following formula can be used to set the colors used:

TextColor% = Foreground%+ (Background * 256)

Although this is a standard formula for text colors with all of the
GPrintXXX routines, in this case the background color is ignored and
does not need to be placed in the above formula, but it will not matter if
you leave it in the formula.

Comments:

Many parameters for this routine are passed by value to provide the
maximum speed. Including the file GWDECL.BAS at the beginning of
all programs or modules which use this routine will insure proper
operation.

The example below shows how to print a string to a VGA monitor in the
color red that will write over any graphics objects, leaving the objects in
the background.

DEFINT A-Z
'$INCLUDE: 'GWDECL.BAS' 'required for BYVAL's
SCREEN 12 'sets the monitor in VGA mode

GPrintlVE I, ID, "This text is on row I", 4

■ 3-38 CRESCENT SOFTWARE, INC.

The Grarhic1 Workshop A1acmbly Routine•

This routine is many times faster than the BASIC PRINT statement. It
also allows for the placement of text over even the most complex graphics
images without altering them.

■ SeeAlso:
GPrintOVE, GPrint2VE, GPrint3VE

CRESCENT SOFTWARE, INC. ■ 3 -39

Assembly Routines The Graphic, Worbhop

GPrint2VE Assembler
subroutine contained in CW.LIB

■ Purpose:

GPrint2VE prints a string on the 16-color EGA and VGA high-resolution
graphics screens in a specified color. This routine allows text to be placed
starting at any of the 350 lines on the EGA high-resolution display, or any
of the 480 lines on the VGA display.

■ Syntax:

CALL GPrint2VE (BYVAL Line%, BYVAL Column%, Text$, BYVAL TextColor%)

■ Where:

Line% and Column% specify the starting location of the string using the
mixed coordinate system where column values range from I to 80 and line
values range from 0 to 479 on a VGA monitor. This is the difference
between this routine and GPrintOVE.

Text$ is any text string.

TextColor% holds the combined foreground and background colors. The
following formula can be used to set the colors used:

TextColor% = Foreground%+ (Background • 256)

Comments:

Parameters for this routine are passed by value to provide the maximum
speed. Including the file GWDECL.BAS at the beginning of all programs
or modules which use this routine will insure proper operation.

The example below shows how to print a string of text, with a foreground
color of white and a background color of red, at any Y coordinate on the
VGA screen.

DEFINT A-Z
'$INCLUDE: 'GWDECL.BAS' 'required for BYVAL's
SCREEN 12 'sets the monitor in VGA mode

GPrint2VE 103, 10, "This text is on line 103", 15 + 4 • 256

This routine is many times faster than the BASIC PRINT statement. It
also allows you to specify a background color for that text string.

■ SeeAlso:

GPrint0VE, GPrintl VE, GPrint3VE

■ 3-40 CRESCENT SOFIWARE, INC.

The Graphics Worklhop Assembly Routines

GPrint3V256 Assembler
subroutine contained in CW.LIB

■ Purpose:
GPrint3V256 prints a string on the 256-color VGA low-resolution graphics
screen in a specified color. This routine allows text to be placed starting
at any of the 200 lines on the VGA low-resolution display. This routine
does not modify any of the background beneath the text.

■ Syntax:
CALL GPrint3V256 (BYVAL Line%, BYVAL Column%, Text$, BYVAL TextColor%)

■ Where:

Line% and Column% specify the starting location of the string using the
mixed coordinate system where column values range from l to 80 and line
values range from Oto 199.

Text$ is any text string.

TextColor% holds the combined foreground and background colors. The
following formula can be used to set the colors used:

TextColor% = Foreground%+ (Background • 256)

Although this is a standard formula for text colors with all of the
GPrintXXX routines, in this case the background color is ignored and
does not need to be placed in the above formula, but it will not matter if
you leave it in the formula.

Comments:

Many parameters for this routine are passed by value to provide the
maximum speed. Including the file GWDECL.BAS at the beginning of
all programs or modules which use this routine will insure proper
operation.

The example below shows how to print a string of text over any objects
on the screen leaving the objects in the background. The text can be
printed at any one of the VGNs 200 line positions.

OEFINT A-Z
'$INCLUDE: 'GWOECL.BAS' 'required for BYVAL's
SCREEN 13 'sets the monitor in VGA mode

GPrint3V256 102, 2, "This text is on line 102", 14

CRESCEITT SOFTWARE, INC. ■ 3-41

Assembly Routines The Graphics Worbhop

This routine is many times faster than the BASIC PRINT statement. It
also allows for the placement of text over even the most complex graphics
images without altering them.

■ See Also:

GPrint0V256, GPrintOVE, GPrintl VE, GPrint2VE

■ 3-42 CRESCENT SOFl"WARE, INC.

The Graphics Workshop Assembly Routines

GPrint3VE Assembler
subroutine contained in CW.LIB

■ Purpose:
GPrint3VE prints a string on the 16-color EGA and VGA high-resolution
graphics screens in a specified color. This routine allows text to be placed
starting at any of the 350 lines on the EGA high-resolution display, or any
of the 480 lines on the VGA display. This routine does not modify any of
the background beneath the text.

■ Syntax:
CALL GPrint3VE (BYVAL Line%. BYVAL Column%. Text$, BYVAL TextColor%)

■ Where:
Line% and Column% specify the starting location of the string using the
mixed coordinate system where column values range from 1 to 80 and line
values range from 0 to 479 on a VGA monitor. This is the difference
between this routine and GPrintlVE.

Text$ is any text string.

TextColor% holds the combined foreground and background colors. The
following formula can be used to set the colors used:

TextColor% = Foreground%+ (Background • 256)

Although this is a standard formula for text colors with all of the
GPrintXXX routines, in this case the background color is ignored and
does not need to be placed in the above formula, but it will not matter if
you leave it in the formula.

Comments:

Many parameters for this routine are passed by value to provide the
maximum speed. Including the file GWDECL.BAS at the beginning of
all programs or modules which use this routine will insure proper
operation.

The example below shows how to print a string of text over any objects
on the screen leaving the objects in the background. The text can be
printed at any one of the VGNs 480 line positions.

DEFINT A-Z
'$INCLUDE: 'GWDECL.BAS' 'required for BYVAL 's
SCREEN 12 'sets the monitor in VGA mode

GPrint3VE 302. 2. "This text is on line 302", 14

CRESCENT SOFTWARE, INC. ■ 3 -43

Assembly Routines The Graphics Workshop

This routine is many times faster than the BASIC PRINT statement. It
also allows for the placement of text over even the most complex graphics
images without altering them.

■ SeeAlso:

GPrintOVE, GPrintl VE, GPrint2VE

■ 3-44 CRESCENT SOFTWARE, INC.

The Oraphica Workshop Assembly Routines

LineBF2VE Assembler
subroutine contained in CW.LIB

■ Purpose:
LineBF2VE draws a filled box on an EGA or VGA high-resolution screen.
Unlike LineBFVE this routine cannot utilize OR, AND, XOR, and PSET
operations for drawing the filled box. This routine is however 40% faster
than LineBFVE.

■ Syntax:
CALL L ineBF2VE (BYVAL xi%, BYVAL y1%, BYVAL x2%, BYVAL y2%,_

BYVAL L ineCo lor%)

■ Where:

The coordinate pairs (xl%, yl%) and (x2%, y2%) are within the range
of the screen.

LineColor% is the color of the line.

To create a filled box in the color grey, you would pass LineBF2VE the
color value shown in the following example.

DEFINT A-Z
'$INCLUDE: 'GWDECL.BAS' "required for BYVAL 's
SCREEN 9 "sets the monitor in an EGA mode

L ineCo lor% = 7
CALL LineBF2VE {!DO, !DO, 200, 200, LineColor%)

Comments:

All parameters for this routine are passed by value to provide the maximum
speed. Including the file GWDECL.BAS at the beginning of all programs
or modules which use this routine will insure proper operation.

■ See Also:

LineVE, LineBFVE, LineBVE

CRESCENT SOFTWARE. INC. ■ 3-45

Assembly Routines

LineBFVE

■ Purpose:

The Graphics Worlcahop

Assembler
subroutine contained in GW.LIB

LineBFVE draws a filled box on an EGA or VGA high-resolution screen.
This routine can utilize OR, AND, XOR, and PSEToperations for drawing
the filled box.

■ Syntax:

CALL L ineBFVE (BYVAL xi%, BYVAL yl%, BYVAL x2%, BYVAL y2%,_
BYVAL L ineColor%)

■ Where:

The coordinate pairs (xi%, yl%) and (x2%, y2%) are within the range
of the screen.

LineColor% is the color of the line. Add one of the values below in the
table to change the logical operation performed when drawing the filled
box.

VALUE LOGICAL OPERATION
0

2048

4096

6144

PSET (Replace)

OR

AND

XOR
Any other values will produce unusual (and probably undesirable) effects.

To create a rubber-banding effect with the color grey, you would pass
LineBFVE the color value shown in the following example.

0EFINT A-Z
'$INCLUDE: 'GW0ECL.BAS' 'required for BYVAL's
SCREEN 9 'sets the monitor in an EGA mode

L ineCo lor% = 7 + 6144
CALL L ineBFVE (100, 100, 200, 200, L ineColor%)

Comments:

All parameters for this routine are passed by value to provide the maximum
speed. Including the file GWDECL.BAS at the beginning of all programs
or modules which use this routine will insure proper operation.

■ SeeAlso:

LineVE, LineBF2VE, LineBVE

■ 3-46 CRESCENT SOFTWARE, INC.

The Graphics Workshop Assembly Routines

LineBVE Assembler
subroutine contained in CW.LIB

■ Purpose:

LineBVE draws a box outline on an EGA or VGA high-resolution screen.
This routine can utilize OR, AND, XOR, and PSEToperations for drawing
the box.

■ Syntax:
CALL L ineBVE (BYVAL xi%. BYVAL y1%. BYVAL x2%. BYVAL y2%. _

BYVAL LineColor%)

■ Where:

The coordinate pairs (xi%, yl%) and (x2%, y2%) are within the range
of the screen.

LineColor% is the color of the line. Add one of the values below in the
table to change the logical operation performed when drawing the line.

VALUE LOGICAL OPERATION
0 PSET (Replace)

2048 OR

4096 AND
6144 XOR

Any other values will produce unusual (and probably undesirable) effects.

To create a rubber-banding effect with the color grey, you would pass
LineBVE the color value shown in the following example.

DEFINT A-Z
'$INCLUDE: 'GWDECL.BAS' 'required for BYVAL's
SCREEN 9 'sets the man i tor in an EGA mode

L ineColor% = 7 + 6144
CALL LineBVE (100, 100, 200, 200, L ineColor%)

Comments:

All parameters for this routine are passed by value to provide the maximum
speed. Including the file GWDECL.BAS at the beginning of all programs
or modules which use this routine will insure proper operation.

■ SeeAlso:

LineVE, LineBFVE

CRESCENT SOFTWARE, INC. ■ 3-47

Auembly Routine•

LineStepVE

■ Purpose:

The Graphic• Worbhop

Assembler
subroutine contained in GW.LIB

LineStep VE draws a line on an EGA or VGA high-resolution screen using
step values from the last point drawn to. This routine can utilize OR,
AND, XOR, and PSET operations for drawing the line.

■ Syntax:

CALL L ineStepVE (BYVAL StepX1%, BYVAL StepV1%, BYVAL StepX2%, BYVAL_
StepV2%, BYVAL L ineColor%)

■ Where:

The coordinate pairs (StepX1%, StepY1%) and (StepX2%, StepY2%)
are within the range of the screen and are distances from the last point
drawn to.

LineColor% is the color of the line. Add one of the values below in the
table to change the logical operation performed when drawing the line.

VALUE LOGICAL OPERATION
0 PSET (Replace)

2048 OR
4096 AND
6144 XOR

Any other values will produce unusual (and probably undesirable) effects.

To create a rubber-banding effect with the color grey, you would pass
LineStepVE the color value shown in the following example. Note that
the line will be drawn from coordinate (100, 100) to (200, 200).

DEFINT A-Z
'$INCLUDE: 'GWDECL.BAS' 'required for BYVAL's
SCREEN 9 'sets the monitor in an EGA mode

L ineCo lor% = 7 + 614
CALL SetLastCoord(50, 50)
CALL L ineStepVE (50, 50, 150, 150, L ineColor%)

■ 3-48 CRESCENT SOFJWARE, INC.

The. Graphics Worbhop Assembly Routine.a

Comments:

All parameters for this routine are passed by value to provide the maximum
speed. Including the file GWDECL.BAS at the beginning of all programs
or modules which use this routine will insure proper operation.

■ SeeAlso:
LineVE, LineToStepVE

CRESCENT SOFTWARE, INC. ■ 3-49

A1aembly Routine,

LineToVE

■ Purpose:

The Graphic, Workahop

Assembler
subroutine contained in CW.LIB

LineToVE draws a line on an EGA or VGA high-resolution screen from
the last coordinate drawn to, to the coordinate specified to this routine.
This routine can utilize OR, AND, XOR, and PSET operations for drawing
the line.

■ Syntax:
CALL L ineToVE (BYVAL ToX%, BYVAL ToY%, BYVAL L ineColor%)

■ Where:

The coordinate pair (ToX%, ToY%) is within the range of the screen.

LineColor% is the color of the line. Add one of the values below in the
table to change the logical operation performed when drawing the line.

VALUE LOGICAL OPERATION
0

2048

4096

6144

PSET (Replace)
OR

AND
XOR

Any other values will produce unusual (and probably undesirable) effects.

To create a rubber-banding effect with the color grey, you would pass
LineToVE the color value shown in the following example.

DEFINT A-Z
'$INCLUDE: 'GWDECL.BAS' 'required for BYVAL's
SCREEN 9 'sets the monitor in an EGA mode

L ineColor% = 7 + 6144
CALL SetLastCoord(lD0, 100)
CALL L ineToVE (200, 200, L ineColor%)

Comments:

All parameters for this routine are passed by value to provide the maximum
speed. Including the file GWDECL.BAS at the beginning of all programs
or modules which use this routine will insure proper operation.

■ SeeAlso:

LineVE, LineToStepVE

■ 3-50 CRESCENT SOFIWARE, INC.

The Graphic& Workahop Assembly Routine&

LineToStepVE Assembler
subroutine contained in CW.LIB

■ Purpose:

LineToStepVE draws a line on an EGA or VGA high-resolution screen
from the last coordinate drawn to, to the point a specified distance away.
This routine can utilize OR, AND, XOR, and PSEToperations for drawing
the line.

■ Syntax:
CALL L ineToStepVE (BYVAL StepX%. BYVAL StepY%, BYVAL L ineColor%)

■ Where:

The coordinate pair (StepX%, Step Y%) is within the range of the screen
and specifies a distance from the last point drawn to.

LineColor% is the color of the line. Add one of the values below in the
table to change the logical operation performed when drawing the line.

VALUE LOGICAL OPERATION
0 PSET (Replace)

2048 OR
4096 AND
6144 XOR

Any other values will produce unusual (and probably undesirable) effects.

To create a rubber-banding effect with the color grey, you would pass
LineToStepVE the color value shown in the following example.

DEFINT A-Z
'$INCLUDE: 'GWDECL.BAS' 'required for BYVAL's
SCREEN 9 'sets the monitor in an EGA mode

LineColor% = 7 + 6144
CALL SetLastCoord (100, 100)
CALL LineToStepVE (100, 100, L ineColor%)

Comments:

All parameters for this routine are passed by value to provide the maximum
speed. Including the file GWDECL.BAS at the beginning of all programs
or modules which use this routine will insure proper operation.

See Also:LineVE, LineStepVE, LineToStepVE

CRESCENT SOFTWARE. INC. ■ 3 -51

Assembly Routines

LineVE

■ Purpose:

The Graphic, Worbhop

Assembler
subroutine contained in CW.LIB

LineVE draws a line on an EGA or VGA high-resolution screen. This
routine can utilize OR, AND, XOR, and PSET operations for drawing the
line.

■ Syntax:

CALL L ineVE (BYVAL xi%, BYVAL yl%, BYVAL x2%, BYVAL y2%, _
BYVAL L ineCo lor%)

■ Where:
The coordinate pairs (xi%, yl%) and {x2%, y2%) are within the range
of the screen.

LineColor% is the color of the line. Add one of the values below in the
table to change the logical operation performed when drawing the line.

VALUE LOGICAL OPERATION
0

2048

4()96

6144

PSET (Replace)

OR

AND

XOR
Any other values will produce unusual (and probably undesirable) effects.

To create a rubber-banding effect with the color grey, you would pass
Line VE the color value shown in the following example.

DEFINT A-Z
'$INCLUDE: 'GWDECL.BAS' 'required for BYVAL's
SCREEN 9 'sets the monitor in an EGA mode

L ineColor% = 7 + 6144
CALL L ineVE (100, 100, 200, 200, L ineColor%)

Comments:

All parameters for this routine are passed by value to provide the maximum
speed. Including the file GWDECL.BAS at the beginning of all programs
or modules which use this routine will insure proper operation.

■ See Also:

CircleVE, DrawPointVE, LineBFVE, LineBVE, LineStepVE,
LineToVE, LineToStepVE

■ 3-52 CRESCENT SOFTWARE, INC.

The Graphic, Workshop

ScreenO

■ Purpose:

Auembly Routinea

Assembler
subroutine contained in CW.LIB

Screen0 sets a monitor into text mode. This routine should be used at the
end of your programs if you have used one of the other screen setting
routines in Graphics Workshop.

■ Syntax:

CALL Screen0(Keep0ata%)

■ Where:
KeepData% is a true or false value which tells the routine whether or not
to clear the screen when setting the screen. This gives you an ability
BASIC does not have. If you set this value to anything other than 0, all
the information on the screen will remain in memory and you can even
return to it. A value of 0 will clear the screen at the same time the video
mode is set.

Comments:

The following example sets the monitor into text mode after using another
of the Graphics Workshop Screen routines which had previously set the
monitor into the VGA graphics mode.

DEFINT A-Z
'$INCLUDE: 'GWDECL.BAS' "required for BYVAL 's
CALL Screenl2(0) 'sets the monitor in VGA mode

CALL ScreenO(O) "sets the monitor into text mode

If you're going to utilize the KeepData feature of this routine, you will
need to understand a little about how the video memory is structured for
this screen mode. Most programmers will pass only a value of 0 which
makes this work the same as the BASIC SCREEN statement equivalent.
To take advantage of the KeepData feature, examine the example program
DEMOSCRN .BAS.

■ SeeAlso:

Screen!, Screen2, Screen3, Screen?, Screen9, Screenll, Screenl2,
Screenl3

CRESCENT SOFTWARE. INC. ■ 3-SJ

Assembly Routines

Screen1

■ Purpose:

The Oraphics Workshop

Assembler
subroutine contained in CW.LIB

Screenl sets an CGA monitor into the 320 by 200 pixel 4-color mode.
This is a replacement for the SCREEN 1 statement in BASIC.

■ Syntax:
CALL Screenl(Keep0ata%)

■ Where:

KeepData% is a true or false value which tells the routine whether or not
to clear the screen when setting the screen. This gives you an ability
BASIC does not have. If you set this value to anything other than 0, all
the information on the screen will remain in memory and you can even
return to it. A value of 0 will clear the screen at the same time the video
mode is set.

Comments:

The following example sets the monitor into the CGA 4-color graphics
mode, and clears the screen at the same time.

DEFINT A-Z
'$INCLUDE: 'GWD:CL.BAS' 'required for BYVAL's

CALL Screenl(O) 'sets the monitor in CGA mode

If you 're going to utilize the Keep Data feature of this routine, you will
need to understand a little about how the video memory is structured for
this screen mode. Most programmers will pass only a value of 0 which
makes this work the same as the BASIC SCREEN statement equivalent.
To take advantage of the KeepData feature, examine the example program
DEMOSCRN .BAS.

To return to text mode at the completion of your program, use the routine
Screen0. Otherwise your program will return to DOS while still in a
graphics mode.

■ SeeAlso:

Screen0, other screen setting routines

■ 3-54 CRESCENT SOFTWARE, INC.

The Graphics Workshop Assembly Routines

Screen2 Assembler
subroutine contained in CW.LIB

■ Purpose:

Screen2 sets an CGA monitor into the 640 by 200 pixel 2-color mode.
This is a replacement for the SCREEN 2 statement in BASIC.

■ Syntax:

CALL ScreenZ(KeepData¾J

■ Where:

KeepData % is a true or false value which tells the routine whether or not
to clear the screen when setting the screen. This gives you an ability
BASIC does not have. If you set this value to anything other than 0, all
the information on the screen will remain in memory and you can even
return to it. A value of 0 will clear the screen at the same time the video
mode is set.

Comments:

The following example sets the monitor into the CGA 2-color graphics
mode, and clears the screen at the same time.

DEFINT A-Z
'$INCLUDE: 'GWDECL.BAS' 'required for BYVAL 's

CALL Screen2(0) 'sets the monitor in CGA mode

If you're going to utilize the KeepData feature of this routine, you will
need to understand a little about how the video memory is structured for
this screen mode. Most programmers will pass only a value of 0 which
makes this work the same as the BASIC SCREEN statement equivalent.
To take advantage of the KeepData feature, examine the example program
DEMOSCRN .BAS.

To return to text mode at the completion of your program, use the routine
Screen0. Otherwise your program will return to DOS while still in a
graphics mode.

■ See Also:

Screen0, other screen setting routines

CRESCENT SOFTWARE, INC. ■ 3-SS

A11embly Rouline1

Screen3

■ Purpose:

The Graphic■ Worbhop

Assembler
subroutine contained in CW.LIB

Screen3 sets a Hercules monitor into the 720 by 350 pixel 2-color mode.
This is a replacement for the SCREEN 3 statement in BASIC.

■ Syntax:

CALL Screen3

Comments:

If you use this routine to set the screen mode you will NOf need to run
MSHERC.COM for simple Hercules support. If you are using the
PCXArrayH or DispPCXH routines to display a PCX file, or can achieve
all of your Hercules graphics needs using the BASIC POKE statement,
then this routine will serve your Hercules graphics needs without requiring
MSHERC.COM to be loaded.

The following example shows how to tum on the Hercules graphics mode
without the need of the MSHERC.COM Terminate and Stay Resident
utility. Specifying not to keep the data will tell the routine to clear the
screen at the same time.

DEFINT A-Z
'$INCLUDE: 'GWOECL.BAS' 'required for BYVAL's

CALL Screen3(0) 'sets the Hercules into graphics mode

If you need more of the features BASIC provides using the TSR
MSHERC.COM, take a look at the Graphics Workshop function Herc­
There% which determines whether or not the TSR is loaded in memory.

To return to text mode at the completion of your program, use the routine
Screen0. Otherwise your program will return to DOS while still in a
graphics mode.

■ SeeAlso:

HercThere%, MSHERC.COM, Screen0

■ 3-56 CRESCENT SOFTWARE, INC.

The Oraphica Worbhop Auembly Routinca

Screen7 Assembler
subroutine contained in GW.LIB

■ Purpose:

Screen7 sets an EGA monitor into the 640 by 350 pixel 2-color mode.
This is a replacement for the SCREEN 7 statement in BASIC.

■ Syntax:

CALL Screen7(KeepData%)

■ Where:

KeepData% is a true or false value which tells the routine whether or not
to clear the screen when setting the screen. This gives you an ability
BASIC does not have. If you set this value to anything other than 0, all
the information on the screen will remain in memory and you can even
return to it. A value of 0 will clear the screen at the same time the video
mode is set.

Comments:

The following example sets the EGA monitor into a monochrome graphics
mode, and clears the screen.

DEFINT A-Z
'$INCLUDE: 'GWDECL.BAS' 'required for BYVAL 's
CALL Screen7(D) 'sets the monitor in EGA mono

If you're going to utilize the KeepData feature of this routine, you will
need to understand a little about how the video memory is structured for
this screen mode. Most programmers will pass only a value of 0 which
makes this work the same as the BASIC SCREEN statement equivalent.
To take advantage of the KeepData feature, examine the example program
DEMOSCRN .BAS.

To return to text mode at the completion of your program, use the routine
Screen0. Otherwise your program will return to DOS while still in a
graphics mode.

■ See Also:

Screen0, other screen setting routines

CRESCENT SOFTWARE, INC. ■ 3- 57

Assembly Routines

Screen9

■ Purpose:

The Graphics Worlcahop

Assembler
subroutine contained in CW.LIB

Screen9 sets an EGA monitor into the 640 by 350 pixel 16-color mode.
This is a replacement for the SCREEN 9 statement in BASIC.

■ Syntax:
CALL Screen9(KeepData%)

■ Where:

KeepData% is a true or false value which tells the routine whether or not
to clear the screen when setting the screen. This gives you an ability
BASIC does not have. If you set this value to anything other than 0, all
the information on the screen will remain in memory and you can even
return to it. A value of 0 will clear the screen at the same time the video
mode is set.

Comments:

The example below shows how to set the EGA into its high-resolution
screen mode, and clear the screen at the same time.

DEFINT A-Z
'$INCLUDE: 'GWDECL.BAS' 'required for BYVAL's

CALL Screen9(0) 'sets the monitor in EGA mode

If you're going to utilize the KeepData feature of this routine, you will
need to understand a little about how the video memory is structured for
this screen mode. Most programmers will pass only a value of 0 which
makes this work the same as the BASIC SCREEN statement equivalent.
To take advantage of the KeepData feature, examine the example program
DEMOSCRN .BAS.

To return to text mode at the completion of your program, use the routine
Screen0. Otherwise your program will return to DOS while still in a
graphics mode.

■ SeeAlso:

Screen0, other screen setting routines

■ 3 -58 CRESCENT SOFTWARE, INC.

The Graphic• Workahop Assembly Routine•

Screen11 Assembler
subroutine contained in CW.LIB

■ Purpose:

Screen! I sets a VGA monitor into the 640 by 480 pixel 2-color mode.
This is a replacement for the SCREEN 11 statement in BASIC.

■ Syntax:

CALL Screenll (Keep0ata%)

■ Where:

KeepData % is a true or false value which tells the routine whether or not
to clear the screen when setting the screen. This gives you an ability
BASIC does not have. If you set this value to anything other than 0, all
the information on the screen will remain in memory and you can even
return to it. A value of 0 will clear the screen at the same time the video
mode is set.

Comments:

The brief code fragment below shows how to set the VGA monitor into a
high-resolution monochrome mode. The call to Screen! I will clear the
screen at the same time.

DEFINT A-Z
'$INCLUDE: 'GWDECL.BAS' 'required for BYVAL's

CALL Screenll(D) 'sets the monitor in VGA mono

If you're going to utilize the KeepData feature of this routine, you will
need to understand a little about how the video memory is structured for
this screen mode. Most programmers will pass only a value of 0 which
makes this work the same as the BASIC SCREEN statement equivalent.
To take advantage of the KeepData feature, examine the example program
DEMOSCRN.BAS.

To return to text mode at the completion of your program, use the routine
Screen0. Otherwise your program will return to DOS while still in a
graphics mode.

■ See Also:

Screen0, other screen setting routines

CRESCENT SOFTWARE. INC. ■ 3-:'i9

A■aembly Routines

Screen12

■ Purpose:

The Graphic:a Workabop

Assembler
subroutine contained in CW.LIB

Screenl2 sets a VGA monitor into the 640 by 480 pixel 16-color mode.
This is a replacement for the SCREEN 12 statement in BASIC.

■ Syntax:
CALL Screenl2(KeepData%)

■ Where:
KeepData% is a true or false value which tells the routine whether or not
to clear the screen when setting the screen. This gives you an ability
BASIC does not have. If you set this value to anything other than 0, all
the information on the screen will remain in memory and you can even
return to it. A value of 0 will clear the screen at the same time the video
mode is set.

Comments:

The following example sets the VGA into its high-resolution color mode,
and clears the screen at the same time.

DEFINT A-Z
'$INCLUDE: 'GWDcCL.BAS' 'required for BYVAL 's

CALL Screenl2(0) 'sets the monitor in VGA mode

If you're going to utilize the KeepData feature of this routine, you will
need to understand a little about how the video memory is structured for
this screen mode. Most programmers will pass only a value of 0 which
makes this work the same as the BASIC SCREEN statement equivalent.
To take advantage of the KeepData feature, examine the example program
DEMOSCRN .BAS.

