

CRESCENT
SOFTWARE, INC.

P.D.Q.
A New Concept in High-Level Programming Languages

Version 3.13

Entire contents Copyright © 1888-1983 by Ethan Winer and Crescent Software.

P.D.Q. was conceived and written by Ethan Winer, with substantial contributions
[that is, the really hard parts) by Robert L. Hummel.

The example programs were written by Ethan Winer, Don Malin, and Nash Bly, with
additional contributions by Crescent and Full Moon customers. The floating point
math package was written by Paul Passarelli. This manual was written by Ethan
Winer. The section that describes how to use P.O.Q. with assembly language was
written by Hardin Brothers.

Full Moon Software
34 Cedar Vale Drive
New Milford, CT 06776
Sales: 860-350-6120
Support: 860-350-8188 (voice); 860-350-6130 [fax)

Sixth printing.

LICENSE AGREEMENT

Crescent Software grants a license to use the enclosed software and printed
documentation to the original purchaser. Copies may be made for back-up
purposes only. Copies made for any other purpose are expressly
prohibited, and adherence to this requirement is the sole responsibility of
the purchaser. However, the purchaser does retain the right to sell or
distribute programs that contain P.D.Q. routines, so long as the primary
purpose of the included routines is to augment the software being sold or
distributed. Source code and libraries for any component of the P.D.Q.
program may not be distributed under any circumstances. This license
may be transferred to a third party only if all existing copies of the software
and documentation are also transferred.

WARRANTY INFORMATION

Crescent Software warrants that this product will perform as advertised.
In the event that it does not meet the terms of this warranty, and only in
that event, Crescent Software will replace the product or refund the amount
paid, if notified within 30 days of purchase. Proof of purchase must be
returned with the product, as well as a brief description of how it fails to
meet the advertised claims.

CRESCENT SOFTWARE'S LIABILITY IS LIMITED TO mE PURCHASE
PRICE. Under no circumstances shall Crescent Software or the authors
of this product be liable for any incidental or consequential damages, nor
for any damages in excess of the original purchase price.

11111

11

11111111i11111111111

1
1

1
11i111111111

1
1

To MY HONEY, ELLI MASTRANGELO WINER
II II II

Table of Contents
11111 Ill 1111

P.D.Q. Version 3.10 TABLE OF CONfENTS

Chapter 1: Introduction

About This Manual . 1-1
Installing P.D.Q. 1-2
P.D. Q. Overview . 1-4

Why BASIC? . 1-5
But Isn't That What C Is For? . 1-5
The Spirit Of Performance . 1-6

P.D. Q. Supported Key Words . 1-6
Differences Between P.D.Q. And Microsoft BASIC 1-8

Floating Point Math . 1-8
Communications and Graphics . 1-9
DOS and Other Errors . 1-9
Ctrl-C and Ctrl-Break 1-10
Recursive Procedures . 1-11
Dynamic Arrays . 1-11
Huge Arrays · . 1-11
BASIC 7 Advanced Features 1-12
Using Overlays 1-12
Differences By Key Word 1-12

ASC 1-12
BLOAD 1-13
CALL INTERRUPT 1-13
CHDRIVE 1-13
CHR$ 1-14
COLOR 1-14
COMMAND$ 1-14
CURDIR$ 1-14
DIR$ 1-14
ENVIRON and ENVIRON$ 1-15
ERR 1-15
ERROR 1-15
FILEATTR 1-16
FRE(-2) 1-16
FREEFILE 1-17
GET (binary file version) 1-17
INKEY$ 1-18
INPUT$ 1-18
LPRINT 1-18
LTRIM$ 1-18

CRESCENT SOFTWARE, INC. II

TABLE OF CONTENTS P.D.Q. Version3.10

NAME 1-19
OPEN 1-19
PLAY 1-19
PRINT 1-19
PRINT# 1-20
PRINT USING 1-20
RANDOMIZE 1-20
RND 1-20
RTRIM$ 1-21
RUN 1-21
SCREEN (statement form) 1-21
SLEEP 1-21
SOUND 1-21
SSEG 1-22
S1DP 1-22
STRING$ 1-22
SWAP 1-22
TIMER 1-22
VAL 1-23
WIDTH 1-23
WRITE# 1-23

Changes From Earlier Versions Of P.D.Q 1-24
Floating Point Math 1-24
Network Access and File Locking 1-24
Arrays Containing More Than 65,535 Elements 1-25
EGA and VGA Graphics 1-25
Changes to PRINT and STR$ 1-25
Linking With /Stack: 1-26
PopRequest Changes 1-26
MKD$, MKI$, MKL$, And MKS$ 1-26
RESUME NEXT 1-26
Swapping TSR Programs : 1-26

New Routines and Programs 1-27
Files on the P.D.Q. Disk 1-31

Chapter 2: Compiling and Linking
Overview . 2-1

Other LINK Options . 2-2
Creating A Quick Library . 2-4

Linking With Stub Files . 2-5
String Pool Stub Files . 2-6
The POPSWAP Stub File . 2-7

11111 ii CRESCENT SOFTWARE, INC.

P.D.Q. Version 3.10 TABLE OF CONTENTS

Other Stub Files . 2-7
Stub File Details . 2-7

The SMALLDOS Library File 2-15
APPEND 2-17
CLOSE 2-17
DATA 2-17
GET 2-18
INPUT 2-18
INPUT# 2-18
LINE INPUT 2-18
LINE INPUT # 2-18
LOCK and UNLOCK 2-19
OPEN 2-19
PRINT and PRINT# 2-19
TAB 2-20

Chapter 3: File and Error Handling
File Handling In P.D.Q 3-1

Error Handling . 3-1
File Numbers . 3-4
Legal File Operations . 3-4
DOS Devices . 3-4

Chapter 4: TSR Programming
Simplified Pop-Ups 4-1

Restrictions . 4-2
Critical Errors 4-3
Memory Allocation And Dynamic Arrays 4-3

TSR Programs That Swap To Disk Or EMS 4-3
Naming The Swap File 4-5
Deinstallation . 4-6
Dynamic Memory Allocation . 4-6
Handling Interrupts In A Swapping TSR 4-6
Communicating With A Swapped TSR 4-7

The Unique Identification String 4-8
Specifying The Hot Key . 4-9
Detecting Installation And
Deinstalling4-11
Advanced TSR Applications 4-13

P.D.Q. Interrupt Handling Services4-14
Related Routines4-15
Resetting The 8259 PIC 4-16

CRESCENT SOFTWARE, INC. II iii

TABLE OF CONTENTS P.D.Q. Version3.10

The Registers TYPE Variable .4-17
Floating Point Considerations4-18

Floating Point Interrupts4-18
Using Floating Point In A TSR4-19
Floating Point Stub Files 4-20

Accessing A Resident Program 4-21
P.D.Q. Runtime Reentrance4-22
Using PopRequest4-23

Arbitrating Multiple Requests4-26
Deinstalling and Unhooking Interrupts 4-28

The DOSWA1CH Example Program 4-29

Chapter 5: P.D.Q. Extensions
Overview . 5-1

DOS Extensions . 5-1
Dynamic Memory Allocation · 5-2
Input And Keyboard Routines 5-2
Miscellaneous Routines 5-3

String Handling Routines . 5-4
TSR And Interrupt Support Routines 5-5
Video Routines . 5-6
Extensions Details . 5-7

AllocMem function . 5-8
BIOSinkey function 5-10
BIOSinput subroutine 5-10
BIOSinput2 function . 5-11
BlockCopy subroutine 5-13
BreakHit function 5-13
BreakOff subroutine 5-14
BreakOn subroutine 5-15
Bufln function 5-15
CallOldlnt subroutine 5-17
ColorRest subroutine 5-17
ColorSave function 5-18
CritErrOff subroutine . 5-18
CritErrOn subroutine 5-19
CursorOff subroutine 5-20
CursorOn subroutine 5-20
CursorRest subroutine 5-21
CursorSave function 5-21
CursorSize subroutine 5-22
DeinstallTSR function 5-22

Ill iv CRESCENT SOFfWARE, INC.

P.D.Q. Version 3.10 TABLE OF CONTENTS

DisableFP subroutine 5-23
Dollar$ function 5-24
DOSBusy function 5-24
DOSVer function 5-25
EnableFP subroutine 5-26
EndLevel subroutine 5-27
EndTSR subroutine 5-27
EnvOption subroutine 5-28
Flush subroutine 5-30
FUsing function 5-31
GetlByte function 5-32
GetlLong function 5-33
GetlType subroutine 5-34
GetlWord function 5-34
GetCPU function 5-35
GetSeg function 5-36
GotoOldlnt subroutine 5-36
HercMode subroutine 5-37
HookFP subroutine 5-37
HooklntO subroutine 5-38
IntEntryl and lntEntry2 subroutines 5-39
Interrupt subroutine 5-42
InterruptX subroutine 5-44
Mid Char function 5-45
MidCharS subroutine 5-46
NoSnow subroutine 5-47
Pause subroutine 5-47
PDQCompare function 5-48
PDQCPrint subroutine 5-49
PDQExist function 5-50
PDQinkey function 5-50
PDQinput subroutine 5-51
PDQMessage function 5-52
PDQ Monitor function 5-53
PDQParse function 5-54
PDQPeek2 function 5-55
PDQPoke2 statement 5-56
PDQ Print subroutine 5-57
PDQ Rand function 5-58
PDQRandomize subroutine 5-58
PDQRestore subroutine 5-59
PDQSetMonSeg subroutine 5-59
PDQSetWidth subroutine 5-60
PDQShl and PDQShr functions 5-61

CRESCENT SOFfWARE, INC. Ill V

TABLE OF CONTENTS P.D.Q. Version 3.10

PDQSound subroutine 5-61
PDQTimer function . 5-62
PDQVall and PDQValL functions 5-63
PointlntHere subroutine . 5-64
Pool Okay function ; .. 5-65
PopDeinstall function . 5-66
PopDown subroutine . 5-67
PopRequest function . 5-67
PopUpHere subroutine 5-68
Power and Power2 functions . 5-69
RedimAbsolute subroutine . 5-70
ReleaseMem function . 5-71
ResetKeyboard statement . 5-72
ReturnFromlnt subroutine 5-72
SeekLoc function 5-73
SetlByte subroutine 5-73
SetlLong subroutine . 5-7 4
SetlType subroutine 5-74
Setl Word subroutine . 5-75
SetDelimitChar subroutine 5-76
Sort subroutine 5-76
StringShort function . 5-77
StringUsed function 5-77
StuffBuf subroutine 5-78
Swap2Disk function . 5-79
Swap2EMS function 5-79
SwapCode function . 5-80
TestHotKey function 5-80
TSRFileOff subroutine . 5-81
TSRFileOn subroutine 5-81
TSRinstalled function 5-82
UnhookFP subroutine 5-84
Unhooklnt function 5-84
UnhooklntO subroutine 5-85

Chapter 6: Using P.D.Q. With Assembly
Language Programs

Introduction . 6-1
Assembly Language Details 6-2
Choice Of Assembler 6-3
Memory Models . 6-4
Segments, Segment Names, And DGROUP 6-6

II vi CRESCENT SOFTWARE, INC.

P.D.Q. Version3.IO TABLE OF CONTENTS

Code Segments
Data Segments
Initialized Data
Uninitialized Data
The Stack

6-6
6-7
6-7
6-8
6-9

Variable References 6-10
Assembly Specifics 6-11
Calling Conventions In The P.D.Q. Library 6-12
Using P.D.Q. String Routines 6-16

Temporary Strings 6-18
Using Arrays 6-19
Error Hand! ing 6-22
Using The P.D.Q. Floating Point Emulator 6-24

Using Floating Point Math In A TSR 6-26
Suppmted Coprocessor Instructions 6-26

Chapter 7: Programmer's Reference
External Variables 7-1
Procedure Details 7-4
B$ASSN 7-6

B$BLOD 7-7
B$BSAV 7-8
B$CDIR 7-9
B$CLOS 7-10
B$COLR 7-11
B$CPI4 7-12
B$CSCN 7-13
B$CSRL 7-14
B$DDIM 7-15
B$DSKI 7-16
B$DVI4 7-17
B$ERAS 7-18
B$FASC 7-19
B$FATR 7-20
B$FCD0 and B$FCD1 7-20
B$FCHR 7-21
B$FCMD 7-22
B$FCMP 7-23
B$FCVD 7-24
B$FCVI 7-24
B$FCVL 7-25
B$FCVS 7-26

CRESCENT SOFfWARE, INC. 1111 vii

TABLE OF CONTENTS P.D.Q. Version 3.10

B$FDAT 7-26
B$FDR0 and B$FDR1 7-27
B$FEOF 7-28
B$FERR 7-29
B$FEV1 7-30
B$FEVS 7-31
B$FHEX 7-32
B$FICT 7-32
B$FILS . 7-33
B$FINP 7-34
B$FLOC 7-35
B$FLOF 7-36
B$FMID 7-36
B$FMKD 7-37
B$FMKI 7-38
B$FMKL 7-39
B$FOCT 7-40
B$FREF 7-40
B$FRI2 7-41
B$FRSD 7-42
B$FSCN 7-43
B$FSEK 7-44
B$FSPC 7-44
B$FTAB 7-45
B$FTIM 7-46
B$FVAL 7-47
B$GET3 7-47
B$GET4 7-49
B$HARY 7-50
B$INKY 7-51
B$INPP 7-52
B$INS2 7-54
B$INS3 7-55
B$KILL 7-56
B$LBND 7-56
B$LCAS 7-57
B$LDFS 7-58
B$LEFT 7-59
B$LNIN 7-60
B$LOCK 7-61
B$LOCT 7-63

II viii CRESCENT SOFTWARE, INC.

P.D.Q. Version3.10 TABLE OF CONTENTS

B$LSET 7-65
B$LTRM 7-66
B$MDIR 7-66
B$MUI4 7-67

B$NAME 7-68
B$OGSA and B$OGTA 7-69
B$OOPN 7-70
B$OPEN 7-71
B$PCI2 . 7-72
B$PCI4 7-73
B$PCR4 7-73
B$PCR8 7-74
B$PCSD 7-75
B$PEI2 7-76
B$PEI4 7-76
B$PEOS 7-77
B$PER4 7-78
B$PER8 7-78
B$PESD 7-79
B$PSI2 7-80
B$PSI4 7-81
B$PSR4 7-81
B$PSR8 7-82
B$PSSD 7-83
B$PUT3 7-84
B$PUT4 7-85
B$RDI2 7-86
B$RDI4 7-87
B$RDIR 7-88
B$RDR4 7-88
B$RDR8 7-89
B$RDSD 7-90
B$REST 7-91
B$RGHT . .' 7-92
B$RMI4 7-93
B$RND0
B$RND 1 7-94
B$RNZP 7-94
B$RSET 7-95
B$RTRM 7-96
B$SACT 7-97

CRESCENT SOFfWARE, INC. 1111 ix

TABLE OF CONTENTS P.D.Q. Version 3.10

B$SASS 7-98
B$SCAT 7-99
B$SCLS 7-100
B$SCMP 7-100
B$SDAT 7-101
B$SENV 7-102
B$SERR 7-103
B$SGN4 B$SGN8 7-103
B$SICT 7-104
B$SLEP 7-105
B$SMID 7-106
B$SOND 7-107
B$SPAC 7-108
B$SPLY 7-109
B$SSEK 7-109
B$SSHL 7-110
B$STDL 7-111
B$STI2 7-112
B$STI4 7-113
B$STIM 7-114
B$STR4 7-115
B$STR8 7-116
B$STRI 7-117
B$STRS 7-118
B$SWPN 7-119
B$SWP2
B$SWP4
B$SWP8 7-120
B$SWSD 7-121
B$TIMR 7-121
B$UBND 7-122
B$UCAS 7-123
B$WIDT 7-124
BIOSinkey 7-124
BIOSinput 7-125
BIOSinput2 7-126
BreakHit 7-127
BreakOff 7-128
BreakOn 7-129
Bufln 7-129
CritErrOff 7-131

1111 X CRESCENT SOFTWARE, INC.

P.D.Q. Version 3.10 TABLE OF CONTENTS

CritErrOn 7-131
CursorOff 7-132
CursorOn 7-132
CursorRest 7-133
CursorSave 7-134
CursorSize 7-134
DeinstallTSR 7-135
Dollar 7-136
DOSBusy 7-137
EndTSR 7-138
EnvOption 7-138
FU sing 7-139
GetlLong 7-140
GetlType 7-141
GetCPU 7-142
GotoOldint 7-143
HercMode 7-144
Hookint0 7-145
MidChar 7-146
MidCharS 7-147
NoSnow 7-148
P$Compact 7-148
P$De!A11Temps 7-149
P$DELAY 7-150
P$FreeTemp 7-150
P$GetTemp 7-151
P$HookFP 7-152
P$MakeTemp 7-152
P$MonSetup 7-154
P$Num2Handle 7-154
P$SkipEOF 7-155
P$SOUND 7-156
P$Speaker 7-157
P$SPKR_OFF 7-157
P$SPKR ON 7-158
P$UnHookFP 7-158
P$ZeroFile 7-159
Pause 7-160
PDQCompare 7-161
PDQCPrint 7-162
PDQExist 7-163

CRESCENT SOFTWARE, INC. 1111 xi

TABLE OF CONTENTS P.D.Q. Version3.10

PDQinkey 7-164
PDQinput 7-164
PDQMessage 7-165
PDQMonitor 7-166
PDQMonSetup 7-167
PDQParse 7-167
PDQPrint 7-168
PDQRand 7-169
PDQRandomize 7-170
PDQSound 7-171
PDQValL 7-172
PoolOkay 7-173
PopDeinstall . 7-173
PopDown 7-174
PopRequest 7-175
PopUpHere 7-176
Power 7-177
Power2 7-177
Sort 7-178
StuffBuf . 7-179
Swap2Disk . 7-180
Swap2EMS 7-181
SwapCode . 7-182
TestHotKey . 7-182
TSRFileOff 7-183
TSRFileOn . 7-184
TSRinstalled 7-184
UnhooklntO 7-185

FLUSH 7-186
Undocumented Procedures 7-187

Appendices

Appendix A:
How We Did It A-1

Compiler Fundamentals A-1
Traditional Programming Languages A-2

Appendix B:
Graphics Programming With P.D.Q B-1

Ill xii CRESCENT SOFTWARE, INC.

P.D.Q. Version 3. IO TABLE OF CONTENTS

Appendix C:
Debugging P.D.Q. Programs C-1

Using /D C-1
Debugging TSR Programs C-2

Appendix D:
String Memory Considerations D-1

The P.D.Q. String Pool D-1
Determining A Suitable
String Pool Size D-2
The MAKESTR Utility D-3
Other Memory Considerations D-4

Appendix E:
Using CALL Interrupt E-1

What Is An Interrupt? E-1
Registers E-3
Accessing DOS E-4
Accessing The BIOS E-6
Summing Up E-7

Appendix F:
Accessing The Environment F-1

Appendix G:
Performance Optimizations G-1

String Versus Integer Operations G-1
Constants Versus Variables G-2
Short Circuit Techniques G-4
String Concatenation G-4
Speeding Up File Processing G-5
Compiling With JS G-7

Appendix H:
Miscellaneous Considerations H-1

Functions In P.D.Q. H-1
True/False Functions H-1
Fixed-Length And TYPE Variables H-2
Integer Values Greater Than 32K H-2
Initialized Versus Uninitialized Data H-3
Using P.D.Q. With QuickPak
Professional H-3
String Arrays H-3
Assembly Language Considerations H-4

CRESCENT SOFrWARE, INC. Ill xiii

TABLE OF CONTENTS P.D.Q. Version 3.10

Appendix I:
Link Errors . I-1

Fixup Overflow Errors I-1
Unresolved External Errors I-1

1111 xiv CRESCENT SOFTWARE, INC.

Chapter 1: Introduction
Ill 1111 1111

P.D.Q, Version 3.10 Using P.D.Q., Introduction

Section I, Chapter 1: Introduction
Thank you for purchasing P.D. Q. We have made every effort in designing
P.D. Q. to create a powerful, yet easy to use replacement library for linking
with Microsoft compiled BASIC. We sincerely hope that you find P.D.Q.
both useful and informative. If you have a comment, a complaint, or
perhaps a suggestion for another BASIC-related product, please let us
know. We want to be your favorite software company.

Before we begin discussing the contents of the P.D.Q. disk and manual,
please take a few moments to fill out the enclosed registration card. Doing
this entitles you to free technical support by phone, as well as ensuring
that you are notified of possible enhancements and new products. Many
upgrades are offered at little or no cost, but we can't tell you about them
unless we know who you are! Note, however, that if you purchased P.D. Q.
directly from us, the mail-in portion of the registration card may have been
removed. In this case, you are already registered.

Please mark the P.D. Q. product serial number on your disk label or manual
cover. License agreements and registration forms have an irritating way
of becoming lost, and doing this will insure that the number is handy if
you need to contact us. You may also want to note the product version
number in a convenient location; this is stored on the distribution disks in
the volume label. If you ever have occasion to call us for assistance, we
will need to know your serial number, and probably the version you are
using as well. To determine the version number for any Crescent Software
product, simply use the DOS VOL command, which will display the disk
volume label:

VOL A:
Volume in drive A is PDQ V3.XX

We are constantly improving all of our products, and you may want to call
us periodically and ask for the current version number. Major upgrades
are always announced, however minor additions or fixes are generally not.
If you are having any problems at all-even if you are sure it is not caused
by one of our products-please call us. We support all versions of
compiled BASIC, and can often provide better assistance than Microsoft.

About This Manual
This manual is divided into several sections-the important ones are an
overview which describes what P.D. Q. is all about, a section that discusses
various aspects of P.D. Q. programming, and an appendix that also includes
several in-depth tutorials and programming hints. Newly added with

CRESCENT SOFrWARE, INC. 1111 l - l

Using P.D.Q., Introduction P.D.Q. Version 3.10

version 3.00 is a complete tutorial with examples showing how to use
P.D.Q. as an assembly language toolbox.

The overview provides an important first look at BASIC programming
with P.D.Q., and explains which BASIC statements have been omitted and
why. The details section begins with a discussion of the many language
extensions that are included with P.D.Q. Other important topics include
file operations, TSR and interrupt handling considerations, and a complete
description of each external P.D.Q. subroutine. A "How We Did It"
section explains how P.D.Q. works internally and how it was developed,
and several tutorials are included which cover CALL INTERRUPT and
the DOS environment. Finally, a table of common error messages and
their cause is given, along with a section that describes various ways to
optimize your programs.

Besides the information in this manual, there are a number of files that
contain additional information you may find useful. Perhaps most impor
tant, we include all of the assembly language source code for P.D.Q. This
will be invaluable if you are interested in learning more about BASIC's
internal workings. Programmers who need to create embedded ROM
applications using P.D.Q. should also be sure to see the EM
BEDDED.DOC file.

Installing P.D.Q.
All of the files that constitute P.D. Q. are compressed and stored in the
.ZIP files on the accompanying disks. We use .ZIP files because the entire
contents of P.D. Q. encompasses more than 2MB of library, example, and
source files. To help you get these files copied correctly onto your hard
disk we have included an automated installation utility. The list below
shows which files are provided in the order they occur on the disks, along
with a brief description of each.

INSTALL.EXE
PKUNZIP.EXE
PDQ.ZIP
SOURCE.ZIP
FPSOURCE.ZIP

ASM.ZIP
SMALLDOS.ZIP

BASIC7.ZIP

11111 l - 2

The Crescent Software installation program
PKWARE's .ZIP file extract utility
Libraries and example programs
Assembly language source code for routines in PDQ.LIB
Assembly language source code for the floating point
routines
Files for using P.D.Q. as an assembly language toolbox
Assembly language source code for routines m
SMALLDOS.LIB
Assembly language source code for routines m
BASIC7.LIB

CRESCENT SOFfWARE, INC.

P.D.Q. Version 3.10 Using P.D.Q., Introduction

CURRENCY.ZIP Assembly language source code for the Currency data
routines

Installing P.D.Q. is very easy. Simply log on to Drive A, place Disk 1
into that drive, and enter INSTALL at the DOS prompt. As the files from
each disk are unpacked and copied to your hard disk, INSTALL prompts
you to insert the next disk. This continues until all of the files have been
copied.

On-screen instructions explain how to use INSTALL. Notice, however,
that F2 lets you see the file names inside each .ZIP file, and selectively
mark or unmark them for installation. This feature lets you install only
certain files. You can also mark and unmark entire .ZIP files.

It is not necessary to install the assembly language source code to use
P.D.Q., and we include it solely for those people who are interested. If
you do not plan to install the assembly language source code, you can
simply exit the program by pressing F4 after PDQ.ZIP on disk 1 has been
installed.

By default, installation is to C: \PDQ, though you can change that to reflect
any valid drive and directory. If the directory you specify does not exist,
INSTALL will create it. You can also switch directories during installation
by pressing Tab and editing the directory name. We recommend that you
install the assembler source code into its own directory.

Notice that the assembler source files for BASIC 7 PDS far strings and
the SMALLDOS.LIB library have the same names as the equivalent files
for use with near strings. Therefore, if you plan to install all of the source
code you should create four directories: \PDQ, \PDQ\SOURCE,
\PDQ\SOURCE7, and \PDQ\SMALLDOS.

Please note that there are a few empty files with names like "-" and "--"
that serve as separators between logically grouped sets of files. Because
these files have a zero length they do not take up any disk space other than
the 32 bytes used by all directory entries. However, most hard disk tune-up
programs will not move zero-length files, so you may want to delete them
after you have installed P.D.Q.

If you are familiar with the PKUNZIP program, you can optionally run it
manually. Entering PKUNZIP with no arguments displays a help screen
that shows all of the option switches it recognizes. PKUNZIP is provided
under license from PKWARE, Inc.

CRESCENT SOFfWARE, INC. lilll I - 3

Using P.D.Q., Introduction P.D.Q. Version 3.10

P.D.Q. Overview

P.D.Q. is a replacement linking library for use with Microsoft
QuickBASIC version 4.0 or later or BASIC 7 PDS. When a compiled
BASIC program is linked with PDQ.LIB instead of the usual BCOM
library supplied with BASIC, the .EXE file size will be reduced dramati
cally. Code size reductions of six to one are typical for very small source
files, however the actual improvement will of course depend on the
individual program. Program execution speed when using P.D.Q. will
also be improved in many cases. Most applications that have been linked
with P.D.Q. will be noticeably smaller than an equivalent written in C,
and will in fact be closer to pure assembly language.

P.D. Q. also features a number of important language extensions, including
TSR program support and interrupt handling. Writing TSR programs and
interrupt handlers usually requires an extensive knowledge of assembly
language; however, P.D.Q. includes a full complement of routines that
allow you to do this using only BASIC commands and simple extensions.
Many other important features are provided with P.D.Q. and we will get
to those shortly.

The primary purpose of P.D.Q. is to create .EXE programs that are as
small and fast as possible. There is very little error checking beyond
simple syntax errors which are caught at compile time. However, because
P.D.Q. is based on Microsoft BASIC, programs may also be developed
and tested in the more secure environment BASIC offers, and then linked
for maximum efficiency using the P.D.Q. library once they are working
correctly.

P.D.Q. has been designed as a subset of the recognized industry standard
BASIC that has been established by Microsoft. Programs you create using
P.D.Q. are inherently well-behaved, and may thus be run under operating
systems such as Microsoft Windows and Quarterdeck's DESQview
without any additional effort. Because P.D. Q. programs are also BASIC
programs, they may be further enhanced with add-on libraries such as our
QuickPak Professional and Graphics Workshop products.

By defaultP.D.Q. is highly compatible with Microsoft's BASIC compilers
and QuickBASIC. In many cases, existing programs may be linked with
P.D.Q. with little or no change to the program's source code. However,
we have provided a number of options that let you reduce the size of your
programs even further. For example, P. D. Q. includes a reduced-capability
version of LOCATE which adds only 29 bytes of code to your program.
The only restriction is that you must use two-and only two-arguments
to specify the new row and column.

11 l - 4 CRESCENT SOFfWARE, INC.

P.D.Q. Version 3.10 Using P.D.Q., Introduction

Contrast that with the default LOCATE in P.D.Q. which adds 187 bytes.
Because the default LOCATE must also be able to turn the cursor on and
off and change its size, that much additional code is added to your
programs, even if they only need to position the cursor! A number of
other alternate BASIC statement support routines are included with
P.D.Q., and each is described in detail in the section Linking With Stub
Files.

Finally, two Quick Libraries are provided with P.D.Q., containing most
of the P.D.Q. extensions for use in the QB and QBX editing environments.
The remaining extensions are in a BASIC source file named
PDQSUBS.BAS, for those that we could not implement in a form suitable
for use in a Quick Library. Please understand that when you link with
P.D.Q. all of the routines and extensions are written in assembly language.
The BASIC versions are solely for use in the QB and QBX environments.

Why BASIC?
Some programmers, particularly those who don't ordinarily program in
BASIC, may wonder why we would select BASIC as the core language for
P.D.Q. Simply put, BASIC is the easiest of all the high-level languages
to use, and nearly every programmer is already familiar with it. Microsoft
BASIC provides all of the features necessary for modern, structured
programming. Further, the BC.EXE compiler supplied with BASIC is as
powerful and capable as any available language compiler. P.D.Q.
programs may be written and debugged in the convenient environment
Microsoft BASIC offers, and then linked for maximum performance when
creating the final program.

But Isn't That What C Is For?
One of the promises of the C language was to provide smaller and faster
programs, in exchange for additional effort. If you were willing to step
down to a lower level language nearer to assembler, the compiler would
reciprocate by generating a more efficient program. Unfortunately, this
simply isn't the case-the current generation of C compilers offers little
if any improvement over QuickBASIC 4.5 or BASIC 7 PDS. Further, C
programs are notoriously tedious to write and difficult to debug. A wise
programmer we know once called Ca "write-only" language. While that
may be a bit of an overstatement, most programmers would agree that C
is not for the timid. There are very few things that C can accomplish
which BASIC cannot, compared with the many capabilities in BASIC that
C could never match.

CRESCENT SOFTWARE, INC. 111 1 - 5

Using P.D.Q., Introduction P.D.Q. Version 3.10

Of course, any compiler should provide at least some amount of protection
to prevent a programmer from simple mistakes. For example, a single
mistyped variable name should not crash the system. Clearly, a well
designed language will offer an effective compromise between features,
ease of use, and efficiency of the generated code. That language is P.D.Q.

The Spirit Of Performance
Our goal in designing P.D.Q. was to place code size and execution speed
above all other considerations. Many of BASIC's most advanced features
are not included, and some commands have been implemented in a slightly
different manner. Therefore, we'll begin by looking at what has been
omitted. Please understand that in all cases where a BASIC feature is not
supported, the improvement in code size or speed was the deciding factor.

Also understand that in exchange for only a slight increase in programming
effort, P.D.Q. will reciprocate with incredible improvements in program
performance and size. The primary purpose of P.D.Q. is to create
extremely small programs that execute very quickly. If you intend to write
a major accounting program or engineering application, you will probably
be better off using regular Microsoft BASIC.

P.D.Q. Supported Key Words
Table I-1 lists all of the BASIC commands and functions that are supported
by P.D.Q. Some keywords either have a slightly different syntax, some
restrictions, or enhancements. Other keywords are not supported at all,
but have an equivalent P.D. Q. extension routine. These are identified with
bullets in that table.

1111 l - 6 CRESCENT SOFTWARE, INC.

P.D.Q. Version 3.10 Using P.D.Q., Introduction

TABLE 1-1
P.D.Q. Supported Key Words

ABS ABSOLUTE ALIAS AND
ANY AS ASC BASE
BEEP BINARY BLOAD BSAVE
BYVAL CALL CALLS CCUR
CDBL CDECL CHDIR CHDRIVE
CHR$ CINT CLNG CLOSE
CLS COLOR COMMAND$ COMMON
CONST CSNG CSRLIN CURDIR$
CVD CVI CVL CVS
DATA DATE$ DECLARE DEFFN
DEFSEG DEFtype DIM DIR$
DO $DYNAMIC ELSE ELSEIF
END ENDIF ENVIRON ENVIRON$
EOF EQV ERASE ERR
ERROR EXIT FILEATTR FILES
FIX FOR FRE FREEFILE
FUNCTION GET GOSUB Garo
HEX$ IF IMP $INCLUDE
INKEY$ INP INPUT INPUT#
INPUT$ INPUT$# INSTR INT
INTEGER IOCTL IOCTL$ IS
KILL LBOUND LCASE$ LEFT$
LEN LET LINE INPUT LOC
LOCATE LOCK LOF LONG
LOOP LPRINT LSET LTRIM$
MID$ MKC$ MKD$ MKDIR
MKI$ MKL$ MKS$ MOD
NAME NEXT NITT OCT$
ON ERROR ONGOSUB ON GITTO OPEN
OPTION BASE OR OUT OUTPUT
PEEK PLAY POKE POS
PRINT PRINT# PUT RANDOMIZE
READ REDIM REM RESUME line
RETURN RIGHT$ RMDIR RND
RSET TRIM$ 11 RUN SADD
SCREEN SEEK SELECT SGN
SHARED SHELL SLEEP SOUND
SPACE$ SPC SSEG SSEGADD
STATIC STEP STOP STR$
STRING STRING$ SUB SWAP
SYSTEM THEN TIME$ TIMER
TO TYPE UBOUND UCASE$
UNLOCK UNTIL 111 USING VAL
VARPTR VARSEG WAIT WEND
WHILE XOR +
* I \

CRESCENT SOFfWARE, INC. 1111 1 - 7

Using P.D.Q., Introduction P.D.Q. Version 3.10

Table I-2 lists all of the BASIC keywords that cannot be used with P.D.Q.
These are primarily related to advanced math and BASIC 7 ISAM
statements. All of the differences between standard BASIC commands
and their P.D.Q. implementation are described in the next section.

ALL
CHAIN
COM
DELETE
ERDEV
GETINDEX$
LINE
MOVEFIRST
OFF
PEN
PSET
SAVEPOINT
SETINDEX
STACK
UEVENT
VIEW

TABLE 1-2
Keywords Not Supported By P.D.Q.

ATN
CHECKPOINT
COMMITTRANS
DELETEINDEX
ERDEV$
INSERT
LOCAL
MOVELAST
PAINT
PMAP
RETRIEVE
SEEKEQ
SIGNAL
STICK
UPDATE
WINDOW

BEINGTRANS BOF
CIRCLE CLEAR
COS CREATEINDEX
DELETETABLE DRAW
EVENT EXP
ISAM KEY
LOG LPOS
MOVENEXT MOVEPREVIOUS
PALETTE PCOPY
POINT PRESET
ROLLBACK RUN
SEEKGE SEEKGT
SIN SQR
STRIG TAN
USING VARPTR$
WRITE# A

Differences Between P.D.Q. And
Microsoft BASIC

This section lists all of the differences between P.D.Q. and regular
Microsoft BASIC. The section that follows lists each BASIC keyword that
is supported by P.D.Q. but is different than regular BASIC. Note that
some of these differences are limitations, while others are useful enhan
cements to the language.

Floating Point Math
P.D.Q. provides only limited support for floating point numbers. Only
the four basic functions (add, subtract, multiply, and divide) may be used;
however, P.D.Q. does support the ABS, INT, FIX, SGN, RND, and
TIMER floating point functions. P.D.Q. also supports CINT, CLNG,
CSNG, and CDBL, as well as MKS$, CVS, MKD$, and CVD. Of course,
floating point comparisons such as IF X! > Y# may also be used.

1111 1 - 8 CRESCENT SOFTWARE, INC.

P.D.Q. Version 3.10 Using P.D.Q., Introduction

In many cases floating point math is not truly needed, and a program's
size can be made much smaller by using only integers and long integers.
When 2-place fixed point numbers are sufficient you can treat them as
long integers, and then format them when needed. A special routine
named Dollar$ is provided for this purpose. This is a well-known
technique, and it lets you accommodate dollar amounts up to plus or minus
21 million dollars.

Instead of supporting the PRINT USING statement, P.D. Q. instead comes
with a function that returns a string formatted in a similar fashion. Adding
a USING option to the PRINT statement the way regular BASIC does
would mean adding extra code to the core PRINT routine. This would
have made all programs larger, or required yet another link step to remove
that support.

By returning a string FU sing is more flexible than PRINT USING, which
only lets you display the formatted result. FUsing is from our Quick.Pak
Professional library, and it handles all of the formatting options of PRINT
USING except for scientific notation.

Communications and Graphics
There is no built-in support for either communications or graphics.
Though you can easily switch the PC's screen to any of the graphics modes
supported by the hardware using SCREEN, we do not support the BASIC
syntax for drawing lines, boxes, or circles. A collection of BASIC
subroutines are provided for drawing lines and circles in the EGA and
VGA modes only. Although communications and graphics are not sup
ported directly, Crescent Software offers the PDQComm and Graphics
Workshop libraries separately for these purposes.

DOS and Other Errors
DOS critical errors such as an open drive door will result in the familiar
Abort/Retry/Fail message. This is also true for the P.D.Q. extensions
such as PDQExist, which checks for the presence of a file. Unlike a
BASIC program that prints "Drive not ready at address ####:####"
and then dies, a P.D.Q. program at least gives the user a chance to retry.
However, we have also provided routines that let you easily trap and act
upon critical errors if you prefer.

We assume that you have already gotten your program to work using
regular BASIC before attempting to link it with P.D.Q. Most runtime
errors such as "Out of string space" or "Subscript out of range" are
ignored. Therefore, if you dimension an array that is larger than 64K but

CRESCENT SOFTWARE, INC. 1111 1 - 9

Using P.D.Q., Introduction P.D.Q. Version 3.10

forget to compile with the /ah switch, your program will not work and no
error will be reported. However, you can detect most such errors by
compiling with the /d (Debug) switch. Please remember, P.D.Q. is
intended primarily as an alternative to writing in C or assembly language.
P.D.Q. provides you with an incredible amount of power, and what you
do with it is limited only by your imagination.

The most important difference is the way errors-especially DOS file
errors-are detected and handled. With P.D.Q., errors such as "Out of
string space" or "File not found" do not end your program suddenly and
without warning. Instead, the offending statement simply sets BASIC's
ERR function to indicate the type of error that occurred. This is in many
ways more sensible than crashing your program, or requiring ON ERROR
as the only practical alternative.

The following short example shows how you would open a file for input,
and detect a "File not found error":

FileName$ = "\AUTOEXEC.BAT"
OPEN FileName$ FOR INPUT AS #1
IF ERR = 53 THEN

PRINT "File not found"
ENO

END IF

Although P.D.Q. partially supports ON ERROR, we recommend it
primarily for debugging your programs. In particular, ON ERROR in a
P.D.Q. program does not always recognize critical errors such as an open
drive door or a printer that is off line.

Please see the section File Handling in P.D. Q. for more information on
how DOS errors are handled by P.D.Q.

Ctrl-C and Ctrl-Break
As with regular BASIC, a P.D.Q. program ignores the Ctrl-C and
Ctrl-Break keys unless it is compiled with /d (Debug). However, one very
important exception is when using PRINT, INPUT, or LINE INPUT.
Because these BASIC statements call upon the built-in DOS services, DOS
will end the program if Ctrl-C or Ctrl-Break are pressed either during or
prior to console input or output.

There are several solutions at your disposal. One is to use the
_ CPRINT.OBJ stub file that is discussed in the section Linking With Stub
Files elsewhere in this manual. _ CPRINT replaces the default PRINT
with an alternate version that uses the BIOS instead of DOS. Likewise,

111 1 - 10 CRESCENT SOFfWARE, INC.

P.D.Q. Version 3.10 Using P.D.Q., Introduction

the BIOSinput routine can be used to replace INPUT and LINE INPUT,
and this too avoids calling DOS services. You can also use the BreakOff
and BreakOn routines to disable Ctrl-C and Ctrl-Break entirely, and these
are described in the reference section of this manual.

Recursive Procedures
P.D.Q. supports creating recursive subprograms and functions with only
one exception: string functions. Failing to add the STATIC identifier as
part of a string FUNCTION definition causes LINK to report B$SCPF as
an unresolved external procedure.

Dynamic Arrays
The P.D.Q. version of DIM when used with dynamic numeric, TYPE,
and fixed-length string arrays operates differently than the same command
in regular BASIC. In a P.D.Q. program once a dynamic array has been
dimensioned, it will never move around in memory. In contrast,
QuickBASIC's far heap manager often moves arrays around, as it main
tains memory to keep it contiguous.