To return to text mode at the completion of your program, use the routine
Screen0. Otherwise your program will return to DOS while still in a
graphics mode.

■ SeeAlso:
Screen0, other screen setting routines

■ 3-60 CRESCENT SOFl'WARE, INC.

The Graphic• Workshop

Screen13

■ Purpose:

A■scmbly Routine■

Assembler
subroutine contained in CW.LIB

Screenl3 sets a VGA monitor into the 320 by 200 pixel 256-color mode.
This is a replacement for the SCREEN 13 statement in BASIC.

■ Syntax:

CALL Screen!3(KeepData%)

■ Where:

KeepData% is a true or false value which tells the routine whether or not
to clear the screen when setting the screen. This gives you an ability
BASIC does not have. If you set this value to anything other than 0, all
the information on the screen will remain in memory and you can even
return to it. A value of 0 will clear the screen at the same time the video
mode is set.

Comments:

The following example sets the VGA monitor into its 256-color mode, and
clears the screen at the same time.

DEFINT A-Z
'$INCLUDE: 'GWDECL.BAS' 'required for BYVAL's

CALL Screenl3(D) 'sets the monitor in 256-color mode

If you're going to utilize the KeepData feature of this routine, you will
need to understand a little about how the video memory is structured for
this screen mode. Most programmers will pass only a value of 0 which
makes this work the same as the BASIC SCREEN statement equivalent.
To take advantage of the KeepData feature, examine the example program
DEMOSCRN .BAS.

To return to text mode at the completion of your program, use the routine
Screen0. Otherwise your program will return to DOS while still in a
graphics mode.

■ See Also:

Screen0, other screen setting routines

CRESCEJIIT SOFTWARE, INC. ■ 3-61

A11embly Routines The Graphic■ Workshop

Section 3:
General Screen Manipulation Routines

The routines in this section are routines for which there is no BASIC
equivalent. Some of the routines move regions of the graphics screen to
other locations. The GScrollVE routine will allow any region of a graphics
screen to be scrolled in any direction.

■ 3-62 CRESCENT SOFTWARE, INC.

The Graphics Workshop

ClearScreenArray

■ Purpose:

Assembly Routines

Assembler
subroutine contained in CW.LIB

The routine ClearScreenArray is used to reset the screen array maintained
by the various GPrint??? routines.

■ Syntax:
CALL C learScreenArray

Comment:
The example below resets the screen array and then checks the character
value at position I, 1.

DEFINT A-Z
'$INCLUDE: 'GWDECL.BAS'
SCREEN 12

CALL C learScreenArray

Char% = GetCharacter%(1, 1)

'required for BYVAL 's
'sets the monitor in VGA mode

'Char% wi 11 equal 32 (a space) at this point.

■ SeeAlso:
GetCharacter%

CRESCENT SOFTWARE, INC. ■ 3-63

Aasembly Roulinea

ClearVE

■ Purpose:

The Graphic, Workshop

Assembler
subroutine contained in CW.LIB

The routine ClearVE will reset the EGA and VGA registers to a known
state.

■ Syntax:

CALL ClearVE

Comment:

The example below clears the VGA registers.
DEFINT A-Z
'$INCLUDE: 'GWDECL.BAS' 'required for BYVAL's
SCREEN 12 'sets the monitor in VGA mode

CALL ClearVE

There may be no need for this routine unless you modify the EGA or VGA
registers on your own. If you do modify the EGA or VGA registers, this
routine can be used to reset all of them to a known state.

■ 3-64 CRESCENT SOFl'WARE. INC.

The Graphica Workahop Assembly Routinea

DrawByteVE Assembler
subroutine contained in CW.LIB

■ Purpose:

DrawByteVE will draw a byte to an EGA or VGA screen at the specified
physical location in the specified color. Only those bits specified in the
bit pattern will be modified. Using this routine allows you to plot up to 8
pixels at a time.

■ Syntax:
CALL DrawByteVE(BYVAL ScreenPosition%, BYVAL BitPattern%.

BYVAL ByteCo lor%)

■ Where:

ScreenPosition% is an actual memory address for the EGA screen. The
function MakeAddressVE% can provide you with the EGA memory
address if you need it.

BitPattern% is a byte value for which every bit set in its binary equivalent
will be colored on the screen.

ByteColor% is a color from Oto 15 for the bits to be set. Only those bits
specified by the BitPattern % parameter will receive the color in Byte­
Color%.

Comments:

All parameters for this routine are passed by value to provide the maximum
speed. Including the file GWDECL.BAS at the beginning of all programs
or modules which use this routine will insure proper operation.

The following example sets the first eight horizontal bits on the screen to
the color red.

DEFINT A-Z
'$INCLUDE: 'GWDECL.BAS' "required for BYVAL 's
SCREEN 12 "sets the monitor in VGA mode

Address% = 0 'first address of the screen
BitPattern% = 255 'set all bits

CALL DrawByteVE (Address%. BitPattern%, 4)

CRESCENT SOFTWARE. INC. ■ 3-65

A11cmbly Routines The Graphic■ Workshop

The DrawByteVE routine provides the second fastest drawing speed to the
screen. The fastest drawing speed can be obtained by using the LineVE
statement.

■ SeeAlso:
DrawPointVE, LineVE, MakeAddressVE%

■ 3-66 CRESCENT SOFTWARE, INC.

The Graphics Workshop Auembly Routine•

DrawByteVEOpts Assembler
subroutine contained in GW.LIB

■ Purpose:

DrawByteVEOpts will draw a byte to an EGA or VGA screen at the
specified physical location in the specified color. Only those bits specified
in the bit pattern will be modified. Using this routine allows you to plot
up to 8 pixels at a time. In addition, this routine can use any of the logical
operators OR, AND, or XOR.

■ Syntax:
CALL DrawByteVEOpts(BYVAL ScreenPosition%. BYVAL BitPattern%, _

BYVAL ByteCo lor%)

■ Where:

ScreenPosition"lo is an actual memory address for the EGA screen. The
function MakeAddressVE% can provide you with the EGA memory
address if you need it.

BitPattern"lo is a byte value for which every bit set in its binary equivalent
will be colored on the screen.

ByteColor"lo is a color from Oto 15 for the bits to be set. Only those bits
specified by the BitPattern % parameter will receive the color in Byte­
Color%. If you add one of the below values to the color, then the associated
logical operator will be performed.

VALUE LOGICAL OPERATION
0 PSET (Replace)

2048 OR
4096 AND
6144 XOR

Any other values will produce unusual (and probably undesirable) effects.

Comments:

All parameters for this routine are passed by value to provide the maximum
speed. Including the file GWDECL.BAS at the beginning of all programs
or modules which use this routine will insure proper operation.

The following example uses to logical operation OR, to combine the color
blue with the first eight horizontal pixels on the screen.

CRESCENT SOFTWARE, INC. ■ 3 -67

Assembly Roulines The Graphic, Worbhop

DEFINT A-Z
'$INCLUDE: 'GWDECL.BAS' 'required for BYVAL 's
SCREEN 12 'sets the monitor in VGA mode

Address% = 0 'first address on the screen
BitPattern% = 255 'set all bits
CALL DrawByteVEOpts (Address%, BitPattern%, I + 2048)

The DrawByteVEOpts routine provides the second fastest drawing speed
to the screen. The fastest drawing speed can be obtained by using the
LineVE statement.

■ SeeAlso:

DrawByteVE, DrawPointVE, LineVE, MakeAddressVE%

■ 3-68 CRESCENT SOFTWARE, INC.

The Graphic• Workshop Auembly Routinel

Fade2EGA Assembler
subroutine contained in CW.LIB

■ Purpose:

Fade2EGA uses a random sequence of points to transfer images from one
video page to another. This routine is meant for use with EGA adapters.

■ Syntax:
CALL Fade2EGA(BYVAL GridX%, BYVAL GridY%, BYVAL RandomPortion%)

■ Where:

The video screen is broken up into a grid where each region is 40 pixels
wide by 8 pixels high. GridX% is a number between 1 and 16. GridY%
will range between 1 and 44.

The variable RandomPortion% is a number between 1 and 5. It refers
to one of five pre-configured random patterns for the grid region. Placing
all five patterns on one grid region will create a solid image on that grid
region.

Comments:

All parameters for this routine are passed by value to provide the maximum
speed. Including the file GWDECL.BAS at the beginning of all programs
or modules which use this routine will insure proper operation.

The below example draws some images, copies them to the second video
page, and then uses the Fade2EGA routine on the upper-left grid region
to transfer the image.

DEFINT A-Z
'$INCLUDE: 'GWDECL.BAS' 'required for BYVAL 's
SCREEN 9 'sets the man i tor in EGA mode

'some sample graphics
LINE (0, 0) - (639, 349). I. 8
LINE (5, 5) - (100, 40). 2, BF
CIRCLE (30, 30), 27, 4
PAINT (30, 30). 4, 4
PCOPY 0, I 'copy to second video page

CLS 'clear the screen to see the effect
FOR T = I TO 5

CALL Fade2EGA (I, I. T)
NEXT

The sequence is pseudo random and is specified by the data in
FADEDAT2.GW.

CRESCENT SOFTWARE, INC. ■ 3-69

Auembly Routine• The Graphic• Worbru.p

When a grid region is specified and a RandomPortion % is specified, it
will transfer one-fifth of the screen image. Each grid region must be
specified a total of five times, each time with a different random pattern
specified to transfer the entire image to that region. The order for the
random patterns is not important, as long as every region receives each
RandomPortion at least once.

It is advisable to use this routine and this effect when the overall
background of the two screen images is going to be similar. Any time
when there is a large portion of the screen which will not be changed by
this routine, the effect is much more pleasing to the eye and doesn't appear
rigid.

The BASIC subroutines Nightfall and RandomFade use this routine to
transfer a screen from the background, and should be utilized as an
example for this routine.

■ SeeAlso:

FadeEGA, Nightfall, RandomFade

■ 3-70 CRESCENT SOFTWARE, INC.

The Graphic, Workshop Assembly Routine,

FadeEGA Assembler
subroutine contained in GW.LIB

■ Purpose:

FadeEGA uses a random sequence of points to transfer images from one
video page to another. This routine is meant for use with EGA adapters.

■ Syntax:
CALL FadeEGA(BYVAL GridX%, BYVAL GridY%, BYVAL RandomPort ion%)

■ Where:

The video screen is broken up into a grid where each region is 160 pixels
wide by 32 pixels high. GridX% is a number between 1 and 4. GridY%
will range between 1 and 11.

The variable RandomPortion% is a number between 1 and 10. It refers
to one often pre-configured random patterns for the grid region. Placing
all ten patterns on one grid region will create a solid image on that grid
region.

Comments:

All parameters for this routine are passed by value to provide the maximum
speed. Including the file GWDECL.BAS at the beginning of all programs
or modules which use this routine will insure proper operation.

The below example draws some images, copies them to the second video
page, and then uses the FadeEGA routine on the upper-left grid region to
transfer the image.

DEFINT A-Z
'$INCLUDE: 'GWDECL.BAS' 'required for BYVAL's
SCREEN 9 'sets the monitor in EGA mode

'some sample graphics
LINE (0, 0) - (639, 349), 1, B
LINE (IO, 10) - (100, 40), 2, BF
CIRCLE (30, 30), 25, 4
PAINT (30, 30), 4, 4
PCOPY 0, 1 'copy to second video page
CLS 'clear the screen to see the effect
FOR T = 1 TO 10

CALL FadeEGA (1, I. T)
NEXT

The sequence is pseudo random and is specified by the data in
FADEDATA.GW.

CRESCENT SOFTWARE, INC. ■ 3 - 71

Asaembly Routines The Graphics Worbhop

When a grid region is specified and a RandomPortion% is specified, it
will transfer one-tenth of the screen image. Each grid region must be
specified a total of ten times, each time with a different random portion
specified to transfer the entire image to that region. The order for the
random portions is not important, as long as every region receives each
RandomPortion at least once.

It is advisable to use this routine and this effect when the overall
background of the two screen images is going to be similar. Any time
when there is a large portion of the screen which will not be changed by
this routine, the effect is much more pleasing to the eye and doesn't appear
rigid.

The BASIC subroutines Nightfall and RandomFade use this routine to
transfer a screen from the background, and should be utilized as an
example for this routine.

■ SeeAlso:
Fade2EGA, Nightfall, RandomFade

■ 3-72 CRESCENT SOFl'WARE, INC.

The Graphics Workshop Aucmbly Routines

GetCharacter% Assembler
function contained in CW.LIB

■ Purpose:

The function GetCharacter% returns the ASCII character value stored at
the specified screen position.

■ Syntax:
ASCII% = GetCharacter%(BYVAL Row%, BYVAL Co 1%)

■ Where:

Row% and Col% represent the location on the screen to inquire about.

Comments:

All parameters for this routine are passed by value to provide the maximum
speed. Including the file GWDECL.BAS at the beginning of all programs
or modules which use this routine will insure proper operation.

The following example gets the character value at location 1, l.
DEFINT A-Z
'$INCLUDE: 'GWDECL.BAS' 'required for BYVAL's
SCREEN 12 'sets the monitor in VGA mode

CALL GPrintOVE (1, 1, "Hello", 15)

Char% = GetCharacter%(I. 1)

Note that this routine doesn't read video memory to determine the
character value on the screen. To save the time that would be required to
interpret pixel patterns, the Graphics Workshop Print routines put the
character values into a screen array 80 characters wide by 25 lines high.

■ SeeAlso:

ClearScreenArray

CRESCENT SOFTWARE, INC. ■ 3 - 73

Assembly Routine■

GetlastXCoord%

■ Purpose:

The Oraphica Worbbcf

Assembler
function contained in GW.LIB

GetLastXCoord % returns the value of the last x coordinate drawn to.

■ Syntax:
X% = GetlastXCoord%

Comment:

The following example demonstrates how to obtain the x coordinate value
of the drawing cursor's location after a Graphics Workshop primitive has
been used.

DEFINT A-Z
'$INCLUDE: 'GWDECL.BAS' 'required for BYVAL 's
SCREEN 12 'sets the monitor in VGA mode

CALL L ineStep(l03, 56, 15)

X% = GetlastxCoord%

■ See Also:

GetLastYCoord%, SetLastCoord

■ 3-74 CRESCENT SOFIWARE, INC.

The Graphics Workshop

GetlastYCoord%

■ Purpose:

Assembly Routines

Assembler
function contained in CW.LIB

GetLastYCoord% returns the value of the last y coordinate drawn to.

■ Syntax:
Y% = GetLastYCoord%

Comment:

The following example demonstrates how to obtain the y coordinate value
of the drawing cursor's location after a Graphics Workshop primitive has
been used.

DEFJNT A-Z
'$INCLUDE: 'GWDECL.BAS" 'required for BYVAL's
SCREEN 12 'sets the monitor in VGA mode

CALL L ineStep(103, 56, 15)

Y% = GetLastYCoord%

■ SeeAlso:
GetLastXCoord % , SetLastCoord

CRESCENT SOFTWARE, INC. ■ 3 -75

Assembly Routines

GetScreenMode%

■ Purpose:

The Graphics Workshop

Assembler
function contained in CW.LIB

GetScreenMode% returns the BIOS video mode currently in use.

■ Syntax:
BIOSMode% = GetScreenMode%

Comments:

The following example checks to see if the BIOS video mode is greater
than 13, meaning it is an EGA or VGA video mode.

DEFINT A-Z
'$INCLUDE: 'GWDECL.BAS' 'required for BYVAL 's
SCREEN 12 'sets the monitor in VGA mode

BIOSMode% = GetScreenMode%

IF BIOSMode% 13 THEN PRINT "EGA or VGA"

■ 3 -76 CRESCENT SOFTWARE, INC.

The Graphics Workshop Assembly Routinea

GMove1VE Assembler
subroutine contained in CW.LIB

■ Purpose:

GMovel VE moves any rectangular block on any video page to any location
on any video page.

■ Syntax:
CALL GMovelVE (BYVAL FromCo 1%, BYVAL FromL ine%, BYVAL

Cols%, BYVAL Lines%, BYVAL DestCol%, BYVAL DestL ine¾)

■ Where:

FromCo1% and FromLine% specify the upper corner of the region to be
moved. Cols% and Lines% specify the size of the region to be moved.
These coordinates follow a mixed coordinate window system where
column values range from l to 80 and line values range from O to 349 on
an EGA monitor.

DestCol% and DestLine% specify a mixed coordinate value which tells
the upper-left corner where the image will be placed.

Comments:

All parameters for this routine are passed by value to provide the maximum
speed. Including the file GWDECL.BAS at the beginning of all programs
or modules which use this routine will insure proper operation.

The following code fragment copies an image from the right half of the
page to the left half of the page.

DEFINT A-Z
'$INCLUDE: 'GWDECL.BAS' 'required for BYVAL's
SCREEN 12 'sets the monitor in VGA mode

CALL SetGWPages(D, D) 'make destination the same as the source

CALL GMovelVE(41, D, 40, 4B0, I, 0)

The default pages for this routine and others are page I for the source
information and page O for the destination of the image. The source and
destination pages can be re-directed using the SetGWPages routine.

CRESCENT SOFrWARE, INC. ■ 3-77

Assembly Routines The Graphics Workshop

When using the GMove!VE routine to move an image across the screen,
you must take into account that the image is being overwritten while it is
being moved. For these uses, look at the use of the GMove2VE routine
in DEMOMOVE.BAS and the GScrollVE routine in DEMOSCRL.BAS
to move images flawlessly.

■ See Also:

GMove2VE, GMove3VE, TransferEGA, SetGWPages

■ 3 -78 CRESCENT SOFTWARE, INC.

The Graphics Workshop

GMove2VE

■ Purpose:

Assembly Routinea

Assembler
subroutine contained in CW.LIB

GMove2VE will save and restore any rectangular region of the screen to
a video memory location which you specify. This routine uses screen
memory to store the image. This approach has two advantages: Graphics
saves and restores require one-fourth the instructions of other save and
restore routines, and graphics memory is often not used and is therefore
less costly to the programmer than using general memory.

■ Syntax:
DestSegment% = &HAB00
CALL GMove2VE (BYVAL FromCol%, BYVAL FromL ine%, BYVAL Cols%, BYVAL_

Lines%, BYVAL Dest Segment%, BYVAL Direct ion%)

■ Where:

FromCol% and FromLine% specify the upper comer of the region to be
moved. Cols% and Lines% specify the size of the region to be moved.
These coordinates follow a mixed coordinate window system where
column values range from 1 to 80 and line values range from 0 to 479 on
a VGA monitor.

The variable DestSegment% provides the routine with a location to send
the information. This segment value should be within the range of EGA
or VGA graphics memory available.

The variable Direction% decides whether the image will be saved or
restored. A zero saves the image. Any other value will restore the image.

Comments:

All parameters for this routine are passed by value to provide the maximum
speed. Including the file GWDECL.BAS at the beginning of all programs
or modules which use this routine will insure proper operation.

The following example saves and restores the upper-left comer 10 column
by I 00 lines region of the screen.

CRESCENT SOFTWARE, INC. ■ 3- 79

A1sembly Routines The Graphic, Workshop

DEFINT A-Z
'$INCLUDE: 'GWDECL.BAS' 'required for BYVAL's
SCREEN 12 'sets the man itor in VGA mode

LINE (0, 0) - (79, 99), 1, B
'save the image
CALL GMove2VE (I, 0, 10, 100, &HAA00, 0)

CLS
'restore the image
CALL GMove2VE (1, 0, 10, 100, &HAA00, -1)

The default page for this routine is page 0. Depending upon the value in
the parameter Direction%, the default page refers to the destination or the
source for the image. The default page can be re-directed using the routine
SetGWPages.

The beginning of the EGA's high-resolution second screen starts at
&HA800. On the EGA display there is 128K free for the storage of
images.

The VGA high-resolution mode doesn't have a second screen per se, but
we still can use this routine. For the VGA the first unused graphics
segment would be &HAA00 as shown in the above code example. The
VGA has only 96K of available memory for the storage of images.

The following formula will help to calculate the amount of memory used
by an image saved with this routine:

MemUsed% = Co ls% • Lines% • 4

To use this to determine the next segment where graphics images can be
stored, use

NextSegment% = ThisSegment% + MemUsed% \ 64 + 1

where ThisSegment% is the segment where the current graphics image is
being stored.

This routine is a vital part of saving graphics images for use in the graphics
PullDownG menus and in the VertMenuG routine.

■ See Also:
GMovelVE, GMove3VE, GMove4VE, SetGWPages

■ 3-80 CRESCENT SOFTWARE, INC.

The Graphics Workshop Assembly Routines

GMove3VE Assembler
subroutine contained in CW.LIB

■ Purpose:
GMove3VE moves any rectangular block on any video page to any location
on any video page. This routine has the ability to create an interlacing
effect by skipping a specified number of lines between lines transferred.

■ Syntax:
CALL GMove3VE (BYVAL FromCo 1%, BYVAL FromL ine%, BYVAL Co ls%, BYVAL

Lines%, BYVAL DestCol%, BYVAL Destline%, BYVAL SkipL ines%) -

■ Where:

FromCol% and FromLine% specify the upper corner of the region to be
moved. Cols% and Lines% specify the size of the region to be moved.
These coordinates follow a mixed coordinate window system where
column values range from I to 80 and line values range from O to 349 on
an EGA monitor.

DestCol% and DestLine% specify a mixed coordinate value which tells
the upper-left comer where the image will be placed.

SkipLines% tells the routine how many lines to skip for every line copied
within the region.

Comments:

All parameters for this routine are passed by value to provide the maximum
speed. Including the file GWDECL.BAS at the beginning of all programs
or modules which use this routine will insure proper operation.

The SkipLines parameter is usually set to 1 which tells the routine to skip
every other line. Also, it is common for this routine to be called once to
bring in half of the lines and once more to bring in the other half. The
BASIC routine SplitHorizontal makes use of this routine to bring in a
graphics image. The demo DEMOGW.BAS makes use of this routine to
display the opening title page.

The following example shows how to transfer an interlaced image of the
right half of the screen to the left half of the screen.

DEFINT A-Z
'$INCLUDE: 'GWDECL.BAS' 'required for BYVAL's
SCREEN 12 'sets the monitor in VGA mode

Sk ipL ines% = I
CALL GMove3VE (41. 0, 40, 480, I. 0, Sk ipL ines%)

CRESCENT SOFTWARE, INC. ■ 3-81

Assembly Routines The Graphics Workshop

This routine works exactly like GMovelVE if you specify SkipLines% =
0.

The default pages for this routine are page I for the source information
and page O for the destination of the image. The source and destination
pages can be re-directed using the routine SetGWPages.

■ See Also:

GMovel VE, GMove2VE, SetGWPages, SplitHorizontal, TransferEGA

■ 3 - 82 CRESCENT SOFTWARE, INC.

The Graphics Workshop Assembly Routinca

GMove4VE Assembler
subroutine contained in GW.LIB

■ Purpose:
GMove4VE will save and restore any rectangular region of the screen to
an array you specify.

■ Syntax:
CALL GMove4VE (BYVAL FromCol%, BYVAL FromL ine%, BYVAL Cols%, BYVAL

Lines%, BYVAL DestSegment%, BYVAL Direction%)

■ Where:

FromCol% and FromLine% specify the upper comer of the region to be
moved. Cols% and Lines% specify the size of the region to be moved.
These coordinates follow a mixed coordinate window system where
column values range from I to 80 and line values range from O to 479 on
a VGA monitor.

The variable DestSegment% provides the routine with a location to send
the information. This segment value is determined by finding the segment
of a pre-dimensioned array. The segment of an array can be found as
follows:

RED!M Array%(D to 5000)
DestSegment% = VARSEG(Array%(0))

The variable Direction% decides whether the image will be saved or
restored. A value of zero saves the image. Any other value will restore
the image.

Comments:

All parameters for this routine are passed by value to provide the maximum
speed. Including the file GWDECL.BAS at the beginning of all programs
or modules which use this routine will insure proper operation.

The memory location must be declared prior to saving the image into the
array. To calculate the amount of memory required use the following
formula:

MemoryNeeded% = Co lumnsUsed% * L inesUsed% * 4 + 4

Once the amount of memory required has been calculated, you will
dimension an integer array with half of the elements contained in Memory­
Needed % . If the value in Memory Needed% is greater than 65536, then
you must run QB.EXE or QBX.EXE with the /Ah parameter, and compile
your programs with this parameter as well. In addition, you will need to
create and pass this routine a long integer array where each element will

CRESCENT SOFl'WARE, INC. ■ 3-83

Aaaembly Routines The Oraphica Worbhop

provide you with 4 bytes of memory space. To make an array covering
128K of memory, dimension it as follows:

REDIM LongArray&(0 to 32767)

The following example saves and restores a region 10 columns wide by
100 lines high in the upper-left comer of the screen.

DEFINT A-Z
'$INCLUDE: 'GWDECL.BAS' 'required for BYVAL's
SCREEN 12 'sets the monitor in VGA mode

LINE (0, 0) - (79, 99). I, B
'save the image
MemNeeded% = 10 • 100 • 4 + 4
DIM A%(MemNeeded% \ 2) 'each integer counts for 2 bytes
CALL GMove4VE (1, 0, 10, JOO, VARSEG(A%(0)), 0)
WHILE INKEY$ = "": WEND

CLS
'restore the image
CALL GMove4VE (1, 0, 10, 100, VARSEG(A%(0)), -1)

By calling VARSEG at the time when GMove4VE is called, you will ensure
that if BASIC has moved your array, that you will be passing the proper
address of your array to the GMove4VE routine.

The default page for this routine is page 0. Depending upon the value in
the parameter Direction%, the default page refers to the destination or the
source for the image. The default page can be re-directed using the routine
SetGWPages.

A side-effect of this routine is that images saved with the GMove4VE
routine can be placed anywhere on the screen using the BASIC PUT
statement. However, images captured with the BASIC GET statement
cannot be displayed with the GMove4VE routine.

■ SeeAlso:

GMovel VE, GMove2VE, GMove3VE, SetGWPages

■ 3-84 CRESCENT SOFTWARE, INC.

The Graphic• Worbhop Asaembly Routine■

GScrollVE Assembler
subroutine contained in GW.LIB

■ Purpose:

GScrollVE scrolls a rectangular region on the screen.

■ Syntax:
CALL GScrollVE (BYVAL Coll%. BYVAL L inel%. BYVAL Cols%,

BYVAL Lines%, BYVAL ColDeltaX, BYVAL L ineDelta%)

■ Where:

Coll% and Linet% specify the upper corner of the region to be moved.
Cols% and Lines% specify the size of the region to be moved. These
coordinates follow a mixed coordinate window system where column
values range from I to 80 and line values range from Oto 479 on a VGA
monitor.

Co1Delta% and LineDelta% specify the distance the region should be
scrolled. A negative number can be used to specify movement in the
negative direction for that axis.

Comments:

All parameters for this routine are passed by value to provide the maximum
speed. Including the file GWDECL.BAS at the beginning of all programs
or modules which use this routine will insure proper operation.

Not only can the window be scrolled left, right, up and down, but diagonal
combinations of these are also possible.

The following code fragment scrolls a circle in a diagonal direction on the
screen:

DEFINT A-Z
'$INCLUDE: 'GWDECL.BAS' 'required for BYVAL's
SCREEN 12 'sets the monitor in VGA mode

CIRCLE (120, 120), 40, 15
PAINT (120, 120), 4, 15

FOR T = I TO ID
CALL GScrollVE(I, 0, 22, 169, I, 8)

NEXT

You can use the elements 43 and 44 of the GPDat%() array to check the
screens boundaries.

CRESCENT SOFIWARE, INC. ■ 3 - 85

Assembly Routines The Graphics Workshop

MakeAddressVE% Assembler
subroutine contained in CW.LIB

■ Purpose:

MakeAddressVE% takes an (X, Y) coordinate and returns an EGA or
VGA video memory address and a bit pattern. The bit pattern has only
one bit set. This bit represents the pixel location within memory.

■ Syntax:

Address% = MakeAddressVE%(BYVAL XPos%, BYVAL YPos%, BitPattern%)

■ Where:

XPos% and YPos% specify the (X, Y) coordinate.

BitPattern% is a byte value returned from the assembly routine which has
one bit set which corresponds to the pixel position in memory.

Comment:

Two parameters for this routine are passed by value to provide the
maximum speed. Including the file GWDECL.BAS at the beginning of
all programs or modules which use this routine will insure proper
operation.

The following example gets the information corresponding to pixel
location l 00, 200 on the screen;

DEFINT A-Z
'$INCLUDE: 'GWDECL.BAS" 'required for BYVAL's
SCREEN 12 'sets the monitor in VGA mode

Address% = MakeAddressVE% (100, 200)

Having a memory location and a bit pattern, the pixel can be set using the
DrawByteVE routine. There are more optimal ways to set a pixel, but
addressing memory directly is faster than by using X, Y coordinates.

■ SeeAlso:

DrawByteVE

■ 3 -86 CRESCENT SOFTWARE, INC.

The Graphics Workshop

MultMonitor%

■ Purpose:

Assembly Routinea

Assembler
function contained in CW.LIB

MultMonitor% determines all of the monitors attached to a particular
computer. It is possible to have a computer with two or more monitors.
This routine will tell you which types of monitors are active.

■ Syntax:
M% = MultMonitor%

■ Where:

Each bit in the return value represents an adapter and monitor combination
which is possible. A value of O means no graphics monitor is attached.

BIT VALUE MEANING
0 Hercules adaptor is attached
l 2 CGA capable adaptor attached
2 4 mono EGA adaptor is attached
3 8 color EGA adaptor is attached
4 16 mono VGA adaptor is attached
5 32 color VGA adaptor is attached
6 64 mono MCGA adaptor is attached
7 128 color MCGA adaptor is attached
8 256 EGA adaptor emulating CGA
9 512 IBM 8514/ A adantor is attached

For example, a system which has both a VGA color monitor and a Hercules
monitor connected will return a value of33 (32 for VGA + I for Hercules).

Comments:

To check if a VGA monitor exists, use the following line of code:

IF (M% AND 32) <> 0 THEN PRINT '"Can use VGA'"

The file GETVIDEO.BAS tests each bit in the proper order to determine
the best monitor available. GETVIDEO.BAS is part of the standard code
we suggested in Chapter I. Also, using the GETVIDEO.BAS and
SetVideo combination will help to avoid any misunderstanding of this
routine and the values it returns.

CRESCENT SOFrWARE, INC. ■ 3 - 87

Assembly Routines

PaintBits

■ Purpose:

The Graphics Worbhap

Assembler
subroutine contained in GW.LIB

PaintBits accepts a video memory location, a bit pattern, an old color and
a new color. For every occurrence of the old color in that byte of memory,
PaintBits replaces it with the new color specified. A "bit pattern"
parameter allows you to mask out bits which you don't want re-colored.

■ Syntax:
CALL PaintBits(BYVAL Coll%, BYVAL L inel%, BYVAL BitPattern%,

BYVAL OldColor%, BYVAL NewColor%)

■ Where:

Coll% and Linet% specify the location of a byte in memory. The
coordinates follow the mixed coordinate system where column values
range from I to 80 and line values range from Oto 479 on a VGA monitor.

BitP..ittern% is a byte where every bit which is on (a binary value 1) has
the ability to be changed.

OldColor% is the color which exists on the screen that we want to change.

NewColor% is the color to replace the former color.

Comments:

All parameters for this routine are passed by value to provide the maximum
speed. Including the file GWDECL.BAS at the beginning of all programs
or modules which use this routine will insure proper operation.

If you set BitPattern% to 255, this function works exactly like PaintByte
which does not accept a bit pattern.

Using this function to change the color back to the original can produce
undesirable results. For example, imagine there are three colors in a
region: red, white, and blue. If you change the white to a blue, but then
want to change it back to white, you will end up changing that which was
originally blue to white.

The example below changes every other bit among the first eight horizontal
bits on the screen, to blue if and only if they are black.

■ 3 - 88 CRESCENT SOFTWARE, INC.

The Graphics Workshop Assembly Routinea

DEFINT A-Z
'$INCLUDE: 'GWDECL.BAS' 'required for BYVAL 's
SCREEN 12 'sets the monitor in VGA mode

NewColor% = 1 'blue
0ldColorX = 0 'black
BitPattern% = 170 'every other bit set
CALL PaintBits (I, 0, BitPattern%, 0ldColor%, NewColor%)

PaintBits' and PaintByte's real power shows up when the region of the
screen you want to re-color has colors which exist outside the region,
which you do not want to re-color, If it is acceptable for all occurrences
of a specified color to be changed, then change its palette instead.

■ See Also:
PaintByte

CRESCENT SOFTWARE, INC. ■ 3-89

Assembly Routines The Graphic■ Workshop

PaintByte Assembler
subroutine contained in GW.LIB

■ Purpose:

PaintByte accepts a byte location on the screen, an old color and a new
color. For every occurrence of the old color on the screen, PaintByte
replaces it with the new color specified.

■ Syntax:
CALL PaintByte(BYVAL Coli%, BYVAL Line!%, BYVAL OldColor%,

BYVAL NewCo lor%)

■ Where:

Coll% and Line I% specify the location of a byte in memory. The
coordinates follow the mixed coordinate system where column values
range from I to 80 and line values range from Oto 479 on a VGA monitor.

OldColor% is the color which exists on the screen that we want to change.

NewColor% is the color to replace the former color.

Comments:

All parameters for this routine are passed by value to provide the maximum
speed. Including the file GWDECL.BAS at the beginning of all programs
or modules which use this routine will insure proper operation.

Using this function to change the color back to the original can produce
undesirable results. For example, imagine there are three colors in a
region: red, white, and blue. If you change the white to a blue, but then
want to change it back to white, you will end up changing that which was
originally blue to white.

The example below changes the first eight horizontal bits on the screen,
to red if they are black.

OEF!NT A-Z
'$INCLUDE: 'GWDECL.BAS' 'required for BYVAL 's
SCREEN 12 'sets the monitor in VGA mode

NewCo lor% = 4 'red
OldColor% = 0 'black
CALL PaintBits (1. 0, OldColor%, NewColor%)

■ 3 - 90 CRESCENT SOFTWARE, INC.

The Graphics Workshop Assembly Routinca

PaintBits' and PaintByte's real power shows up when the region of the
screen you want to re-color has colors which exist outside the region,
which you do not want to re-color. If it is acceptable for all occurrences
of a specified color to be changed, then change its palette instead.

■ SeeAlso:

PaintBits

:RESCENT SOFTWARE, INC. ■ 3-91

Assembly Routines

ScrnDump2

■ Purpose:

The Graphics Worlcahop

Assembler
subroutine contained in CW.LIB

ScrnDump2 will print a snapshot of a graphics screen, regardless of the
mode, to either an Epson or compatible dot matrix printer, or to a Hewlett
Packard LaserJet Series II compatible printer. The images for both types
of printers can be printed in either landscape or portrait mode.

■ Syntax:
CALL ScrnDump2 (DP!$, LptNumber%, Translate%, XMult%, YMult%,

Land0rPort%)

■ Where:

DPI$ indicates the Dots Per Inch resolution when sending to a Hewlett­
Packard LaserJet or compatible printer, or is a null string ("") if printing
on an Epson FX series or compatible printer. The valid strings for the
LaserJet printers are "075", "100", "150" and "300".

LptNumber% is either I, 2, or 3, to tell ScrnDump2 which parallel printer
port to use. If a printer error occurs, ScrnDump2 will return
LPTNumber% set to -1.

Translate% is set to any non-zero value to translate all colors on screen
to equivalent tile patterns, or it is set to Oto print all colors as solid black.

XMult% and YMult% are aspect multipliers for images which are sent
to the LaserJet printers. All aspects for the EPSON style printers are
pre-set to give the proper aspect. When printing to an EPSON style printer
the values in these variables are left alone by the routine.

Land0rPort% is a true or false variable which determines if the image
will be displayed in Landscape or Portrait mode. Any non-zero value will
print the image in Landscape mode. A zero value will print in Portrait
mode.

Comments:

When printing on a laser printer, ScrnDump2 positions the upper-left
corner of the image at the printer's current cursor position.

ScrnDump2 will automatically recognize the current video mode, and
determine the number of screen bytes being used and their organization.

An example of printing a VGA high-resolution screen to an Laser Printer
at 150 dots per inch in Landscape mode is given below.

■ 3-92 CRESCENT SOFIWARE, INC.

The Graphic■ Work■hop A■sembly Routine■

DEFINT A-Z
'$INCLUDE: 'GWDECL.BAS' 'required for BYVAL's
SCREEN 12 'sets the monitor in VGA mode

LPTNo% = I
LandDrPort% = -1
CALL ScrnDump2 ("ISO", LPTNo%, -1, I, I, LandOrPort%)

There are many examples of using the ScmDump2 routine contained in
the demonstration program SCRNDUMP.BAS.

There are some restrictions on the valid values for the XMult% and
YMult% variables. A buffer inside the ScrnDump2 routine is used to
store LaserJet infonnation as it is being flipped into landscape mode. This
buffer is only 720 bytes long. Trying to double the size of an image is
not always possible. To give a 640 by 200 pixel screen to proper aspect
ratio on the HP LaserJet, follow the example below:

LptNo% = 1 'Use a variable so we can test it below
CALL ScrnDump2 ("100", LptNo%, -1. I. 2, -1)
IF LptNo% = -1 THEN PRINT "Error"

This will make the image appear like a screen with a 640 by 400 pixel
resolution when sent to the printer.

CRESCENT SOFTWARE, INC. ■ 3-93

Assembly Routines The Graphics Workahop

The maximum XMult% and YMult% values are shown in the table below:

SCREEN mode XMult% YMult%
1 2 2
2 1 2
3 1 1
7 1 1
8 1 2
9 1 1
10 1 1
II I 1

■ 3-94 CRESCENT SOFTWARE, INC.

The Graphics Workshop Assembly Routines

SetDestPage Assembler
subroutine contained in GW.LIB

■ Purpose:

SetDestPage sets the destination video page for image moves and for all
drawing primitives.

■ Syntax:

CALL SetDestPage (BYVAL DestPageX)

■ Where:

DestPage% is the destination video page to be set. The first video page
is page 0. The EGA has a video page I, but the VGA does not.

Comments:

The parameter for this routine is passed by value to provide the maximum
speed. Including the file GWDECL.BAS at the beginning of all programs
or modules which use this routine will insure proper operation.

The following code will draw a line on the hidden video page.

DEFINT A-Z
'$INCLUDE: 'GWDECL.BAS' 'required for BYVAL's
SCREEN 9 'sets the man i tor in EGA mode

CALL SetDestPage (I)

CALL L ineVE (JOO, JOO, 200, 200, 15)

The VGA does not have a video page 1, but this routine will mimick the
address of an EGA page I when used on a VGA.

This routine does not affect any of BASIC's graphics statements.

■ See Also:

SetGWPages, SetSourcePage

CRESCENT SOFTWARE, INC. ■ 3 -95

A11embly Routine■

SetGWPages

■ Purpose:

The Graphic■ Worklhcf

Assembler
subroutine contained in GW.LIB

SetGWPages sets the video pages used by the family of graphics move
routines.

■ Syntax:

CALL SetGWPages [BYVAL SourcePage%, BYVAL DestPage%)

■ Where:

SourcePage% is the page number for the source of these routines. Valid
Page numbers for the EGA are O and 1.

DestPage% is the page number for the destination of these routines. Valid
Page numbers for the EGA are O and 1.

Comments:

Both parameters for this routine are passed by value to provide the
maximum speed. Including the file GWDECL.BAS at the beginning of
all programs or modules which use this routine will insure proper
operation.

The following code fragment makes the Source Page and Destination Page
both point to the first video page:

DEFINT A-Z
'$INCLUDE: 'GWDECL.BAS' 'required for BYVAL's
SCREEN 12 'sets the monitor in VGA mode

CALL SetGWPages [0, 0)

This routine does not modify the visual and active pages.

The VGA does not have enough memory to have 2 video pages. Therefore,
the only available page is page 0. Using a page value of 1, will not cause
an error, but will address memory as if the EGA video mode was active.
You can use this knowledge to your advantage with some insight.

It is allowed to make the source and destination pages the same.

The routines SetDestPage and SetSourcePage will allow you to set the
video pages individually.

■ SeeAlso:

SetDestPage, SetSourcePage

■ 3-96 CRESCENT SOFIWARE, INC.

The Graphic, Worbhop A1aembly Routine,

SetlastCoord Assembler
subroutine contained in CW.LIB

■ Purpose:

SetLastCoord sets the coordinate which is the last coordinate drawn to. It
does it without modifying any pixel values on screen.

■ Syntax:

CALL SetLastCoord (BYVAL LastX%, BYVAL LastY¾)

■ Where:

LastX% is the X coordinate value to be set.

LastY% is the Y coordinate value to be set.

Comments:

All parameters for this routine are passed by value to provide the maximum
speed. Including the file GWDECL.BAS at the beginning of all programs
or modules which use this routine will insure proper operation.

The following example sets the coordinate value to (103, 53) and then
draw a line 10 pixels long to the right.

DEFINT A-Z
'$INCLUDE: 'GW0ECL.BAS' 'required for BYVAL's
SCREEN 12 'sets the monitor in VGA mode

CALL SetLastCoord (103, 53)

CALL L ineToStep (9, 0, 15)

The benefit that this routine does not affect any of the pixel values on
screen, is apparent when the line step routines are used with their logical
operators. If the LineStep or LineToStep routines are required this routine
will be very useful in implementing the task.

■ See Also:

GetLastXCoord % , GetLastYCoord %

CRESCENT SOFTWARE, INC. ■ 3-97

Assembly Routines

SetSou rcePage

■ Purpose:

The Graphic, Worlcahop

Assembler
subroutine contained in GW.LIB

SetSourcePage sets the source video page for graphics moves.

■ Syntax:

CALL SetSourcePage (BYVAL SourcePage¾)

■ Where:

SourcePage% is the source video page to be set. The first video page is
page 0. The EGA has a video page l, but the VGA does not.

Comments:

The parameter for this routine is passed by value to provide the maximum
speed. Including the file GWDECL.BAS at the beginning of all programs
or modules which use this routine will insure proper operation.

To set the source video page on an EGA screen to page l, follow the below
example.

DEFINT A-Z
'$INCLUDE: 'GWDECL.BAS' 'required for BYVAL's
SCREEN 9 'sets the monitor in EGA mode

CALL SetSourcePage(l)

The VGA does not have a video page l, but this routine will mimick the
address of an EGA page l when used on a VGA.

This routine does not affect any of BASIC's graphics statements.

■ SeeAlso:

SetDestPage, SetGWPages

■ 3-98 CRESCENT SOFTWARE, INC.

The Graphics Workshop

SlideDown

■ Purpose:

Assembly Routinea

Assembler
subroutine contained in CW.LIB

SlideDown takes a region of the second video page screen and slides it
onto the screen at a specified location in a downward direction.

■ Syntax:

CALL SlideDown(BYVAL ULCol%, BYVAL ULLine%, BYVAL LRCol%,
BYVAL LRL ine%, BYVAL DestCol%, BYVAL DestL ine%) -

■ Where:

ULCol% and ULLine% specify the upper-left comer of the source region.
LRCol% and LRLine% specify the lower-right comer of the source
region. Together they specify the region to be moved. These coordinates
follow the mixed coordinate system where column values range from 1 to
80, and line values range from O to 349 on an EGA monitor.

DestCol% and DestLine% specify a mixed coordinate value which tells
the upper-left comer of the image's final resting place.

Comments:

All parameters for this routine are passed by value to provide the maximum
speed. Including the file GWDECL.BAS at the beginning of all programs
or modules which use this routine will insure proper operation.

For an example of how to use this routine, see the DEMOFX.BAS example
program.

■ See Also:

SlideUp, SlideLeft, SlideRight

CRESCENT SOFTWARE, INC. ■ 3-99

Auembly Routines

Slideleft

■ Purpose:

The Graphic, Worbhop

Assembler
subroutine contained in GW.LIB

SlideLeft takes a region of the second video page and slides it onto the
screen at a specified location in a horizontal direction towards the left side
of the screen.

■ Syntax:

CALL SlideLeft(BYVAL ULCol%, BYVAL ULL ine%, BYVAL LRCol%,
BYVAL LRL ine%, BYVAL DestCol%, BYVAL DestL ine%)

■ Where:

ULCol% and ULLine% specify the upper-left corner of the source region.
LRCol% and LRLine% specify the lower-right corner of the source
region. Together they specify the region to be moved. These coordinates
follow the mixed coordinate system where column values range from 1 to
80, and line values range from O to 349 on an EGA monitor.

DestCol% and DestLine% specify a mixed coordinate value which tells
the upper-left corner of the image's final resting place.

Comments:

All parameters for this routine are passed by value to provide the maximum
speed. Including the file GWDECL.BAS at the beginning of all programs
or modules which use this routine will insure proper operation.

For an example of how to use this routine, see the DEMOFX.BAS example
program.

■ SeeAlso:

SlideDown, SlideUp, SlideRight

■ 3- 100 CRESCEl'll" SOFIWARE, INC.

The Graphics Workshop

SlideRight

■ Purpose:

Assembly Routines

Assembler
subroutine contained in CW.LIB

SlideRight takes a region of the second video page and slides it onto the
screen at a specified location in a horizontal direction towards the right
side of the screen.

■ Syntax:
CALL SlideRight(BYVAL ULCol%, BYVAL ULLine%, BYVAL LRCo1%,

BYVAL LRLine%, BYVAL DestCo1%, BYVAL DestL ineX)

■ Where:

ULCol% and ULLine% specify the upper-left comer of the source region.
LRCol% and LRLine% specify the lower-right corner of the source
region. Together they specify the region to be moved. These coordinates
follow the mixed coordinate system where column values range from 1 to
80, and line values range from O to 349 on an EGA monitor.

DestCol% and DestLine% specify a mixed coordinate value which tells
the upper-left comer of the image's final resting place.

Comments:

All parameters for this routine are passed by value to provide the maximum
speed. Including the file GWDECL.BAS at the beginning of all programs
or modules which use this routine will insure proper operation.

For an example of how to use this routine, see the DEMOFX.BAS example
program.

■ SeeAlso:

SlideDown, SlideUp, SlideLeft

CRESCENT SOFTWARE. INC. ■ 3 - IOI

Assembly Routines

SlideUp

■ Purpose:

The Graphics Worbhop

Assembler
subroutine contained in GW.UB

SlideUp takes a region of the second video page and slides it onto the
screen at a specified location in an upward direction.

■ Syntax:

CALL S 1 ideUp (BYVAL ULCo 1%, BYVAL ULL ine%, BYVAL LRCo 1%,
BYVAL LRL ineX, BYVAL DestCo 1%, BYVAL DestL ine%) -

■ Where:

ULCol% and ULLine% specify the upper-left comer of the source region.
LRCol% and LRLine% specify the lower-right comer of the source
region. Together they specify the region to be moved. These coordinates
follow the mixed coordinate system where column values range from 1 to
80, and line values range from O to 349 on an EGA monitor.

DestCol% and DestLine% specify a mixed coordinate value which tells
the upper-left comer of the image's final resting place.

Comments:

All parameters for this routine are passed by value to provide the maximum
speed. Including the file GWDECL.BAS at the beginning of all programs
or modules which use this routine will insure proper operation.

For an example of how to use this routine, see the DEMOFX.BAS example
program.

■ SeeAlso:

SlideDown, SlideLeft, SlideRight

■ 3 - 102 CRESCENT SOFJ"WARE, INC.

The Graphics Workshop Assembly Routine•

SplitHorizontal Assembler
subroutine contained in CW.LIB

■ Purpose:
SplitHorizontal takes a region of the second video page and slides it onto
the screen at a specified location in a horizontal direction. Every other
line of the image will come from the opposite direction. The result is an
image which appears to weave itself together.

■ Syntax:
CALL Sp 1 itHorizonta 1 (BYVAL ULCo 1%, BYVAL ULLine%, BYVAL

LRCol%, BYVAL LRL ine%, BYVAL DestCol%, BYVAL Destline%)

■ Where:

ULCol% and ULLine% specify the upper-left comer of the source region.
LRCol% and LRLine% specify the lower-right comer of the source
region. Together they specify the region to be moved. These coordinates
follow the mixed coordinate system where column values range from I to
80, and line values range from O to 349 on an EGA monitor.

DestCol% and DestLine% specify a mixed coordinate value which tells
the upper-left comer of the image's final resting place.

Comments:

All parameters for this routine are passed by value to provide the maximum
speed. Including the file GWDECL.BAS at the beginning of all programs
or modules which use this routine will insure proper operation.

For an example of how to use this routine, see the DEMOFX.BAS example
program.

■ See Also:

SlideDown, SlideUp, SlideRight, SlideLeft.

CRESCENT SOFTWARE, INC. ■ 3 - 103

A11embly Routine■ The Graphic■ Workahop

TransferEGA Assembler
subroutine contained in GW.LIB

■ Purpose:

TransferEGA moves any block on any video page to the same location on
another video page. This routine is meant for use with EGA adapters.

■ Syntax:
CALL TransferEGA (BYVAL FromCol%, BYVAL FromL ine%, BYVAL

Cols%, BYVAL Lines%)

■ Where:

FromCol% and FromLine% specify the upper comer of the region to be
moved. Cols% and Lines% specify the size of the region to be moved.
These coordinates follow a mixed coordinate window system where
column values range from l to 80 and line values range from Oto 349 on
an EGA monitor.

Comments:

All parameters for this routine are passed by value to provide the maximum
speed. Including the file GWDECL.BAS at the beginning of all programs
or modules which use this routine will insure proper operation.

This routine works like the GMovel VE routine, except that it doesn't have
parameters for the destination location on the screen. The destination is
assumed to be the same location as on the source page.

The default pages for this routine and others are page l for the source
information and page O for the destination of the image. The source and
destination pages can be re-directed using the SetGWPages routine.

The following example copies a full screen image from the second video
page to the first video page:

DEFINT A-Z
'$INCLUDE: 'GWDECL.BAS' "required for BYVAL's
SCREEN 12 ·sets the monitor in VGA mode

'draw some sample images
LINE (100, 100) - (200, 200), 2, BF
CIRCLE (200, 200), 100, 15
PAINT (200, 200). 2, 15
PCOPY O, 1 • copy image to second page

CLS
CALL TransferEGA(l. 0, 80, 350)

■ 3- 104 CRESCENT SOFIWARE, INC.

The Graphic• Workshop Assembly Routines

The TransferEGA routine is used by the BASIC DoSegueX routines
demonstrated in the example program QSEGUE.BAS.

■ SeeAlso:

GMovelVE, GMove2VE, GMove3VE, SetGWPages

CRESCENT SOFTWARE, INC. ■ 3-IOS

Assembly Routines The Graphics Workahop

Section 4: Mouse Routines

Using A Mouse With A Graphics Mode
Application

A Mouse works differently when operating in graphics mode than it does
in text mode. The mouse covers, on average, 256 pixels on the screen at
any one time. The internal operation of a mouse works as follows:

1) When the mouse cursor is drawn on the screen by the mouse
driver, the following occurs:

a) The square region encompassing where the mouse cursor will
be placed is saved by the mouse routines.

b) A mask is placed over this region which clears (makes black)
all pixels that will be beneath the mouse cursor.

c) The actual mouse cursor is drawn on the screen filling the
square region.

2) When the mouse is removed from the screen, the following
occurs:

a) The square region where the mouse is now located will be
replaced by the image previously saved.

3) When the mouse is physically moved, the following happens:

a) The mouse is removed from the screen as described above
(under #2).

b) The mouse is drawn at the new location as described above
(under #1).

What concerns programmer is the last of these three mouse functions,
especially since the mouse is moved often. The problem occurs if we
draw a line (or anything) over the mouse. If the mouse then is moved,
the image saved before the line was drawn will be placed on the screen,
effectively losing the information we wanted to draw to the screen.

To see the problem, load the demo DEMOMOUS.BAS and move the
mouse while it is drawing the boxes. Notice that the mouse disappears
and when you move the mouse, a previous color appears in its place. The
demo then shows you the proper method for drawing graphics while the

■ 3 - 106 CRESCENT SOFTWARE, INC.

The Graphics Workshop Assembly Routines

mouse is active. Programming for character mode while the mouse is
active is simple; just turn it on and monitor it.

For graphics mode, every, repeat EVERY, time you draw anything, you
must temporarily turn off the mouse and turn it on again afterwards. This
is done with the HideCursor and ShowCursor routines. These routines
communicate with the mouse driver. The mouse driver has a special
register which counts the number of times you have called HideCursor.
Each time you call ShowCursor the driver decreases this value, and places
the mouse cursor on the screen only when this value reaches zero. You
will find that it is simpler and more beneficial to call HideCursor as few
times as possible, such as at the beginning of a long list of LINE
statements. You should be sparing in your use of HideCursor and
ShowCursor, because each time you do it, it will take time out of normal
screen processing.

For an example of how HideCursor and ShowCursor work, consider the
following: You create a routine called DrawPerson which calls a routine
called DrawEye. DrawEye can be called directly to make the eye blink,
so it has to have a call to HideCursor and ShowCursor inside it.
DrawPerson will have already hidden the mouse cursor. This is where
the count maintained by the mouse driver is needed. If a total of two calls
are made to HideCursor, it will takes two calls to ShowCursor to restore
the mouse onto the screen.

CRESCENT SOFTWARE. INC. ■ 3 - 107

Assembly Routines

Button Press

■ Purpose:

The Graphic• Worbhop

Assembler
subroutine contained in CW.LIB

ButtonPress will report how many times a specified mouse button was
pressed since the last time it was called. It also returns the (X, Y)
coordinates where the mouse cursor was located when the button was last
pressed.

■ Syntax:

CALL ButtonPress(Button%, Status%, Count%, X%, Y%)

■ Where:

Button% is the button of interest, with a I indicating button 1, 2 meaning
button 2, and 3 for button 3 (if the mouse has a third button).

Status% is the current button status, and has the same meaning as the
information returned by the GetCursor mouse routine.

Count% tells how many times the button has been pressed since Button­
Press was last called.

X% and Y% hold the mouse cursor position at the time the button was
pressed. Use the GetCursor routine to determine the current mouse cursor
location.

Comments:

ButtonPress is the only reasonable way to determine when the mouse
buttons are active and need attention. Though the GetCursor routine will
report the current button status, it would have to be polled repeatedly in
a loop.

A good example of implementing ButtonPress can be found in the source
code for both PullDownG and VertMenuG.

The comments that accompany the GetCursor routine provide an explana­
tion of interpreting the X and Y values that are returned.

Note that unlike GetCursor, ButtonPress resets the button-press counter
to zero each time it is called.

■ SeeAlso:

GetCursor

■ 3- 108 CRESCENT SOFIWARE, INC.

The Graphics Workshop Assembly Routinca

GetCursor Assembler
subroutine contained in CW.LIB

■ Purpose:

GetCursor reports the current location of the mouse cursor and which
mouse buttons are currently depressed.

■ Syntax:
CALL GetCursor(X%. Y%, Status%)

■ Where:

X% and Y% return holding the current mouse cursor coordinates.

Status% is bit-coded to indicate which buttons are currently down.

The button information is represented by bits in the Status% variable, with
bit 0 being on to indicate that button 1 is pressed, bit 1 for button 2, and
so forth. The various bits may be easily isolated as shown below:

CALL GetCursor(X%, Y%, Status%)
IF Status¾ AND 1 THEN PRINT "Button 1 is pressed"
IF Status% AND 2 THEN PRINT "Button 2 is pressed"
IF Status% AND 4 THEN PRINT "Button 3 is pressed"

Comments:

The X% and Y% values returned depend in part on the number of pixels
that are available on the screen. This is true even in text mode. As an
example, if the mouse cursor is currently at the upper-left corner of the
screen, both the X and Y values will be returned as zero. If the cursor
moves one character box to the right, the X Value will immediately become
eight.