Each method has its advantages, however the P.D.Q. method requires far
less code to implement which was our main concern. When an array is
guaranteed not to move as in P.D.Q. (and also C and Pascal), you can
create linked lists between data items, confident that the pointers will
always be valid. The downside is that memory fragmentation can occur
when other arrays are dimensioned and erased. In that case it is possible
to have plenty of memory available, but as many small blocks and not
enough for a single large array.

Huge Arrays
Another important difference that isn't directly related to a BASIC key
word is improved support for huge (/ah) arrays. In regular BASIC, you
can create a huge array that exceeds 128K in size only if the length of each
element is a power of 2. This is not a problem with numeric arrays, since
they all have lengths that are 2, 4, or 8 bytes. But with fixed-length string
and TYPE arrays, an element can be nearly any length. If the length of
each element is not power of 2 and the entire array is larger than 128K,
one or more elements will straddle a segment boundary which Microsoft
BASIC cannot handle properly.

P.D.Q. does not have this limitation, and a huge array can have elements
of any size, up to the maximum of 32,767 elements per dimension or the
limits of DOS memory. The only limitation P.D.Q. does impose is that
no single array element may be larger than 32,767 bytes. Regular BASIC

CRESCENT SOFTWARE, INC. 11111-11

Using P.D.Q., Introduction P.D.Q. Version3.10

allows a single TYPE element to be as large as 64K, which in turn causes
the power of 2 limitation.

Be aware, however, that many third-party library routines cannot properly
handle huge arrays whose element length is not a power of 2. In particular,
the TYPE sort routines in our QuickPak Professional product will not
work with arrays whose elements span a segment boundary.

BASIC 7 Advanced Features
Although P.D.Q. programs may be compiled using the BC.EXE program
that comes with BASIC 7 PDS, it does not support the most advanced
features of that version. Specifically, P.D.Q. does not support far strings,
procedure overlays, custom runtime modules, ISAM files, or the alternate
math library. If you really need those features then you really must expect
larger programs than P.D.Q. can produce.

Using Overlays
P.D. Q. does support the use of program overlays, but not using the BASIC
7 PDS overlay manager. P.D.Q. has been successfully tested with the
commercial programs PLINK and RT-LINK, and with the shareware
LOVR program by Michael Devore (available on CompuServe). Overlays
may be used both in conventional and simplified TSR programs, but not
within a TSR that takes over interrupts manually without also using the
PopRequest routine.

If you plan to use overlays in a TSR program it is important that you not
use the interrupt method, since that could conflict with a foreground
program's use of the same interrupts if it too uses overlays. LOVR does
not offer an option to have its overlay manager be called directly, so you
should use that product with care.

Differences By Key Word

ASC
Where BASIC's ASC() function creates an "Illegal function call" error
when it is used on a null string, the P.D.Q. implementation instead returns
-1. This can save unnecessary BASIC code by eliminating an extra test
just for a null string:

IF LEN(Work$) THEN 'this is needed in QuickBASIC
IF ASC(Work$) = 65 THEN

11111 1 - 12 CRESCENT SOFfWARE, INC.

P.D.Q. Version3.10

END IF
END IF

Using P.D.Q., Introduction

IF ASC{Work$) = 65 THEN 'this is all P.D.Q. needs

END IF

BLOAD
In regular BASIC, an address parameter for the BLOAD command is
optional. If omitted, BASIC uses the segment and address that were stored
in the file's header when it was created. P.D.Q. does not support that
feature, therefore you must specify an explicit address to load to, using
the current DEF SEG segment:

DEF SEG = Segment
BLOAD FileName$, Address

CAU INTERRUPT
Where the Microsoft BASIC version of CALL INTERRUPT expects two
TYPE variables to define the CPU registers, the P.D.Q. version uses only
one. That is, the same set of registers are used both going into and coming
out of the call to INTERRUPT. We made this change because it reduces
the size of the INTERRUPT routine, and also avoids the memory needed
for a second copy of the Registers variable. Two copies of a Registers
variable is rarely needed; however, if you really do need to maintain
separate variables, simply make a copy before calling INTERRUPT:

DIM InRegs AS Registers, OutRegs AS Registers

LSET OutRegs = InRegs
CALL INTERRUPT(IntNum, OutRegs)

CHOR/VE

'set up InRegs here
'make the copy
'InRegs is still intact

CHDRIVE is a BASIC PDS enhancement that lets you change the current
default drive. Because it is in the P.D.Q. library, QuickBASIC program
mers can also use CHDRIVE by declaring the internal routine and calling
it directly. Here's the DECLARE and usage:

DECLARE SUB CHDRIVE ALIAS "B$CHDR" (Drive$)
Drive$ = "A"
CHDRIVE Drive$

Note that CHDRIVE may not be used in the QuickBASIC editing
environment.

CRESCENT SOFfWARE, INC. 1111 I - 13

Using P.D.Q., Introduction P.D.Q. Version 3.10

CHR$
Rather than report an "Illegal function call" error if an illegal value is
used, the P.D. Q. version of CHR$ handles an invalid argument by ignoring
the excess beyond 255. Specifically, negative numbers are treated as 256
- Number, and numbers greater than 255 are considered as Number MOD
256.

COLOR
Because of the way printing is handled in P.D.Q., the COLOR command
affects only CLS and the PDQCPrint "quick print" routine. However,
you can link with the _ CPRINT. OBJ stub file to have printing also honor
the current COLOR settings. See the section entitled Linking With Stub
Files for more information about using replacement BASIC statements.

COMMAND$
Like regular BASIC, the P.D.Q. version of COMMAND$ strips leading
blank spaces. Unlike BASIC it removes leading Tab characters and also
honors capitalization.

CURDIR$
Like CHDRIVE, CURDIR$ is a BASIC PDS enhancement that lets you
determine the current directory for any drive. If you are using
QuickBASIC you may declare the internal routine and call it directly like
this.

DECLARE FUNCTION CURDIR$ ALIAS "B$FCD1" (Drive$)
Drive$= "A"
Directory$= CURDIR$(Drive$)

If Drive$ is null, CURD IR$ uses the current default drive.

Note that CURDIR$ may not be used within the QuickBASIC editing
environment.

DIR$
DIR$ is another BASIC PDS function that can be used from QuickBASIC.
DIR$ returns either the first or next file name that matches a given search
specification. Declare the internal P. D. Q. routine as follows:

DECLARE FUNCTION DIR$ ALIAS "B$FDR1" (Fi leSpec$)

11111 1 - 14 CRESCENT SOFfWARE, INC.

P.D.Q. Version 3.10 Using P.D.Q., Introduction

To find the first file that matches a given file specification use D$ =
DIR$(Spec$), where Spec$ is *. * or C: \BATCH* .BAT or the like. To
find successive files that match the same spec use a null string (or no
argument) for Spec$.

Note that DIR$ may not be used within the QuickBASIC editing environ
ment.

ENVIRON and ENVIRON$
P.D.Q. provides a number of important enhancements to BASIC's EN
VIRON and ENVIRON$ routines, such as accessing the parent's environ
ment, and ignoring or honoring capitalization. These are discussed in
depth in the section entitled The Environment elsewhere in this manual.

ERR
P.D.Q. supports only a subset of BASIC's error values. In most cases,
the missing error codes are irrelevant. For example, "Syntax error" is a
compiler error rather than a run time error. Further, errors are handled
very differently by P.D.Q. Please see the section entitled DOS Error
Handling for a complete discussion of this topic. Additional errors and
their codes are described in the section entitled The Environment.

All of the errors that are supported by P.D. Q. are listed in Table I-3. Many
of the error codes listed are used by BASIC; however, errors 83 through
127 are unique to P.D.Q. Also see the PDQMessage$ function, which
returns a string containing the appropriate text for each error.

The P.D.Q. extended error codes may require additional explanation.
Error 83 is relevant only if you are linking with the alternate
SMALLDOS.LIB, which is described in the SMAILDOS section. Errors
101 through 112 are returned by the various TSR support routines, and
they are described in the section that covers TSR programming. Errors
125 through 127 are used to report BASIC errors that either have no
number, or where it was difficult for us to honor the normal Microsoft
number. Note that these errors (125 through 127) are relevant only if you
are compiling using the BC.EXE Id debug switch. Error 11 can only
occur when using the Hookint0 routine.

ERROR
The ERROR statement may be used for assigning a value that will be
returned by ERR. This is useful mostly in modules that need to convey

CRESCENT SOFTWARE, INC. 111111 - 15

Using P.D.Q., Introduction P.D.Q. Version 3.10

error information back to a caller, but without requiring an extra passed
parameter. Of course, using ERROR does not halt your program as
BASIC's implementation would (unless you are using ON ERROR).
Rather, it simply sets the value that will be returned the next time ERR is
queried. Since any value between O and 255 may be used, ERROR can
also provide a simple way to pass information between modules without
needing COMMON.

Fll£ATTR
BASIC's FILEATIR function may be used either to obtain the equivalent
DOS handle for a file, or the mode with which a file had been opened.
Because P.D.Q. allows nearly any operation on any file regardless of how
it was opened, the second argument is ignored. Therefore, FILEATIR
under P.D.Q. returns the DOS handle only, as shown below:

DOSHandle = FILEATTR(FileNum, Ignored)

FRE(-2)
In P.D.Q. the FRE function with an argument of -2 always returns the
number of bytes of stack space that are currently available. In
QuickBASIC and BASIC PDS, FRE(-2) instead returns a "low water mark"
showing how much stack space was available at the deepest level en
countered thus far in the program. This is a very minor difference to be
sure, that is unlikely to affect most programs.

11111 1 - 16 CRESCENT SOFfWARE, INC.

P.D.Q. Version 3.10 Using P.D.Q., Introduction

TABLE 1-3
P.D.Q. Error Codes And Equivalent Messages

FREEFILE

NUMBER

4
5
7
9

11
14
16
52
53
54
55
61
62
67
68
71
75
76
83

101
102
103
104
105
111
112
125
126
127

ERROR MESSAGE
(also returned by PDQMessage$)

Out of DATA
Illegal function call
Out of memory
Subscript out of range
Division by zero
Out of string space
String formula too complex
Bad file number
File not found
Bad file mode
File already open
Disk is full
Input past end
Directory is full
Device unavailable
Disk not ready
Access denied
Path not found
Buffer too small
COMSPEC not found
Environment not found
ENVIRON string invalid
Out of string pool memory
Out of environment space
Pop-up already installed
PopUpHere already called
Overflow
Out of stack space
RETURN without GOSUB

Unlike regular BASIC, the FREEFILE function as implemented in P.D.Q.
will return -1 if there are no more file numbers available.

GET (binary file version)
When the P.D.Q. version of GET reads past the end of a file, it simply
stops transferring data from the disk to the destination variable. For
example, if you are twenty bytes from the end of a file and you ask GET
to fill a TYPE variable that is thirty bytes long, GET leaves whatever

CRESCENT SOFfWARE, INC. 111111 - 17

Using P.D.Q., Introduction P.D.Q. Version 3.10

remains in the last ten bytes of the TYPE. Contrast that behavior with
regular BASIC, which includes extra code to clear the remainder of the
variable to null bytes in that special case. (In a binary access context, the
end of the file is the physical length as reflected in the directory entry for
that file.)

INKEY$
Although P.D.Q. fully supports BASIC's INK.BY$ function, for the
smallest code you should use the alternate PDQinkey routine as a substitute
because it returns an integer value rather than a character string. Integer
operations and comparisons are always faster than string operations, and
this is discussed further in the tutorial section of this manual. Please note
thatINKEY$ may not be used within a P.D.Q. "simplified" 1SR program.
You must instead use the BIOSinkey function, which bypasses DOS and
goes directly to the BIOS.

INPUT$
The INPUT$ function in P.D.Q. does not behave exactly the same as
regular BASIC. If you ask for INPUT$(1) in a QuickBASIC program and
the user presses an extended key (such as a function key or the up arrow
key), the leading zero byte is returned and the second character is
discarded. The INPUT$ statement in P.D.Q. returns the zero byte like
QB, and a subsequent INPUT$ or (INKEY$) returns the extended key
code. We would have gladly changed P.D.Q. to work like QuickBASIC,
except that method is much less useful.

LPRINT
Like BASIC's LPRINT, the P.D.Q. implementation intercepts some con
trol characters and acts on them in a special manner. To circumvent that
behavior QuickBASIC and BASIC PDS let you use the ":BIN" option as
shown below, however this is not supported by P.D.Q.

OPEN "LPTl: BIN" FOR OUTPUT AS #1

If you really need to send binary information to your printer, we recom
mend that you call the BIOS directly. This is illustrated in both the
SETUP.BAS and DEFFN.BAS example programs.

LTRIM$
The P.D.Q. version of LTRIM$ removes CHR$(0) null bytes as well as
blank spaces. This is a useful enhancement because the BASIC compiler

1111 1 - 18 CRF.sCENT SOFfWARE, INC.

P.D.Q. Version 3.10 Using P.D.Q., Introduction

initializes fixed-length strings (and the string portion of TYPE variables)
to null bytes rather than CHR$(32) blanks.

NAME
Unlike regular Microsoft BASIC, the P.D.Q. version of NAME does not
support the DOS wild cards, "*" or "?".

OPEN
In a P.D.Q. program, file numbers used with OPEN must range from 1
through 15 inclusive. For each file that BASIC or P.D.Q. is to maintain,
two integer words are required-one to remember the equivalent DOS file
handle, and the other to remember the record length if the file was opened
for random access. By limiting the range of possible file numbers to 15
rather than 255 like BASIC, nearly 500 bytes are saved from all programs.

OPEN in P.D.Q. further improves on BASIC because once a file has been
opened, you may do nearly anything with it. That is, if a file has been
opened for output, you may freely GET or INPUT from it as well as
PRINT or PUT to it. Regular BASIC does not allow this flexibility, and
will report a "Bad file mode" error if you attempt to do that. The only
exception is that when a file has been opened for INPUT, DOS itself will
refuse to write to it. OPEN for BINARY will fail on read-only files
because it assumes both read and write access. Use ACCESS READ to
avoid that if you need read-only permission.

PLAY
The PLAY statement as provided with P.D. Q. does not support background
operation (using the "MB" command string). Therefore, using "MB" in
a PLAY command will be ignored. The only other limitation is that dotted
notes are not supported (a period following a note indicates that the length
is to be extended an extra fifty percent). You may get around that problem
simply by specifying "ML" to make the notes flow together, and then
adding a second note with the appropriate duration. This is shown below.

PLAY "rnn o3 18 abcde."

PLAY "rnn o3 18 abed ml e el6 rnn"

PRINT

'the trailing dot is not
' supported
'this works in P.D.Q.

Unlike QuickBASIC version 4.00 and later, the PRINT statement in
P.D.Q. uses the DOS Write services for all printing. This allows program

CRESCENT SOFfWARE, INC. 11111 - 19

Using P.D.Q., Introduction P.D.Q. Version 3.10

output to be redirected, but without including additional code to also write
directly to screen memory. Further, PRINT always uses the current screen
color, which is generally white on black.

We recommend calling the PDQPrint routine when colors are required,
or when screen output must be as fast as possible. Also see the PDQCPrint
routine which honors the current COLOR settings, thereby eliminating
one of the parameters required by PDQ Print. The _ CPRINT. OBJ stub
file can also be used to honor the current COLOR value, and it is ideal
you are converting a large program and do not want to rewrite every
PRINT statement. See the section entitled Linking With Stub Files for
more information about using replacement BASIC statements.

PRINT#
P.D.Q. adds an enhancement to the PRINT # statement whereby the
reserved file number 255 sends its output to the DOS STDERR (standard
error) device. This guarantees that the message will appear on the display
screen, even when program output has been redirected by the user. Use
PRINT #255 like this:

PRINT #255, "This message always goes to the screen"

PRINT USING
PRINT USING is not supported by P.D.Q. Instead, the FUsing function
is provided. FUsing is more flexible than PRINT USING because it
returns the formatted value in a string. You can then do whatever you
want with that string. To mimic PRINT USING you will use code such
as this:

PRINT FUsing$(STR$(Number). "####, .##")

RANDOMIZE
Under regular BASIC, using RANDOMIZE without an argument displays
a prompt to input a seed value. This is not supported in P.D.Q. since you
can easily add that yourself manually using INPUT.

RND
The P.D.Q. RND function always returns the next random number in
sequence. BASIC's RND lets you use a O argument to return the same
number as the last time RND was used, or a negative number to return a
fixed value based on the number you specify.

11 1 - 20 CRESCENT SOFfWARE, INC.

P.D.Q. Version 3.10 Using P.D.Q., Introduction

l<TRIM$
The P.D.Q. version of RTRIM$ removes CHR$(0) null bytes as well as
blank spaces. This is a useful enhancement because the BASIC compiler
initializes fixed-length strings (and the string portion of TYPE variables)
to null bytes rather than CHR$(32) blanks.

RUN
Regular BASIC provides two variations on the RUN command, neither of
which is supported by P.D.Q. To run the current program again you must
clear any variables if that is important, and then use Garo to jump to the
start of the program. To run another program, use the supplied StuftBuf
routine instead.

Notice that unlike BASIC's RUN, StuffBuf also allows you to run .COM
and .BAT files, as well as .EXE programs.

SCREEN (statement form)
The SCREEN statement in P.D.Q. supports only a single argument to
specify a video mode. Using the BASIC options for active and viewed
display pages is not supported. See the MULTPAGE.BAS demonstration
program for an example of accessing multiple text display pages.

SLEEP
In the P.D. Q. version of SLEEP, the optional seconds parameter is limited
to 1820 (about 30 minutes), and is controlled by the BIOS timer count in
low memory. The calculations are based on 18 ticks per second rather
than 18.206481, therefore the elapsed time will be very slightly less than
what is specified. Also, the P.D.Q. implementation of SLEEP flushes the
keyboard buffer when it is done, thus removing any keystrokes that may
have been pending.

SOUND
Although SOUND is supported by P.D.Q., the tones that are played are
always handled as a foreground task. Where BASIC's SOUND returns
immediately to your program but continues to run in the background, the
P.D.Q. version does not return until the sound has completed.

Note that SOUND requires floating point support, which can add ap
preciably to the size of a P.D.Q. program. We recommend instead using

CRESCENT SOFTWARE, INC. 111111 - 21

Using P.D.Q., Introduction P.D.Q. Version 3.10

the PDQSound replacement routine. Internally the routines are identical,
however the BC compiler uses floating point interrupts when it invokes
SOUND.

SSEG
In Microsoft BASIC 7 the SSEG function returns a value of zero for null
strings, but in P.D.Q. SSEG always returns the normal DGROUP data
segment. This is because all strings in P.D.Q. are near data.

STOP
Using S1DP in a P.D. Q. program is exactly the same as END, and BASIC's
"Stop" message is not displayed.

STRING$
Both versions of STRING$0 are supported by P.D.Q. However, using a
numeric ASCII value results in slightly less code than a string argument.
Therefore, the first example below is preferred.

SWAP

STRING${NumChars, CharNum)
STRING$(NumChars, Char$)

'this adds less code
'this adds slightly more code

When swapping fixed-length or TYPE variables, both must be same
length. With regular BASIC, if the variables are not the same length SWAP
uses the shorter of the two. And if the destination is longer, the excess is
cleared to blanks as if LSET had been used. We have assumed that you
will not need this added capability, thereby reducing the amount of code
that SWAP adds to your programs. Further, SWAP in P.D.Q. will not
exchange a mix of regular and fixed-length strings. You must instead use
a temporary string as an intermediary.

TIMER
Like VAL and SOUND, theP.D.Q. TIMER function requires floating point
support, which is best avoided whenever possible. Therefore, we have
provided a similar routine called PDQTimer which returns a long integer
value that represents the BIOS timer count in low memory. See the
TIMER.BAS demonstration program which shows how to easily simulate
the resolution and convenience of BASIC's TIMER function.

11 1 - 22 CRESCENT SOFfWARE, INC.

P.D.Q. Version 3.10 Using P.D.Q., Introduction

VAL
Although VAL is fully supported by P.D.Q., using it adds floating point
support routines to your programs. We have provided the PDQVall and
PDQValL replacements for integer and long integer results respectively.
Also, VAL does not recognize either the "&H" or "&O" prefixes to specify
Hexadecimal or Octal notation. PDQ Vall and PDQValL do support using
"&H", but not "&O". Since Hexadecimal notation implies integer or
long integer values, it seemed pointless to add extra code to VAL to support
that.

WIDTH
In P.D.Q. the WIDTH command is intended to specify the display screen
only, and will not work with files or devices. Further, like regular BASIC,
WIDTH may be used with color monitors only. However, WIDTH in
P.D.Q. does support the optional second argument to set the number of
rows for EGA and VGA displays:

WIDTH 40
WIDTH 80, 43
WIDTH ,50

'color display only
'EGA or VGA only
'VGA only

Please understand that unlike regular BASIC, P.D.Q. does not automat
ically issue a carriage return and line feed every eighty characters when
printing to a device. Therefore, WIDTH #n, 255 is not needed to disable
that "feature". You will not receive any errors if you use WIDTH for that
purpose, but a few bytes of unnecessary code will be added to your
program.

WRITE#
Supporting the WRITE# statement in P.D.Q. would have required adding
extra code to the PRINT # procedure, which we decided to avoid. Since
WRITE # is so easy to emulate, you can create a short subprogram to do
this as follows:

SUB Writeit(FileNum%, Text$) STATIC
PRINT #FileNum%, CHR$(34); Text$; CHR$(34)

END SUB

Then to write a string you would use CALL Writelt(l, Text$), and to
write a number you could use CALL Writelt(l, STR$(Number)).

CRESCENT SOFTWARE, INC. 111111 - 23

Using P.D.Q., Introduction P.D.Q. Version 3.10

Changes From Earlier Versions Of P.D.Q.

P.D.Q. version 3.0 provides a considerable number of enhancements over
the earlier 2.x.x versions. If you have just purchased P.D.Q. for the first
time you can skip this section.

Most notable of the new features is support for floating point math and
the corresponding increase in compatibility with regular Microsoft BASIC.
During the life of P.D.Q. version 2, new statements and features were
continually added. Therefore, depending on which 2.x.x version you had
previously, some of the new features listed here may already be familiar
to you. The sections that follow describe all of the improvements and
other changes we have made to P.D.Q. since the original 2.00 version.

Floating Point Math
P.D.Q. now supports floating point math and also the BASIC 7 PDS
Currency data type. At this time only the basic four functions may be
used (add, subtract, multiply, and divide), as well as SGN and ABS, INT
and FIX, and the CINT, CLNG, CSNG, CDBL, and CCUR conversion
functions. Of course, comparisons such as IF X# > Y! may be used, and
MKC$, MKD$, MKS$, CVC, CVD, and CVS are also supported. Finally,
the floating point commands TIMER, SOUND, RND, RND(argument),
and RANDOMIZE(argument), are now supported as well.

There are a few very minor differences between BASIC's implementation
of RND, RANDOMIZE, and SOUND, and what P.D.Q. does, and these
are described in the section Differences Between P.D. Q. and Microsoft
BASIC. Also, see the Compiling and Linking section for more information
about including and avoiding floating point support in a P.D.Q. program.

Network Access and File Locking
P.D. Q. now supports network operation with the SHARED, LOCK READ,
LOCK WRITE, and LOCK READ WRITE options of OPEN. You may
also specify the ACCESS parameters with OPEN, such as ACCESS READ
and ACCESS WRITE. Further, P.D.Q. now supports the LOCK and
UNLOCK statements, to protect a file from access by other users. Unlike
BASIC's LOCK and UNLOCK statements, P.D.Q. lets you lock any part
of any file, regardless of the mode in which it was opened. (Regular
BASIC doesn't allow you to lock a portion of a file that was opened for
INPUT or OUTPUT.

The code to support network operations adds about 110 bytes to a program.
Therefore, we now include the _ NO NET. OBJ stub file to exclude that

1111 1 - 24 CRESCENT SOFTWARE, INC.

P.D.Q. Version 3.10 Using P.D.Q., Introduction

support from programs that do not need it. In interim 2.xx versions of
P.D.Q. network support was added explicitly using the _OPENNET.OBJ
stub file. To be compatible with regular BASIC, network capability is now
the default.

All network errors are reported as "Bad file mode" (error 54). For
example, if the host PC is running DOS 2 or if SHARE or network software
are not installed you will receive this error. The only exception is "Bad
file number", which you will receive if you attempt to lock or unlock a
file that isn't open.

Arrays Containing More Than 65,535
Elements

In version 2.14 we introduced a new stub file named DIM.OBJ that
allowed arrays to exceed 65,535 total elements. Although BASIC does
not allow more than 32,767 elements in a single dimension, arrays with
more elements may be created by using more than one dimension. At a
cost of about 100 added bytes of code,_ DIM. OBJ allowed arrays to exceed
65,535 total elements. In this version of P.D.Q. that feature is now the
default, and _DIM.OBJ is used to remove support for more than 65,535
elements.

EGA and VGA Graphics
We have added a set of BASIC subroutines for performing simple EGA
and VGA graphics in P.D.Q. Although the routines are written in BASIC,
they are very fast and also very small. See the section Graphics And
P.D. Q. elsewhere in this manual for information on using these routines.

Changes to PRINT and STR$
In previous versions of P.D.Q. the STR$0 function did not include a
leading blank for positive numbers. PRINT calls upon STR$ to format
numbers to ASCII digits, so it too was affected. Because having to strip
the leading blank is so often a nuisance, we thought this would be a useful
enhancement to the language.

Unfortunately, this caused problems for people with existing programs
that counted on the blank, so we added the _STR$.OBJ stub file. Now
that P.D.Q. supports floating point math, yet another stub file is needed
for using STR$0 with single and double precision values. As with OPEN
and DIM, we are taking this opportunity to turn things around and do it
properly.

CRESCENT SOFfWARE, INC. 11111 - 25

Using P.D.Q., Introduction P.D.Q. Version3.10

By default, STR$0 and PRINT now add a leading space with positive
numbers. If you want the old way without the space, use _STR$.OBJ if
you are using only integers (or long integers). If you are using single or
double precision values, use _STR$FP.OBJ instead. If you are using both
then you must use both stub files. Most of the example programs that in
the past relied on STR$ not returning a blank have been changed; others
now have a header comment showing that the program should be linked
using _STR$.OBJ.

Note that if you use_ STR$ or_ STR$FP and also use the FU sing function,
you must concatenate a leading blank like this:

Work$= FUsing$(" "+ STR$(Number), Mask$)

FU sing$ and the PU sing routine from our QuickPak Professional library
require a leading bank with positive numbers.

Linking With /Stack:
Earlier versions of P.D. Q. did not allow reducing the size of the stack with
the /Stack: LINK option. This has now been changed, and any reasonable
stack size may be specified. See the section entitled The Stack in Section
I, Appendix H, Miscellaneous Considerations for more information.

PopRequest Changes
The strategy for using PopRequest has been changed very slightly. In
truth, PopRequest has not been changed, but we discovered a situation
where reordering a program's statements can increase the likelihood of
PopRequest being able to pop up successfully. Please see the section
entitled Using PopRequest later in this manual for details about positioning
the manual and simplified handlers in your programs.

MKD$, MK1$, MKL$, And MKS$
Previous versions of P.D. Q. did not allow concatenating these functions.
You may now freely do so in any order or combination.

RESUME NEXT
We have removed the code that handled RESUME NEXT because it did
not work properly, and was frankly too much trouble to make work.

Swapping TSR Programs
P.D.Q. simplified popup TSR programs may now be swapped out of
memory to either a disk file or to expanded memory when they are not

1111 1- 26 CRESCENT SOFI'WARE, INC.

P.D.Q. Version3.10 Using P.D.Q., Introduction

active. See the description for the POPSWAP.OBJ stub file, and also the
Swap2Disk and Swap2EMS routines.

New Routines and Programs

All of the new routines about to be described are detailed elsewhere in
this owner's manual. The discussion simply lists each addition for owners
of previous versions, and you should refer to the reference portion for
complete details.

Because the added support for QuickBASIC compatibility in this version
increases the size of your programs when compared to earlier versions,
we have retained the original, limited versions of those statements that are
affected. Some of these are provided as stub files, while others are
contained in the SMALLDOS.LIB library file. This arrangement gives
you complete control over which version of each statement is used, to
achieve the smallest .EXE programs possible. See the section entitled
Linking With Stub Files for more information.

The routines and programs that follow are listed chronologically in the
order they were added. Therefore, if you previously had an interim 2.xx
version, you can skip ahead looking for new items. New demonstration
programs are described in detail; however, new routines and stub files are
mentioned only briefly. The demonstration programs are described in the
section Files On The PD. Q. Disk. Please refer to the reference portion
of this manual for more information on the new P.D.Q. extensions. All
of the P.D. Q. stub files are described fully in the section Linking With Stub
Files.

NOBEEP.BAS is a TSR utility that traps calls made by other programs to
beep the speaker. It simply intercepts the BIOS interrupt, and ignores
requests to print the CHR$(7) Ctrl-G beep character. You could also
modify NO BEEP to replace the PC's beep with a less obnoxious tone,
perhaps using PDQSound.

PDQZIP.BAS is an example program that shows how to read the header
of a PKZIP file. PDQZIP was contributed by Crescent friend Dan
Moore-simply run it specifying the name of an existing .ZIP file.

PDQShl and PDQShr are new functions that return an integer value with
the bits shifted left or right a specified number of places. Shifting bits is
one area where BASIC is particularly weak, and these functions can
replace a substantial amount of code.

CRESCENT SOFfWARE, INC. 11111- 27

Using P.D.Q., Introduction P.D.Q. Version 3.10

PDQMAKE.BAS lets you automate the building of multi-module
programs using a batch file.

GetSeg is a function that lets your programs obtain the current DEF SEG
setting.

ENVELOPE.BAS is a TSR envelope printing utility.

PopRequest is a major and important new feature that lets you perform
nearly any DOS or BIOS service from within a manual interrupt handler.

APPOINT.BAS is another useful TSR example program, and it shows
how to use the new PopRequest function (see above).

HercMode is a new subroutine that lets you enable and disable graphics
on a Hercules display adapter.

PDQCompare is a new function that lets you compare any two blocks of
memory (up to 64K) to see if they are identical. This type of routine is
available in C, and we realized that it would also be useful with P.D.Q.

PDQCAP.BAS is a TSR screen capture utility that works in both text and
graphics modes.

B _ ONEXIT is now supported for use by add-on assembly language
subroutines. B _ ONEXIT is not something most BASIC programmers
need to know about, but we have added it for our own use, and in response
to requests from our customers. For your interest, B _ ONEXIT lets an
assembler routine tell BASIC, "When the program ends, execute the block
of code at the following segment and address". This is a very powerful
concept, because among other things, it lets a program that is trapping
interrupts unhook those interrupts automatically, without putting the
burden for remembering to do that on the programmer.

_INKEY$.OBJ is a new stub file that replaces INKEY$, using the BIOS
rather than DOS to read the keyboard.

LPT2FILE.BAS is a new TSR demonstration program that captures all
printed output and logs it to a disk file.

Butln is a new function that performs buffered sequential file reading and
serves as a LINE INPUT replacement. Bufln is much faster than the
default P.D. Q. LINE INPUT routine, and also about four times faster than
QuickBASIC's LINE INPUT. Added in this version is the ability to close
a file in mid-read. Also, Bufln has been completely rewritten to store the

1111 l - 28 CRESCENT SOFrWARE, INC.

P.D.Q. Version 3.10 Using P.D.Q., Introduction

buffered file contents in far memory. Bufln is demonstrated in the
DEMOBUF.BAS example program.

PDQSetWidth is a new routine that lets PDQPrint, PDQCPrint, and
BIOSinput use a screen width other than 80 columns.

NoSnow lets you disable CGA snow suppression to achieve the fastest
display speed when using that type of display adapter.

_ DIM.OBJ is a stub file that limits dynamic numeric and TYPE arrays
to a maximum of 64K elements. Although previous versions of P.D.Q.
let you create huge arrays that use more than 64K of memory, the number
of elements was not allowed to exceed 65,535. P.D.Q. now supports more
than 64K elements by default, but at the expense of increasing the size of
the DIM statement by about 100 bytes. This stub file removes that support
for programs that don't need it, with a corresponding decrease in program
size.

_STR$.OBJ and _STR$FP.OBJ are replacement stub files for BASIC's
STR$ function that do not add a leading blank space when used with
positive values. In previous versions of P.D.Q. _STR$.OBJ was used to
add the blank space. By default, P.D.Q. now behaves the same as regular
Microsoft BASIC.

_ CPRINT.OBJ is a new stub file that lets PRINT honor the current color
setting, without having to modify your program.

TEMPLATE.BAS is an empty "simplified" TSR program skeleton you
can use as a starting point when writing your own TSR programs.

REBOOT.BAS shows how to easily reboot a PC.

WAITTIL.BAS is a simple utility that pauses a batch file until a specified
time of day.

MULTPAGE.BAS is a new demonstration program that shows how to
read and write to different text-mode display pages.

PDQCOPY.BAS is an intelligent COPY replacement utility that copies
files only if they are newer or do not exist in the tat get directory or drive.

_ SKIPEOF.OBJ is a new stub file that eliminates support for skipping
past a CHR$(26) EOF (end of file) character when a file has been opened
for APPEND.

CRESCENT SOFTWARE, INC. 1111111 - 29

Using P.D.Q., Introduction P.D.Q. Version 3.10

MAKEPDQ.BAS is an automated program builder that lets you specify
compile and link options and stub files from a menu.

HooklntO is a new routine that lets you trap integer and long integer
"Division by zero" errors without crashing.

KEY2FILE.BAS is a TSR keystroke logging utility that captures all keys
as they are pressed, and saves them to a file.

ONMOUSE.BAS is an example program that shows how to take over
hardware interrupts based on knowing the IRQ level.

MAKESTR.BAS creates custom STR.uxxx.OBJ files to control the
amount of string memory that is allocated to a P.D.Q. program.

RedimAbsolute lets you assign any arbitrary segment to an existing
dynamic array. For example, you could establish the color screen text
display segment &HB800 as being a 2000-element integer array.

DEMOINT8.BAS shows how to perform periodic DOS services in a TSR
program based on the system timer interrupt.

The SOUND statement is now supported using the normal BASIC syntax.
Since SOUND merely calls PDQSound to do the real work, you can also
use a negative value for the duration argument to tell SOUND to leave the
speaker turned on.

MACRO.BAS is a TSR keyboard macro program that lets you assign
nearly any number of characters to a single key.

IOCTL and IOCTL$ are now fully supported, for applications that must
communicate with device drivers.

FUsing$ is a numeric formatting function taken from our QuickPak
Professional product, and it is similar to BASIC's PRINT USING feature.

MidCharS is a complement to the Mid Char function, and it inserts a single
character very quickly into a string.

_ GETlBYT.OBJ is a new stub file that replaces the GetlByte function
with a version that returns unsigned values between O and 255.

DOSWATCH.BAS has been enhanced to detect prior installation, and to
allow deinstallation by running a second copy with a /U command line
switch.

1111 1 - 30 CRESCENT SOFTWARE, INC.

P.D.Q. Version 3.10 Using P.D.Q., Introduction

FREEINTS.BAS is a new example program that shows how to determine
which interrupt vectors are available.

BIOSinput2 is an enhanced version of BIOSinput that recognizes the
Home, End, Ins, and Del keys, and returns the last key pressed.
BIOSinput2 also accepts a row and column to specify the left edge of the
field.

Files On The P.D.Q. Disk

Once you have installed P. D. Q., a number of different files will be present
on your disk. Besides the actual P.D.Q. libraries, many example and utility
programs are also provided. These will be described briefly below.
Notice that additional programs may be included, which have been added
after this manual was printed. Also notice that files with a .MAK extension
are "make" files for the various P.D.Q. demonstration programs, to allow
them to be run within the QuickBASIC editor.

README, if present, contains important information that is not covered
in this printed manual.

HISTORY.DOC is a complete history of revisions and corrections since
P.D.Q. version 2.05.

PDQ.LIB is the main linking library that contains all of the BASIC
language routines supported by P.D.Q.

PDQ.QLB is a Quick Library containing most of the P.D. Q. extensions,
and it is meant to assist you when developing programs in the QuickBASIC
editor.

PDQ.RSP is the response file we use to create the PDQ.LIB library. This
file and the other supplied response files are not likely to be useful to you
unless you plan to extract files or recreate the PDQ.LIB library file from
scratch. These files are provided primarily for informational purposes.

PDQFP.RSP is the response file we use to create an intermediate library
named PDQFP.LIB. This library is incorporated into PDQ.LIB, and
again, this file is provided only for completeness.

CURRENCY.RSP, like PDQFP.RSP above, is another intermediate
response file, and it is used to create a library containing all of the Currency
data routines for use with BASIC 7 PDS.

CRESCENT SOFfWARE, INC. 111111 - 31

Using P.D.Q., Introduction P.D.Q. Version 3.10

DONOfUSE.LIB contains BASIC 7-compatible versions of the P.D.Q.
extensions, and is used by QUICK? .BAT. As its name implies, you should
not attempt to link with this library. In previous versions of P.D.Q. this
file was named PDQ7.LIB.

PDQ7 .RSP is the response file we use to create the DONITTUSE.LIB
library.

PDQ386.LIB contains 386-specific versions of the P.D.Q. routines that
perform long integer multiplication, division, and comparisons.

PDQ386.RSP is the response file we use to create the PDQ386.LIB
library.

SMALLDOS.LIB contains reduced-capability versions of several file-re
lated BASIC language statements.

SMALLDOS.RSP is the response file used to create the
SMALLDOS.LIB library file.

BASIC7.LIB contains BASIC 7-compatible versions of those P.D.Q.
internal routines that had to be changed to support BASIC 7.

BASIC7 .RSP is the response file we use to create the BASIC? .LIB library.

QUICKLIB.BAT is the batch file we use to create the PDQ.QLB Quick
Library that contains the various P.D.Q. assembly language extensions.

QUICKLIB.RSP is the LINK.EXE response file containing the names
of all the object files to be included in the Quick Library; it is used by
QUICKLIB.BAT.

EXTRACT.RSP is the LIB.EXE response file containing the names of
all the object files to be extracted from PDQ.LIB; it is used by QUICK
LIB.BAT.

QUICK7 .BAT is the batch file that creates the PDQ7. QLB Quick Library
for use within the BASIC 7 PDS QBX.EXE environment.

QUICK7.RSP is the LINK.EXE response file used by QUICK7.BAT.

EXTRACT7.RSP is the LIB.EXE response file used by QUICK7.BAT.

PDQ PRO.BAT and PDQPR07 .BAT are batch files that automatically
build Quick Libraries combining the P. D. Q. extensions with routines from
QuickPak Professional. You must also own QuickPak Professional to use

11111 1 - 32 CRESCENT SOFfWARE, INC.

P.D.Q. Version 3.10 Using P.D.Q., Introduction

these batch files. LINK will probably issue a warning error that one or
more routines with the same name were specified. You may ignore this
error.

PDQPRO.RSP and PDQPRO7 .RSP are response files used by
PDQPRO.BAT and PDQPRO7 .BAT respectively.

COMPILE.BAT is a sample batch file for compiling P.D.Q. BASIC
programs. You may rename it to something shorter such as C.BAT if you
prefer.

SMALLDOS.BAT is another sample batch file, and it contains the correct
commands for linking with the SMALLDOS.LIB library.

EMBEDDED.DOC is a reprint of an article that appeared in Embedded
Systems Programming magazine showing how to create ROMable applica
tions using P.D.Q.

XREF.KEY is a copy of the file used by our XREF utility that identifies
which keywords are valid or invalid to use with P.D.Q. If you purchased
XREF prior to P.D. Q. this is a newer version of that file.

PDQDECL.BAS is an Include file that contains DECLARE statements
for all of the P.D.Q. assembly language extensions. PDQDECL also
contains the TYPE definition for the Registers variable used by CALL
INTERRUPT and the P.D.Q. TSR extensions.

PDQSUBS.BAS contains BASIC versions of several P.D.Q. extensions
for use within the QB and QBX environments. If you plan to develop
programs using the QuickBASIC editor, you will load PDQ.QLB (or
PDQ7.QLB with BASIC 7 PDS) and also load this file as a module. Do
not, however, compile and link with this file when creating a final program.
All of the routines contained in PDQSUBS.BAS are also in the main
PDQ.LIB library.