The same thing happens when the cursor is moved downward, in which
case the Y value suddenly jumps to eight. Thus, the resolution of a 25-line
text screen is considered (to the mouse anyway) as being the same as that
of a CGA high-resolution display. The 43 line character mode works the
same way but the Y resolution in the 50 line mode jumps in steps of 7.

In graphics modes there are no jumps. If a screen has a resolution of 640
by 350, then the mouse could point to any one of the possible combinations.

Unlike the ButtonPress routine, GetCursor does not reset the count of how
many times the buttons have been pressed.

■ See Also:

ButtonPress

CRESCENT SOFIWARE, INC. ■ 3 -109

Assembly Routines

GrafCursor

■ Purpose:

The Graphics Worbhop

Assembler
subroutine contained in CW.LIB

GrafCursor greatly simplifies defining the shape of the mouse cursor for
use in graphics mode.

■ Syntax:
CALL GrafCursor(X%, Y%, Cursor$)

■ Where:

X% and Y% define the cursor "hot spot".

Cursor$ is either a conventional or fixed length string that contains the
new cursor shape. Examples of setting up this string are shown in
DEMOMOUS.BAS.

Comments:

The example in the DEMOMOUS.BAS demonstration program shows
how GrafCursor can be used with a "pictorial" layout to quickly visualize
how the cursor will appear.

The hot spot indicates which pixel the mouse is considered to be on when
in graphics mode. Even though the mouse cursor will span several pixels
at one time, only one point can be considered to be the actual cursor
location. Again, the example in DEMOMOUS.BAS shows this in context.

■ 3 - 110 CRESCENT SOFTWARE, INC.

The Graphics Workshop

HideCursor

■ Purpose:

Assembly Routinea

Assembler
subroutine contained in CW.LIB

HideCursor turns off the mouse cursor.

■ Syntax:
CALL HideCursor

Comments:

Any program that is to be "mouse aware" will need to turn on the mouse
cursor before expecting a user to access the mouse. Likewise, it is only
common courtesy to turn it off again before returning them to the DOS
prompt. Also, for graphics programming, you must turn the mouse off
before drawing something on the screen.

One very important point to be aware of regarding the HideCursor routine
is how the current on and off status is maintained internally by the mouse
driver. Unlike the normal text cursor that is turned on or off with the
BASIC LOCATE command, the mouse cursor keeps track of how many
times it was turned on or off. Thus, if you call HideCursor twice in a row,
you will need to call ShowCursor twice before it will be visible again.

In graphics mode, when you want to draw something at the location of the
mouse, it is necessary to turn off the mouse cursor temporarily while you
are drawing. In graphics mode, the mouse has a copy of the screen image
beneath itself. If you draw over the cursor with the cursor on, when the
cursor moves, the mouse driver will re-draw the previous image, without
what you drew.

This is why you see the mouse flicker in large graphics applications. These
applications turn the mouse off and on many times while drawing to the
screen. It is for this reason that the above mentioned characteristic of the
H ideCursor routine can be useful. If you have multiple routines drawing
graphics on the screen, it is necessary that each routine turn the mouse
cursor off before drawing and turn it back on before leaving. However,
due to the nature of graphics programming, a routine cannot always expect
to be called from another routine which has previously turned off the
mouse. For example, a routine designed to draw an entire face might call
a routine to draw an eye. If the eye routine were to be called separately,
it should turn off the mouse cursor itself. If it is called from within another
routine which has already turned off the cursor, then it should not turn on
the cursor when it is finished. Instead the count maintained by the mouse

CRESCENT SOFfWARE, INC. ■ 3 -111

Assembly Routines The Graphics Workshop

driver is merely decremented when the eye routine calls ShowCursor to
turn the cursor back on.

■ SeeAlso:
ShowCursor.

■ 3 - 112 CRESCENT SOFrWARE, INC.

The Graphics Workshop

lnitMouse

■ Purpose:

Assembly Routines

Assembler
subroutine contained in GW.LIB

InitMouse is used to determine if a mouse if present in the host PC, and
to reset the mouse driver software to its default values.

■ Syntax:
CALL lnitMouse(HaveMouse%)

■ Where:

HaveMouse% receives -1 if a mouse is present, or O if no mouse is
installed.

Comments:

Because InitMouse resets the mouse driver values (the mouse cursor color,
its travel range and sensitivity, etc.), it would probably be called only once
at the start of a program.

Understand that InitMouse doesn't actually detect the physical presence
of the mouse hardware. Rather, the mouse driver software must be
installed before a mouse will be detected. Newer versions of Microsoft's
mouse driver software actually detect if the mouse is physically attached
to the machine, and will not load the driver unless the mouse is connected.

CRESCENT SOFTWARE, INC. ■ 3 - 113

Assembly Routines

Motion

■ Purpose:

The Graphics Workshop

Assembler
subroutine contained in GW.LIB

Motion allows a program to establish the sensitivity of the mouse cursor
motion.

■ Syntax:

CALL Mot ion(Va lue%)

■ Where:

Value% is the desired sensitivity ranging between I and 32767, with I
being the most sensitive.

Comments:

Even though the mouse driver software allows setting the horizontal and
vertical sensitivity separately, Motion uses the same value for both. This
seems to be the most logical way to control a mouse, while eliminating
yet another passed parameter. If you absolutely must be able to set these
values independently, you should use the generic Mouse routine provided
with Graphics Workshop like this:

CALL Mouse(IS, 0, X%, Y%)

Where X% and Y% represent the sensitivity for the X and Y coordinates
respectively. 15 represents the mouse service for sensitivity setting.

The stated upper range for the motion sensitivity is 32767; however, values
beyond 100 are hopelessly insensitive.

You may be interested to know that Microsoft calls the unit of distance for
the mouse a "Mickey".

■ SeeAlso:

Mouse

■ 3 - 114 CRESCENT SOFTWARE, INC.

The Graphics Workshop

Mouse

■ Purpose:

Assembly Routines

Assembler
subroutine contained in CW.LIB

Mouse provides access to all of the mouse services, and is the only way
to use those that are not provided in a simplified form with Graphics
Workshop.

■ Syntax:
CALL Mouse(AX%, BX%, CX%, DX%)

■ Where:

AX% is the number for the mouse service of interest, while BX%, CX%,
and DX% assign and return the processor's registers.

Comments:

Mouse provides access to all of the mouse services. Most of the important
ones are provided as a simplified call with Graphics Workshop. There
may be occasions when you need a mouse capability that we have not
included.

For instance, if you want to know how many times the ShowCursor routine
needs to be called to make the mouse visible, this information is stored in
the mouse's environment. Using mouse service 21, you can find the size
of the mouse driver's environment. Then, using mouse service 22, you
can retrieve the mouse environment. Since the count used by HideCursor
and ShowCursor is not always in the same place you would have to save
the mouse environment, make a call to HideCursor (which will change
the count) and then retrieve a second copy of the environment. Compare
the two environments until you find a byte which is different. During the
session, this byte will always be the location of the count and you can
retrieve the environment at any time to get the count. This complete
example is contained in two routines in Graphics Workshop: GetCount­
Location% and GetMouseCount%. An example of using these routines
in context is shown in the example program DEMOMOUS.BAS.

■ SeeAlso:

GetCountLocation % , GetMouseCount %

CRESCENT SOITWARE, INC. ■ 3 - IIS

Assembly Routines

SetCursor

■ Purpose:

The Graphics Workshop

Assembler
subroutine contained in CW.LIB

SetCursor provides a simple way to set a new location for the mouse cursor.

■ Syntax:
CALL SetCursor(X%, Y%)

■ Where:

X% and Y% represent the new horizontal and vertical positions respec­
tively.

Comments:

The valid X and Y coordinates you specify will depend on the current
screen mode. For example, on a CGA graphics screen I, the acceptable
range would be between O and 319 for X%, and Oto 199 for Y%.

■ 3 - 116 CRESCENT SOFfWARE, INC.

The Oraphics Workshop

ShowCursor

■ Purpose:

Assembly Routines

Assembler
subroutine contained in GW.LIB

ShowCursor turns on the mouse cursor, making it visible. If the cursor is
currently visible, ShowCursor does nothing, and leaves the mouse cursor
visible.

■ Syntax:

CALL ShowCursor

Comments:

For more information see the comments that accompany the companion
routine HideCursor.

■ See Also:

HideCursor

CRESCENT SOFTWARE, INC. ■ 3 - 117

Assembly Routines The Graphics Workshop

Section 5:
Routines from QuickPak Professional
and P.D.Q.

We have included several subroutines and functions from QuickPak
Professional. These routines are described in this section. The only
reason for adding these routines is that they are used by the subroutines
VertMenuG and PullDownG to manage information.

■ 3 - 118 CRESCENT SOFTWARE, INC.

The Graphics Workshop

AltKey%

■ Purpose:

Assembly Routine8

Assembler
function contained in GW.LIB

AltKey% reports if the Alt key is currently depressed.

■ Syntax:
Active = AltKey%

■ Where:

Active receives -1 if the Alt key is currently down, or O if it is not.

Comments:

Because AltKey % has been designed as a function, it must be declared
before it can be used. Including the file GWDECL.BAS at the beginning
of all your programs will avoid any problems, as it contains a declaration
for this function.

AltKey% is designed to return -1 for a true value to also allow the use of
the BASIC Nor operator:

IF A ltKey% THEN

or

IF NOT A ltKey% THEN

CRESCENT SOFTWARE. INC. ■ 3 - II9

Aasembly Routines

Find Last%

■ Purpose:

The Graphic• Workshop

Assembler
function contained in CW.LIB

FindLast% scans a conventional (not fixed-length) string array backwards
looking for the last non-blank element.

■ Syntax:
NumE1s% = UB0UN0(Array$)
Last = Findlast%(BYVAL VARPTR(Array$(NumE1s%)). NumE1s%)

■ Where:

NumEls% is the number of elements to which Array$O has been dimen­
sioned.

Last receives the number of the last element that is not empty.

Comments:

Because FindLast% has been designed as a function, it must be declared
before it can be used. Including the file GWDECL.BAS at the beginning
of all your programs will avoid any problems, as it contains a declaration
for this function.

VertMenuG uses this routine to find the actual number of elements in the
vertical scrolling menu. The physical array can be larger than the number
of elements used. It would be inappropriate for VertMenuG to display
blank entries should the array be dimensioned larger than the number of
elements is use.

■ 3-120 CRESCENT SOFTWARE, INC.

The Graphics Workshop

Herc There%

■ Purpose:

Assembly Routines

Assembler
function contained in CW.LIB

HercThere% will report if the QBHERC.COM or MSHERC.COM Her­
cules graphic support program has been loaded into memory.

■ Syntax:

Loaded% = HercThere¾

■ Where:

Loaded will be set to -1 if QBHERC.COM or MSHERC.COM program
is resident, or O if it is not.

Comments:

Because Herc There% has been designed as a function, it must be declared
before it can be used. Including the file GWDECL.BAS at the beginning
of all your programs will avoid any problems, as it contains a declaration
for this function.

Note that using this method for doing Hercules graphics is not entirely
necessary. The Graphics Workshop routine Screen3 sets the computer in
the Hercules high-resolution mode without the need of loading
QBHERC.COM or MSHERC.COM. See the routine Screen3 for details.

Even though QuickBASIC supports graphics using a Hercules display
adapter, a special TSR (terminate and stay resident) program,
MSHERC.COM, must be run first. If this is not done, attempting to use
the SCREEN 3 statement to enter graphics mode will cause an "Illegal
Function Call" error.

The Graphics Workshop MultMonitor function will tell you if a Hercules
display is installed in the host PC, but it does not detect if the necessary
support program, MSHERC.COM, has been loaded. This is the purpose
of HercThere%.

QuickBASIC 4.0 comes with a program named QBHERC.COM that
contains the routines necessary for Hercules graphics. It was renamed to
MSHERC.COM when QuickBASIC 4.5 was introduced. HercThere%
will detect if either QBHERC.COM or MSHERC.COM is loaded.

■ See Also:

Screen3

CRESCENT SOFTWARE. INC. ■ 3-121

A11embly Roulines

lnStat%

■ Purpose:

The Graphics Workshop

Assembler
function contained in GW.LIB

InStat% returns the number of characters that are currently pending in the
keyboard buffer, without removing them. The PullDownG menu system
uses this function to avoid drawing the shadow effect if the user has already
pressed an additional keystroke.

■ Syntax:
Count% = InStat%

■ Where:

Count% receives the number of characters that are currently pending. If
any characters are pending, PullDownG will delay drawing the shadow
effect.

Comments:

Because InStat% has been designed as a function, it must be declared
before it can be used. Including the file GWDECL.BAS at the beginning
of all your programs will avoid any problems, as it contains a declaration
for this function.

InStat% is very valuable in situations where you need to see if a key is
present but do not want to remove it from the keyboard buffer. A good
example would be when simulating multi-tasking in a BASIC program.

■ 3 -122 CRESCENT SOFTWARE, INC.

The Graphics Workshop

PDQTimer&

■ Purpose:

Assembly Routinea

Assembler
function contained in CW.LIB

PDQTimer& is a better replacement for the BASIC TIMER statement. It
works without using floating-point arithmetic, which will save you code
space when you compile your programs, since BASIC will not need to
load its floating-point math libraries.

■ Syntax:
NumTicks& = PDQTimer&

■ Where:

PDQTimer& returns a value of the number of clock ticks which occurred
in the PC's internal clock since the last reset or overflow.

Comment:

Because PDQTimer& has been designed as a function, it must be declared
before it can be used. Including the file GWDECL.BAS at the beginning
of all your programs will avoid any problems, as it contains a declaration
for this function.

There are 18 ticks per second, so to delay 3 seconds wait 54 ticks. The
code fragment below shows how to wait 3 seconds.

NumT i cks& = PDQT imer& + 54
WHILE NumTicks& > PDQTimer&: WEND

CRESCENT SOFTWARE. INC. ■ 3 - 123

Chapter 4: BASIC Routines

■ ■ ■

The Graphics Workshop BASIC Routines

This chapter contains all the routines which are written in BASIC. These
routines are used either by the demo programs, or by one of the other
BASIC routines to accomplish a task with respect to the graphics screen.
Many of the routines provided are here to show how many calls to one of
the Graphics Manipulation assembly routines, like the GMovelVE
routine, can be used to provide animation.

In addition, some of the BASIC routines take advantage of the TYPE
variables described in the "Different Coordinate Systems" section of
Chapter l. The benefit of using these TYPE variables is apparent when
you are maintaining information about multiple window regions, and it is
not necessary to maintain four sets of variables. A general overview of
programming with these window description variables will be given here.
The most common variable type used in the Graphics Workshop BASIC
routines is Windowl. Window! describes a region by giving the pixel
coordinates of the upper-left corner of a region and for the lower-right
corner. This works exactly like specifying a region for the BASIC LINE
statement to draw a box. For this example we will use the BASIC routine
DisplayBox which displays a box on the screen using the XOR logical
operator. The XOR operator is used so that the DisplayBox routine can
be called a second time to remove the box and restore the original image
on the screen.

DEFINT A-Z

DIM GWWindow as Window!

GWWindow.X!% = 51
GWWindow. YI% = 43
GWWindow.X2% = 432
GWWindow. Y2% = 340

'Makes all variables integers

"defines a local TYPE variable

'Upper- left X coordinate
'Upper- left Y coordinate
'Lower-right X coordinate
'lower-right Y coordinate

CALL DisplayBox(GWWindow) 'draw the box using XOR

WHILE INKEY$ = "": WEND 'wait for a keystroke

CALL DisplayBox(GWWindow) 'remove the box

CRESCENT SOFTWARE, INC. ■ 4-1

BASIC Routines

CircleBAS

■ Purpose:

The Graphics Worlcah.op

BASIC subroutine
contained in CIRCBAS.BAS

CircleBAS is a BASIC routine which not only explains the algorithm for
drawing circles, but also provides a method for drawing circles on a
Hercules screen by using the DrawPointH routine to plot pixels. This
routine, as shipped, works with the EGA and VGA screen modes.
Comments in the routine show how to modify it for Hercules.

■ Syntax:

CALL CircleBAS (XCenter%. YCenter%. Radius%, CircleColor%,
XAspect%, YAspect%)

■ Where:

XCenter% and YCenter% define the center of the circle on the screen.

Radius% is the radius of the circle in pixels.

CircleColor% is the color used to draw the circle.

XAspect% and YAspect% are used to draw ellipses.

Comments:

This routine is designed to allow Hercules graphics screens to draw circles
using the existing pixel setting routines. An assembly routine, Circle VE,
exists and is much faster for drawing circles to EGA and VGA screens.
In future versions of Graphics Workshop, there will be assembly routines
for drawing circles and lines to the Hercules graphics screen.

■ SeeAlso:

DrawPointH, LineBAS

■ 4-2 CRESCENT SOFIWARE, INC.

The Graphics Workshop

Copylmage

■ Purpose:

BASIC Routines

BASIC subroutine
contained in COPYIMAG.BAS

Copylmage copies a specified block of the graphics screen to another
location on the screen. This routine uses the GMovelVE routine to
physically move the image.

■ Syntax:

CALL Copylmage(ULCol, ULLine, LRCol, LRLine, DestCol, DestLine)

■ Where:

ULCol% and ULLine% specify the upper-left corner of the source region.
LRCol% and LRLine% specify the lower-right corner of the source
region. Together they specify the region to be moved. These coordinates
follow the mixed coordinate system where column values range from 1 to
80 and line values range from O to 479 on a VGA monitor.

DestCol% and DestLine% specify a mixed coordinate value which tells
the upper-left corner of the image's final resting place.

Comments:

The code fragment below demonstrates copying an image 3 columns wide
by 20 lines directly to the right of the original image.

DEFINT A-Z
'$INCLUDE: 'GWDECL.BAS'
SCREEN 12 'sets the monitor in VGA mode

CALL Copylmage (1, 0, 3, 19, 4, 0)

For an example of how to use this routine, see the DEMOMOVE.BAS
example program.

■ See Also:

GMovelVE

CRESCENT SOFfWARE, INC. ■ 4-3

BASIC Routines

Digitize

■ Purpose:

The Graphic• Worbhop

BASIC subroutine
contained in DIGITIZE.BAS

Digitize takes a graphics image and builds a lower resolution version of a
specified region on the screen. This routine simulates the way features,
such as a person's face, are disguised on television.

■ Syntax:
CALL Digitize(GWWindow AS Window!, Pixels%, Quick%)

■ Where:

GWWindow is a BASIC TYPE structure. The structure Window! is
defined in the include file GWDECL.BAS. The variables in this record
structure are XI%, YI%, X2%, and Y2%. An example of programming
with variables of this kind is shown at the beginning of this chapter.

Pixels% is the size of the boxes created.

Quick% is a boolean variable which, if set to any non-zero value, tells
the routine not to do any calculation of the overall color of the region, but
to merely use the color which is in the center of the box.

Comments:

A demonstration of this routine can be found in the DEMODIGI.BAS
example program.

■ 4-4 CRESCENT SOFTWARE, INC.

The Graphics Workshop

DisplayBox

■ Purpose:

BASIC Routines

BASIC subroutine
contained in XORBOX.BAS

DisplayBox draws a box outlining the region specified. The box is drawn
with exclusive-oring (XOR operator) to retain images already on the
screen.

■ Syntax:
CALL DisplayBox(GWWindow AS Window!)

■ Where:

GWWindow is a BASIC TYPE structure. The structure Window! is
defined in the include file GWDECL.BAS. The variables in this record
structure are XI%, YI%, X2%, and Y2%. An example of programming
with variables of this kind is shown at the beginning of this chapter.

Comments:

This routine uses Line VE to draw the lines quickly, using the XOR ability
of that routine.

A demonstration of this routine can be found in the DEMOBOX.BAS
example program.

CRESCENT SOFfWARE. INC. ■ 4-5

BASIC Routines

DisplayBoxFill

■ Purpose:

The Gr1phic1 Worbhop

BASIC subroutine
contained in XORBOX.BAS

DisplayBoxFill draws a filled box covering the region specified. The box
is drawn with exclusive-oring (XOR operator) to retain images already on
the screen.

■ Syntax:
CALL DisplayBoxFill(GWWindow AS Window!)

■ Where:

GWWindow is a BASIC TYPE structure. The structure Windowl is
defined in the include file GWDECL.BAS. The variables in this record
structure are XI%, YI%, X2%, and Y2%. An example of programming
with variables of this kind is shown at the beginning of this chapter.

Comments:

This routine uses Line VE to draw the lines quickly, using the XOR ability
of that routine.

A demonstration of this routine can be found in the DEMOBOX.BAS
example program.

■ 4-6 CRESCENT SOFI'WARE, INC.

The Oraphic■ Workshop

DisplayPCXFile

■ Purpose:

BASIC Routine■

BASIC subroutine
contained in DISPLPCX.BAS

DisplayPCXFile will load the PCX file that is passed to it as a parameter
to the specified video page. This routine handles the entire process of
loading the image and making the appropriate adjustments to the palette.

■ Syntax:
CALL Disp layPCXFi le(Fi lename$, VideoPage%)

■ Where:

Filename$ gives the name of the .PCX graphics file to be loaded. If a
.PCX extension is not given it will be appended.

VideoPage% tells it which video page to draw the image on. Unless you
have redirected the visual page by using the BASIC SCREEN statement,
a value of O here will display the image to the currently visible page.

Comments:

The screen mode is not set by this routine if the monitor is presumed to
be already in the proper screen mode. It is assumed that when calling this
routine, your program will already be using a graphics screen mode.
Comments in the code show how this routine can always modify the screen
mode.

This routine also calls HandlePCXPalette and WhichPCXScreen to handle
interpreting the PCX header information.

■ SeeAlso:

HandlePCXPalette, WhichPCXScreen

CRESCENT SOFTWARE, INC. ■ 4-7

BASIC Routines

DisplayPCXFile2

■ Purpose:

The Graphics Worbhop

BASIC subroutine
contained in DISPLPC2.BAS

DisplayPCXFile2 will load the PCX file that is passed to it as a parameter
at the specified coordinates on the specified video page. This routine
handles the entire process of loading the image and making the appropriate
adjustments to the palette.

■ Syntax:

CALL DisplayPCXFi le2 (Filename$, VideoPage%, L ineStart%, Co1Start%)

■ Where:

Filename$ gives the name of the .PCX graphics file to be loaded. If a
.PCX extension is not given it will be appended.

VideoPage% tells it which video page to draw the image on. Unless you
have redirected the visual page by using the BASIC SCREEN statement,
a value of O here will display the image to the currently visible page.

LineStart% and Co1Start% are in the Mixed Coordinate System. If both
values are 0, no positioning will take place. Also if the image is not an
EGA or VGA high-resolution image, no positioning will take place.

Comments:

The screen mode is not set by this routine if the monitor is presumed to
be already in the proper screen mode. It is assumed that when calling this
routine, your program will already be using a graphics screen mode.
Comments in the code show how this routine can always modify the screen
mode.

This routine calls upon PositionPCXVE to position the PCX image after
the image has been opened with OpenPCXFile%.

This routine also calls HandlePCXPalette and WhichPCXScreen to handle
interpreting the PCX header information.

■ SeeAlso:

HandlePCXPalette, WhichPCXScreen

■ 4-8 CRESCENT SOFIWARE0 INC.

The Oraphics Workshop BASIC Routine,

DoSegue1 BASIC subroutine
contained in SEGUE1 .BAS

■ Purpose:

DoSeguel is used by QuickSegue to transfer the background graphics
screen to the visible graphics screen.

■ Syntax:
CALL DoSeguel(SubType%, SegueColor%, Delay%)

■ Where:

SubType% selects a subtype for the style used in DoSeguel.

SubTvoe% DESCRIPTION
I Transfers entire screen instantaneously.

2 Paints entire screen in SegueColor % .

SegueColor% is the color to place on the screen when the subtype is 2.

Delay% tells the routine how many milliseconds to delay after each step
of the Segue transfer.

Comments:

This transition cannot be described using a picture. This routine simply
makes the entire image appear in one shot.

■ See Also:

DoSegue2, DoSegue3, DoSegue4, DoSegue5, DoSegue6.

CRESCENT SOFTWARE, INC. ■ 4-9

BASIC Roulines

DoSegue2

■ Purpose:

The Graphics Workshop

BASIC subroutine
contained in SEGUE2.BAS

DoSegue2 is used by QuickSegue to transfer the background graphics
screen to the visible graphics screen.

■ Syntax:

CALL DoSegue2(SubType%, SegueColor%, Delay%)

■ Where:

SubType% selects a subtype for the style used in DoSegue2. The larger
the value in the variable SubType%, the larger the chuck displayed at each
delayed iteration.

SubTvne%
1,3,S,7

2,4,6,8

DESCRIPTION
Paints the screen in the fashion shown below.

Brings in the background image in the fashion
shown below.

SegueColor% is the color to place on the screen when the subtype is an
odd value.

Delay% tells the routine how many milliseconds to delay after each step
of the Segue transfer.

Comments:

The picture below shows the direction of the screen coverage for the
DoSegue2 routine.

■ See Also:

DoSeguel, DoSegue3, DoSegue4, DoSegueS, DoSegue6.

■ 4-10 CRESCENT SOFfWARE, INC.

The Graphics Workshop BASIC Routines

DoSegue3 BASIC subroutine
contained in SEGUE3.BAS

■ Purpose:

DoSegue3 is used by QuickSegue to transfer the background graphics
screen to the visible graphics screen.

■ Syntax:
CALL 0oSegue3(SubType%, SegueColor%, Delay%)

■ Where:

SubType% selects a subtype for the style used in DoSegue3. The larger
values for the variable Sub Type% select different random patterns for the
chunks to fill the screen.

SubTvne% DESCRIPI'ION
1,3,5,7,9,11 Paints the screen in the fashion shown below.

2,4,6,8,10,12 Brings in the background image in the fashion
shown below.

Each of the higher values produces a different random display.

SegueColor% is the color to place on the screen when the subtype is an
odd value.

Delay% tells the routine how many milliseconds to delay after each step
of the Segue transfer.

CRESCENT SOFTWARE. INC. ■ 4-11

BASIC Routines The Graphics Workshop

Comments:

The picture below shows how the screen might look part way through the
execution of this routine. Some of the blocks in the image have appeared
and others are still missing.

■ See Also:

■ II
II

II ■ ■II • ■
■ ••

■•■ •. :!iffi:•
.

■ II
■ ■

DoSeguel, DoSegue2, DoSegue4, DoSegueS, DoSegue6.

■ 4-12 CRESCENT SOFIWARE, INC.

The Graphics Workshop

DoSegue4

■ Purpose:

BASIC Routines

BASIC subroutine
contained in SEGUE4.BAS

DoSegue4 is used by QuickSegue to transfer the background graphics
screen to the visible graphics screen.

■ Syntax:
CALL DoSegue4(SubType%, SegueColor%, Delay%)

■ Where:

SubType% selects a subtype for the style used in DoSegue4. The larger
the value in the variable SubType%, the larger the chuck displayed at each
delayed iteration.

SubTvoe%
1,3,5,7, .. .

2,4,6,8, .. .

DESCRIPTION
Paints the screen in the fashion shown below.

Brings in the background image in the fashion
shown below.

The dots mean that this routine can use higher values if you so choose.
For higher values, the blocks will become very large.

SegueColor% is the color to place on the screen when the subtype is an
odd value.

Delay% tells the routine how many milliseconds to delay after each step
of the Segue transfer.

Comments:

The picture below shows the direction of the screen coverage for the
DoSegue4 routine.

■ See Also:

DoSeguel, DoSegue2, DoSegue3, DoSegueS, DoSegue6.

CRESCENT SOFrWARE, INC. ■ 4-13

BASIC Routines

DoSegueS

■ Purpose:

The Graphic■ Workshop

BASIC subroutine
contained in SEGUES.BAS

DoSegueS is used by QuickSegue to transfer the background graphics
screen to the visible graphics screen.

■ Syntax:

CALL OoSegueS(SubType%, SegueColor%, Delay%)

■ Where:

SubType% selects a subtype for the style used in DoSegueS. The larger
the value in the variable Sub Type%, the larger the numberoflines growing
for each iteration.