APPOINT.BAS is a useful example program that demonstrates using the
PopRequest function. APPOINT is a TSR appointment scheduler that lets
you specify the time to pop up, and a message to display. For example,
if you want to be reminded a few minutes before your appointment with
Mr. Jones at 10:00 am, you would press Ctrl-A to pop up the display, enter
9:55:00, and then type a message that says "meet Mr. Jones in his office".

ASK.BAS is a simple program that allows keyboard input from within a
batch file. When compiled and run, ASK accepts a command line message
parameter, and pauses until a key is pressed. The ASCII value of that key

CRESCENT SOFfWARE, INC. 11111 - 33

Using P.D.Q., Introduction P.D.Q. Version 3.10

is then returned as a DOS ERRORLEVEL. ASK is demonstrated in the
MENU.BAT batch file.

MENU.BAT shows how to create a simple DOS-only menu using the
ASK.BAS program described above.

BIGPUT.BAS shows how to call the internal PUT and GET routines
directly, to save and load entire arrays in a single operation. This technique
can provide a dramatic improvement in file access time, and it works with
conventional BASIC as well.

CDIR.BAS is a DOS directory changing utility. Simply highlight the
directory you wish to change to (or navigate through as many directories
as needed), and then press Escape to quit the program. CDIR illustrates
several important concepts, including using DEF FN-style functions as
procedures to reduce code size. Comments in the source code show how
to implement CGA snow suppression, though at the expense of display
speed. CDIR.MAK is a make file for running CDIR.BAS in the
QuickBASIC environment, and it specifies PDQSUBS.BAS as a support
module.

CLOCK.BAS is a TSR on-screen clock program, and it provides an
example of intercepting hardware interrupts directly using P.D.Q.
CLOCK also shows a clever technique that avoids adding the string
handling routines to a program.

CMOS.BAS is a handy utility that saves or restores the current CMOS
setup information in AT-class computers. Most PCs include a setup
program to define the type of hard disk, memory, and so forth, which
must be entered whenever the battery has been changed. Unfortunately,
most people have no idea of the correct information to enter. Therefore,
you should compile and run CMOS.BAS before your battery fails, saving
the setup information to a bootable disk. Then, when the battery does
need replacing, it is a simple matter to run CMOS again to restore the
CMOS memory to its original state.

COLORS.BAS displays a chart of every possible color combination, and
it is meant for identifying the color value to use when calling the PDQ Print
"quick printing" routine.

DEFFN.BAS contains some useful DEF FN-style functions that may be
added to your programs.

DEMOBUF.BAS is a demonstration program showing the P.D.Q. Bufln$
function in context. Comments in the program header show a novel way

1111 1 - 34 CRESCENT SOFfWARE, INC.

P.D.Q. Version 3.10 Using P.D.Q., Introduction

of declaring string functions, to avoid the unnecessary string copying code
that BASIC usually adds each time a string function is invoked.
DEMOBURMAK is a .MAK file for use within the QuickBASIC editing
environment.

DEMOINT8.BAS shows how to tap into the timer interrupt, and perform
DOS services periodically. Many people have called us asking how to do
this, mostly for developing network mail systems. This short program
simply checks if a file is present every ten seconds, and if so sounds an
alarm. You can easily modify the program skeleton to do whatever you
need. For example, you can open files, read them, and so forth.

DEMOTSR.BAS shows all of the possible methods for detecting if a
P.D.Q. TSR program is already installed, and deinstalling it if so.
Although several other demos also show how to do this, DEMOI'SR
provides the most thorough example of these techniques.

DIALTSR.BAS is a TSR phone dialing utility. Simply compile and run
it using the syntax shown in the file header comments, then press Ctrl-D
whenever you want to dial a number.

DISKUSED.BAS is similar to the Norton Utility's PS.COM (File Size)
program. It expects a file specification such as*.* or C:\QB*.BAS, and
reports the total size of the files, the space actually occupied on the disk,
and the percent wasted due to the way DOS organizes disk clusters. If the
file specification is omitted, DISKUSED assumes *. * using the current
drive and directory. DISKUSED also accepts a drive letter as an optional
second argument, and uses that drive's cluster makeup to determine if the
specified files will fit on the disk currently in that drive.

DOSWATCH.BAS is a TSR program that provides a "window" into DOS
as it works. Whenever a program performs a DOS service, information
about that service is displayed at the top of the screen. In many cases,
additional information is also displayed, such as file and directory names,
handles being read from and written to, and so forth. DOSWATCH is
described in detail in the section entitled The DOSWATCH Example
Program.

ENVEDIT.BAS is a DOS environment editor. Modifying the master DOS
environment from a program is usually not possible, however P.D.Q.
includes extensions that let you do this.

ENVELOPE.BAS is a TSR example program that is also very useful in
its own right. Envelope lets you capture a name and address from the
underlying screen (perhaps while a record in a database program is

CRESCENT SOFrWARE, INC. 111111 - 35

Using P.D.Q., Introduction P.D.Q. Version 3.10

displayed), and then send that to either a printer or a disk file. The header
comments show how to compile and link it to take as little RAM as
possible. Once Envelope has been run, press Ctrl-E to pop it up. Next,
position the cursor at the upper left corner of the name and address on
your screen and press Enter. Envelope then makes its best guess as to
where the lower right corner is, and you can use the cursor arrow keys to
mark the exact boundary. When you press Enter again the envelope is
printed.

Envelope accepts command line arguments to specify the output device
or file, form length, and top and left margins. These may be given in any
order, and all but the device/file name are optional and preceded with a
code. The complete syntax is as follows:

ENVELOPE outfile [/fl n] [/tm n] [/lm n]

outfile is the name of a file or device (LPTl, LPT2 or PRN) to
send the captured address to (OPEN FOR APPEND is used to
combine multiple envelopes into a single file). Notice that a
trailing colon is not used for printer device names with P.D. Q.

/fl n (Form Length) specifies that the envelope (form) is "n"
lines long. That is, extra blanks are printed to fill that many lines
and to eject the envelope from the printer.

/tm n (Top Margin) specifies that "n" lines will be printed before
the address.

/lm n (Left Margin) specifies that the address will be indented
"n" spaces.

The following specifies a standard size (#10) envelope on printer port #
1, and also shows the default values Envelope uses for each parameter
when they are omitted:

ENVELOPE lptl /fl 25 /tm 10 /lm 40

If you reinvoke the program from DOS with no parameters, it will deinstall
itself. If you reinvoke the program with any parameters, the new
parameters replace the resident program's current settings. Envelope
therefore shows how to modify the resident copy of a TSR from a
subsequent invocation of the same program.

EXE2COM.BAS is a clever program that reduces the size of your P.D.Q.
programs even further. In truth, EXE2COM doesn't really create a . COM
file. Rather, it creates a copy of the specified .EXE file, but with a reduced
header size and .COM extension. Every .EXE file includes a header
which is at least 512 bytes. This header contains relocation information

11111 1- 36 CRESCENT SOFTWARE, INC.

P.D.Q. Version 3.10 Using P.D.Q., Introduction

that DOS uses when it loads the program into memory. EXE2COM
reduces the size of this header to eliminate the unused zero bytes, and
names the output to have a .COM extension (great for fooling C program
mers). Use it like this, without a file extension:

EXE2COM program

IMPORTANT:

When you type a program's name and then press Enter, DOS looks first
for a file with a . COM extension, then .EXE, and finally .BAT. Therefore,
if you process a program using EXE2COM but then make a new .EXE
file and try to run it, DOS will execute the older . COM version. We
suggest that you run EXE2COM as the last step when a project is
completed, or be sure to delete interim .COM versions during develop
ment.

FILTER.BAS is a simple DOS filter that shows how P.D.Q. supports
redirection. It accepts input from STDIN (DOS standard input), capital
izes it and also strips any high bits, and then sends it through STDOUT
(DOS standard output). As provided, FILTER is not intended as a useful
utility. However, it shows how such DOS filters may be written using
P.D.Q. If you enter FILTER at the DOS command line, it will merely
echo what you type, only capitalized. You must press Ctrl-Z to end the
program. Of course, DOS filters are really meant to be used with
redirected input and/or output. For example, to make a capitalized copy
of your AUTOEXEC.BAT file you would enter:

FILTER< \AUTOEXEC.BAT > AUTOEXEC.CAP

FINDTEXT.BAS is a copy of the Norton Utility's TS.COM (Text Search)
program. It accepts a file specification to indicate which files to search,
and then prompts you for the text to search for. FINDTEXT examines
every file that matches the file specification, and then displays the text in
context (showing 20 characters before and after the search string). Besides
being half the size of the Norton version, we have also added a handy
feature that lets you skip to the next file. Note that FINDTEXT is ideal
for searching through the .BAS files that come with P.D.Q., to find
examples of a routine or keyword.

FREEINTS.BAS is a utility program that reports all of the interrupt
vectors that are not active, and are thus available for use in a TSR. This
program is described in the section Accessing A Resident Program.

HIGUY.BAS is an example of the simplest keyboard interrupt handler
possible using P.D.Q. Be aware that HIGUY uses manual interrupt

CRESCENT SOFfWARE, INC. 111111 - 37

Using P.D.Q., Introduction P.D.Q. Version3.10

handling, rather than the "simplified" pop-up method we recommend for
most TSR applications.

KEY2FILE.BAS is our answer to requests from many customers asking
how to write a TSR that captures keystrokes to a log file. Most folks
attempt to capture the keyboard hardware Interrupt 9, which deals with
scan codes rather than ASCII key values. KEY2FILE instead takes over
Interrupt &Hl6, which is more direct. Simply compile and link it as
shown in the header comments, and all keystrokes will be saved to a file
named KEY2FILE.DAT.

Note that extended keys such as Fl and Alt-Care stored in the file in the
same way that BASIC expects them. For example, Fl is written as
CHR$(0) + CHR$(59). However, pressing Enter does not write a
corresponding CHR$(10) line feed. Therefore, if you use the DOS TYPE
command the file will not appear to be correct, even though it is. To verify
a keystroke file's contents you will need a file viewer that can accommodate
lines that end with a CHR$(13) only. You could optionally load the file
into DEBUG and use a sequence of D (dump) commands to view it:

DEBUG KEY2FILE.DAT<Enter>
D lOO<Enter>
D<Enter>

KEY2FILE may be deinstalled by pressing Ctrl-Alt-U while at the DOS
command line. In fact, it must be deinstalled before the output file may
be viewed or used, since the file is kept open while KEY2FILE is active.

LPI'2FILE.BAS is a TSR utility that captures printed output and routes
it to a file. By default, LPTl is intercepted and the output file is called
LPT2FILE.DAT, however these may easily be changed. See the program's
source code and the KEY2FILE comments above for more information.

MACRO.BAS is a program that shows how to create a keyboard macro
program. Although we include PDQKEY.BAS for this, that program is
more complicated and does more. When all that is needed is keyboard
macros, the additional interrupt handling in PDQKEY makes the program
larger than is truly needed.

MAKEPDQ.BAS is a clever utility program written by Pierre Connolly
that lets you easily specify all aspects of compiling and linking with P.D. Q.
Instead of manually entering commands and stub files and alternate
libraries, or writing batch files to do that for each program, you simply
select them from a menu. Pierre has written his own .DOC file, which
explains how to use MAKEPDQ in detail. There are some true program-

1111 1 - 38 CRESCENT SOFTWARE, INC.

P.D.Q. Version 3.10 Using P.D.Q., Introduction

ming gems in MAKEPDQ, including a routine that loads and executes
another program without using SHELL, and also retrieves the DOS error
level of that program. MAKEPDQ.CNF is the configuration file used
by MAKEPDQ, and you should edit this file to reflect the appropriate path
names for your PC. MAKEPDQ.DOC describes how to use
MAKEPDQ.BAS and also how to edit the MAKEPDQ.CNF configuration
file.

MAKESTR.BAS is a utility program that directly generates a custom
string pool object file. Simply compile it as shown in the program header
comments, and then run it. At the prompt tell it the number of bytes of
string space you need, and it will create a new STR#####.OBJ file.
You may also specify the string pool size directly as a command line
argument. String pool object files may be created having memory sizes
ranging from 10 to 63,000 bytes. For information about why this program
is useful see the manual section that describes stub files.

MAP.BAS is a memory map utility, and it shows all of the programs that
are currently in memory, as well as any interrupt vectors they have
intercepted. Unlike the popular public domain SMAP program which was
written in C, MAP displays all of the programs that are loaded. Even if
you have shelled from one program, run another, and shelled from that to
run MAP! Our MAP is also much smaller than the C version. MAP.MAK
is needed if you plan to run MAP.BAS in the QuickBASIC editor.

MULTPAGE.BAS is an example that shows how to simulate BASIC's
SCREEN , , apage, vpage capability to select active and visual pages,
because this features is not supported directly by P.D.Q. Comments in
the source show what it is doing and how to adapt these techniques to your
own programs.

NOBEEP.BAS is a 1SR program that merely disables the Ctrl-G beep
from sounding. Some programs are obnoxious and beep at every little
error; we wrote NOBEEP to get around a flaky BIOS that sustained every
beep for two full seconds.

NOBOOT.BAS shows how to trap the Ctrl-Alt-Del keys to prevent
someone from rebooting the PC.

NUMOFF.BAS simply turns off the NumLock status. Most people want
such a utility, because current versions of DOS turn NumLock on when
they boot. This type of utility would normally be written in assembly
language, and NUMOFF shows how adept P.D. Q. is at creating very small
programs.

CRESCENT SOFTWARE, INC. 1111 - 39

Using P.D.Q., Introduction P.D.Q. Version 3.10

ONKEY.BAS shows how to simulate BASIC's ON KEY statement using
direct interrupt handling.

ONMOUSE.BAS shows how to trap hardware interrupts and deal manual
ly with the PIC (Programmable Interrupt Controller). ONMOUSE is
intended for use with a serial mouse, and it is definitely not for the faint
of heart.

ONTIMER.BAS, like ONKEY.BAS above, provides an example of
imitating BASIC's ON TIMER statement.

PDQ BLANK.BAS is a TSR screen blanking utility. It accepts a command
line argument to tell it how many seconds of keyboard inactivity to wait
before turning off the display. You may run PDQBLANK with a /U option
to uninstall it. You may also run it multiple times to specify a different
wait time. Having one copy of a program modify variables within another
is a fairly tricky concept, and this too is shown in PDQBLANK.

PDQBLNK2.BAS is a stripped-down version of PDQ BLANK that does
not take command line arguments, but uses less memory when it is loaded.

PDQCALC.BAS is a basic TSR 4-function memory calculator. Run it
once from the DOS command line, and then press Alt-C to pop it up; press
Escape when you are finished to return to the underlying application.
PDQCALC saves and restores the original screen automatically, and also
remembers its current display and memory values between pop-ups. Keys
supported by PDQCALC are as follows:

• Digits 1-9 for entering numbers, and the decimal point.

• The four math operator keys and Equals; +, -, *, /, and =.

• The up and down arrows, either of which exchanges the current
display contents with memory.

• The "A" key (Clear All) which clears both the display and memory
values.

• The "H" key which changes the display to Hexadecimal notation
until another key is pressed.

• The "M" key (Memory Plus) which adds the current display value
to memory.

• The "N" (Negate) key which changes the sign of the display value.
This key is not shown on the calculator control panel.

II 1 - 40 CRESCENT SOFfWARE, INC.

P.D.Q. Version 3.10 Using P.D.Q., Introduction

• The "R" (Recall Memory) key which copies the value in memory
into the active display.

PDQCALC.BAS also provides an example of using long integers as dollar
amounts, and then multiplying and dividing them.

PDQCAP.BAS is a TSR screen capture program that works in every
BASIC-supported text and graphics video mode, including CGA, EGA,
VGA, and Hercules. The companion program SCRNSHOW.BAS is a slide
show which displays the saved screens in sequence. See the header
comments in these files for more details about how they are used.
PDQCAP and SCRNSHOW were written by Nash Bly, and you can see
by examining the source listing what an ambitious project this was!

PDQCOPY.BAS is a utility program that works just like the DOS COPY
command, except it copies only files that are newer than the target or if
the target does not exist. This will save you a lot of time when there are
many files to update or back up, and only some of them have changed.
The syntax is almost identical to the DOS COPY command, except both
source and destination arguments are required:

PDQCOPY filespec destination

Filespec can be a complete file name, or a file specification such as *. *
or *.BAS or E:\SOMEDIR*. *. Destination must be a drive and/or path
name such as A: or B:\ or \NEWDIR. After copying, the new file is
given the same date and time as the original. Note that periods are
displayed as files are skipped, so you can see that something is happening.

PDQKEY.BAS is a TSR keyboard macro program that also expands the
keyboard buffer to more than 15 characters. Of course, it is nowhere near
as sophisticated as, say, Borland's SuperKey which allows the user to
modify macros on the fly. But PDQKEY does provide a solid foundation
for designing programs of this type. Also see MACRO.BAS which does
less but is much smaller.

PDQMAKE.BAS is a "poor man's" MAKE program you are bound to
find useful. Unlike MAKE and NMAKE from Microsoft that require an
elaborate script file, PDQ MAKE can be run easily from a batch file. The
primary purpose of a MAKE program is to automate the building of an
application, whenever one or more dependent pieces have been modified.
If you are working on a single-module program, then compiling and linking
the file each time it is modified is reasonable. But when many modules
and libraries are involved in an entire application, it is a waste of time to
have your batch files recompile every file each time a small change is
made. Thus, PDQMAKE lets a batch file decide which files actually need

CRESCENT SOFfWARE, INC. II 1 - 41

Using P.D.Q., Introduction P.D.Q. Version 3.10

to be recompiled. The results of PDQMAKE's date and time comparisons
are returned to the calling batch file through the DOS ERRORLEVEL
function. The header comments in PDQ MAKE.BAS shows how it is used,
and also present a simple batch file as an example.

PDQPARSE.BAS is an example showing how to use the PDQParse
assembler routine.

PDQZIP.BAS is an example program that shows how to read .ZIP file
header information.

PLAY.BAS plays some pretty funky (not in the good sense) tunes using
the PDQRand function.

POPREQ1.BAS and POPREQ2.BAS are example programs that accom
pany the discussion in the section Using PopRequest.

POPUPFP.BAS shows how and where to enable and disable floating point
interrupts so floating point operations can be used in a P.D.Q. TSR
program.

RANDOM.BAS shows how to simulate reading and writing random
access files when using the SMALLDOS.LIB library.

READ FILE.BAS reads a text file, and also demonstrates using the P. D. Q.
critical error trapping routines. (Critical errors are those that DOS reports
when you try to access a disk with the door open.) READ FILE.MAK
is its accompanying .MAK file.

REBOOT.BAS is a simple example program that shows how to reboot a
PC. You can use it as is from within a batch file, or add the code to
programs of your own. REBOOf can be particularly handy when run
from a batch, since the batch file could also rename your
AU1DEXEC.BAT or CONFIG.SYS files letting you boot using different
configurations.

REDIMABS.BAS demonstrates the P.D.Q. RedimAbsolute routine.

SCRNCAP.BAS is a complete text-mode TSR screen capture utility that
lets you capture text screen images from within any application. The
screens are saved to disk as normal BASIC BLOAD files, so they may be
loaded into your own programs if you wish. We developed SCRNCAP to
accompany our QuickScreen screen designer, however it is also quite
useful in its own right. SCRNCAP recognizes the 25-, 43-, and SO-line
text modes automatically, and saves the appropriate number of bytes.

1111 1 - 42 CRESCENT SOFTWARE, INC.

P.D.Q. Version 3.10 Using P.D.Q., Introduction

SCRNCAP may be deinstalled by running it again with a /U command
line switch.

SCRNSHOW.BAS is a slide show program that is meant to be used with
the PDQCAP.BAS utility described earlier.

SETUP.BAS lets you send control codes to an Epson or compatible printer,
to enable compressed, enhanced, or tiny printing. SETUP also shows
how to print characters by calling the BIOS routines directly.

SETUPTSR.BAS is similar to SETUP.BAS (above), but it has been
designed as a TSR allowing it to be used even when another program is
running.

SHELL.BAS is a TSR utility that provides a shell-to-DOS feature from
within any application. Be sure to read the header comments carefully
before using SHELL, and before adding the techniques it shows to TSR
programs of your own.

SMALLDOS.BAS provides a simple example of sequential file reading
when using the SMALLDOS.LIB library.

SPEEDUP.BAS is a keyboard speed-up utility for use with AT-class
computers. Unlike the original PC and XT models, AT computers contain
additional logic in their keyboard hardware to vary the initial delay and
key repeat rate.

SYSINFO.BAS is yet another Norton Utilities clone, and it displays all
of the pertinent information about the PC it is running on. SYSINFO.MAK
lets you run it within the QuickBASIC editor. Sysinfo was written by
Crescent friend Jonathan Zuck.

TEMPLATE.BAS is a "template" program that shows the minimum steps
necessary to create a simplified TSR program. It is intended to be used
as a starting point-or program skeleton-for writing simplified pop-up
TSR programs of your own. That is, you load the source file into
QuickBASIC, and then add your own code to it. All of the pieces needed
to set up a TSR and test for prior installation are already in place.
Comments throughout give step-by-step explanations of the program's
operation, and also show how to test a TSR program within the QB and
QBX editor.

TIMER.BAS shows how to simulate BASIC's TIMER function using the
PDQTimer replacement routine. TIMER.MAK is the associated . MAK
file.

CRESCENT SOFTWARE, INC. 11111 - 43

Using P.D.Q., Introduction P.D.Q. Version 3.10

TRAP3.BAS gives an example of trapping three separate interrupts
manually, and shows how flags are needed to arbitrate different portions
of the program to prevent runtime reentrance. Because hardware inter
rupts can occur at any time, it is up to you to ensure that more than one
interrupt handler does not try to use the same BASIC or P.D.Q. routines
at the same time. The program's header comments explain the principles
of operation.

WAITTIL.BAS is a silly little utility that is also quite useful. It accepts
a command line argument specifying a time of day, and pauses the PC
until then. It is meant to be run from a batch file, perhaps to delay a
modem transmission until late at night when the phone rates are lower or
to start a network backup when nobody will be inconvenienced.

The syntax is WAITTIL Time, where Time is in 24-hour military format
with the seconds being optional. That is, WAITTIL 01:30 pauses until
1:30 am, and WAITTIL 14:29:02 pauses until 2:29:02 in the afternoon.
Note that you must provide either five or eight characters. WAITIIL was
inspired by a utility of the same name in the January 1991 issue of PC
Computing.

WHEREIS.BAS searches a hard disk for all files that match a given file
specification. Note that WHEREIS relies on several routines from our
QuickPak Professional. Therefore, you must have QuickPak Professional
to compile and link it.

WMTELL.BAS is a transcription of the entire William Tell Overture.
This one crossed our path by way of a friend, though we'd sure like to
thank whomever was responsible for creating it!

DEMOEGA.BAS shows the P.D.Q. EGA/VGA graphing routines in
context. DEMOEGA.MAK is the necessary . MAK file that loads the
actual routines into the QuickBASIC editor.

EGABOX.BAS contains a subroutine of the same name that draws boxes.

EGADOT.BAS contains a dot-plotting routine.

EGAELIPS.BAS contains the EGAEllipse routine that draws circles and
ellipses.

EGALINE.BAS contains the EGALine line-drawing graphics routine.

EGAPRINT.BAS contains a subroutine that lets you print in the SCREEN
9 or SCREEN 12 graphics mode, and also specify a display color.

11111 1- 44 CRESCENT SOFTWARE, INC.

P.D.Q. Version 3.10 Using P.D.Q., Introduction

MAKEEGA.BAT is a batch file that builds DEMOEGA.EXE automat
ically.

STR00256.OBJ through STR49152.OBJ are replacement string pool
stub files which let you control how much string memory will be available
to your P.D.Q. applications. Please see the section entitled Linking With
Stub Files for a complete description of these alternate data files.

POPSWAP.OBJ is a special stub file that is needed to allow popup TSR
programs to be swapped to disk or expanded memory.

DOSVRQLB.OBJ is a modified version of the P.D.Q. DOSVer extension,
but written for use within the QB and QBX environments. Note that
DOSVRQLB is not meant to be used by you. Rather, it is accessed by the
QUICKLIB.BAT and QUICK7 .BAT batch files.

FLUSHQLB.OBJ, like DOSVRQLB discussed above, is meant to be used
by the Quick Library batch files. In truth, FLUSHQLB is an "empty" file
that doesn't actually do anything. But it is needed since the Flush extension
can accept a varying number of parameters.

VALQLB.OBJ, like DOSVRQLB.OBJ and FLUSHQLB.OBJ above, is a
variant of the PDQ VAL function for inclusion in a Quick Library only.

_xxxxxxx.OBJ The remaining object files whose names begin with a
leading underscore are stub files containing reduced-capability versions
of several language statements and P.D.Q. extensions. These are all
described in the section entitled Linking With Stub Files.

There are also a number of files that are intended for use by assembly
language programmers, and these are described separately in the section
of the manual that describes using P.D.Q. as an assembler toolbox.

CRESCENT SOFfWARE, INC. 11111 - 45

Chapter 2: Compiling And Linking
11111 11111 111111

P.D.Q. Version 3.10 Using P.D.Q., Compiling and Linking

Overview

All P.D.Q. programs will be compiled using the BC.EXE compiler that
comes with QuickBASIC version 4.xx, BASIC 6.xx, or BASIC PDS
version 7.xx. P.D.Q. supports only stand-alone programs that have been
compiled using the /o option. Therefore, you must use lo when you are
compiling your programs:

BC program /o ;

When linking, you must tell LINK not to use the default BCOM library
by adding the /nod (No Default library) option. Here's the minimum LINK
command line you will use:

LINK program /nod , , nul, pdq

The /nod option tells LINK to use only the library stated on the command
line, which in this case is PDQ.LIB. Notice the use of the DOS NUL
device in the LINK command line. If omitted, LINK will create a mostly
useless .MAP file that merely clutters up your disk.

You could also rename the PDQ.LIB file to BCOM45.LIB or whatever is
appropriate for your version of BASIC, though we recommend against
doing that. However, this would be necessary if you intend to compile
from within the QuickBASIC editing environment, rather than from the
DOS command line. We have provided a sample COMPILE.BAT batch
file that will compile and link your programs using the correct options.

BC.EXE options supported by P.D.Q. are /a (Assembly listing), /ah (Huge
Array), Id (Debug), le (Error), /mfb, Is (String), and /zi (CodeView). If
you have BASIC 7 PDS you may also use the options /g2 (Generate 80286
code), and lot (Optimize procedure calls).

Supported LINK options are /co (Code View), /ex (EXE pack), /far (Far
call translate), /nod, /noe (No External lookup), /packc (Pack Code), and
/stack. Many of these compile and link options will be discussed later.

P.D.Q. is provided as several libraries: PDQ.LIB, PDQ386.LIB,
BASIC7.LIB, and SMALLDOS.LIB. PDQ.LIB is the main P.D.Q. library
intended for use with any IBM PC or compatible; PDQ386.LIB is slightly
more efficient for some BASIC statements, but it requires an 80386- or
80486-equipped PC to run; BASIC? .LIB is required when using BASIC
7 PDS; and, SMALLDOS.LIB contains reduced-capability versions of
BASIC's file commands.

PDQ386.LIB takes advantage of the expanded instruction set available on
machines so equipped, and it is useful when multiplying, dividing, and

CRESCENT SOFrWARE, INC. 1111 2 - l

Using P.D.Q., Compiling and Linking P.D.Q. Version 3.10

comparing long integer values. It is also useful with the MOD function
when either operand is a long integer. However, you should not use it
unless you are absolutely certain that the target computer is equipped with
an 80386 or newer CPU.

When you use any of the three alternate libraries you must also use
PDQ.LIB, because the alternate libraries replace only selected statements.
Therefore, these libraries must be listed on the LINK command line before
PDQ.LIB. For example, to use PDQ386.LIB you will link as follows:

LINK program /nod/nae , , nul, pdq386 pdq ;

Because the 386 version contains only those BASIC language routines that
are different, it must be listed first. Thus, LINK will find the routines
contained therein, and not continue looking. The remaining routines will
be taken from the regular PDQ.LIB library file. The /noe switch is needed
to prevent LINK from being confused by the presence of the same routine
names in more than one library file.

The two other libraries-SMALLDOS.LIB and BASIC? .LIB-are also
meant to be used in conjunction with the main PDQ.LIB library.
SMALLDOS.LIB is described separately in this manual, because the
differences affect many routines.

BASIC? .LIB is needed if you are creating programs using that version of
Microsoft BASIC. In either case, the replacement libraries must be listed
before PDQ.LIB on the LINK command line. If you intend to use both
SMALLDOS.LIB and BASIC7.LIB at the same time, the order is not
important as long as you use /noe and PDQ.LIB is listed last:

LINK program /nod/nae , , nul, smalldos basic? pdq ;

Finally, you can also link P.D.Q. programs with third-party assembly
language libraries such as QuickPak Professional, by simply listing their
names at the end of the LINK command line:

LINK program /nod/nae , , nul , pdq pro ;

When linking with routines in QuickPak Professional, be sure to use
PRO.LIB and not PRO7.LIB. Although P.D.Q. supports compiling with
BASIC 7 PDS, it does not work with programs that are compiled using
the /fs (far strings) option.

Other LINK Options
The QuickBASIC environment by default uses the /ex LINK switch, which
creates a "packed" .EXE file. This is similar to the various ARC
programs, that compress a file to take up less disk space. Very small
programs you write with P.D.Q. may in fact be larger when linked with

111 2-2 CRF.sCENT SOFfWARE, INC.

P.D.Q. Version 3.10 Using P.D.Q., Compiling and Linking

/ex, because the unpacking code that LINK adds to the file could be larger
than the saving it affords!

One exception, though, is when you have static arrays. Arrays are stored
as a contiguous group of zero bytes in the file, and thus may be packed
quite effectively. We recommend that you try linking your programs both
ways, and use whichever method produces the smaller file. (With very
tiny programs LINK issues an error message that the file is unsuitable for
use with /ex.) To reduce the program's size even further you should also
use the supplied EXE2COM utility. EXE2COM is described in the section
Files On The P.D. Q. Disk.

While we're on the subject of linking, there may be situations where the
number of code and data segments being linked to your program exceeds
LINK's default capacity of 128. This would happen if more than 120 or
so different BASIC statements are used, or when the combination of
BASIC statements plus external P.D.Q. routines exceeds that amount. If
LINK issues a "Too many segments" error, you should add the /seg:nnn
switch, where nnn is the number of segments needed. (Internally, LINK
dimensions an array to hold all of the segment names. If more than 128
are required, then the /seg: option tells LINK to reserve more memory
for the names.) The sample COMPILE.BAT file includes /seg:250 to
avoid that error message.

Another LINK switch you may find useful is /stack, which lets you change
the size of the system stack when a program is linked. By default, P.D.Q.
provides a stack that is only 1,024 bytes (lK) in size. QuickBASIC lets
you use the CLEAR command to increase the stack size when necessary,
and BASIC 7 PDS provides the more useful STACK statement. To
eliminate the added code overhead required to support these statements,
there is no provision in P.D.Q. for changing the stack size at runtime.

Using /stack tells LINK to alter the amount of memory that is allocated
for a system stack when your .EXE program is created. The general
syntax is as follows:

LINK /stack:nnn program

Here, nnn is the number of bytes you want allocated for a stack. You may
specify any reasonable number; however, bear in mind that the stack shares
the same near memory segment that is used by strings and other variables.
Therefore, increasing the size of the stack makes that much less available
for near DGROUP data. Be sure to specify a stack size that is a multiple
of 2. That is, /stack:2000 is okay, but /stack:2001 is not.

CRESCENT SOFfWARE, INC. 1111 2-3

Using P.D.Q., Compiling and Linking P.D.Q. Version 3.10

If you specify a stack value that is too high you will receive the LINK
error message "Stack plus data exceeds 64k". See the section entitled The
Stack in Section I, Appendix H, Miscellaneous Considerations which
discusses selecting an appropriate stack size. Also see the section String
Memory Considerations for additional information.

Finally, there are two additional LINK options that you should be aware
of. The /far and /packc options are intended to be used together, and they
will reduce the size of your final .EXE program and increase its speed in
most cases. However, Microsoft places the following warning in their
Macro Assembler 5 .1 owner's manual (Microsoft Code View and Utilities,
page 277; MASM 6.0 uses similar wording on page 349):

"There is a small risk involved with the /far option; the linker may
mistakenly translate a byte in a code segment that happens to have
the Jar-call opcode (&H9A). If a program linked with /far
inexplicably Jails, then you may want to try linking with this option
off. However, object modules produced by Microsoft high-level
languages should be safe from this problem, because relatively
little immediate data is stored in code segments."

In our experience, using /far has never caused a problem. Further, our
contact at Microsoft tells us that the problem described in the MASM
manual could never happen. However, an error is theoretically possible
if you are using ON Garo, and the target address of one of the labels
happens to have an &H9A as one of the bytes. Our suggestion is that you
try it to see how much improvement you realize. We also suggest that you
carefully test all of your program's functions if you are using ON Garo
or ON GOSUB.

Creating A Quick Library
We have provided two Quick Libraries for use when developing P.D.Q.
programs in the QuickBASIC environment. PDQ. QLB is meant for use
with QuickBASIC 4.0 and 4.5 and BASIC 6, and PDQ7.QLB is for use
with QBX.EXE that comes with BASIC 7.xx versions. If you need to
combine other routines with these libraries, you will have to recreate them
from scratch.

There are several batch and response files on the P.D.Q. disk that we use
to create these Quick Libraries. To create a custom version you must edit
these files, and run the batch files.

QUICKLIB.BAT extracts all of the necessary .OBJ files from the
PDQ.LIB file, and then creates PDQ.QLB from those files. The two
response files are EXTRACT.RSP and QUICKLIB.RSP, and QUICK-

1111 2- 4 CRESCENT SOFfWARE, INC.

P.D.Q. Version 3.10 Using P.D.Q., Compiling and Linking

LIB.BAT uses these to create the Quick Library. Notice that the name
BQLB45.LIB is specified within the QUICKLIB.RSP file. If you are
using a version of QuickBASIC other than 4.5 you may either edit the file,
or wait for LINK to prompt you for the correct name.

QUICK? .BAT is nearly identical to QUICKLIB.BAT, except it creates a
Quick Library named PDQ7.QLB which is meant for use with QBX.
QUICK? .BAT relies on two other response files-EXTRACT? .RSP and
QUICK? .RSP-to extract and then combine the various . OBJ files into a
Quick Library. Similar to QUICKLIB.RSP, QUICK? .RSP uses the name
QBXQLB.LIB as the default for obtaining the "Quick Library support"
routines necessary for use in the QBX environment.

Because so many of our customers own both P.D.Q. and QuickPak
Professional, we have provided a pair of batch files that will combine all
of the P.D.Q. extensions with the QuickPak libraries. PDQPRO.BAT and
PDQPRO7 .BAS are meant for use with QuickBASIC and QBX respec
tively. Note that you may need to edit these files slightly, to specify the
correct drive and path names for your particular system. Also note that
the MAKEQLB utility from QuickPak Professional can create custom
Quick Libraries automatically. Please see the description for that program
in the QuickPak Professional manual.

Linking With Stub Files

A stub file is an object module that contains an alternate version of a
BASIC language statement, P.D.Q. extension, or data item. The primary
purpose of a stub file is to let you replace one or more statements or
extensions with others having a reduced capability and hence smaller code.
For example, the KILL command accepts wild cards (* and ?) to let you
specify more than one file to be deleted. The _KILL.OBJ stub file
provided with P.D.Q. does not accept wild cards, and as a result is
approximately one-third the size of the default KILL routine in the
PDQ.LIB library. In other cases, a stub file may provide additional
capabilities such as _ CPRINT. OBJ.

Linking with stub files is quite easy-you simply specify the name of the
replacement . OBJ file on the LINK command line after your main BASIC
program. The example below links a BASIC program with the reduced
capability LOCATE statement:

LINK /noe/nod program _locate , , nul, pdq ;

Likewise, to eliminate support for READ you would link with
NOREAD.OBJ like this:

LINK /noe/nod program _noread , , nul, pdq ;

CRESCENT SOFTWARE, INC. 1111 2-5

Using P.D.Q., Compiling and Linking P.D.Q. Version 3.10

Note that more than one stub file may be used at a time. This next example
uses both of the stub files just mentioned, as well as the less capable KILL
replacement:

LINK /nae/nod program _noread _locate _kill , , nul, pdq ;

As with the alternate P.D.Q. libraries, stub files are listed on the link
command line before the libraries. The routines they contain are therefore
found before others with the same name in the libraries listed at the end
of the line. As you can see, /noe is needed with stub files too, for the
same reason.

Because many of the BASIC and P.D.Q. subroutines call each other it is
not possible to create your own stub library comprised of selected stub
object modules.

String Pool Stub Files
Besides the reduced-capability language statements we provide as stub
files, there are several other important stub files you should be aware of.
The object files whose names begin with STR let you control the amount
of string memory that is available to your programs.

Several of the P.D. Q. routines and functions access a data area we call the
string pool. By default, the string pool is comprised of 32,768 bytes of
memory; however, several alternate object files are provided which contain
other sizes. For example, STR04096.OBJ is a replacement string pool
with a size of only 4096 bytes. Therefore, to create a program that uses
only 4K of string memory, you would link it with your program like this:

LINK /noe/nod program str04096 , , nul, pdq ;

For most programs, there is no harm in using the default string pool size
of 32K, since all PCs have at least that much memory available. Because
the actual string data area is not added to your .EXE program, using a
smaller string pool will usually provide no advantage. (But see the section
Initialized Vs. Uninitialized Data for more on this.)

The STR49152.OBJ stub file provides more string space than the default,
but at the expense of impinging on variable space. Since this file sets aside
48K for strings, only 16K is left for your variables and the stack.

One situation in which it is important to reduce memory usage to the
absolute minimum is when the program will be installed as a TSR.
Another is when the program will be run under a multi-tasking operating
system such as Microsoft Windows or Quarterdeck's DESQview. These
programs let you create partitions in which your programs will run, and

1111 2- 6 CRESCENT SOFrWARE, INC.

P.D.Q. Version 3.10 Using P.D.Q., Compiling and Linking

being able to create a program that uses less memory at run-time is a very
desirable feature.

Finally, there may be situations where you need to control the size of the
string pool more precisely than the supplied stub files allow. The
MAKESTR.BAS program, when compiled and run, lets you create a
custom STR#####. OBJ file with nearly any amount of string space. A
complete discussion of how to determine the required amount of string
space is in the section String Memory Considerations later in this manual.

The POPSWAP Stub File
The POPSWAP.OBJ stub file is a special stub file that is needed to allow
simplified TSR programs to be swapped out of memory when they are not
active. This stub file is used in conjunction with the Swap2Disk and
Swap2EMS functions, and it must be listed first on the link command line
if either of those routines are used:

LINK /nee/nod popswap program, , nul, pdq;

Of course, you may use additional LINK options and other stub files as
necessary. See the description for Swap2Disk and Swap2EMS for infor
mation about creating a swapping TSR program.

Other Stub Files
All of the remaining object modules that can be used as stub files have a
leading underscore in their name to identify them as such. Notice that
some of the stub files completely remove a particular feature (such as
_ NOREAD. OBJ), while others replace a statement with a different version
which has less functionality and thus smaller code. Object files that totally
remove support for a BASIC language statement always begin with the
letters NO.

It is important to understand that a stub file will save code only if you are
using the statement it is designed to replace. Normally, LINK adds only
those routines that are actually called for by a program. So if you do not
use, say, the KILL command, the library routine that handles KILL is not
added to your program. In that case, if you link with the alternate
_KILL.OBJ stub file you are telling link to explicitly add that code to your
program.

Stub File Details
This section describes in detail each stub file provided with P.D.Q. and
explains what they are used for. All of the stub files are summarized in
Table II-2 at the end of this section, and the list that follows describes each

CRESCENT SOFrWARE, INC. II 2 - 7

Using P.D.Q., Compiling and Linking P.D.Q. Version 3.10

in detail. Stub files that always reduce the size of the program are
identified in this table; all of the others should be used only when the
statement they replace is also being used.