SubTvne% DESCRIPTION
1,3,5,7 Paints the screen in the fashion shown below.

2,4,6,8 Brings in the background image in the fashion
shown below.3

SegueColor% is the color to place on the screen when the subtype is an
odd value.

Delay% tells the routine how many milliseconds to delay after each step
of the Segue transfer.

Comments:

The picture below shows the direction of the screen coverage for the
DoSegueS routine.

■ See Also:

DoSeguel, DoSegue2, DoSegue3, DoSegue4, DoSegue6.

■ 4-14 CRESCENT SOFTWARE, INC.

The Graphics Workshop

DoSegue6

■ Purpose:

BASIC Rou1ine1

BASIC subroutine
contained in SEGUE6.BAS

DoSegue6 is used by QuickSegue to transfer the background graphics
screen to the visible graphics screen.

■ Syntax:

CALL DoSegue6(SubType%, SegueCo lor%, De lay%)

■ Where:

SubType% selects a subtype for the style used in DoSegue6. The larger
the value in the variable SubType%, the larger the chuck displayed at each
delayed iteration.

SubTvne%
1,3,5,7

2,4,6,8

DESCRIPTION
Paints the screen in the fashion shown below.

Brings in the background image in the fashion
shown below.

SegueColor% is the color to place on the screen when the subtype is an
odd value.

Delay% tells the routine how many milliseconds to delay after each step
of the Segue transfer.

Comments:

The picture below shows the direction of the screen coverage for the
DoSegue6 routine.

■ See Also:

DoSeguel, DoSegue2, DoSegue3, DoSegue4, DoSegueS.

CRESCENT SOfTWARE, INC. ■ 4- IS

BASIC Routines

Draw3D Button

■ Purpose:

The Graphics Worbhop

BASIC subroutine
contained in BUTTON.BAS

Draw3D Button draws a three-dimensional button on screen at the specified
location.

■ Syntax:
CALL Draw3DButton(XPos%, YPos%, Wdth%, Height%, Third0imension%, ColrX)

■ Where:

XPos% and YPos% specify the upper-left comer of the three-dimensional
buttons.

Wdth% and Height% specify the size of the button in pixels.

ThirdDimension% specifies the number of pixels involved in giving the
button its three-dimensional look.

Colr% is the color for the face of the button. The top of the button uses
a bright white highlight, and the bottom of the button uses a black shadow
color.

Comments:

The routine could be modified to give different highlight and shadow
colors.

■ 4-16 CRESCENT SOFTWARE, INC.

The Graphics Workshop

DrawCursor

■ Purpose:

BASIC Rouline1

BASIC subroutine
contained in CURSOR.BAS

DrawCursor draws a graphics cursor on the screen using the XOR logical
operation at the specified location.

■ Syntax:

CALL DrawCursor(XPos%. YPos%, Wdth%, Height%, DnDrDff%, Timing%)

■ Where:

XPos% and YPos% specify the upper-left coordinate to start drawing the
cursor. These positions are absolute pixel locations on the screen.

Wdth% specifies the horizontal width of the cursor in pixels.

Height% specifies the height of the cursor.

On0r0ff% specifies whether the cursor is currently visible on the screen.
A value other than zero means that the cursor is visible.

Timing% holds the time (in 1/ I Sths of a second) between blinking the
cursor on and blinking the cursor off. A value of 9 would produce a
complete cycle once every second.

Comments:

DrawCursor uses the LineVE routine from Graphics Workshop to draw
the Exclusive-ORed cursor on the screen.

A demonstration of DrawCursor can be found in the example program
DEMOCURS.BAS. The GEditor routine also uses DrawCursor, and is
demonstrated in the example program DEMOEDIT.BAS.

■ See Also:

GEditor

CRESCENT SOFTWARE. INC. ■ 4-17

BASIC Routines

DrawText

■ Purpose:

The Graphic, Worbhop

BASIC subroutine
contained in DRAWTEXT.BAS

DrawText is used to draw a text string using the fonts available with
GraphPak Professional.

■ Syntax:

CALL DrawText(X%, Y%, Text$, Angle%, Colr%, SizeMultiplier#)

■ Where:

The variables X% and Y% are pixel positions of the upper-left corner of
the first character to be drawn.

Text$ is a string of the phrase to be drawn.

Angle% is the angle specified in degrees at which the text is to be drawn.
An angle of O draws text straight across the screen.

Colr% is the color of the text. Both DrawText and StepText phrases can
have shadows drawn underneath them. Adding 128 to the color will
activate the shadow effect.

SizeMultiplier# is the size of the font. For example, I# = same size as
the original definition of the font, 2# = twice as big, . 75 = 3/4 the size
of the font.

Comments:

The color for the shadow effect mentioned above can be changed by
modifying the variable GPDat%(14). See Appendix C for information
about the GPDat%0 array.

The GraphPak fonts are used throughout the demonstration programs, and
particularly in the example program DEMOFONT.BAS.

■ SeeAlso:

GetWidth % , StepText

■ 4-18 CRESCENT SOFIWARE. INC.

The Graphics Workshop

FullZoom

■ Purpose:

BASIC Routine■

BASIC subroutine
contained in ZOOM.BAS

FullZoom zooms in on a portion of the screen. The algorithm takes the
window size and calculates the proportions necessary to zoom the image
to the full scale.

■ Syntax:
CALL FullZoom(GWWindow AS Window!)

■ Where:

GWWindow is a BASIC TYPE structure. The structure Windowl is
defined in the include file GWDECL.BAS. The variables in this record
structure are XI%, YI%, X2%, and Y2%. An example of programming
with variables of this kind is shown at the beginning of this chapter.

Comments:

The FullZoom routine is demonstrated in the example program
DEMOZOOM.BAS.

CRESCENT SOFTWARE. INC. ■ 4-19

BASIC Routines

GEditor

■ Purpose:

The Graphics Worbhc,,

BASIC subroutine
contained in GEDITOR.BAS

GEditor is a graphics mode text input routine that also allows editing an
existing string. GEditor is designed for use with the VGA and EGA
high-resolution screen modes.

■ Syntax:

CALL GEditor(Edit$. LeftCol%, KeyCode%. TxtPos%)

■ Where:

Edit$ is the string being entered or edited, which must be pre-assigned to
the correct maximum length (see below).

LeftCol% is the column number used to place the cursor when editing the
string. LeftCol % is maintained in this fashion to take advantage of the
re-entrant abilities of the GEditor routine.

KeyCode% indicates how editing was terminated. It returns the ASCII
code of the last character typed, or it returns the negative value of an
extended character if an extended character was typed.

TxtPos% is the current position of the cursor within the edited string.

Comments:

If you want to restrict the length of the input to 16 characters, then you
would specify an Edit$ with 16 spaces as in the example below:

Edit$ = SPACE$(16)
CALL GEditor(Edit$, LeftCol%, KeyCode%, TxtPos%)

If Edit$ already contains information, you would pad the string with blanks
as in the example below:

Edit$ = Edit$ + SPACE$(16 - LEN(Edit$))

A complete demonstration of the GEditor routine is given in the example
program DEMOEDIT.BAS.

The GEditor routine uses the DrawCursor routine to give the user a cursor
while in graphics mode.

■ SeeAlso:

DrawCursor

■ 4-20 CRESCENT SOFIWARE, INC.

The Graphics Workshop BASIC Routines

GetCountlocation% BASIC function
contained in MOUSECNT.BAS

■ Purpose:

GetCountLocation% obtains the location within the mouse driver's en­
vironment of where the count of how many times the mouse cursor has
been turned off is located. This can be useful in telling you whether or
not the mouse cursor is currently visible, or telling you how many times
a call to ShowCursor is required to make the cursor visible once again.

■ Syntax:

CountPos it ion% = GetCountlocat ion%

Comments:

Because GetCountLocation % has been designed as a function, it must be
declared before it can be used. Including the file GWDECL.BAS at the
beginning of all your programs will avoid any problems, as it contains a
declaration for this function.

This function tells only the location of the variable in the mouse environ­
ment which will give you this information. A call to the function
GetMouseCount% is required to actually determine whether or not the
mouse cursor is visible.

We suggest that you use this routine immediately after setting your graphics
screen mode, as the mouse environment does change after changing screen
modes. We also suggest you execute this function just once, as it does
take time and valuable data space to perform this operation.

A complete demonstration of this routine can be found in the example
program DEMOMOUS.BAS.

■ See Also:

GetMouseCount %

CRESCENT SOFTWARE. INC. ■ 4-21

BASIC Roulines The Graphics Worbhop

GetMouseCount% BASIC function
contained in MOUSECNT.BAS

■ Purpose:

GetMouseCount% tells you how many times the HideCursor routine has
been called. If the mouse is currently visible then this routine will return
a zero for the number of times the HideCursor routine has been called.

■ Syntax:

MouseCount% = GetMouseCount%(CountPos it ion%)

■ Where:

CountPosition% is the position of the count variable within the mouse
driver's environment. To get the CountPosition%, a call to the function
GetCountLocation% is made as shown in the example below:

CountPos it ion% = GetCountLocat ion%

Comments:

Because GetMouseCount% has been designed as a function, it must be
declared before it can be used. Including the file GWDECL.BAS at the
beginning of all your programs will avoid any problems, as it contains a
declaration for this function.

To set up the mouse driver and check to see if the mouse cursor is active,
execute the following code:

DEFINT A-Z 'Good practice for all programs
'$INCLUDE: 'GWDECL.BAs•
SCREEN 9 'opt iona 1, as GetMouseCount% works

' in a 11 screen modes

CALL lnitMouse(There%) 'Initialize the mouse
IF NOT There% THEN PRINT "No Mouse Driver": END

CountPos it ion% = GetCountLocat ion%
IF GetMouseCount%(CountPost ion%) = 0 THEN

PRINT "Mouse visible"
ELSE

PRINT "Mouse not visible"
ENDIF

A complete demonstration of the routine can be found in the example
program DEMOMOUS.BAS

■ See Also:

GetCountLocation %

■ 4-22 CRESCEl'IT SOFIWARE, INC.

The Graphics Workshop

GetOutlineWidth%

■ Purpose:

BASIC Routines

BASIC function
contained in OUTLTEXT.BAS

GetOutlineWidth% determines the width in pixels of a text string using
the vector font widths of the currently loaded vector font.

■ Syntax:

Width% = Get0utlineWidth%(Text$)

■ Where:

Text$ is a string which holds the phrase to be drawn.

Comments:

Because GetOutlineWidth% has been designed as a function, it must be
declared before it can be used. Including the file GWDECL.BAS at the
beginning of all your programs will avoid any problems, as it contains a
declaration for this function.

The width is for a font size of I. If you will be drawing the text at any
other size, simply multiply that size by the width of the text string to obtain
the actual number of pixels that will be used.

Centering a Graphics Workshop font can be done by using the screen width
variable GPDat%(43) and the value returned by this routine.

Start%= (GPOat%(43) - Get0utlineWidth%(Text$)) \ 2
CALL OutL ineText(Start%, Y%, Text$, Angle%, Colr%, Hult%, Div id%)

This takes half of the screen size as being the center and subtracts half of
the total width of the string in pixels. This will give you the X position
to start drawing the string, in order to have it appear centered.

■ SeeAlso:

OutlineText

CRESCENT SOFTWARE, INC. ■ 4-23

BASIC Routines

GetWidth%

■ Purpose:

The Graphic■ Worbhop

BASIC function
contained in DRAWTEXT.BAS

GetWidth determines the width in pixels of a text string using the font
widths of the currently loaded GraphPak font.

■ Syntax:
Width% = GetWidth%(Text$)

■ Where:

Text$ is a string which holds the phrase to be drawn.

Comments:

Because GetWidth % has been designed as a function, it must be declared
before it can be used. Including the file GWDECL.BAS at the beginning
of all your programs will avoid any problems, as it contains a declaration
for this function.

The width is for a font size of I. It must be multiplied by the font size
that is going to be used in order to obtain the width in pixels of the string
you will actually be placing on the screen.

Centering a GraphPak font can be done by using the screen width variable
GPDat%(43) and the value returned by this routine.

Start% = (GPDat%(43) - GetWidth%(Text$)) \ 2
CALL DrawText(Start%, Y%, Text$, Angle%, Colr%, TextSize#)

This takes half of the screen size as being the center, and subtracts half of
the total width of the string in pixels. This will give you the X position
to start drawing the string, in order to have it appear centered.

■ SeeAlso:

DrawText, StepText

■ 4-24 CRESCENT SOFTWARE, INC.

The Graphics Workshop

GPaintBox

■ Purpose:

BASIC Routines

BASIC subroutine
contained in GPAINTBX.BAS

GPaintBox changes all occurrences of one color to another color within a
rectangular region of the screen.

■ Syntax:
CALL GPaintBox(ULCol, ULLine, LRCol. LRLine, OldColor, NewColor)

■ Where:

ULCol% and ULLine% specify the upper-left corner of the region.
LRCol% and LRLine% specify the lower-right corner of the region.
Together they specify the region to be re-colored. These coordinates
follow the mixed coordinate system where column values range from I to
80 and line values range from O to 479 on a VGA monitor.

OldColor% is the color you want to have changed. If OldColor is set to
-1, the value in GPDat%(57) is used.

NewColor% is the new color to replace the former color.

Comment:

GPDat%() element 57 holds the background color for the screen. This is
a value you must set to specify the overall background color of the screen.
If you specify a -I for OldColor% and GPDat%(57) is zero, GPaintBox
will use the color in the upper-left most corner of the region.

GPaintBox is used by the menu routines PullDownG, VertMenuG, and
MsgBoxG to display a shadow effect. The shadow effect produced by this
routine modifies only the background color for the screen.

■ See Also:

PullDownG, VertMenuG, MsgBoxG

CRESCENT SOFTWARE, INC. ■ 4-25

BASIC Rou1ines

HandlePCXPalette

■ Purpose:

The Graphic, Worbhop

BASIC subroutine
contained in PCXHEADR.BAS

HandlePCXPalette takes the palette information from the PCX image and
sets the screens palette.

■ Syntax:

CALL HandlePCXPa lette(Array$, WhichScreen%)

■ Where:

Array$ contains all the header information for the PCX file. A description
of the PCX header information is contained in Appendix A.

WhichScreen% tells the routine the intended screen mode for the PCX
image. HandlePCXPalette uses this to determine how to communicate the
palette information to the various hardware configurations.

Comments:

To get a PCX header into Array$, the routine OpenPCXFile% is used.
An example of using the routine HandlePCXPalette can be found in the
example program VIEWPCX.BAS, or in the routine DisplayPCXFile.

This routine handles the different idiosyncracies of the PCX palette. Some
PCX files do not have palette information in them, and therefore use the
standard palette.

For most cases, all of the palette information is for the EGA and VGA
modes. The EGA has a maximum palette of 16 colors out of 64 choices.
The VGA has a maximum palette of 256 colors out of approximately
256,000. Note the VGA palette numbers are not necessarily sequential.
See Appendix B for more on palettes.

In the case of a VGA image being displayed on an EGA display, this routine
attempts to map the VGNs large palette into the EGNs limited palette.

■ SeeAlso:

OpenPCXFile%

■ 4-26 CRESCENT SOFTWARE, INC.

The Oraphics Workshop

lnterlude1

■ Purpose:

BASIC Routine,

BASIC subroutine
contained in INTER1 .BAS

Interludel places a Movie Director's Clicker on the screen with a message
of your choice. This routine can be used by the QuickSegue program, or
it can be added to any program to display a title.

■ Syntax:
CALL lnterludel(Text$)

■ Where:
Text$ is a string which can have 1 or more phrases separated by underscore
characters. Underscore characters tell the routine to start a new line.

Comments:

The font used by this routine can be specified using the SetGWFont routine
before calling this routine.

The fonts will size themselves automatically to fit inside the Clicker. If
you are using many lines of text and this routine makes a line with too
large a font for your tastes, add an equal amount of spaces to each side of
the text for that line. This will force this routine into believing it needs
to fit more text on the line and therefore create a smaller font. Try
something like below:

Text$ = 0 Graphics_ Made _Easy 0

Because Graphics Workshop uses a proportional font system, spaces do
not take up much in the size of a font so you may want to add many of
them.

■ SeeAlso:

SetGWFont, Interlude2.

CRESCENT SOFrWARE, INC. ■ 4-27

BASIC Roulines

lnterlude2

■ Purpose:

The Graphic• Workahop

BASIC subroutine
contained in INTER2.BAS

Interlude2 moves rectangular boxes across the screen in random direc­
tions. The boxes move beneath all items on the screen which are marked
as being in the foreground. This routine adds motion to an otherwise static
display.

■ Syntax:
CALL Inter lude2(TextCo lors%(), MaxBoxes%, Seconds%)

■ Where:

TextColors%0 is an array of colors which have been used as foreground
colors. Any items using these colors will be considered in the foreground
of the screen. You use this to identify which objects are part of your
picture. All other colors (0 - 15) will be valid for use by the routine in
creating its rectangular boxes.

MaxBoxes% is the maximum number of moving boxes on screen at any
one time. Use this to control the speed of the moving boxes. If there are
too many boxes (i.e. 20) they will move slowly due to the overhead of
moving so many \Joxes.

Seconds% is the number of seconds for the routine to run. This will be
dependent upon the speed of any boxes left on screen at the end of
Seconds% seconds.

Comments:
The routine may run for more seconds than were requested, as it waits
until all boxes have exited the screen before exiting. The average box
could take as long as five seconds to cross the entire screen, so as many
as five seconds might be added to the time this routine executes.

The box sizes are random and range from 20 pixels to 40 pixels wide, and
80 pixels to 200 pixels in length. In addition some boxes move fastet than
others because they skip a line as they move across the screen.

■ See Also:

Interlude I.

■ 4-28 CRESCENT SOFTWARE, INC.

The Graphics Workshop

LineBAS

■ Purpose:

BASIC Routine,

BASIC subroutine
contained in LINEBAS.BAS

LineBAS demonstrates the algorithm used for drawing lines, and gives a
template for creating a line routine which will work with the Hercules
screen mode by using DrawPointH to plot pixels. The routine, as shipped,
uses the EGA and VGA screen modes, but has comments on how to change
it to use the Hercules graphics screen.

■ Syntax:
CALL L ineBAS (xi%. yl%, x2%, y2¾, L ineColor%)

■ Where:

Coordinate pairs (xl %, yl %) and (x2%, y2%) are within the range of the
screen.

The LineColor% is the color of the line.

Comments:

This routine is designed only to allow Hercules graphics screens to draw
lines using the existing pixel setting routines. An assembly routine,
LineVE, exists and is much faster for drawing circles to EGA and VGA
screens. In future versions of Graphics Workshop, there will be assembly
routines for drawing lines and circles to the Hercules graphics screen.

■ SeeAlso:
CircleBAS, DrawPointH

CRESCENT SOFrWARE, INC. ■ 4-29

BASIC Routines

LoadFont

■ Purpose:

The Graphics Workshop

BASIC subroutine
contained in DRAWTEXT.BAS

LoadFont loads the specified GraphPak font file into a Font$O array for
later use by the text drawing routines, DrawText and StepText. Multiple
font definitions can be loaded at any point in time.

■ Syntax:
CALL SetGPFont(l)
CALL LoadFont(FontFi le$)

■ Where:
FontFile$ is a filename for one of the GraphPak style fonts. This string
may include a path if desired.

Comments:
The file extension ".GFN" is assumed and automatically added to each
filename passed to the routine. A standard font file is HELV12.GFN. A
list of other font files is located at the end of this chapter.

The call to SetGPFont tells the LoadFont routine which number to identify
with the font we are loading. All loaded fonts remain in memory. The
font selected by SetGPFont will be the font used by the next calls to
DrawText or StepText.

■ SeeAlso:
SetGPFont, DrawText, StepText

■ 4-30 CRESCENT SOFTWARE, INC.

The Graphics Workshop

LoadOutlineFont

■ Purpose:

BASIC Rou1ine1

BASIC subroutine
contained in OUTLTEXT.BAS

LoadOutlineFont loads the specified Graphics Workshop Vector font file
specified into a OutlineFont$O array for later use by the text drawing
routines, OutlineText. Multiple vector font definitions can be loaded at
any point in time.

■ Syntax:
CALL SetGWFont(l)
CALL Load0utlineFont(FontFile$)

■ Where

FontFile$ is a filename for one of the Graphics Workshop Vector fonts.
This string may include a path if desired.

Comment:

The file extension of" .QFN" is automatically assumed and added to each
filename passed to it. A standard outline font is HELV.QFN. A list of
all available font files is located at the end of this chapter.

The call to SetGWFont tells the LoadOutlineFont routine which number
to identify with the Vector font we are loading. All loaded fonts remain
in memory, and can be selected with the SetGWFont routine at any time.

■ See Also:

SetGWFont, OutlineText

CRESCENT SOFTWARE, INC. ■ 4-31

BASIC Roulines

LtsMenuG

■ Purpose:

The Ciraphica Worbhap

BASIC subroutine
contained in LTSMENU.BAS

The LtsMenuG routine provides a single-line Lotus 1-2-3 "look alike"
menu system. A list of choices is displayed horizontally on a single line.
A choice can be made either by using the arrow keys and pressing Enter,
or by pressing a key that corresponds to the first letter of a choice.

■ Syntax:
CALL LtsMenuG (Item$(). Choice%)

■ Where

ltem$0 is a conventional string array containing a list of the menu items.
The maximum length for any menu item is 78 characters.

Choice% returns the selection made by the user. If the user presses Esc,
then Choice% will return a 0.

Comment:

As shipped, LtsMenuG waits until the Enter key is pressed before returning
to the calling program. However, comments in the source code show how
to have it return as soon as the first letter of a choice has been pressed.
If you make this modification, though, be aware that each choice must
begin with a unique first letter.

LtsMenuG recognizes the Home and End keys and places the cursor on
the first and last menu item respective! y.

The example program DEMOLTS.BAS shows this routine in use.

■ SeeAlso:

Lts2MenuG

■ 4-32 CRESCENT SOFTWARE, INC.

The Graphics Workshop

Lts2MenuG

■ Purpose:

BASIC Routi.nea

BASIC subroutine
contained in LTSMENU.BAS

The Lts2MenuG routine provides a double-line Lotus 1-2-3 "look alike"
menu system. A list of choices is displayed horizontally on a single line.
The second line is used to provide an explanation of the currently selection
menu item. A choice can be made either by using the arrow keys and
pressing Enter, or by pressing a key that corresponds to the first letter of
a choice.

■ Syntax:

CALL Lts2MenuG (Item$(). Prompt$(), Choice%)

■ Where

Item$O is a conventional string array containing a list of the menu items.

Prompt$0 is a parallel string array containing the help or explanation of
each menu item relating to the items in the Item$O array.

Choice% returns the selection made by the user. If the user presses Esc,
then Choice% will return a 0.

Comment:

As shipped, Lts2MenuG waits until the Enter key is pressed before
returning to the calling program. However, comments in the source code
show how to have it return as soon as the first letter of a choice has been
pressed. If you make this modification, though, be aware that each choice
must begin with a unique first letter.

Lts2MenuG recognizes the Home and End keys and places the cursor on
the first and last menu item respectively.

The example program DEMOLTS.BAS shows this routine in use.

■ See Also:

LtsMenuG

CRESCENT SOFTWARE, INC. ■ 4-33

BASIC Roulines

MsgBoxG

■ Purpose:

The Graphics Worbhop

BASIC subroutine
contained in MSGBOX.BAS

MsgBoxG provides a quick and attractive way to display a message, with
word wrap automatically centered on the screen. The underlying screen
is always saved and it may be restored again later. The message box uses
a shadow effect to simulate depth.

■ Syntax:
CALL MsgBoxG(Message$, Wide%)

■ Where:

Message$ is a single continuous string to be displayed. If Message$ is
null, the most recently displayed message is cleared, and the underlying
screen restored.

Wide% is the desired width of the text (up to 74).

Comments:

The top line of the MsgBoxG is placed at the current cursor line, so
LOCATE should be used to set that before you call MsgBoxG.

When MsgBoxG is called, the first thing it does is check the length of the
message string. If it is not null, it first saves the underlying screen and
then displays the message. To clear the message and restore the original
screen, simply call MsgBoxG again with a null string.

Be sure that you don't call MsgBoxG with a null string, unless it has already
been called at least once before. Also be aware that the message should
always be cleared before a new one is displayed. Otherwise, there will
be no way to restore the original screen.

The width is limited to 74 because MsgBoxG draws a border around the
text, and adds an extra blank space to make the text easier to read. Two
additional columns are needed to accommodate the shadow.

■ 4-34 CRESCENT SOFTWARE, INC.

The Graphics Workshop BASIC Roulinel

All of the colors for this routine are defined in the GPDat%() array. Their
values are all initialized in the file GETVIDEO.BAS. The benefit of
isolating the color definitions to a single file is that you may customize
them to your own preferences, and they will then be reflected in all of the
programs that use GETVIDEO.BAS.

MsgBoxG is shown in context in the DEMOMENU.BAS example pro­
gram.

CRESCENT SOFTWARE, INC. ■ 4-35

BASIC Routines

Nightfall

■ Purpose:

The Graphic, Worbhop

BASIC subroutine
contained in FADE.BAS

NightFall simulates a gradual nightfall, by bringing random portions of
the second video page to the current active video page. Images fade in
from the top of the screen towards the bottom. This routine uses the
FadeEGA routine to accomplish the fading effect.

■ Syntax:
CALL NightFall

Comments:

It is advisable to use this routine and this effect when the overall
background of the two screen images is going to be similar. Any time
when there is a large portion of the screen which will not be changed by
this routine, the effect is much more pleasing to the eye and doesn't appear
rigid. See the demo program DEMOFADE.BAS for a visual description
of this routines' functioning.

■ 4-36 CRESCENT SOFIWARE, INC.

The Graphics Work.shop BASIC Routines

Outline Text BASIC subroutine
contained in OUTLTEXT.BAS

■ Purpose:

OutlineText draws a string using the Graphics Workshop Vector fonts.

■ Syntax:

CALL OutlineText(X%, Y%, Text$, Angle%, Colr%, Hult%, Divide%)

■ Where:

The Xo/o and Yo/o values represent the pixel coordinates for the upper-left
corner of the first character to be drawn.

Text$ is the string of the phrase to be drawn.

Angle% is the angle in degrees at which the text will be drawn. An
Angle% of O will draw text in the normal text direction.

Coiro/a is the color 0-15 for the text to drawn.

Mull% is an integer multiplier for the size of the text.

Divide% is an integer divider for the size of the text.

Comments:

To use the Mull% and Divide% parameters to obtain a font size of 3/4 of
the original font definition, set Mult% to 3 and Divide% to 4. This allows
the routine to use integer arithmetic. See Chapter 6 for more information
on using the Mull% and Divide% variables to obtain any size font.

A companion function, GetOutlineWidth%, can be used to determine the
length in pixels of the Text$ before it is drawn to the screen. This can be
of great use in the positioning of a text string.

■ See Also:

Get Ou ti ineWidth %

CRESCENT SOFTWARE, INC. ■ 4-37

BASIC Routines

PCXCAP

■ Purpose:

The Graphic■ Worbhop

BASIC program
contained in PCXCAP:BAS

PCXCAP is 1SR utility for capturing PCX images from just about any
graphics mode program. To use PCXCAP, run PCXCAP.EXE from the
command line, and the at a time when you are on a graphics screen, that
you want to capture, press Alt-S and then type in an 8 letter filename.

■ Syntax:
PCXCAP

■ Where:

This is what you would type at the command line to start the utility. Type
it a second time at the command line to remove it from memory.

Comments:

Although complete source code is provided for your amusement, it
requires that you have another of our products, P.D.Q to recompile it.

PCXCAP calls upon the SavePCX??? routines to actually save the PCX
image from the screen. Only in the EGA and VGA modes can you save
only a portion of the image. In this case PCXCAP calls upon
SavePCXRegionVE to save only a portion of the screen.

■ 4-38 CRESCENT SOFTWARE, INC.

The Graphics Workshop BASIC Routines

Position Box BASIC subroutine
contained in XORBOX.BAS

■ Purpose:

PositionBox is a complete routine for placing a box selector on screen and
accepting user input to move and change the size of the box. The routine
looks for cursor keys and selects a rectangular region on the screen using
the XOR ability of the Line VE routine.

■ Syntax:
CALL PositionBox(GWWindow AS Window!. Style%. EscPressed%)
IF ESCPressed% 0 THEN PRINT '"Esc was pressed'"

■ Where:

GWWindow is a BASIC TYPE structure. The structure Windowl is
defined in the include file GWDECL.BAS. The variables in this record
structure are XI%, YI%, X2%, and Y2%. An example of programming
with variables of this kind is shown at the beginning of this chapter.

Style% is a boolean variable. If it is 0, the outline of a box will be used;
otherwise a solid region is used to display the area.

ESCPressed% is used to determine whether or not the Esc key was
pressed.

Comments:

The keys accepted by this routine are any of the Cursor keys, Enter,
SpaceBar, and Esc. The routine remains active until the Esc or Enter
key is pressed.

The Cursor keys move the active corner.

The SpaceBar toggles which corner is active, either the upper-left or
lower-right corner. The routine starts with the upper-left corner.

The Enter key accepts the box position as it is on the screen. The new
values can be found in the GWWindow array.

The Esc key stops use of the routine. A value of -1 is returned in
EscPressed % if the Esc key was pressed.

CRESCENT SOFTWARE. INC. ■ 4 - 39

BASIC Routines

PullDownG

■ Purpose:

The Graphics Workahop

BASIC subroutine
contained in PULLDOWN.BAS

PullDownG is a complete graphics mode multiple-menu subprogram with
many important capabilities including full support for a mouse. Besides
being able to display more than one list of choices, it also always saves
the underlying screen and accommodates a separating divider between
related groups of items.

Furthermore, selected menu items may be allowed or disallowed at will.
Finally, PullDownG may be operated in a unique multi-tasking mode,
whereby it is polled periodically to see if a choice has been selected.

■ Syntax:

CALL Pul1DownG(Choice$(). Status%(). Menu%. Choice%. Ky$. Action%)

■ Where:

Choice$0 is a two-dimensional array containing the list of choices for
each menu. If any element contains a hyphen only("-"), it will be replaced
by a separating line and will not be selectable by the user.

Status%0 is a pa··allel, two-dimensional array that indicates which choices
are active. Choices can be deactivated by assigning a non-zero value to
the element that corresponds to a given item in the Choice$() array.

Menu% indicates which menu was active when a choice was selected, and
may also be pre-loaded to force a given menu to be displayed initially.

Choice% indicates which choice was selected, and may also be pre-loaded
to force a given choice to be highlighted initially.

Ky$ holds the last key that was pressed by the user. This is used to
determine if the user pressed < Esc > to exit the menu system.

Action% tells PullDownG how it is being used. The possible values for
the Action% parameter are discussed in the section entitled "Multi-Tasking
Menus" in Chapter I.

Comments:

All of the colors for this routine are defined in the GPDat%() array. Their
values are all initialized in the file GETVIDEO.BAS. The benefit of
isolating the color definitions to a single file is that you may customize

■ 4-40 CRESCENT SOFTWARE, INC.

The Graphics Workshop BASIC Routines

them to your own preferences, and they will then be reflected in all of the
programs that use GETVIDEO.BAS.

PullDownG is explained in depth in the section entitled "Multi-Tasking
Menus" in Chapter I, and two complete demonstrations are also provided.
DEMOPULL.BAS shows the minimum setup required for calling Pull­
DownG, and DEMOMENU.BAS illustrates some of its more advanced
uses.

■ See Also:

PullDnMSG

CRESCENT SOFrWARE, INC. ■ 4-41

BASIC Routines

PullDnMSG

■ Purpose:

The Graphic• Workshop

BASIC subroutine
contained in PULLDNMS.BAS

PullDnMSG is a complete graphics mode multiple-menu subprogram with
many important capabilities including full support for a mouse. Besides
being able to display more than one list of choices, it also always saves
the underlying screen and accommodates a separating divider between
related groups of items. The PullDnMSG routine mimics as closely as
possible the functionality of the Microsoft Windows menuing system.
Each of the menu items has a hotkey assigned to it. The hotkey is then
underlined by the PullDnMSG routine when shown on screen.

Furthermore, selected menu items may be allowed or disallowed at will.
Finally, PullDnMSG may be operated in a unique multi-tasking mode,
whereby it is polled periodically to see if a choice has been selected.

■ Syntax:
CALL Pu llDnMSG(Choice$(), Status%(), Menu%. Choice%. Ky$. Act ion%)

■ Where:

Choice$0 is a two-dimensional array containing the list of choices for
each menu. lfany element contains a hyphen only("-"), it will be replaced
by a separating line and will not be selectable by the user.

Status%0 is a parallel, two-dimensional array that indicates which choices
are active. Choices can be deactivated by assigning a non-zero value to
the element that corresponds to a given item in the Choice$() array. The
position of the hotkey is stored in the high byte of the Status%() array. If
the 2nd letter is to be the hot letter, then you would store the value I * 256
in its respective Status%() element. Note that you store a value one less
than the letter's position.

Menu% indicates which menu was active when a choice was selected, and
may also be pre-loaded to force a given menu to be displayed initially.

Choice% indicates which choice was selected, and may also be pre-loaded
to force a given choice to be highlighted initially.

Ky$ holds the last key that was pressed by the user. This is used to
determine if the user pressed Esc or Enter to exit the menu system. For
example, if Ky$ is equal to CHR$(13) then the user has pressed Enter.
Then by looking at the Menu% and Choice% variables, the menu and
menu item currently selected can be determined.

■ 4-42 CRESCENT SOFTWARE, INC,

The Graphic• Workshop BASIC Routinu

Action% tells PullDnMSG how it is being used. The possible values for
the Action% parameter are discussed in the section entitled "Multi-Tasking
Menus" in Chapter I.

Comments:

All of the colors for this routine are defined in the GPDat%() array. Their
values are initialized in the file GETVIDEO.BAS. The benefit of isolating
the color definitions to a single file is that you may customize them to your
own preferences, and they will then be reflected in all of the programs
that use GETVIDEO.BAS.

There are two routines which work with PullDnMSG to provide a complete
user interface. The BarPrintMSG routine allows you to place the menu
bar on-screen before the user has even entered the menu system. The
MenuKeyMSG routine interprets the user's keystrokes and filters out
Alt-key combinations which can be used to start the menu system. The
MenuKeyMSG routine otherwise returns the keystroke that was pressed
so that your program can interpret it. The MenuKeyMSG routine should
replace the main INKEY$ statement in your program that is waiting for
the users input. The program example DEMOPLMS.BAS shows a the
minimum menuing setup for PullDnMSG.

■ See Also:

PullDownG

CRESCENT SOFTWARE. INC. ■ 4-43

BASIC Routines

Random Fade

■ Purpose:

The Graphics Workahop

BASIC subroutine
contained in FADE.BAS

RandomFade randomly fades in portions of the second video page to the
currently visible video page. This routine uses the FadeEGA routine to
accomplish the effect of fading in the image.

■ Syntax:
CALL RandomFade

Comments:

It is advisable to use this routine and this effect when the overall
background of the two screen images is going to be similar. Any time
when there is a large portion of the screen which will not be changed by
this routine, the effect is much more pleasing to the eye and doesn't appear
rigid. See the demo program DEMOFADE.BAS for a visual description
of this routine's functioning.

■ 4-44 CRESCENT SOFTWARE, INC.

The Graphics Workshop

SetGPFont

■ Purpose:

BASIC Routines

BASIC subroutine
contained in DRAWTEXT.BAS

SetGPFont is designed to change between loaded fonts. Each font has
separate information about its width and height. Even though these values
may be the same, it's always advisable to use the proper information for
the font. This routine sets up all of this information and requires only one
step.

■ Syntax:

CALL SetGPFont(OesiredFontNum%)

■ Where:

DesiredFontNum% is the font number you wish to change to. This value
will be honored, provided that the number is within the range of available
fonts.

Comments:

There is only one time when you are required to call this routine. That is
just prior to loading the font using the LoadFont routine. This is shown
in the "Standard Code" section of Chapter 1.

■ SeeAlso:

SetGWFont

CRESCENT SOFJ"WARE, INC. ■ 4-45

BASIC Roulines

SetGPSpacing

■ Purpose:

The Graphics Workahop

BASIC subroutine
contained in OUTLTEXT.BAS

SetGPSpacing is used to set the spacing for the GraphPak fonts to be drawn
with either DrawText or StepText.

■ Syntax:

CALL SetGPSpac i ng (Spac i ngH%, Spac i ngV%)

■ Where:

SpacingH% sets the spacing between characters. This value is measured
in pixels for the base font size.

SpacingV% sets the spacing between lines. This value starts at the
position of the descender of a lower case letter such as 'g', and counts
down in pixels.

Comments:

■ SeeAlso:

SetGWSpacing

■ 4-46 CRESCENT SOFTWARE, INC.

The Graphic■ Worbhop

SetGWFont

■ Purpose:

BASIC Routinca

BASIC subroutine
contained in OUTLTEXT.BAS

SetGWFont is designed to change between loaded Graphics Workshop
fonts. Each font has separate information about its width and height.
Even though these values may be the same, it's always advisable to use
the proper information for the font. This routine sets up all of this
information and requires only one step.

■ Syntax:
CALL SetGWFont(DesiredFontNum%)

■ Where:
DesiredFontNum% is the font number you wish to change to. This value
will be honored, provided that the number is within the range of available
fonts.

Comment:

There is only one time when you are required to call this routine. That is
just prior to loading the font using the LoadFont routine. This is shown
in the "Standard Code" section of Chapter 1.

■ SeeAlso:

SetGPFont

CRESCENT SOFTWARE. INC. ■ 4-47

BASIC Routines

SetGWSpacing

■ Purpose:

The Graphics Workshop

BASIC subroutine
contained in OUTLTEXT.BAS

SetGWSpacing is used to set the spacing for the Graphics Workshop fonts
drawn by the OutlineText routine.

■ Syntax:
CALL SetGWSpac ing(Spac i ngH%, Spac ingV%)

■ Where:

SpacingH% sets the spacing between characters. This value is measured
in pixels for the base font size.

SpacingV% sets the spacing between lines. This value starts at the
position of the descender of a lower case letter such as 'g', and counts
down in pixels.

Comments:

■ See Also:

SetGPSpacing

■ 4-48 CRESCENT SOFTWARE, INC.

The Graphics Workshop

SetVideo

■ Purpose:

BASIC Routines

BASIC subroutine
contained in SElVIDEO.BAS

SetVideo sets the screen mode and important screen information variables.
This routine replaces the BASIC SCREEN statement as it allows you to
select the best possible screen mode available with your monitor setup.

■ Syntax:
CALL SetVideo

Comments:

Add this routine as the last line of the standard code shown in Chapter l.
The code in GETVIDEO.BAS, or similar code which will determine the
screen mode to be used, needs to be executed prior to calling SetVideo.

SetVideo uses the BASIC SCREEN statement even though Graphics
Workshop has replacement routines which set the same screen modes. If
you want to use any of the graphics routines like PAINT which have not
been duplicated by routines in Graphics Workshop, you will need the
BASIC SCREEN statement in order to use the BASIC PAINT statement.
If you are designing a program that does not need any of the BASIC
graphics statements, you can modify a version of SetVideo to use the
Graphics Workshop routines. An example of this is the demo program
VIEWPCX.BAS which creates a very small VIEWPCX.EXE by not using
the BASIC graphics libraries.

SetVideo expects that the GPDat%() array exists and that element 31
contains the screen mode desired. See Appendix C for a description of
element 31 of the GPDat%() array. The code in GETVIDEO.BAS sets
up the GPDat%() array. Note that including the standard code described
in Chapter I will fulfill these requirements.

Not only does the SetVideo routine set the graphics screen mode using the
appropriate SCREEN statement, but it also sets other GPDat%() variables
which can be helpful when programming for graphics mode. It sets
elements 43 and 44 which hold the current pixel resolution of the screen.
It sets element 49 which holds the aspect ratio for the current screen mode.
It sets element 50 which holds the number of colors available in the current
screen mode. It sets element 71 which holds the current character height
of text drawn with the BASIC PRINT statement or any of the GPrint0VE
routines.

CRESCENT SOFrWARE, INC. ■ 4-49

BASIC Roulines

ShadeH

■ Purpose:

The Graphic, Worbhop

BASIC subroutine
contained in SHADEH.BAS

ShadeH shades a region of the screen with a gradually changing bit pattern
from one color to another.

■ Syntax:
CALL ShadeH(ULCol. ULLine. LRCol, LRLine, NumColors%, StepChoice%,_

Colors%())

■ Where:
ULCol% and ULLine% specify the upper-left corner of the region to
shade. LRCol% and LRLine% specify the lower-right corner of the
region to shade. Together they specify the entire region to be shaded.
These coordinates follow the mixed coordinate system where column
values range from I to 80, and line values range from Oto 479 on a VGA
monitor.

NumColors% tells the routine how many color changes to go through.

StepChoice% tells the routine what the pattern will look like. The patterns
are built almost nmdomly and use this value as the seed.

Colors%0 is an array of the colors for the routine.

Comments:

This routine will start with Colors%(0) element as the background color,
and the Colors%(!) element as the foreground color which will become
more solid as the routine progresses. Once the color on screen becomes
solid, Colors%(!) will become the background color and Colors%(2) will
become the foreground color. The minimum dimension for the Colors% O
array should be one greater than the value of the parameter NumColors%;
the minimum value for the NumColors % parameter is I.

The routine ShadeH is a faster version of the ShadeHorizontal routine. It
is faster because it uses the mixed coordinate system. However the
ShadeHorizontal routine allows you to use any pixel locations.

■ SeeAlso:
ShadeHorizontal, ShadeV

■ 4-SO CRESCENT SOFTWARE, INC.

The Graphics Workshop

ShadeHorizontal

■ Purpose:

BASIC Roulincs

BASIC subroutine
contained in SHADEH.BAS

ShadeHorizontal shades a region of the screen with a gradually changing
bit pattern from one color to another.

■ Syntax:

CALL ShadeHorizonta l (GWWindow AS Window!. NumCo lors%, StepChoice%,
Colors%()) -

■ Where:

GWWindow is a BASIC TYPE structure. The structure Window! is
defined in the include file GWDECL.BAS. The variables in this record
structure are XI%, YI%, X2%, and Y2%. An example of programming
with variables of this kind is shown at the beginning of this chapter.

NumColors% tells the routine how many color changes to go through.

StepChoice% tells the routine what the pattern will look like. The patterns
are built almost randomly and use this value as the seed.

Colors%0 is an array of the colors for the routine.

Comments:

This routine will start with Colors%(0) element as the background color,
and the Colors%()) element as the foreground color which will become
more solid as the routine progresses. Once the color on screen becomes
solid, Colors%()) will become the background color and Colors%(2) will
become the foreground color. The minimum dimension for the Colors%0
array should be one greater than the value of the parameter NumColors%;
the minimum value for the NumColors% parameter is I.

The routine ShadeH is a faster version of the ShadeHorizontal routine. It
is faster because it uses the mixed coordinate system. However the
ShadeHorizontal routine allows you to use any pixel locations.

■ See Also:

ShadeH, Shade Vertical

CRESCENT SOFl'WARE, INC. ■ 4-SI

BASIC Roucines

ShadeV

■ Purpose:

The Graphics Workshop

BASIC subroutine
contained in SHADEV.BAS

Shade V shades a region of the screen with a gradually changing bit pattern
from one color to another.

■ Syntax:

CALL ShadeV(ULCol. ULLine, LRCol, LRL•ine, NumColors%, StepChoice%, _
Colors%())

■ Where:

ULCol% and ULLine% specify the upper-left corner of the region to
shade. LRCol% and LRLine% specify the lower-right corner of the
region to shade. Together they specify the entire region to be shaded.
These coordinates follow the mixed coordinate system where column
values range from I to 80, and line values range from Oto 479 on a VGA
monitor.

NumColors% tells the routine how many color changes to go through.

StepChoice% tells the routine what the pattern will look like. The patterns
are built almost randomly and use this value as the seed.

Colors%0 is an array of the colors for the routine.

Comments:

This routine will start with Colors%(0) element as the background color,
and the Colors%(!) element as the foreground color which will become
more solid as the routine progresses. Once the color on screen becomes
solid, Colors%(!) will become the background color and Colors%(2) will
become the foreground color. The minimum dimension for the Colors %0
array should be one greater than the value of the parameter NumColors%;
the minimum value for the NumColors% parameter is I.

The routine ShadeV is a faster version of the Shade Vertical routine. It is
faster because it uses the mixed coordinate system. However the Shade­
Vertical routine allows you to use any pixel locations.

■ SeeAlso:

ShadeH, ShadeVertical

■ 4-52 CRESCENT SOFrWARE. INC.

The Graphics Workshop

Shade Vertical

■ Purpose:

BASIC Routine,

BASIC subroutine
contained in SHADEV.BAS

Shade Vertical shades a region of the screen with a gradually changing bit
pattern from one color to another.

■ Syntax:

CALL ShadeVertical(GWWindow AS Window!. NumColors%, StepChoice%,_
Colors%())

■ Where:

GWWindow is a BASIC TYPE structure. The structure Window! is
defined in the include file GWDECL. BAS. The variables in this record
structure are XI%, YI%, X2%, and Y2%. An example of programming
with variables of this kind is shown at the beginning of this chapter.

NumColors% tells the routine how many color changes to go through.

StepChoice% tells the routine what the pattern will look like. The patterns
are built almost randomly and use this value as the seed.

Colors%0 is an array of the colors for the routine.

Comments:

This routine will start with Colors% (0) element as the background color,
and the Colors%(!) element as the foreground color which will become
more solid as the routine progresses. Once the color on screen becomes
solid, Colors% (I) will become the background color and Colors% (2) will
become the foreground color. The minimum dimension for the Colors% O
array should be one greater than the V-dlue of the parameter NumColors%;
the minimum value for the NumColors% parameter is I.

The routine ShadeV is a faster version of the Shade Vertical routine. It is
faster because it uses the mixed coordinate system. However the Shade­
Vertical routine allows you to use any pixel locations.

■ See Also:

ShadeHorizontal, ShadeV

CRESCENT SOITWARE. INC. ■ 4-SJ

BASIC Routines

StepText

■ Purpose:

The Graphics Workshop

BASIC subroutine
contained in DRAWTEXT.BAS

StepText is used to draw a text string using the fonts available with
GraphPak Professional.

■ Syntax:

CALL StepText(X%, Y%, Text$, Angle%, Colr%, SizeMultiplier#)

■ Where:

The variables X% and Y% are pixel positions of the upper-left corner of
the first character of the string to be drawn.

Text$ is a string of the phrase to be drawn.

Angle% is the angle in degrees at which the phrase will step. An angle
of O draws text straight across the screen. All individual letters will be
placed right side up.

Colr% is the color of the text. Both DrawText and StepText phrases can
have shadows drawn underneath them. Adding 128 to the color will
activate the shado·v effect.

SizeMultiplier# is the size of the font. For example, 1# = same size as
the original definition of the font, 2# = twice as big, . 75 = 3/4 the size
of the font.

Comments:

The color for the shadow effect mentioned above can be changed by
modifying the variable GPDat%(14). See Appendix C for information
about the GPDat%() array.

■ SeeAlso:

GetTextWidth%, DrawText

■ 4-54 CRESCENT SOFTWARE, INC.

The Graphics Workshop BASIC Routine•

VertMenuG BASIC subprogram
contained in VERTMENL.f.BAS

■ Purpose:

VertMenuG is a comprehensive menu subprogram for graphics mode with
many important capabilities including full support for a mouse. It always
saves the underlying screen. Further, VertMenuG may be operated in a
unique multi-tasking mode whereby it may be polled periodically to see if
a selection has been made.

■ Syntax:
CALL VertMenuG(Item$(), Choice%, MaxLen%, BoxBot%, Ky$, _

Act ion%)

■ Where:

Items$0 is a conventional (not fixed-length) string array containing the
list of menu choices.

Choice% indicates which choice was selected, and may also be pre-loaded
to force a given choice to be highlighted when the menu system is accessed
initially.

MaxLen% is the maximum length of any menu choice, thus establishing
the menu width. Choices that are longer than MaxLen % will be displayed
truncated.

BoxBot% is the bottom screen line that the window is to extend to. That
is, if BoxBot% is set to twenty, then the bottom border of the menu will
be on I ine twenty. Notice that the upper-left corner of the menu is
established by the current cursor location.

Ky$ holds the last key that was pressed by the user.

Action% tells VertMenuG how it is being used. The different possible
values are described in the section entitled "Multi-Tasking Menus" in
Chapter 1.

Comments:

All of the colors for this routine are defined in the GPDat%() array. Their
values are all initialized in the file GETVIDEO.BAS. The benefit of
isolating the color definitions to a single file is that you may customize
them to your own preferences, and they will then be reflected in all of the
programs that use GETVIDEO.BAS.

CRESCENT SOFTWARE, INC. ■ 4-SS

BASIC Roulines The Graphics Workahap

VertMenuG is explained in depth in the section entitled "Multi-Tusking
Menus" in Chapter I, and a complete demonstration is provided in the
DEMOVERT.BAS example program. This routine is also used by the
DEMOMENU.BAS example program.

■ 4-56 CRESCENT SOFJ'WARE, INC.

The Graphics Workshop

WhichPCXScreen

■ Purpose:

BASIC Routines

BASIC subroutine
contained in PCXHEADR.BAS

WhichPCXScreen interprets a PCX file header and determines the screen
mode that should be used.

■ Syntax:
CALL WhichPCXScreen(Array$, Which5creen%)

■ Where:

Array$ contains the header information for the .PCX file. Array$ is set
by calling the routine OpenPCXFile%.

WhichScreen% returns the suggested screen mode for the .PCX file. The
value of WhichScreen% follows the values of the GPDat%(31) variable
which is explained in Appendix C.

Comments:

This routine evaluates information in the header and determines the desired
screen mode from this information. Even though not all of the information
calculated in this routine is not used by the routine to determine the screen
mode, it is done to give a complete breakdown of the PCX file header.

An example of using this routine is contained in the VIEWPCX.BAS
example program, and the BASIC routine DisplayPCXFile.

CRESCENT SOFfWARE, INC. ■ 4-57

BASIC Roulines The Graphi~• Worklhop

OTHER FILES ON THE DISK

FILENAME

HELV12.GFN
HELVS.GFN
OLDENG.GFN
TROM12.GFN
FUTURE.GFN
HELV12.GPK
HELVS.GPK
OLDENG.GPK
TROM12.GPK
FUTURE.GPK
HELV.QFN
QSEGUE.IN
GW.LIB
GW.QLB
GW7.LIB
GW7.QLB
DEMOSHAD.PCX
FONTEDIT.PCX
FONTSI.PCX
FONTS2.PCX
FONTS3.PCX
XORBOX.PCX
ZOOMED.PCX
CGA.PCX
MOUNTAIN.PCX
MOUSE.PCX
SALESI.PCX
SALES2.PCX
COMMON.GW
GWDECL.BAS
FADEDATA.GW
GPFONT.GW
EXTERNAL.GW
GWFONT.GW
BC7START.GW
BC7END.GW

■ 4-58

DESCRIPTION

12 pt Helvetica GraphPak Font
8 pl Helvetica GraphPak Font
12 pl Old English GraphPak Font
12 pl Times Roman GraphPak Font
12 pt Future GraphPak Font
GraphPak Font Definition
Graphi'"dk Font Definition
GraphPak Font Definition
GraphPak Font Definition
GraphPak Font Definition
64 pl Helvetica GW Vector Font
QuickSegue Input File
Graphics Workshop Library
Graphics Workshop Quick Library
Graphics Workshop Library for BC7
Graphics Workshop Quick Library for BC7
EGA .PCX file for Demonstration
EGA .PCX file for Demonstration
EGA .PCX file for Demonstration
EGA .PCX file for Demonstration
EGA .PCX file for Demonstration
EGA .PCX file for Demonstration
EGA .PCX file for Demonstration
CGA .PCX file for Demonstration
EGA .PCX file for Demonstration
HERC .PCX file for Demonstration
EGA .PCX file for Demonstration
EGA .PCX file for Demonstration
File of COMMON's for Graphics Workshop
DECLARES for Graphics Workshop
Data File for the FadeEGA Routine
Initialization for GraphPak Fonts
List of EXTRN's for Graphics Workshop
Initialization for GW Vector Fonts
Assembler Include file for BC7 Compatibility
Assembler Include file for BC7 Compatibility

CRESCENT SOFTWARE, INC.

Chapter 5: QuickSegue

■ ■ ■

The Graphics Workshop QuickSegue

QuickSegue is a programmable slide show program which combines
transfer of .PCX files with simple graphics routines. QuickSegue accepts
a script input file in a special format described below. QuickSegue will
read the script file and manipulate the screen according to its statements.
You have the ability to load .PCX files and bring them forward to the
screen in many different fashions. You can also annotate your .PCX files
with text. QuickSegue also gives you the ability to add your own routines
to be executed at an appropriate time within the QuickSegue script.

About The Script Language

A script used by QuickSegue file can be any plain ASCII text file. You
can create an ASCII text file by loading a document using the Load option
on the Files menu in QuickBASIC. QuickSegue will ignore any lines in
the script file it cannot understand, so you may place blank lines, or even
comment lines in the script file.

The statements in the QuickSegue script language are:

CLEAR
DD
INTERLUDE
LOAD
LOCATE
SEGUE
SEND
PAUSE
PRINT

Details About The Script Language

CLEAR buffer

■ Purpose:

Clears a graphics memory buffer which has been previously loaded.

■ Where:

buffer is the number of buffers to clear.

DO dotype

■ Purpose:

Allows programmers to add their own sections of code to QSEGUE.BAS
for execution to add to a presentation.

CRESCENT SOFTWARE. INC. ■ S-1

QuickScgue The Graphic, Worbhop

■ Where:

dotype is a number which is used to select one of the pre-programmed
sections to execute. Currently only dotype = I is defined, and it moves
an exclusive-OR box across the screen.

INTERLUDE number "anystring"

■ Purpose:

Starts one of the interlude types. Two pre-written interludes exist.

■ Where:

number is the number of the interlude. Number = I brings up a Movie
Director's Clicker, using the phrase specified by anystring.

LOAD "filename" buffer

■ Purpose:

Loads a .PCX graphics file into a memory buffer.

■ Where:

filename is any valid filename including paths and extensions. If no path
is specified, QSEGUE.BAS will assume the current directory.

buffer is the number of one of the available buffers for loading the .PCX
graphics file into.

LOCATE horizontal vertical

■ Purpose:

Locates an internal cursor for the positioning of text strings. This routine
uses words to describe the position of a string since at the time of the locate
command the size of the text string to be drawn is unknown.

■ Where:

horizontal is an X axis positioning command. Available horizontal
positioning statements are "Left", "Middle", "Right".

vertical is a Y axis positioning command. Available vertical positioning
statements are "Top", "Middle", "Bottom".

■ 5-2 CRESCENT SOFJWARE, INC.

The Graphics Workshop QuickScgue

SEGUE seguetype subtype color delay
■ Purpose:

Transfers a graphics screen from the background screen to the visible
screen in one of many geometric fashions.

■ Where:

seguetype specifies the type of geometric transition to be made.

subtype specifies the subtype of the above seguetype. Not all segue types
have subtypes.

color specifies the color to paint with for those subtypes which bring in a
solid colored screen instead of a .PCX image from the background screen.

delay specifies a time delay which can be used to uniformly control the
speed of the transitions. The time is independent of the speed of the
machine using the QSEGUE program and is measured in milliseconds.

SEND buffer
■ Purpose:

Sends a compressed graphics file from a buffer to the background video
screen. Nothing is physically seen by the user when this command
executes. It should be followed by a SEGUE statement in the script to
bring the PCX image to the screen.

■ Where:

buffer is the number of one of the buffers which contains the .PCX
graphics file to be displayed.

PAUSE
■ Purpose:

Waits for the user to press a keystroke.