_87ONLY.OBJ

_87ONLY.OBJ avoids adding the floating point emulator routines to a
program, and therefore requires an 8087 math coprocessor if floating point
math is used. This is similar to the 87.LIB stub library that Microsoft
provides with BASIC 7 PDS. When a program is linked with
_87ONLY.OBJ and a coprocessor is not present at runtime, the message
"Math coprocessor required" is displayed and the program ends.
_87ONLY.OBJ is needed and useful only with programs that actually use
floating point math.

_ CPRINT.OBJ

By default, P.D. Q. PRINT statements send their output through DOS using
its built-in console I/O services. Since DOS performs the bulk of the work
this results in the smallest code size possible, though at the expense of
several important features. The most significant limitation is that the DOS
print services do not accept a color argument. Although P.D.Q. does
support the COLOR statement, it is normally used only by CLS when
clearing the screen.

When you link with _ CPRINT. OBJ, printing is instead sent through the
BIOS, using a service that does honor color. This lets you print using
COLOR, without having to change your programs. This also prevents
Ctrl-C and Ctrl-Break from terminating the program if those keys are
pressed during (or prior to) a PRINT statement. Be aware, however, that
using _ CPRINT. OBJ prevents your program's output from being
redirected by the user with the " > " DOS command modifier.

Note that _CPRINT.OBJ is not compatible with the P.D.Q. SMALLDOS
stub library, because _ CPRINT. OBJ honors the current TAB position
which SMALLDOS doesn't support.

Also see the PDQPrint and PDQCPrint routines listed in the reference
portion of this manual. These routines use a different syntax than PRINT,
but they are substantially faster.

_DEBUGFP.OBJ

Unless you truly need floating point math in a program, you can realize a
substantial improvement in code size and execution speed by using integers

111 2- 8 CRESCENT SOFfWARE, INC.

P.D.Q. Version 3.10 Using P.D.Q., Compiling and Linking

and long integers only. In past versions of P.D.Q. attempting to use a
floating point command resulted in an "Unresolved External" error
message when linking. To add insult to injury, LINK does not say where
in the program an unsupported command is being used.

Now that P.D.Q. does support many floating point operations, it is
possible-even likely-that you could inadvertently use a floating point
command and not know it. LINK simply brings in the requisite routine
from the P.D.Q. library, and you will be none the wiser. Worse, if you
link with_ NOVAL. OBJ to completely eliminate all floating point support,
your program will crash without warning when that statement is executed.

To determine if a program is using floating point operations you can link
with _DEBUGFP. OBJ and then run it. If a floating point command is
encountered the program is terminated with the message "Floating Point
Required at ####:####". Here, ####:#### indicates the seg
ment and address in your program where the floating point command was
used. You can then use Code View to examine your program, to identify
the exact place where floating point math was used.

You can also recompile the program using the /a option, to create an
assembly language source listing. Although using CodeView is a more
accurate method, /a will get you within a statement or two of the problem.
When compiling with /a you must also provide the name of a list file like
this:

BC program /o /a [/other options] , , listfile. lst ;

This creates a file named LISTFILE.LST containing both the BASIC
source statements and the equivalent assembly language commands that
BC.EXE generated. Simply look in the address column of the listing for
the address reported, and the offending BASIC command will be in that
vicinity.

Note that the segment reported by_ DEBUGFP. OBJ is irrelevant, and only
the address value to the right of the colon is significant. Also note that
when using _DEBUGFP.OBJ you should not link with _NOVAL.OBJ.
That is, _DE!3UGFP.OBJ is to be used on a test basis to see if floating
point operations are being used.

_DIM.OBJ

Although BASIC limits dynamic arrays to 32,767 elements per dimension,
you can create arrays larger than that by using more than one dimension.
For example, REDIM Array%(1 TO 10000, 1 TO 8) creates an integer
array with 80,000 elements. To be as compatible with Microsoft BASIC

CRESCENT SOFfWARE, INC. 11111 2 - 9

Using P.D.Q., Compiling and Linking P.D.Q. Version3.10

as possible, P.D.Q. follows the same rules and allows as many elements
as memory can hold.

When DIM.OBJ is used, the number of elements in an array is limited
to 65,f35 or less. Very few programs actually need arrays larger than
that, and using_ DIM. OBJ will reduce the size of any program that creates
dynamic numeric, TYPE, or fixed-length string arrays.

_ EMONLY.OBJ

_EMONLY.OBJ is the opposite of _870NLY.OBJ, and it avoids adding
the code that supports a coprocessor to your programs. In truth, the
savings is much less than for _870NLY.OBJ, because the code needed to
handle a coprocessor is much smaller than the code that emulates it.
However, if you are certain that a coprocessor will not be present when
the program runs, _EMONLY.OBJ will make your program slightly
smaller. And if a coprocessor is present, your program will not use it.

_FLUSH.OBJ

Unlike the FLUSH routine described in the P.D.Q. extensions section of
this manual, this version flushes all files only, as opposed to individual
files. Because it does not need the added code to accept a varying number
of arguments, it will reduce the size of programs that use the P.D.Q. Flush
extension.

_ GETlBYT.OBJ

This stub file contains an alternate version of GetlByte that treats the
returned values as being unsigned, having values between O and 255 instead
of -128 to 127. Note that an alternate version of SetlByte is not needed,
because it accepts either signed or unsigned values.

_INKEY$.OBJ

By default, INKEY$ in a P.D.Q. program uses a DOS service to read the
keyboard. This lets your program honor redirection using the "<"
less-than symbol on the DOS command line. But that particular service
cannot be used in a P.D.Q. TSR, as described in the section TSR
Programming With P.D. Q.

INKEY$.OBJ replaces INKEY$, and it uses the BIOS rather than DOS
to read the keyboard. This lets you use INKEY$ in a TSR program,
without having to modify your program's logic to use BIOSinkey.

1111 2 - 10 CRESCENT SOFfWARE, INC.

P.D.Q. Version 3.10 Using P.D.Q,, Compiling and Linking

_KILL.OBJ

The alternate version of KILL contained in _KILL.OBJ does not support
the DOS wild cards "*" or "?". It is therefore useful when a program
must be as small as possible, for example in a TSR utility. Note, however,
that this version of KILL must not be used with an argument comprised
of concatenated strings. That is, code such as the example shown below
should be avoided:

KILL Drive$+":"+ FileName$ 'do not do this

Temp$= Drive$+":"+ FileName$ 'do this instead
KILL Temp$

_ LOCATE.OBJ

This stub file supports only the Row and Column parameters, and it
requires both to function correctly. Using any syntax other than LOCATE
X, Y (or LOCATE 12, 2 or the like) is guaranteed to cause a crash. We
also provide a pair of complementary routines to turn the cursor on and
off (CursorOn and CursorOff), as well as a routine to set the cursor size
(CursorSize). Even if you do need to turn the cursor on and off, using
LOCATE.OBJ and those routines will result in less code.

When BASIC generates a call to its own LOCATE routine, it uses a
complicated system of flags and values, and passes a varying number of
parameters. The approach we have taken in this stub file adds much less
code to your program. The examples in Table 11-1 following show how
to effectively use only one argument with this version of LOCATE.

Table H-1
LOCATE Syntax Differences

BASIC

LOCATE, X
LOCATE Y

_NOERROR.OBJ

LOCATE CSRLIN, X
LOCATE Y, POS(0)

Unless you are using ON ERROR in your programs, we recommend that
you link with the _NOERROR.OBJ stub file. By default, all oftheP.D.Q.
routines call a central error handler if an error occurs, and that handler
checks to see if ON ERROR is in effect. If so, it jumps to the ON ERROR
Garo address that was saved when ON ERROR was used. Otherwise,

CRESCENT SOFfWARE, INC. 11112- 11

Using P.D.Q., Compiling and Linking P.D.Q. Version 3.10

the error is simply saved for the next time ERR is examined. This
NOERROR. OBJ version of the error handler eliminates the additional

code to check for ON ERROR being in effect.

_NONET.OBJ

Like regular Microsoft BASIC, P.D.Q. fully supports shared network file
access. However, the code to implement all of the possible OPEN options
adds to the size of any program that uses OPEN. _ NO NET. OBJ contains
an alternate version of the OPEN statement, but without support for the
SHARED or ACCESS options.

_ NOREAD.OBJ

By default, all P.D.Q. programs include the READ routine, even when
READ is not being used. Therefore, linking with _NOREAD.OBJ will
save nearly 600 bytes from your programs that do not require READ. It
is important to understand that you must use _NOREAD.OBJ if you are
linking with the SMALLDOS.LIB alternate library.

_NOVAL.OBJ

_NOVAL.OBJ is used to exclude all floating point support from a P.D.Q.
program. Even if no floating point commands are being used, code is
added to take over the floating point interrupt vectors at startup, and release
them upon termination. _NOVAL.OBJ instead replaces that code with a
single Return command, and does nothing else. Thus, it adds only one
byte, as opposed to more than 3000 that are added when the emulator and
interrupt code is linked to your program. Therefore, you should use
_NOVAL.OBJ if your program is not using floating point math.

When using _NOVAL.OBJ, it is essential that your program not use any
floating point commands. If you do the program will crash without any
warning, and without displaying any messages. Please note that using the
Currency data type with BASIC 7 PDS require floating point support, and
you cannot use _NOVAL.OBJ with programs that also use Currency
variables. See the DEBUGFP. OBJ stub file described earlier for more
information on avoiding floating point code in your programs.

_PDQVAL.OBJ

This file contains versions of PDQValI and PDQValL that are nearly
identical to the default versions in the PDQ.LIB library, except they do
not recognize "&H" or a leading plus sign (+) in the strings being passed
to them. They are consequently smaller than the default PDQValI and

1111 2- 12 CRESCENT SOFfWARE, INC.

P.D.Q. Version 3.10 Using P.D.Q., Compiling and Linking

PDQValL routines. Notice that none of the P.D.Q. VAL replacement
routines recognize "&O" to specify Octal notation.

_ SKIPEOF.OBJ

_ SKIPEOF. OBJ eliminates support for recognizing a CHR$(26) EOF (end
of file) character when a file has been opened for APPEND. Although
P.D.Q. never adds an EOF byte to the files it writes, some older
applications do (and so does COPY CON). Prior to adding this stub file,
P.D.Q. never looked for an EOF byte. Therefore, if you opened a file
that had one for APPEND, anything written to the file would be added
after that byte which is incorrect.

In this version of P.D. Q. OPEN checks to see if the last byte (or group of
bytes) in the file is an EOF marker, and backs up so the next PRINT #
statement will overwrite it. But we just hate to see P.D.Q. program size
grow, so the _ SKIPEOF. OBJ stub file was added to let you remove that
feature if you don't need it.

Do not use _ SKIPEOF. OBJ when linking with the SMALLDOS library.

_SORf.OBJ

The _SORT.OBJ stub file is approximately one-half the size of the default
string sort routine, however it is only one-third as fast. Therefore, you
should use this version when code size is paramount, or the number of
strings being sorted is small.

_STR$.OBJ

One of BASIC's most irritating quirks is the leading blank space that STR$
returns when used with positive numbers. PRINT too displays an extra
leading space when numbers are printed, because internally it calls upon
STR$ to format the value into ASCII digits suitable for display. To avoid
this many programmers use:

LTRIM$(STR$(Number))

or worse:

MID$(STR$(Number), 2)

or even worse still:

RIGHT$(STR$(Number), LEN(STR$(Number)) - 2)

If you link with _STR$.OBJ an alternate version of STR$ that does not
add a leading blank is used. Using _STR$.OBJ also avoids the added

CRESCENT SOFfWARE, INC. 11112- 13

Using P.D.Q., Compiling and Linking P.D.Q. Version 3.10

blank when numbers are printed using PRINT. However, a trailing blank
is always printed.

Note that _STR$.OBJ affects only integers and long integers. To obtain
the same result with single and double precision values use the
_STR$FP. OBJ stub file.

_STR$FP.OBJ

Like _STR.OBJ, _STR$FP.OBJ is an alternate version of STR$ but for
use with single and double precision and Currency values only. (See
_STR$.OBJ above.) If you are using the STR$ function with both integer
(or long integer) values and also with single or double precision numbers,
then both stub files would be used.

_TIME$.OBJ

The default TIME$ function does not use DOS to get the time, allowing
it to be used safely in any type of TSR program. However, the
_TIME$.OBJ stub file contains a slightly smaller version that does use
DOS, and should not be used in a manual timer interrupt handler. See
CLOCK.BAS for an example of an on-screen clock TSR that uses the
default TIME$ function. CLOCK.BAS also uses some clever P.D.Q.
programming tricks that show how to avoid adding the string managing
routines to your programs.

STUB FILE

87ONLY

CPRINT

DEBUGFP

DIM

EMONLY

1111 2-14

TABLE 11-2
P.D.Q. Stub Files

COMMENTS

Avoids adding the floating point emulator. Programs that
use floating point math will require a coprocessor. Saves
about 2,750 bytes.
Redirects PRINT statements to use the BIOS instead of
DOS, and honor the current COLOR settings. Does not
support redirection. Is immune to pressing Ctrl-C and
Ctrl-Break. Adds about 70 bytes. Do not use with
SMALLDOS.
Causes a runtime error if any floating point commands
are used. The address of the offending statement is
shown. For debugging purposes only.
Excludes support for arrays having more than 65,535
elements. Saves about 50 bytes.
Forces a program to use the floating point emulator, even
if a coprocessor is installed. Saves about 40 bytes.

CRESCENT SOFfWARE, INC.

P.D.Q. Version 3.10

STUB FILE
FLUSH

_INKEY$

KILL

LOCATE

NOERROR*
-NONET

NOREAD *

Using P.D.Q., Compiling and Linking

TABLE 11-2 (Continued)
P.D.Q. Stub Files

COMMENTS
Flushes all open files only, as opposed to selectively.
Saves about 40 bytes.
Forces INKEY$ to accept input from the BIOS rather than
DOS. Allows using INKEY$ in a TSR program. No
appreciable difference in size.
Does not allow DOS wild cards or concatenated strings.
Saves about 90 bytes.
Expects two and only two arguments (row and column).
Saves about 250 bytes.
Excludes support for ON ERROR. Saves about 50 bytes.
Excludes support for network file operations. Saves about
90 bytes.
Excludes support for READ. Saves about 600 bytes.
Must be used with SMALLDOS.

NOVAL * Excludes support for floating point math. Saves more
than 3000 bytes.

_PDQVAL Does not recognize "&H" or a leading plus sign (+).
Saves about 230 bytes.

SKIPEOF Eliminates support for having OPEN FOR APPEND
detect an EOF mark. Saves about 70 bytes. Should not
be used with SMALLDOS.LIB.

SORT One third the speed of the default SORT but about half
the size.

_ STR$ Tells STR$ not to include a leading blank with positive
numbers. Affects integer and long integers only.

_ STR$FP Tells STR$ not to include a leading blank with positive
numbers. Affects floating point and Currency only.

_ TIME$ Smaller version of BASIC's TIME$ function. Do not use
in an Interrupt 8 handler. Saves about 30 bytes.

* Always useful for reducing the size of your programs.

Stub files not marked are useful only when you are using the statements
they replace. Adding a stub file for a command that is not used makes a
program larger.

The SMALLDOS Library File

As a complement to the individual stub files described in the preceding
section, the SMALLDOS.LIB library contains reduced-size versions of
several BASIC file-related statements. As much as possible, we have
isolated individual routines into separate stub files, to let you mix and
match those statements that require full or limited capabilities. However,
several of the BASIC DOS routines are inseparable, and must be grouped
together.

CRESCENT SOFfWARE, INC. II 2 - 15

Using P.D.Q., Compiling and Linking P.D.Q. Version3.10

For example, if you use the SMALLDOS version of OPEN which does
not support random access, then you must also use the SMALLDOS
version of LOC. In regular BASIC, LOC returns either a byte offset into
a binary or sequential file, or a record number if the file had been opened
for random access. Therefore, the SMALLDOS version of LOC does
not contain the additional code that is needed to return both types of
information. In fact, the primary limitation of the statements and functions
contained in SMALLDOS is the lack of support for random files and
network operation. Also, OPEN FOR APPEND is not supported, and
there are a few minor limitations with PRINT. These will be described
momentarily.

The brief summary in Table II-3 shows which BASIC language statements
are contained in the SMALLDOS.LIB library.

TABLE H-3
BASIC Statements Contained In SMALLDOS.LIB

STATEMENT

CLOSE
INPUT#
LOC

OPEN

PRINT[#]
PRINT[#],

RESET
SEEK

DESCRIPTION

Accepts one and only one file number.
Allows reading strings only.
No support for RANDOM files (always returns a byte
offset).
No support for the ACCESS, APPEND, LOCK, RAN
DOM, or SHARED options.
No support for TAB.
Simply sends a Tab character to the screen or file instead
of padding with the appropriate number of blanks.
No support for RANDOM files.
No support for RANDOM files.

Linking with SMALLDOS is similar to linking with the PDQ386 library.
That is, you must list the SMALLDOS library on your LINK command
line before the PDQ.LIB library file. This is shown below.

LINK /noe/nod program _noread , , nul, smalldos pdq ;

As you can see, you must also link with the_ NO READ. OBJ stub file when
using SMALLDOS. We have provided the SMALLDOS.BAT batch file
to assist you, and you could use that as a model for other batch files as
well.

11111 2- 16 CRESCENT SOFfWARE, INC.

P.D.Q. Version 3.10 Using P.D.Q., Compiling and Linking

IMPORTANT:

You must use the _NOREAD.OBJ stub file when linking with the
SMALLDOS library.

You may not use the _CPRINT.OBJ stub file with SMALLDOS.LIB.

You may not use _SKIPEOF.OBJ with SMALLDOS.LIB.

APPEND
OPEN FOR APPEND is not supported in the SMALLDOS library, merely
to reduce the amount of code that is added to programs that do not need
this feature. However, it is a simple matter to first open a file for BINARY
access, and then SEEK one byte past the end, as shown below.

OPEN FileName$ FOR BINARY AS #1
SEEK #1, LOF(l) + 1
PRINT #1, whatever

CLOSE

'open the file
'seek just past the end
'do whatcha gotta do

'program continues

Regular BASIC and P.D.Q. allow the CLOSE command to be given with
a single file number, multiple numbers separated by commas, or no number
to close all open files. However, the SMALLDOS version requires
one-and only one-file number. To close multiple files you must use
CLOSE once for each, or use the RESET statement to close all files in
one operation. Notice that DOS itself will close all open files when a
program ends, so it is not really necessary to close files before ending a
program. Not using CLOSE will of course save a few bytes in your
programs, because that routine won't be included by LINK.

DATA
The DATA statement is supported in SMALLDOS, but not READ.
Therefore, DATA is useful only for storing text such as a copyright notice
in the .EXE file. However, you may simulate READ and DATA with the
PDQParse routine. Related to PDQ Parse is PDQRestore, and SetDelimit
Char, and these are described separately in the reference portion of this
manual. Notice that you must use the _ NOREAD. OBJ stub file when
linking with the SMALLDOS library.

CRESCENT SOFfWARE, INC. 111112- 17

Using P.D.Q., Compiling and Linking P.D.Q. Version3.l0

GET
The SMALLDOS library does not directly support random access file
operations. Therefore, GET must specify bytes on a binary basis, and it
may not be used with record numbers. However, it is easy to simulate
using GET for random access records, as demonstrated in the RAN
DOM.BAS example program. The SeekLoc function is provided to help
you calculate the binary offset based on the record length and desired
record number.

INPUT
BASIC's INPUT command is not directly supported when the
SMALLDOS library is used. We have therefore provided the PDQinput
routine which uses the built-in DOS command-line editor for entering
strings. As with INKEY$, PDQinput may not be used within a
"simplified" TSR program. You must instead use the BIOSinput or
BIOSlnput2 routines which are similar, and also offer several additional
features.

INPUT#
INPUT# may be used to input only strings from a disk file, and may not
be used with numeric values. Thus, you must input numbers as strings,
and then use VAL (or PDQ Vall or PDQValL) to obtain their value. Notice
that the SMALLDOS version of INPUT # does not recognize a comma
or colon as a text delimiter, and is therefore functionally equivalent to
LINE INPUT#. Also notice that the length of a line being read from disk
is limited to 128 characters. If a line of text in a disk file exceeds this,
then only the first 128 characters will be read and ERR is set to 83. Error
83 is the special P.D.Q. "Buffer too small" error. The remainder of the
line must then be read using a subsequent INPUT # statement. This is
illustrated in the SMALLDOS.BAS example program.