PRINT '"anystring'" color

■ Purpose:

Prints a text string at the specified location in a helvetica font.

■ Where:

anystring is any string enclosed by quotes.

color is the color for drawing the text string and is a number between 0
and 15.

CRESCENT SOFfWARE. INC. ■ 5-3

QuickSegue The Graphic■ Workahop

Segue Types

All of the segue types described here are also described in Chapter 4,
using pictures to better explain the process by which the segue takes place.

Segue I corresponds to a quick full screen transfer of the . PCX file.

Segue 2 corresponds to a inwardly imploding box transfer of the .PCX
file.

Segue 3 corresponds to a random square replacement of the old screen
with parts of the new . PCX file. The subtypes define the pattern of the
replacement.

Segue 4 corresponds to a diagonal fade from the upper-left corner to the
lower-right corner using parts of the .PCX file. The subtypes define the
size of the blocks used to make up the line.

Segue 5 corresponds to a horizontal line replacement of the old screen
with the new .PCX file. The subtypes define the number of lines being
replaced at a time.

Segue 6 corresponds to a outwardly exploding box transfer of the .PCX
file.

■ S-4 CRESCENT SOFIWARE, INC.

Chapter 6: Vector Fonts

■ ■ ■

The Graphics Workshop Vector Fonts

A Vector Font is a series of line segments which make up the outline of a
font. Each letter can have its own number of line segments. When a
Vector Font is drawn, its outline is generated first. The outline font is then
filled in with the appropriate color.

Because the Vector Font is dependent upon the PAINT command, it is
necessary to understand a little about how the PAINT command works,
and the problems which can occur while using it. A problem can occur
when drawing vector fonts on a screen which already has graphics images
underneath where the new text string will be drawn. Try the following
example in the QuickBASIC editor:

SCREEN 9
LINE (75, 150) - (150, 75), 1
LINE (75, 75) - (125, 125), 1,
PAINT (80, 80), 2, 1

'turn on the graphics screen
'assume previously on the screen
'draw box to be painted
'paint the box

Because the line crosses through the box and the line is the same color as
the border of the box, the PAINT statement is unable to completely fill
the box. Now consider that the box is the outline of a font, and the line
is any already existing graphic image on the screen. Note: The first color
in the above PAINT statement is irrelevant. The problem occurs because
both the line and the box are drawn in the same color. The PAINT
command does not know that the two are separate and therefore stops
prematurely and does not paint the entire box. For this reason, color
selection is important when drawing a Vector Font. If you are going to be
using the vector fonts over already existing images, use a color not used
in the underlying image. This is good for two reasons. One, it will insure
that your text is drawn completely. Two, when you annotate a graphic
image with text, and the text uses a different color than parts of your
image, the text will be easily discernable from the background image.

CRESCENT SOFTWARE, INC. ■ 6-1

Vector Fonts The Graphics Workshop

Using the Vector Font Editor

The Vector Font Editor is called FONT64.EXE and is a program for
editing a font definition. The grid used in FONT64.EXE gives fonts up
to a 64 x 64 point resolution. The Vector Font editor shows what the font
will look like for 4 different sizes. One view of the font definition shows
how the character will look at an angle.

-ii-➔M'iii

Character: CAI

<F1>=Help <FZ>:D.,..11 Lina (F'3):Conn■c\ LI,_ <F4>=£, .. Lh• <r.i>:Paln\
(F6):ani,ue Lines <F1>=rlck Char (F8):Redra11 <F9>=S.v■ <F111):ltenu

Start the Vector Font Editor by typing:
F0NT64

Once the Vector Font Editor has started, there are a couple of basic
commands which can be used to create and edit vector fonts. The first of
these is the <Fl0> key which is used to activate the menu system. The
second is the <Fl> key which is used to activateFONT64's help system.

Using the Menu System
The menu system is activated by pressing the < F 10 > key. If a mouse is
available, selecting on any of the menu items at the top of the screen will
activate the menu system. This section describes each of the options on
each of the menus in the Vector Font Editor.

■ 6-2

Files
New Font
Open Font...
Save Font... < F9 >
Save Font As ...
Load Simulate Font ...
DOS Shell
Exit

CRESCENT SOFl'WARE, INC.

The Graphics Workshop

Edit
Pick Character
Move Lines
Move Paint
Delete Segment
Break Segment
Simulate Letter

Draw
Line Draw
Connect Ends
End Line Draw
Paint Draw
Set Baseline
Redraw Letter

I F1 = Help

<F7>
<F6>

<F2>
<F3>
<F4>
<F5>

<FB>

Detailed Function Description Of
Menu Items

Items on the Files menu

■ New Font

Vector Fords

This option clears the memory of all letters of a font. The user is prompted
if any changes have not yet been saved.

■ Open Font. ..
This option is used to load a predefined font file for the purpose of editing.
The user is prompted to save the current file if any changes have been
made since the last save. The user will also be prompted for a filename
of the font file. All vector font files have the .QFN extension, by default,
so this need not be typed.

■ Save Font...
This option is used to save the current font information to the filename
specified by a previous open command. If no previous open has been
executed then this functions the same as the Save As command and the
user will be prompted for the filename to save the font under. Otherwise
no further prompt will be given to the user before saving the font file.

■ Save Font As ...
This option is used to give a font a new name, or to name a font created
with the New Font command. The user is prompted for the name to be
given to the font file. All vector font files have the .QFN extension.

CRESCENT SOFTWARE. INC. ■ 6-3

Vector Fonts The Graphie1 Worbhop

■ Load Simulate Font...
This option is used to load a simulation font from oneofthefontsprovided
from GraphPak. GraphPak fonts have the .GFN extension, and a list of
available GraphPak font files is in chapter 4. FONT64 will default and
use the Helvl2.GFN font file.

■ DOS Shell
This option is used to shell to DOS to utilize some of its functions.

■ Exit
This option exits the font editor. If your file has not been saved, you will
be prompted to save it.

Items on the Edit menu

■ Pick Character
This option is used to determine which character's font description to edit.

■ Move Lines
This option is used to move the endpoint of two connected lines. Two line
segments are connected at one point and the user must place the square
cursor over the connecting point of these two lines. After selecting Move
Lines, moving the cursor will also move the connecting point of these two
lines and the lines will change on screen. Pressing <Enter> will finalize
the move.

■ Move Paint
This option is used to move the center point for the painting region. The
user must have the cursor over one of the paint points before using this
command. Pressing <Enter> will finalize the move.

■ Delete Segment
This option will remove one of the line segments from the font description.
This option will start by changing the color of one of the line segments
which make up the font definition. You select which segment to delete by
pressing the < SpaceBar > until that segment is the one with the different
color. Once the proper segment is selected, press <Enter> . You will
be prompted to verify the removal of that segment.

■ Break Segment
This option is used to insert line segments into the font structure at the
specified position. This option will start by changing the color of one of
the line segments which makes up the font definition. You select which
segment to break into two segments by pressing the < SpaceBar > until
that segment is the one with the different color. Once the proper segment
is selected, press <Enter>. At this point the line segment will be broken
into two and the cursor positioned halfway between the two endpoints of

■ 6-4 CRESCENT SOFTWARE, INC.

The Graphics Workshop Vector Fonts

the first segment. Now the cursor keys can be used to position the midpoint
of the two line segments. To finalize the position of the midpoint for the
two line segments, press the <Enter> key.

Items on the Draw Menu

■ Line Draw
This option begins the process of drawing a line segment. The line
segment begins at the current cursor position and ends where the cursor
is when either the End Line Draw command or the Connect Ends command
is issued.

■ Draw Another
This option replaces the Line Draw option when a line draw is in progress.
This option will draw a line segment from the last cursor position where
a Line Draw or Draw Another command was issued to the current cursor
position. The routine is also prepared to receive additional Draw Another
commands to draw a line from the current cursor position to wherever the
cursor position is when those commands are issued.

■ Connect Ends
This option draws a line between the cursor position that existed when the
original Line Draw (not Draw Another) command was issued to the current
cursor position. At the same time, this option ends the line drawing mode.
It will restore the Line Draw option to the Draw menu. The next Line
Draw command will create a line segment which is not connected in any
way to the line segment just drawn.

■ End Line Draw
This option ends line drawing mode. It will restore the Line Draw option
to the Draw menu. The next Line Draw command will create a line segment
which is not connected in any way to the line segment just drawn.

■ Paint Draw
This option places a paint point marker at the position where the PAINT
command is to begin to fill the outlined object. Multiple paint points can
be placed in a character. A section of a font may be closed off from another
section resulting in an incomplete painting of the entire character. When
displayed at smaller sizes, this can happen near curves and edges. The
solution is to place more than one paint point in a letter's font definition.

■ Set Baseline
This option sets the baseline for the font to be at the cursor's current
vertical position. The baseline is the position which is used to align letters
with and without descenders. A descender is the portion of a lower case
letter such as 'g' which extends below most other letters. This baseline

CRESCENT SOFTWARE, INC. ■ 6-S

Vector Fonts The Graphic• Workshop

can be used to determine the height of a vector font letter. To determine
the height of a font, see Interlude! and its use of the 2nd byte in the font
description.

■ Redraw Letter
This option redraws the font definition for the currently selected character
on screen. If a font definition is not made of completely enclosed objects,
the PAINT command could paint outside the boundaries of the region. If
this happens, using this command will clean up the screen.

Items on the Help Menu
The Help Menu has no items. There are no help options; there is only
one method of obtaining help. Simply press <Enter> on this menu to
activate help.

Using Vector Fonts With Your Program

The routine that draws a vector font is called OutlineText. This routine
accepts a physical screen location to draw the string of text and two
variables to use for sizing the font. These variables are integer values
which correspond to the numerator and the divisor of some fraction which
will be multiplied by the font definition. Basic can generate integer
multiplies and div:des which will be much faster than using floating point
arithmetic. Almost any size font can be generated. An algorithm for
obtaining an integer numerator and denominator for some real number
contained in A! is:

Numerator% = A! * 1000
Denominator% = 1000

The algorithm for drawing a string works just as fast with the Denominator
equal to 1000 as when it is equal to I. Using a Denominator of 1000
provides a wide range of font sizes.

■ 6-6 CRESCENT SOFTWARE, INC.

Appendices

■ ■ ■

The Graphics Workshop APPENDIX A

Appendix A: A PCX PRIMER

For some time now, the three letters PCX have come to mean bit mapped
graphics, and if you want to display bit mapped graphics you use the PCX
format. The PCX graphics format was created by ZSoft, the makers of
PC Paintbrush and Publishers PaintBrush. Just about every graphics
program can read a .PCX file and display it in some fashion. Until 1989,
the .PCX format was left unchanged. We'll cover the .PCX format up
until this change, and then discuss the addition which basically was
designed for the 256 color mode of the VGA.

To start, like many data files, the .PCX file has a header portion which is
used to describe the image. We will need to examine this header before
we can do anything with the image. The size of the header is always 128
bytes in length. Note: If the header had been made variable in length there
would have been no need to modify the standard to accommodate the 256
color VGA modes.

Header portion

The first byte of the header always contains the value 10 (QA hex) which
defines the file as a PC Paintbrush PCX file. Use this in combination with
the fact that the file has the .PCX extension to confirm that the file is a
PC Paintbmsh file.

The second byte is the version number. It tells you which version of the
file format it is. The important information which can be derived from
this is whether or not the file contains information about a re-mapped
palette. The version numbers which ZSoft has published are in the
following table:

VERSION DESCRIPTION OF FORMAT
0 No Palette Information

2 Contains Palette

3 No Palette Information

5 Contains Palette

PC PaintBmsh IV uses version 5 of the .PCX format.

The third byte is the compression scheme used. This byte will always have
the value I to represent "mo-length encoding", which is discussed later.

The fourth byte is the number of bits per pixel. This ignores color planes
used in most of the EGA and VGA modes. Most of the time this byte will

CRESCENT SOFTWARE, INC. ■ A-I

APPENDIX A The Graphics Worbhop

be 1. The exceptions are the CGA 4-color mode where this value is 2,
and the VGA 256-color mode where this value is 8.

The fifth through twelfth bytes store the picture dimensions as 4 integer
values. The dimensions are shown in the order XMinimum, YMinimum,
XMaximum, and YMaximum.

The next four bytes (13 through 16) store two integer values of the physical
resolution possible for the machine on which the image was created. If it
was created on an EGA display, for example, these values would be 640
and 350.

The next 48 bytes (17 through 64) store the palette information. The
palette is discussed in Appendix B.

Byte 65 in the file is reserved by ZSoft for future use.

Byte 66 in the file tells you the number of color planes used by the image.
When using one of the 16 color modes on the EGA or VGA, the number
of color planes is set to 4; otherwise it is set to I.

Byte 67 is very important. It defines the number of bytes per line the image
uses. A VGA screen which is 640 pixels across uses 80 bytes to store the
information (ignoring multi-plane aspect). The value in this byte has
always been recorded correctly. Some versions of paint programs have
written incorrect values in the header bytes which describe the picture
dimensions. One common mistake describes EGA screens as being only
75 by 75 pixels in dimension. However, even in the .PCX files with that
incorrect picture dimension, the value in Byte 67 was still correct, 80 bytes.

The remaining 61 bytes in the header are unused.

Data Portion

The data portion contains compressed bytes which hold pixel values. Since
each video mode has a different way of storing pixels on the screen, and
the PCX file format stores information for each screen in a fashion that
closely resembles the memory of the video screen the image was taken
from, you cannot directly interpret the information in the data portion. It
is necessary to use the header information given above to determine the
monitor used, and then interpret the data portion accordingly.

For those unfamiliar with compression, it was invented to allow storage
devices to hold more information. An EGA 16-color high resolution
screen has 80 bytes per scan I ine, 350 scan lines per video plane, and four

■ A-2 CRESCENT SOFTWARE, INC.

The Graphics Workshop APPENDIX A

video planes. That's 91,200 bytes of information. It would be nice to
store that same information in less space. That's where data compression
comes in. Put simply, if 40 bytes in a row are all the same, it is simpler
to say the next 40 bytes are all the same and this is what the byte is. That
takes only two bytes to represent: one to say that the next 40 bytes are the
same, and the other to say what that byte is. Two bytes instead of 40
provides a compression of 95%. Unfortunately, the entire file doesn't
usually compress that well; a typical average is around 60%.

The next problem is how to represent a count and how to represent a data
byte. Since a data byte can have any of the possible values from Oto 255,
there are no special codes left to use for counts. The people at ZSoft
decided to use the numbers from O to 19 I for data and the numbers I 93
to 255 for counts. The value of 192 is not used, for reasons described
later. The simple way of looking at a byte to see if it is a count and not
data is to look at the leftmost two bits of the byte.

11000000

If the leftmost two bits are set, then subtract the value 192 from that byte
and the resulting value will be the count of how many times the following
byte is going to be repeated. Note: this byte which follows can be any
value from Oto 255. If we had only a single byte with a data value larger
than 192, then we would have to say here comes I byte and its value is X.
In the cases where a single byte exists and it is larger than 192, it is stored
as two bytes instead of one. This can be a problem in more complicated
graphics, but it's rare for this compression scheme to use more memory
than the image originally took up.

This compression continues for the remainderofthe file. Now let's answer
the remaining questions: How do I handle EGA video planes? Why isn't
a data value of 192 used?

The EGA video planes are stored on a line-by-line basis. For each line,
the blue plane's data is stored, followed by the green, red and intensity
planes. Some programs will compress across the boundaries of a plane
and even across a scan line. For example, if the last 5 bytes of a line are
zeros, you would expect to get a repeat count of 5 and then a zero. But,
if the first 3 bytes of the next line or even the next video plane are also
zeros, what you actually get is a repeat count of 8 followed by a zero.
This all-out compression makes a compressed file smaller as a rule, but
raises the time it takes to display a .PCX file because of the extra checking
for end of I ine and end of plane.

To see why a data value of 192 isn't used, remember the .PCX format
rules: We must look at the two leftmost bits to see if they are both ones.

CRESCENT SOFTWARE. INC. ■ A-3

APPENDIX A The Graphic• Worklhop

If they are, then subtract 192 from that byte to obtain a count. Both
leftmost bits of 192 are ones. Since 192 - 192 is zero, and you can't have
a count of zero, the value of 192 becomes meaningless and is not used in
the .PCX format.

■ A-4 CRESCENT SOFTWARE, INC.

The Graphics Workshop APPENDIX B

APPENDIX B: THE PALETTE

A painter often uses few colors to paint his masterpiece. If it is a water
scene, you can be sure there will be some blue, some green and some
white. With a painting using oil paints, the artist has the ability to blend
these colors on the canvas. His whitecaps on the water can blend and
make light blue with the water beneath. In simplest terms he has two
colors in the same place at the same time. A computer screen can't have
two colors for the same pixel, but we do have a palette. A palette is a
selection of colors we can choose from to paint our picture.

On EGA and VGA screens there are 16 color graphics modes. On these
screens there is a palette of 16 colors. You don't always need every color.
In particular, for a water scene you need blue, dark green and white. You
won't need a yellow, red, purple, violet, bright green or a pink. You've
just eliminated the need for about half of the colors given to us in the
standard palette. Luckily, the palette gives us the ability to replace any of
the colors we won't need with another color. On the EGA you can select
from 64 different colors; on the VGA you can select from 256,000. We'll
go into more on how these colors are structured later, but for now let's say
we can have 4 shades of blue, 4 shades of green, and 4 shades of white.
That's twelve colors to paint with instead of three. That's obviously going
to create a better picture than if only three colors were used. Look at the
end of the demo program DEMOPAL.BAS; it shows the effect of painting
with the right colors.

How The Palette Works

The EGA and VGA monitors are the same in many ways. However, one
way they are completely different is in the number of colors available and
in how these colors can be accessed.

How The EGA Stores Palettes

The EGA has a maximum of 16 colors which can be displayed at any one
time. Each of these 16 colors can be among one of the 64 possible choices
for the colors. To represent 64 colors requires a 6-bit binary number.
Among these 6 bits are 2 bits for the Red value, 2 bits for the Green value,
and 2 bits for the Blue value. One bit for each color is used as a
high-intensity value. In the explanation below, the high-intensity bit is
represented by the capital letter, and the low-intensity bit is represented
by the lower-case letter. Each of the values for the RGB value stored here
is represented in the following fashion: 00RGBrgb. Each pair: Rr, Gg,
and Bb, has one of four values: 00, 01, IO, or 11. This means that if the

CRESCENT SOFTWARE. INC. ■ B-1

APPENDIX B The Graphic• Worbhop

bits represented by Rr are both zero, then there is no red in the color
generated. The same is true of the other colors. If you set any of its bits
to l, you are selecting the intensity of the color you are adding to the
original color. The brightness of a color is determined by the overall
number of bits which are set to a value of I. The color 56 has only three
bits which are 1 's, while 55 has five bits which are l's; thus the color 55
will be considerably brighter than the color 56.

Setting the EGA's palette is accomplished by sending a palette register
number and a value to a routine which can set the palette. The routine
SetPaletteEGA will do this for you. The EGA uses "write-only" registers,
so it is not capable of telling you what are the values of the palette registers
currently in use. You will need to maintain this information for yourself.

How The VGA Stores Palettes

The VGA can store palettes the same way, but it has the ability to improve
the process by expanding the number of available colors. You can specify
any of 64 values for each of the main colors red, green, and blue. This
provides an overall color palette of 256,000 colors. Graphics Workshop
has a routine called SetPalTripleVGA which has the number of the palette
register and then three values for the Red, Green and Blue color values,
respectively. The higher the overall values of each of the three color
values, the brighter the color will be. The VGA 256-color mode allows
any of its 256 colors to have one of the 256,000 colors mentioned above.
Some day computers will be giving us more colors to choose from, but
for now that's the maximum we can accommodate on a PC and that's the
maximum which QuickBASIC can handle.

The palette is stored by the Video BIOS. When the computer starts up, it
looks to the Video Card installed in your machine. The video card has
encoded on it important information about the video card which is then
referenced by the BIOS. This is made up of tables, code for initializing
the video card into one of its possible video modes, and code for sending
pixels of colors to the screen.

What Can You Use Palettes For?

Now that we have the code and knowledge for using palettes, what
immediate uses do we have for it? In Graphics Workshop there are many
routines for displaying PCX graphics files. These graphics files were
probably made with PC Paintbrush or some other graphics program
(possibly even with the Graphics Workshop SavePCXVE subprogram).
These programs all have the ability internally to change the palette of the

■ B-2 CRESCENT SOFTWARE, INC,

The Graphics Workshop APPENDIX B

image being displayed or created. To display these PCX files, use the
native palette which was used to create it. Other uses discussed below are
covered in the demonstration program DEMOPAL.BAS. Another use is
drawing video data to the screen and then recoloring it without having to
redraw it to the screen.

One could also use palettes for the creation of a three dimensional video
game. The terrain in this demo can have complex images (the lines) drawn
over them and it would appear that the terrain is being redrawn each time
you want to move it. Obviously, redrawing the background image under
these complex images would be very complicated and slow. Instead, the
color of individual places on the screen is modified, allowing the program
to spend valuable CPU time more efficiently. Palettes are good for
displaying motion without actually using effort to redraw the screen.

The Logo contained in the demo program makes use of a flowing palette.
Each of the colors follows one another in a succession which can make
the image appear to be a solid color.

These types of effects will make a presentation much more effective than
is possible with just one color.

CRESCENT SOFrWARE, INC. ■ B-3

The Graphics Workshop APPENDIXC

APPENDIX C:
THE GPDAT%0 ARRAY FROM GRAPHPAK

GraphPak Professional is another product produced by Crescent Software.
It is a package for doing business charts and scientific graphs. You may
be wondering why we talk about GraphPak Professional in this product.
We recognize that a lot of GraphPak Professional owners are going to want
to use some of the Graphics Workshop routines with GraphPak Profes­
sional, and since it's nice to have some of the features of the GraphPak
Professional GPDat%() array in any program having to deal with graphics
monitors, we've used it in Graphics Workshop. GraphPak's Professional
GPDat % () array has elements which hold the current screen mode set, the
maximum pixel resolution of the display, the maximum number of colors
on the display, the color values for pull-down and vertical menus, and vital
values for using the GraphPak Professional fonts. GraphPak Professional
fonts are those which are displayed using the DrawText and StepText
routines, which we have also supplied in this product.

Description of the GPDat%0 Array

The GPDat%() array was created to share information between routines.
Inside a subroutine in QuickBASIC, you don't have access to all the
variables in your main program. Usually you'll have access only to those
variables which you have passed to the subroutine. Using the COMMON
statement in QuickBASIC, you can reach variables from outside the
subroutine. Variables that we want to be able to access from inside various
routines are font definitions, and the GPDat % () array. The requisite
common statements have all been included in the COMMON.GW module
which should be included at the top of each of your modules. The
GPDat%() array is an array of integers. It is dimensioned to 85 elements,
of which the first 80 are used by GraphPak Professional routines. Not all
of these are needed for the GraphPak Professional font routines included
with this package, but some elements which are needed have significant
uses, such as allowing you to specify boldfacing, italicizing, etc. The
GPDat%() array is broken up into two sections, system variables and user
variables. System variables hold important system parameters, like screen
size. User variables are used to modify the routines like DrawText and
StepText work with the font information given to them.

Many of the items in the GPDat%() array are integers, but some are used
simply as Yes or No indications, or boolean variables. A boolean variable
is one that has two states, either TRUE or FALSE. In computers a FALSE
is represented by a 0, whereas TRUE is commonly represented by -1.

CRESCENT SOFrWARE, INC. ■ C-1

APPENDIXC The Graphics Workshop

BASIC considers any non-zero value to be TRUE, but try always to use
-1, as it is more of a standard.

Elements Used By Graphics Workshop

ELEMENT VARIABLE DESCRIPTION DATA (RANGE)
14 Text Shadow Color Integer (0-15)
23 Boldface Text Boolean (-1 or 0)
24 Italicize Text Integer (45 to 135)
31 Monitor Type Integer (0-9)
33 Maximum Fonts Available Integer
34 Current Font Number Integer (< = Fonts Avail)
35 Maximum Font Width Integer
36 Font Vertical Spacing Integer
43 Video Monitor Width Integer (320, 640, or 720)
44 Video Monitor Height Integer (200, 350, or 480)
47 Horizontal Text Spacing Integer
48 Vertical Text Spacing Integer
49 Screen Aspect Ratio Integer (0 - 1000)
50 Maximum Colors Available
57 Background Screen Color Integer (0 to 15)
59 Temporary Text Spacing Integer (-15 to 15)
71 Character Height Integer (8, 14, 16)
72 Graphics Storage Segment Integer (> &HA800)
73 Mouse Active Boolean (-1 or 0)
74 Highlight Bar Color Integer (GW Color)
75 Pull-down Box Color Integer (GW color)
76 Active Item Color Integer (GW color)
77 InActive Item Color Integer (GW color)
78 Active Menu Cc,lor Integer (GW color)
79 InActive Menu Color Integer (GW color)
80 Normal Screen Color Integer (GW color)
81 GW Fonts Available Integer
82 GW Font Active Integer
83 GW Horiz Font Spacing Integer
84 GW Vert Font Spacing Integer
85 GW Overall Font Height Integer
86 Draw an Outline Only Boolean (-1 or 0)

Note:

Variables without ranges can have any range available to an integer
variable. A GW color refers to colors designed to be displayed with the
GPrintOVE routine. The formula for a GW (Graphics Workshop) color
is:

■ C-2 CRESCENT SOFTWARE, INC.

The Graphics Work.shop APPENDIXC

GWco lor = Foreground + 256 * Background

See the detail on the following pages for more information.

Elements 14, 23, 24, 33, 34, 35, 36, 47, 48 and 59 all have effects on the
GraphPak Professional proportional font system.

Elements 31, 43, 44, 49, 50, 57, 71, 72 and 73 are all system variables
which give vital information about the screen mode in use and if a mouse
is present.

Elements 74 through 80 all are used by the graphics pull-down, vertical
menus and message box routines to pass the colors of the individual parts
of these structures.

Elements 81 through 86 all have effects on the Graphics Workshop Vector
font system.

Detailed Listing Of Elements Used In
Graphics Workshop

GPDat%(14): Text Shadow Color

■ Data Type:

Integer

■ Possible Values:

Must be between 0 and 15. On some screen modes the range is less, but
higher values will display as the highest available color for that screen
mode (e.g. on CGA 4-color mode the range is Oto 3. A value of 14 in
this variable will be considered as a 3). GPDat%0 element 50 has the
maximum number of colors for the current screen mode.

■ Uses:

Text Shadowing can create interesting displays for major titles and
presentations. This element affects only the GraphPak fonts.

■ Note:

This element is automatically initialized to zero by QuickBASIC.

GPDat%(23): Boldface Text

■ Data Type:

Boolean

CRESCENT SOFTWARE, INC. ■ C-3

APPENDIXC

■ Possible Values:

-1 = Boldface the text
0 = Normal text

■ Uses:

The Graphic• Workahop

Boldfacing adds emphasis to points of interest on a graph. This element
affects only the GraphPak fonts.

■ Note:

This element is automatically initialized to zero by QuickBASIC.

GPDat%(24): Italicize Text

■ Data Type:

Integer

■ Possible Values:

This variable represents the angle for italicizing. Normal text uses an
angle of 90 degrees. To italicize, use an angle of about 60 degrees. To
obtain backwards italics use an angle above 90. A reasonable range for
this variable is 45 to 135 degrees.

■ Uses:
Italicizing helps to emphasize points of interest on a graph. This element
affects only the G1 aphPak fonts.

■ Note:
GETVIDEO.BAS initializes this variable to 90.

GPDat%(31): Monitor Type Used

■ Data Type:

Integer

■ Possible Values:
0 = Monitor Unknown
I = EGA with Mono Monitor
2 = Hercules Graphics Adaptor
3 = Monochrome (not capable of graphics)
4 = CGA Graphics 4 colors
5 = EGA Graphics 16 colors
6 = CGA Graphics 2 colors
7 = Mono EGA Graphics
8 = VGA Graphics 16 colors
9 = VGA Graphics 256 colors

■ C-4 CRESCENT SOFTWARE, INC.

The Graphics Workshop APPENDIXC

■ Uses:
This variable is used by most of the Graphics Workshop routines to create
the appropriate positioning and scaling. It is also used by SetVideo to set
the correct screen mode.

■ Note:
This variable is initialized by the function MultMonitor%, which is called
within GETVIDEO.BAS.

GPDat%(33) : Maximum Fonts Available
■ Data Type:

Integer

■ Possible Values:

Must be at least 1 and can be as large as string memory will allow.

■ Uses:
When the Current Font Number is set using the routine SetGPFont, this
variable is used to ensure that the font actually exists. The include file
GPFONT.GW will dimension the Font$() array to 95 elements by
GPDat%(33) elements in size. If you want to have more than one
GraphP'dk Professional font, set the variable MaxGPFonts% to the desired
number of fonts prior to the include file GPFONT.GW. This element
affects only the GraphPak font system.

■ Note:

GETVIDEO.BAS initializes this variable to I. It will be reset to the value
of MaxGPFonts % if the variable/constant contains a non-zero value.

GPDat%(34) : Current Font Number
■ Data Type:

Integer

■ Possible Values:

Must be at least 1 and can be as large as the maximum number of fonts.
(See GPDat%(33))

■ Uses:

Allows for different fonts to be displayed on the same screen. Proper
usage of this feature can produce spectacular effects. This element affects
only the GraphPak font system.

CRESCENT SOFrWARE, INC. ■ C-S

APPENDIXC The Graphic■ Workshop

■ Note:

GETVIDEO.BAS initializes this variable to l.

GPDat%(35) : Maximum Font Width
■ Data Type:

Integer

■ Possible Values:

Any value between O and 16 is possible. The value is determined by
measuring the width of the capital letter 'W'. In most fonts this will be
the widest letter.

■ Uses:

Allows StepText to display a centered label, while still using the propor­
tional font system. This element affects only the GraphPak font system.

■ Note:

This variable is set by the routine SetGPFont.

GPDat%(36) : Font Vertical Spacing
■ Data Type:

Integer

■ Possible Values:

This variable is set to the combination of GPDat%0 element 48 and the
Font's Maximum Height as determined by the LoadFont routine. The
Font's Maximum Height is contained in the FontHeight%0 array. This
value will typically be between 8 and 16.

■ Uses:

Many of the routines use this variable to determine spacing from one line
to another. This element affects only the GraphPak font system.

■ Note:

This variable is set by the routine SetGPFont.

GPDat%(43) : Video Monitor Width
■ Data Type:

Integer

■ C-6 CRESCENT SOFTWARE, INC.

The Graphics Workshop APPENDIXC

■ Possible Values:

Possible values are 320, 640 or 720, depending on the screen being used.

■ Uses:

Many routines use this value to determine centering, and to avoid writing
outside the screen's boundaries.

■ Note:

This variable is set by the routine Set Video, depending on the screen mode
actually used.

GPDat%(44): Video Monitor Height

■ Data Type:

Integer

■ Possible Values:

Possible values are 200, 350 or 480, depending on the screen being used.

■ Uses:

Many routines use this value to determine centering, and to avoid writing
outside the screen's boundaries.

■ Note:

This variable is set by the routine Set Video, depending on the screen mode
actually used.

GPDat%(47) : Horizontal Text Spacing

■ Data Type:

Integer

■ Possible Values:

Any value from -15 to 15 can be used.

■ Uses:

This variable sets the number of pixels to appear as separators of any two
letters printed on the screen. It is also the natural width for the space
character. This element affects only the GraphPak font system.

■ Note:

This is set by the SetGPSpacing routine, but is initialized in GET­
VIDEO.BAS to 2 pixels.

CRESCENT SOFTWARE. INC. ■ C-7

APPENDIX C The Graphic, Workshop

GPDat%(48) : Vertical Text Spacing
■ Data Type:

Integer

■ Possible Values:

Any value from -15 to 15 can be used.

■ Uses:

This variable sets the number of pixels to move beyond the descender of
any of the lower case letters like 'g', 'y', and 'j', before writing the next
line of text. This element affects only the GraphPak font system.

■ Note:
This is set by the SetGPSpacing routine, but is initialized in GET­
VIDEO.BAS to 2 pixels.

GPDat%(49): Screen Aspect Ratio

■ Data Type:

Integer

■ Possible Values:

Any value between O and 1000. This value is determined by the following
equation:

GP0at%(49) = INT((4 * (GP0at%(44) / GP0at%(43)) / 3) * 1000)

■ Uses:

This is used for drawing text at angles and drawing circles. The purpose
of this value is to allow circles to appear perfectly circular, no matter what
the screen resolution. It can also be used to adjust results of the SIN
function when used for displaying rotated three-dimensional graphics
images.

■ Note:

This value is set in the routine SetVideo, depending on the screen mode
actually used.

GPDato/o(SO) : Maximum Colors Available

■ Data Type:
Integer

■ C-8 CRESCENT SOFTWARE, INC.

The Grarhics Workshop APPENDIXC

■ Possible Values:

Possible values are 2, 4, 16, or 256 depending on the screen activated in
the routine SetVideo.

■ Uses:

This variable allows the internal routines to know how many colors they
have to work with.

■ Note:

This value is set in the routine SetVideo.

GPDat%(57) : Background Screen Color

■ Data Type:

Integer

■ Possible Values:

Possible colors are O - 15.

■ Uses:

The routine GPaintBox uses this variable to determine the background
color of the screen.

GPDat%(59) : Temporary Text Spacing

■ Data Type:

Integer

■ Possible Values:

Pixel offset from -15 to 15 for the base font size. To achieve a true pixel
offset, all text routines automatically multiply this number by the size of
the text.

■ Uses:

One use is in underlining text, since all proportional fonts have spaces
after each character. You can set this variable to counteract the effects of
GPDat%() System element 47. (Use this element rather than changing
element 47. It is good practice not to change the System elements.) This
element affects only the GraphPak font system.

■ Note:

This variable is initialized to 0. Reset this variable to O when you have
finished using it.

CRESCENT SOFTWARE. INC. ■ C-9

APPENDIX C The Graphics Workahap

GPDat%(71) : Character Height

■ Data Type:
Integer

■ Possible Values:

For the CGA displays the height of the character font is 8 pixels. For EGA
displays the height is 14 pixels. For VGA displays the height is 16 pixels.

■ Uses:

The PullDownG and VertMenuG systems use this information for place­
ment of graphics elements, and for conversion between coordinate sys­
tems. This value can also be used for placement of text when using the
mixed system.

■ Note:

This variable is set by the routine Set Video, depending on the screen mode
actually used.

GPDat%(72) : Graphics Storage Segment

■ Data Type:

Integer

■ Possible Values:

Since this variable is used to store the next possible location to save VGA
or EGA video memory, it is going to be some value above &HASOO. The
segment &HASOO is the starting location for the second EGA video page.
The segment &HAAOO will be the starting location for the second VGA
video page, if there is enough memory to have a complete second VGA
video page.

■ Uses:

The routines PullDownG, VertMenuG, and MsgBoxG use this segment
value to know where they can save their next information.

■ Note:

This variable is set inside the routines PullDownG, VertMenuG, and
MsgBoxG.

GPDat%(73) : Mouse Active

■ Data Type:

Boolean

■ C- IO CRESCENT SOFfWARE, INC.

The Graphics Workshop

■ Possible Values:
-1 Mouse driver is loaded and mouse initialized
0 Mouse not available

■ Uses:

APPENDIX C

The routines PullDownG and VertMenuG use this value to determine
whether or not to execute mouse specific code.

■ Note:
This variable is set inside the include file GETVIDEO.BAS by calling the
InitMouse routine.

GPDat%(74): Highlight Bar Color

■ Data Type:
Integer

■ Possible Values:

Possible values include color values which are designed for the GPrint0VE
routine. The formula for combining a foreground color and a background
color is

GCo lor = Foreground + 256 * Background

■ Uses:

The routines PullDownG, VertMenuG, and MsgBoxG use this color to
determine colors on the screen under the right circumstances.

■ Note:

This variable is set inside the include file GETVIDEO.BAS.

GPDat%(75) : Pull-down Box Color

■ Data Type:

Integer

■ Possible Values:

Possible values include color values which are designed for the GPrint0VE
routine. The formula for combining a foreground color and a background
color is

GColor = Foreground + 256 * Background

■ Uses:

The routines PullDownG, VertMenuG, and MsgBoxG use this color to
determine colors on the screen under the right circumstances.

CRESCENT SOFTWARE. INC. ■ C-11

APPENDIXC The Graphic■ Workshop

■ Note:

This variable is set inside the include file GETVIDEO.BAS.

GPDat%(76) : Active Item Color

■ Data Type:

Integer

■ Possible Values:

Possible values include color values which are designed for the GPrint0VE
routine. The formula for combining a foreground color and a background
color is

GColor = Foreground + 256 * Background

■ Uses:

The routines PullDownG, VertMenuG, and MsgBoxG use this color to
determine colors on the screen under the right circumstances.

■ Note:

This variable is set inside the include file GETVIDEO.BAS.

GPDat%(77): lnActive Item Color

■ Data Type:
Integer

■ Possible Values:

Possible values include color values which are designed for the GPrint0VE
routine. The formula for combining a foreground color and a background
color is

GCo lor = Foreground + 256 • Background

■ Uses:

The routines PullDownG, VertMenuG, and MsgBoxG use this color to
determine colors on the screen under the right circumstances.

■ Note:

This variable is set inside the include file GETVIDEO.BAS.

GPDat%(78) : Active Menu Color

■ Data Type:

Integer

■ C- 12 CRESCENT SOFTWARE, INC.

The Graphics Workshop APPENDIXC

■ Possible Values:

Possible values include color values which are designed for the GPrint0VE
routine. The formula for combining a foreground color and a background
color is

GCo lor = Foreground + 256 * Background

■ Uses:

The routines PullDownG, VertMenuG, and MsgBoxG use this color to
determine colors on the screen under the right circumstances.

■ Note:

This variable is set inside the include file GETVIDEO.BAS.

GPDat%(79) : lnActive Menu Color

■ Data Type:

Integer

■ Possible Values:

Possible values include color values which are designed for the GPrint0VE
routine. The formula for combining a foreground color and a background
color is

GColor = Foreground + 256 * Background

■ Uses:

The routines PullDownG, VertMenuG, and MsgBoxG use this color to
determine colors on the screen under the right circumstances.

■ Note:

This variable is set inside the include file GETVIDEO.BAS.

GPDat%(80) : Normal Screen Color

■ Data Type:

Integer

■ Possible Values:

Possible values include color values which are designed for the GPrint0VE
routine. The formula for combining a foreground color and a background
color is

GCo lor = Foreground + 256 Background

■ Uses:

The routines PullDownG, VertMenuG, and MsgBoxG use this color to
determine colors on the screen under the right circumstances.

CRESCENT SOFTWARE, INC. ■C-13

APPENDIX C The Graphics Workshop

■ Note:
This variable is set inside the include file GETVIDEO.BAS.

GPDat%(81): GW Fonts Available

■ Data Type:

Integer

■ Possible Values:

Depends on the number of fonts requested.

■ Uses:

When the Graphics Workshop Font Active is set using the routine
SetGWFont, this variable is used to ensure that the font actually exists. If
you want to have more than one Graphics Workshop vector font, set the
variable MaxGWFonts% to the number of fonts desired, prior to the
include file GWFONT.GW. This element affects only the Graphics
Workshop Vector fonts.

■ Note:

This variable is set in the include file GWFONT.GW. The value will be
I, if no value has been placed in the variable MaxGWFonts % .

GPDat%(82) : GW Font Active

■ Data Type:

Integer

■ Possible Values:

Must be less than or equal to the number of fonts available. See
GPDat%(81)

■ Uses:

This variable tells the routines which of the fonts to use when drawing a
string. This element affects only the Graphics Workshop Vector fonts.

■ Note:

This variable is set by the routine SetGWFont.

GPDat%(83): GW Horizontal Font Spacing

■ Data Type:

Integer

■ C-14 CRESCENT SOFTWARE, INC.

The Graphic:i1 Workshop APPENDIX C

■ Possible Values:

This can be any non-negative number. A reasonable number is S (pixels).

■ Uses:

This variable sets the spacing left and right between letters. This element
affects only the Graphics Workshop Vector fonts.

■ Note:

This variable is set by the routine SetGWSpacing, but is initialized to S
pixels in GETVIDEO.BAS.

GPDat%(84) : GW Vertical Font Spacing
■ Data Type:

Integer

■ Possible Values:

This can be any non-negative number. A reasonable number is S (pixels).

■ Uses:

This variable sets the number of pixels to move before writing the next
line of text beyond the descender of any of the lower case letters like 'g',
'y' and 'j'. This element affects only the Graphics Workshop Vector fonts.

■ Note:

This variable is set by the routine SetGWSpacing, but is initialized to S
pixels in GETVIDEO.BAS.

GPDat%(85) : GW Overall Font Height
■ Data Type:

Integer

■ Possible Values:

This variable is set to the sum of GPDat%() element 84 and the Graphics
Workshop Font's Maximum Height as determined by the LoadOutlineFont
routine. The Graphics Workshop Font Height is stored in the array
FontSize% ().

■ Uses:

Many of the routines use this variable to determine spacing from one line
to another. This element affects only the Graphics Workshop Vector fonts.

■ Note:

This variable is set by the routine SetGWFont and by the routine
SetGWSpacing.

CRESCENT SOFTWARE. INC. ■C- IS

APPENDIX C

GPDat%(86) : Draw an Outline Only

■ Data Type:
Boolean

■ Possible Values:

-1 Draw Outline Only
0 Fill Font In

■ Uses:

The Graphics Worbhop

This function allows you to create an outline font, or by drawing an outline
font over a filled in font, it allows you to create a font with an outline of
a different color than the rest of the font.

■ Note:

This variable is initialized in GETVIDEO.BAS to 0.

■ C- 16 CRESCENT SOFTWARE, INC.

The Graphics Workshop

APPENDIX D:
CONVERTING FROM QUICKPAK OR
GRAPHPAK PROFESSIONAL

APPENDIX D

Many users from QuickPak Professional and GraphPak Professional are
going to be using the features in Graphics Workshop. This Appendix is
here to make the transition easier.

Converting from QuickPak Professional

One of the major differences between the two packages is the use of color.
Because QuickPak Professional routines are designed for the text modes,
the color values are optimized for that mode. Briefly, in text mode the
foreground color is stored in the lower 4 bits of a single color byte, and
the background color in the higher 4 bits.

IT l□IT 111□□ □nr 1111 111 l□I
"--"" "--""
BACICCROUND FOREOROUND

COLOII COLOR

Graphics memory is very different, because there is no explicit back­
ground color. There are many colors, and it is impossible to decide which
of the colors at any one location on the screen should be considered the
background color. Note that BASIC treats color Oas the background color
when in graphics mode. If you modify the background color for any
location of the screen using the COLOR statement, the background color
for the entire screen is changed. Graphics Workshop uses a system which
supports different background colors at different regions of the screen.
Rather than pack both colors into a single byte, the Graphics Workshop
uses two bytes. Since an integer holds two bytes, this both faster and
efficient. The figure below shows how these bytes are organized.

D□11111 D□□ r 11111111 [[II

CRESCENT SOFl'WARE, INC.

"--"" "--""
BACKCROUND

COLOR
FOREOROUND

COLOII

■ D-1

APPENDIX D The Graphics Worbhop

It is also faster to manipulate colors stored this way, because rotation of
bits is not required to form the background color. All that is necessary is
to isolate the high byte to obtain the background color.

In QuickPak Professional, a color for printing a text string is formulated
with the following formula:

Colr% = Foreground%+ Background% * 16

The Graphics Workshop formula is changed as follows:

Colr% = Foreground%+ Background% • 256

Once the color values have been changed to work with the graphics modes,
the next step is to find equivalent routines for those in QuickPak Profes­
sional. The following is a brief table comparing similar routines:

QuickPuk Prof'essional
QPrintRC
ScmSaveRest
PaintBox

Graphics Workshop
GPrintOVE
GMove2VE
GPaintBox

The routine GPrint0VE requires a cursor position, a text string, and a
combined foreground-background color value. Some of the QuickPak
printing routines accept a row and column, while others do not. It is up
to you to know where the cursor is located. You can use the CSRLIN and
the POS(0) statem,·nts to find the current cursor location.

The GMove2VE routine stores and retrieves graphics regions using both
the visible page and higher video memory. One important difference
between this routine and the QuickPak equivalent is that GMove2VE uses
the mixed coordinate system, while QuickPak only deals with text screen
modes.

The GPaintBox routine emulates the PaintBox and MPaintBox routines as
closely as possible. First, since text mode has only two colors for any
character location of the screen, it is simple to specify what colors should
be changed. In graphics mode it is possible for 16 colors to exist in a
single character coordinate on the screen. The one important use for
GPaintBox is to create a shadow effect in the pull-down and vertical menus.
The primary difference is that only one color will be changed by 'this
routine. In addition, the GPaintBox routine uses the mixed coordinate
system.

■ D-2 CRESCENT SOFTWARE, INC.

The Graphics Workshop APPENDIX D

Combining with GraphPak Professional

GraphP.dk Professional is already a graphics mode program, so fewer
changes will be necessary. You should use the "standard" code shown in
chapter I at the beginning of your programs. The one minor change is
that instead of including GETVIDEO.BAS you should include
SIMPLE.BAS. SIMPLE.BAS is the include file that came with GraphPak
Professional and it contains more setup information which pertains only
to GraphPak Professional. In your standard code, replace the line that
says:

"$INCLUDE: "GETVIDED.BAS'

with

"$INCLUDE: 'SIMPLE.BAS"

You should also copy the GETVIDEO.BAS file from Graphics Workshop
to your current directory. It performs many of the same functions as the
one that comes with Graph Pak Professional, but it handles more of the
Graphics Workshop setup as well.

You must also use the COMMON.GW file instead of the COMMON.BAS
file that comes with GraphPak. All of the variables contained in
GraphP.dk's COMMON. BAS file are also contained in the COMMON .GW
file.

The routines HercThere% and ScrnDump which were contained in
GraphP.dk Professional are also a part of Graphics Workshop. Herc­
There% has remained unchanged, but ScrnDump has been greatly en­
hanced, and hence has been re-named to ScrnDump2. It has three added
parameters which perform simple scaling, and tell the routine to print in
either Landscape or Portrait mode.

CRESCENT SOFrWARE, INC. ■ D-3

The Graphics Workshop APPENDIX E

APPENDIX E:
IMPROVING PIXEL ACCESS USING A CACHE BUFFER

The primary purpose of providing low-level graphics routines is to improve
on BASIC's speed, as well as add capabilities. There are several factors
which contribute to the slowness of manipulating graphics images. Per­
haps most important is the need to access screen memory one pixel at a
time. Another factor is the time required to pass and receive parameters,
and yet another is the internal calculation to determine a pixel's address.
Fortunately, EGA and VGA memory is organized in a manner that lends
itself to a variety of speed-up techniques.

The Graphics Workshop uses a technique known as cache buffering to
improve the speed of its low-level video routines, and it is described in
this section. Please understand that the information contained here is
presented solely for completeness, and you do not need to fully understand
it to successfully use the Graphics Workshop.

A cache is an area of memory which is used to retain information being
read from or written to other, slower memory. You may already be familiar
with a disk cache, which serves a similar purpose. In that case, a cache
reduces the number of times the disk drive must be physically accessed.
By passing all data through the cache and remembering which data it
contains, a cache routine can return the data from the cache instead of
accessing the slower memory or hardware device. In the Graphics
Workshop, a cache is used to avoid reading the relatively slow EGA and
VGA memory when the same pixel or nearby values are accessed more
than once. To appreciate how this cache is designed requires an under­
standing of how EGA and VGA memory is organized.

The first eight horizontal pixels at the upper-left corner of the screen are
stored in a single byte at address 0. The next 8 pixels are at address l,
and so forth. To calculate the address of a particular pixel at location (X,
Y) on the screen you simply multiply the Y value times 80, and divide the
X value by 8. In assembly language a number can be divided by any
multiple of 2 using bit-shifting operations, and this is must faster than a
normal division. However, the multiplication is still necessary. If seven
out of eight multiplications can be avoided, the pixels will be accessed
faster than usual.

The GetCacheVE% routine remembers the last (X, Y) coordinate re­
quested, the physical video memory address for that coordinate, and the
data at that address when the request was made. Then, if future (X, Y)
coordinates match the same physical screen address, GetCacheVE%

CRESCENT SOFTWARE. INC. ■ E-1

APPENDIX E The Graphic& Workshop

retrieves the data from its cache, without having to calculate an address
or access the slower video memory.

Since it is possible to circumvent the cache routine, the data in the cache
buffer could become obsolete. This can happen when a non-Graphics
Workshop routine writes directly to screen memory without going through
the cache. The routines DrawPointVE, DrawPointVEOpts, LineVE, and
CircleVE, all reset a flag within in the cache routine, so GetCacheVE%
will know that its data is not current.

Another way that the cache data could become invalid is by using a BASIC
routine such as LINE or DRAW. Since these statements are not aware of
our cache, they will change the screen but without updating the cache data
or even clearing the flag. Although we assume you will use Graphics
Workshop routines for all drawing, the ResetCache routine is provided to
let you reset the cache manually if necessary. ResetCache would therefore
be called after using the BASIC LINE or CIRCLE command, but before
using GetCacheVE%.

We have also included the ReDrawVE routine, which lets you redraw the
last pixel that was plotted. Unlike the other Graphics Workshop plotting
routines, ReDrawVE does not require a pixel location. Rather, it simply
redraws the most recent I y accessed pixel, based on the data currently in
the cache buffer. Th is technique is shown in the comments that accompany
ReDrawVE. Since it takes advantage of the cache, you must call
GetCacheVE% to specify the most recently accessed location before
calling ReDrawVE.

■ E-2 CRESCENT SOFTWARE, INC.

The Graphics Workshop

GetCacheVE%

■ Purpose:

APPENOO(E

Assembler
function contained in CW.LIB

GetCacheVE% is similar to GetPointVE%, except it uses a cache to
operate more quickly. GetCacheVE % returns the color of the pixel at a
specified (X, Y) coordinate.

■ Syntax:

V% = GetCacheVE%(BYVAL XPos%. BYVAL YPos%)

■ Where:

XPos% and YPos% specify the (X, Y) coordinate.

V% will receive a color value between O and 15 for the high-resolution
EGA and VGA screen modes.

Comments:

All parameters for this routine are passed by value to provide the maximum
speed. Including the file GWDECL.BAS at the beginning of all programs
or modules which use this routine will insure proper operation.

The routines DrawByteVE and DrawPointVE reset the cache so
GetCacheVE% will ren1rn the correct value. If you use any other routine
which modifies the pixels on the screen, use ResetCache before calling
GetCacheVE% again.

A special routine, ReDrawVE, can be used to change the color of the point
whose value was just determined. ReDrawVE does not require you to
specify the pixel to change as it assumes the last position specified by the
GetCacheVE% function.

■ SeeAlso:

DrawByteVE, DrawPointVE, GetPointVE%, ReDrawVE, ResetCache

CRESCENT SOFTWARE. INC. ■ E-3

APPENDIX E The Oraphic1 Workshop

ReDrawVE Assembler
subroutine contained in CW.LIB

■ Purpose:

ReDrawVE changes the color of the last point returned by the
GetCacheVE% routine. It utilizes GetCacheVE's cache to remember the
last location accessed on the screen.

■ Syntax:

CALL ReDrawVE (BY VAL Po intCo lor%)

■ Where:

PointColor% is a color between O and IS.

Comments:

The parameter for this routine is passed by value to provide the maximum
speed. Including the file GWDECL.BAS at the beginning of all programs
or modules which use this routine will insure proper operation.

The function GetCacheVE% must be called prior to using this routine.
This routine, in conjunction with the GetCacheVE% function, can modify
the color of any region of the screen with great speed. It does this by
eliminating extra p:1rameters and the need to re-calculate the screen
position of the point. For example, to change all occurrences of the color
black to red within a specified region use:

FDR s% = 100 TO 150
FOR t% = 100 TO 150

V% = GetCacheVE%(s%, t%)
IF V% = 0 THEN V% = 4
CALL ReDrawVE(V%)

NEXT
NEXT

■ See Also:

GetCacheVE%, DrawPointVE

■ E-4 CRESCENT SOFTWARE, INC.

The Graphics Workshop

ResetCache

■ Purpose:

APPENDIX E

Assembler
subroutine contained in GW.LIB

ResetCache is used to refresh the cache used by GetCache VE%. If you
use a non-Graphics Workshop routine between two calls to the
GetCacheVE% function, then you must call ResetCache between them to
ensure that the GetCacheVE% cache is up-to-date.

■ Syntax:
CALL ResetCache

Comments:

If you make a call to the GetCache VE% function, and then use the BASIC
PSET statement to write over that pixel, and once again call the
GetCacheVE% routine to ask it what the color is, GetCacheVE% will
return the original value and not the value set by the PSET statement. This
is because the PSET statement has no connection with the GetCacheVE%
cache, and does not update it. If you call ResetCache after the PSET
statement, then a following GetCacheVE% statement will return the
proper value.

It is unlikely that you will need to call the ResetCache routine, but it exists
for compatibility with BASIC graphics statements. A call to the
DrawPointVE, DrawByteVE, LineVE, or CircleVE routines will also
reset the cache.

■ See Also:

DrawPointVE, DrawByteVE, GetCacheVE%, LineVE, CircleVE

CRESCENT SOFrWARE, INC. ■ E-5

I

	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	0009
	0010
	0011
	0012
	0013
	0014
	0015
	0016
	0017
	0018
	0019
	0020
	0021
	0022
	0023
	0024
	0025
	0026
	0027
	0028
	0029
	0030
	0031
	0032
	0033
	0034
	0035
	0036
	0037
	0038
	0039
	0040
	0041
	0042
	0043
	0044
	0045
	0046
	0047
	0048
	0049
	0050
	0051
	0052
	0053
	0054
	0055
	0056
	0057
	0058
	0059
	0060
	0061
	0062
	0063
	0064
	0065
	0066
	0067
	0068
	0069
	0070
	0071
	0072
	0073
	0074
	0075
	0076
	0077
	0078
	0079
	0080
	0081
	0082
	0083
	0084
	0085
	0086
	0087
	0088
	0089
	0090
	0091
	0092
	0093
	0094
	0095
	0096
	0097
	0098
	0099
	0100
	0101
	0102
	0103
	0104
	0105
	0106
	0107
	0108
	0109
	0110
	0111
	0112
	0113
	0114
	0115
	0116
	0117
	0118
	0119
	0120
	0121
	0122
	0123
	0124
	0125
	0126
	0127
	0128
	0129
	0130
	0131
	0132
	0133
	0134
	0135
	0136
	0137
	0138
	0139
	0140
	0141
	0142
	0143
	0144
	0145
	0146
	0147
	0148
	0149
	0150
	0151
	0152
	0153
	0154
	0155
	0156
	0157
	0158
	0159
	0160
	0161
	0162
	0163
	0164
	0165
	0166
	0167
	0168
	0169
	0170
	0171
	0172
	0173
	0174
	0175
	0176
	0177
	0178
	0179
	0180
	0181
	0182
	0183
	0184
	0185
	0186
	0187
	0188
	0189
	0190
	0191
	0192
	0193
	0194
	0195
	0196
	0197
	0198
	0199
	0200
	0201
	0202
	0203
	0204
	0205
	0206
	0207
	0208
	0209
	0210
	0211
	0212
	0213
	0214
	0215
	0216
	0217
	0218
	0219
	0220
	0221
	0222
	0223
	0224
	0225
	0226
	0227
	0228
	0229
	0230
	0231
	0232
	0233
	0234
	0235
	0236
	0237
	0238
	0239
	0240
	0241
	0242
	0243
	0244
	0245
	0246
	0247
	0248
	0249
	0250
	0251
	0252
	0253
	0254
	0255
	0256
	0257
	0258
	0259
	0260
	0261
	0262
	0263
	0264
	0265
	0266
	0267
	0268
	0269
	0270
	0271
	0272