LINE INPUT
LINE INPUT is not supported with the SMALLDOS library. However,
we have provided a similar routine called PDQinput that you may use to
obtain the same functionality.

LINE INPUT#
As with LINE INPUT, the SMALLDOS version does not support the file
version of that statement either-you must use the regular INPUT #

1111 2 - 18 CRESCENT SOFfWARE, INC.

P.D.Q. Version3.10 Using P.D.Q., Compiling and Linking

statement instead. However, INPUT # does not recognize commas or
colons as delimiters in a file, and is therefore functionally equivalent to
LINE INPUT #.

LOCK and UNLOCK
LOCK and UNLOCK are not supported, primarily because the
SMALLDOS version of OPEN does not honor the SHARE or LOCK
READ/WRITE arguments.

OPEN
When using SMALLDOS.LIB, files may be opened for INPUT, OUT
PUT, and BINARY modes only, and the older BASICA-style syntax is not
supported. For example, to open a file for input you must use the first
example shown below, but not the second.

OPEN FileName$ FOR INPUT AS #1 'this is supported in SMALLDOS
OPEN "i", 1, FileName$ 'this is not supported

Finally, the SMALLDOS version of OPEN should not be used with a file
name comprised of concatenated strings, as shown below:

OPEN Drive$+":"+ FileName$ 'don't do this

Instead you must create a temporary variable first, and then use that with
OPEN. Concatenated strings passed to OPEN are never deleted, and will
thus take string memory permanently. Further, the SMALLDOS version
of OPEN does not trap against inadvertently using the same file number
more than once. If you use OPEN "XYZ" FOR OUTPUT AS #1 and
then OPEN "ABC" FOR INPUT AS #1, your program will not function
correctly and no error will be reported.

The network options ACCESS, LOCK READ/WRITE, and SHARED are
not supported by the SMALLDOS version of OPEN.

Please see the RANDOM.BAS program for an example of manipulating
random access files by record number using TYPE variables.

PRINT and PRINT#
When linking with SMALLDOS.LIB you may not use the TAB function
to advance to a specified column on the display screen or in a file. Further,
using a trailing comma (as in PRINT X,) is useful only when printing to
the screen, because the SMALLDOS version of PRINT merely sends a

CRESCENT SOFfWARE, INC. 11112- 19

Using P.D.Q., Compiling and Linking P.D.Q. Version 3.10

CHR$(9) Tab character after printing the variable or data. Although DOS
will expand the Tab to advance the cursor to the next eighth column on
the screen, it does not do this when printing to disk files. Also, be aware
that the regular BASIC and P.D.Q. PRINT statements consider Tab "print
zones" to be fourteen columns wide rather than only eight.

TAB
TAB is not supported when linking with the SMALLDOS.LIB library, and
attempting to use TAB will result in LINK errors. Also see the preceding
section on PRINT.

1111 2-20 CRESCENT SOFfWARE, INC.

Chapter 3: File And Error Handling
11111 11111 II

P.D.Q. Version3.10 Using P.D.Q., File and Error Handling

File Handling In P.D.Q.

For the most part, file operations in a P.D.Q. program are identical to
those in a conventional QuickBASIC program. However, there are a few
important differences which are outlined in this section.

Error Handling
Perhaps most important, normal DOS errors such as "File not found" and
"Bad file mode" do not end the program abruptly. Rather, the P.D.Q.
routines that open a file, change directories, and so forth merely set
BASIC's ERR function to the appropriate value. This lets you test the
success or failure of the most recent operation by examining ERR. Some
typical examples are shown below.

OPEN FileName$ FOR INPUT AS #1
IF ERR = 53 THEN

PRINT "Fi le not found"
END

END IF

OPEN FileName$ FOR OUTPUT AS #1
FOR X = 1 To Numlines

PRINT #1, Lines$(X)
IF ERR= 61 THEN

PRINT "Disk full"
END

END IF
NEXT

In practice, you would probably use PDQMessage$ to print the errors.
This way you do not have to test for explicit error values and have many
separate PRINT statements. PDQ Message contains the text of all possible
messages stored in the code segment, which frees up that much more string
memory for your program. You could also use a GOSUB statement after
selected file operations to invoke a central error checking routine. A
typical example would be as follows:

OPEN FileName$ FOR OUTPUT AS #1
GOSUB CheckErr
FOR X = 1 TO Numlines

PRINT #1, Array$(X)
GOSUB CheckErr

NEXT
CLOSE #1

Regular BASIC requires you to use ON ERROR prior to any file operations
that may result in an error. Unfortunately, using ON ERROR makes your
programs larger and slower. Worse still, it is up to you to design a central
error handler that receives control when an error occurs, and from there
figure out what part of the program was active at the time the error

CRESCENT SOFfWARE, INC. 11111 3 - 1

Using P.D.Q., File and Error Handling P.D.Q. Version3.10

occurred. The method P.D.Q. uses is the same as that of C, Pascal, and
indeed, DOS itself.

Critical errors, however, normally result in the infamous "Abort, Retry,
Ignore" message unless special precautions are taken. For many DOS
utility programs this is sensible, and is generally preferable to what regular
BASIC does when ON ERROR is not in effect. That is, rather than simply
print "Disk not ready in module xyz" and then end the program, P.D.Q.
at least gives the user a chance to retry the operation.

Critical errors in a P.D. Q. program may be prevented by using CritErrOff,
and then reenabled again afterward with CritErrOn. CritErrOff should
be called prior to performing a DOS operation that may fail due to an open
drive door. Similarly, CritErrOn reenables the DOS critical error handler
afterward. If an error does occur while CritErrOff is in effect, BASIC's
ERR function will be set to indicate which error. If you use CritErrOff,
it is essential that CritErrOn be called to restore the critical error handler
to its original state before the program ends.

Other DOS errors may also be trapped by examining BASIC's ERR
function. All DOS-related errors are represented using the 11 codes
shown in Table 111-1.

Note that error number 71 will never occur unless critical error trapping
has been activated using the CritErrOff routine. Also note that error 83
is reported only when linking with the SMALLDOS library.

11111 3-2 CRESCENT SOFTWARE, INC.

P.D.Q. Version 3.10

NUMBER

52

53

54

55

61

62

67

71

75

76

83

Using P.D.Q., File and Error Handling

Table IIl-1
P.D.Q. DOS-Related Error Codes

MEANING

Bad file number

File not found

Bad file mode

File already open

Disk full

Input past end

Too many files

Disk not ready

Path/File access

Path not found

Buffer too small

POSSIBLE CAUSE

PRINT #n, where "n" hasn't been opened

OPEN "xxx" AS #n, where n is greater
than 15.

OPEN "xxx" FOR INPUT where "xxx"
doesn't exist.

BLOAD "xxx" where "xxx" doesn't exist.

NAME "xxx" AS "yyy" where "xxx"
doesn't exist.

PRINT #1, where the file was opened for
INPUT.

OPEN #1, where #1 is already in use.

PRINT #1, PUT #1, or BSAVE to a full
disk.

INPUT # past the end of the file.

All 15 DOS file handles are already in use.

(CritErrOff only) Any DOS operation
when the drive door is open.

LPRINT or PRINT # to a printer that is
turned off or off-line.

OPEN "xxx" FOR OUTPUT where
"xxx" is read-only.

NAME "xxx" AS "yyy" where "yyy"
already exists.

OPEN a file in a non-existent directory.

(SMALLDOS only) INPUT # when the
string is longer than 128 characters.

CRESCENT SOFTWARE, INC. 1111 3 - 3

Using P.D.Q., File and Error Handling P.D.Q. Version3.10

Understand that P.D.Q. does not attempt to totally decipher all possible
error conditions. For example, trying to rename a file to a new name that
already exists results in a Path/File Access error. But this error is also
generated by DOS if your program tries to open a read-only file for output.
Also, notice that a successful DOS operation will clear a previous ERR
setting, so you must save the ERR variable if you do not intend to test it
until later. This is shown in the example that follows.

OPEN "xyz" FOR INPUT AS #1
SaveErr = ERR
PRINT #2, "Have a nice day"

CHOIR "\"
IF SaveErr THEN ...

File Numbers

'let's suppose the file isn't there
'save the error code
'a successful PRINT to a different
' file clears the previous error
'this will also be successful
'now act on the possible OPEN error

Valid numbers for OPEN and CLOSE are 1 through 15 inclusive. Even
though regular BASIC lets you specify any number between 1 and 255, a
translation table must be maintained that holds each possible file number.
DOS allows only 15 files to be opened at one time in most situations
anyway, so this limitation is insignificant.

Although BASIC allows you to decide which numbers will be used to refer
to the various files that are opened, internally it is really DOS that issues
the file handles. Therefore, BASIC (and thus P.D.Q.) must translate the
numbers you choose to the values that DOS assigned when the file was
first opened.

Legal File Operations
Unlike QuickBASIC, P.D. Q. lets you perform nearly any file operation on
any file, regardless of how it was opened. The only exception is when a
file has been opened for INPUT, DOS itself prevents writing to it. In this
case, P.D.Q. sets the ERR function to error 75, "Path/file access error".
This is different from BASIC which issues a "Bad file mode" error.

As with regular BASIC, if you open a file for OUTPUT it is either created
if it didn't already exist, or truncated to a length of zero if it did. However,
if a file has been opened for OUTPUT you may freely write to or read
from the file. Opening a file for BINARY also gives you both read and
write access, but without truncating the file to a length of zero.

DOS Devices
Like regular BASIC, P.D.Q. lets you open any of the DOS logical devices,
as well as normal disk files. For example, OPEN "LPTl" FOR OUTPUT

11!1 3 - 4 CRESCENT SOFrWARE, INC.

P.D.Q. Version3.10 Using P.D.Q., File and Error Handling

is perfectly legal, although you must not include a colon after the 1 (or 2)
as you would with regular BASIC. One reason for opening the printer
rather than using LPRINT is to defer selection of the print destination until
the program runs.

For example, many programs offer an option to output to the screen, the
printer, or a disk file. Thus, you could assign a string variable to "CON",
"LPTl", or a file name, and then use the same block of code to open
whatever was specified and send its output there.

Table III-2 shows the device names you can specify in a P.D.Q. OPEN
statement.

Table HI-2
Valid DOS Devices In P.D.Q.

OPEN FOR OUTPUT
AUX
CON
LPTl
LPT2
LPT3
PRN

OPEN FOR INPUT
AUX
CON

Finally, the reserved PRINT number 255 sends its output to the DOS
STDERR (standard error) device. You do not have to OPEN #255 before
printing to it, and doing so will set ERR to 52, which is the "Bad file
number" error. STDERR is always the console (screen), even if a
program's output has been redirected. Thus, you can use PRINT #255 to
print error or other messages, confident that they will be visible.

CRESCENT SOFrWARE, INC. 111 3 - 5

Chapter 4: TSR Programming
1111 II 11111

P.D.Q. Version 3.10 Using P.D.Q., TSR Programming

One of the most powerful and exciting capabilities of P.D.Q. is its built-in
support for TSR programming. This section describes all of the steps
necessary to create any type of TSR program, from simple pop-up utility
programs to full-blown interrupt handlers. TSR programs written using
P.D.Q. are as safe and reliable as any commercially available, as long as
you follow a few simple rules. Writing a reliable TSR program is normally
very difficult; however, we have done all of the hard parts for you!

There are two basic types of TSR programs that may be written using
P.D.Q. The first is the easiest to implement-you simply specify the hot
key to use for popping up, and the location in your program to execute
each time that key is detected. The second type of TSR requires only a
little more effo1t, however any interrupt or combination of interrupts may
be intercepted within a single program. A third type of TSR combines
the two methods letting you take over interrupts manually, and also perform
safe file operations. We'll discuss the simplified method first.

Notice that this section provides an overview of the concepts involved in
creating TSR programs using P.D.Q. You should refer to the individual
routine descriptions for the exact calling syntax. Many working example
programs are included on the P.D.Q. distribution disk, and you should
examine these as well. Also, be sure to see the section entitled Linking
With Stub Files, which describes how to reduce the runtime memory
requirements of a TSR program.

Simplified Pop-Ups

TSR programs that use a single hot key as a trigger may be written using
what we call the simplified TSR method. That is, you issue a call
indicating which hot key to detect and where to go when that key is pressed,
and the appropriate P.D.Q. routines do the rest. For this type of TSR
program, three different routines are used.

The first is PopUpHere, which requires a numeric code that represents
the desired hot key and a unique identifying string. The numeric key code
is comprised of two parts-a scan code which specifies the hot key itself,
and a shift mask that indicates which combination of Alt, Ctrl, and Shift
keys are recognized. A table of keyboard scan codes and shift masks is
shown in the section that follows. The unique identification string is
described in the section following this one.

The second routine is PopDown, and it is called when your program is
ready to return control to the underlying application.

CRESCENT SOFfWARE, INC. 1111 4 - 1

Using P.D.Q., TSR Programming P.D.Q. Version 3.10

The third routine is EndTSR. It is called as part of the install sequence,
and it returns control to DOS allowing other programs to be subsequently
run. EndTSR also expects the unique identification string as a parameter,
so it can determine if the program has already been loaded into memory.
This lets you prevent a novice user from attempting to install the same
TSR program twice. Notice that the call to EndTSR must be the last
statement in your program.

A fourth routine, PopDeinstall, may optionally be used within a simplified
TSR program, and it lets a program remove itself from memory.

The brief program skeleton below shows the minimum steps necessary to
create a simplified pop-up TSR program.

DEFINT A-Z
ID$= "My TSR program Vl.O"
PRINT ID$

HotKey = &H81F
CALL PopUpHere(HotKey, ID$)
GOTO End!t

'all integers, please
'every program needs a unique ID
'we might as well use the
' sign-on message
'Alt-S
'specify the hot key
'skip over the hot key handler

'the actual program goes here,
' and it is executed whenever
' the hot key is pressed

CALL PopDown 'return to the underlying application
Endlt:

CALL EndTSR(ID$) 'install as a TSR and return to DOS

Each time the specified hot key is pressed, the code that immediately
follows the line containing the Garo will be executed. It is imperative
that you follow this sequence exactly, using a Garo as the only line after
the call to PopUpHere. Of course, you may print a sign-on or copyright
message before calling PopUpHere, and perform any other necessary
initialization. This code could also be placed after the Endlt: label, but
before the call to EndTSR.

Internally, PopUpHere retrieves the address in your BASIC program that
follows the CALL statement. Then, knowing that a Garo follows, it adds
the correct number of bytes (three) to obtain the address to jump to when
the hot key has been detected.

Restrictions
You may use almost any BASIC statements that are supported by P.D.Q.
within the body of the TSR; however, you must call PopDown when you
are finished and want to return to the underlying application. The only
statements that may not be used in a simplified TSR are INKEY$,

1111 4- 2 CRESCENT SOFfWARE, INC.

P.D.Q. Version 3.10 Using P.D.Q., TSR Programming

PDQinkey and PDQinput, and the console (keyboard) versions ofINPUT
and LINE INPUT.

INPUT # and LINE INPUT # are allowable in a TSR, but you must use
BIOSinkey and BIOSinput instead of INKEY$ and INPUT. If you prefer
not to change existing source code, you may optionally use the
_INKEY$.OBJ stub file, which redirects INKEY$ to use the BIOS instead
of DOS.

Critical Errors
If you intend to perform file operations, we strongly suggest that you use
the CritErrOn and CritErrOff routines. CritErrOn is needed to prevent
an error caused by an open drive door from affecting the other program.
These routines are described elsewhere in this manual.

Memory Allocation And Dynamic Arrays
One important point to be aware of is a small restriction on using dynamic
arrays in a TSR program. P.D.Q. uses the standard DOS memory
allocation services to set aside memory for dynamic (far) arrays. But most
applications claim all available memory when they load, thereby prevent
ing a TSR program from allocating additional memory for itself when it
pops up or receives control through a system interrupt. Therefore, you
must dimension all dynamic arrays before your program calls EndTSR to
terminate and stay resident. The same is true if you are using the
AllocMem routine to allocate DOS memory. You must use AllocMem
before calling EndTSR.

Note that this restriction does not affect conventional (not fixed-length)
string arrays. These arrays are stored in the P.D.Q. string pool, and that
memory is contained with the program when it loads and stays resident.

TSR Programs That Swap To Disk Or EMS

One of the most powerful capabilities P.D. Q. offers is the ability to create
large TSR programs that require very little memory when they are idle.
Where most TSR programs remain fully in memory even while they are
not being used, P.D. Q. provides a special "swapping" option that lets your
programs reside on disk or in expanded memory when they are inactive.
All that remains in memory between popups is a tiny "code kernel" that
occupies a very small amount of memory.

This feature is called swapping because the underlying program is save:<l
from memory each time the hot key is pressed, and your TSR program is

CRESCENT SOFrWARE, INC. Ill 4-3

Using P.D.Q., TSR Programming P.D.Q. Version 3.10

then loaded in its place. Thus, your program and the underlying program
are exchanged, or swapped, in memory. This process is similar to using
program overlays, whereby different portions of a single program occupy
the same area of memory but at different times.

Please understand that swapping is supported in "simplified" popup TSR
programs only. However, it is possible to cause a program to pop up using
CALL INTERRUPT from another program-even from another TSR that
takes over interrupts manually-and this will be described later in this
section.

TSR programs may be swapped to either expanded memory (EMS) or a
disk file. Since expanded memory can be accessed much more quickly
than a disk drive, this is the preferred method. If you know that expanded
memory will not be available when your program is run, you can save a
small amount of code by using only the disk swapping routine. Likewise,
if you are certain that sufficient expanded memory is available you can use
that routine only, and avoid adding the code that handles swapping to a
disk file. Otherwise, you will probably want your program to decide at
runtime which storage method is available.

Adding the swapping capability to a TSR popup program requires only
two simple steps:

• You must link with the POP SWAP. OBJ stub file, listing that as the
first object file on the LINK command line.

• You must call either Swap2Disk or Swap2EMS, before calling
EndTSR to end your program and leave it resident in memory.

Again, you will probably want to swap to EMS if it is available, and use
a disk file as a second choice. However, it is also possible that there will
be insufficient disk space to allow swapping to disk. In that case swapping
cannot be used at all. Therefore, you should request each method in turn
just before calling EndTSR, like this:

End It:
IF Swap2EMS%(ProgramID%) THEN

PRINT "Program is installed, swapping is to expanded memory."
ELSEIF Swap2Disk%(SwapFile$, ProgramID%) THEN

PRINT "Program is installed, swapping is to a disk file."
ELSE

PRINT "Program is installed, swapping not enabled."
END IF

1111 4 - 4 CRESCENT SOFfWARE, INC.

P.D.Q. Version 3.10 Using P.D.Q., TSR Programming

CALL EndTSR(ID$)

When your program is first run the swapping routine is installed as a TSR,
leaving only that code in memory. Then, when the hot key is pressed the
current program is swapped out of memory and your TSR is loaded in its
place. When your program calls PopDown the process is reversed.

Swap2Disk requires you to provide the name of the swap file, and a
program ID number which is needed to let the TSR be accessed from
another program. (The program ID number can usually be set to zero,
and it will be described momentarily.) If the file does not exist Swap2Disk
creates it, using a size large enough to hold the in-memory image of your
TSR program's code and data. If the file does exist Swap2Disk ensures
that it is large enough, and extends it if necessary. This would be necessary
when developing a program, and new features have been added since the
last time it was run.

Swap2EMS is similar, except it does not require a file name. Instead of
allocating disk space it tries to locate sufficient expanded memory,
returning either -1 if enough EMS is present or O if EMS is not usable.

Naming The Swap File
When swapping to disk we recommend that you give the swap file the
same name as your main program, but with a .SWP extension. By using
the same name as the main program rather than a fixed name such as
SWAPFILE.DAT, different swapping TSR programs may be installed
simultaneously. You should also specify that the file reside on a local
(non-network) hard disk for best performance. The FNRemovable and
FNRemote functions in the SYSINFO.BAS program show how to deter
mine which disk drives are floppy (removable) and which are on a network
(remote).

If you prefer you may let the user specify the swap file name as a command
line option, and read it using COMMAND$. This would let the person
running the program decide not only the name of the file, but also the
drive and directory. In either case, the file name you pass to Swap2Disk
can include a drive letter and colon, a directory path, or both.

When Swap2Disk is called it also sets BASIC's ERR function to indicate
success or failure. This way you can tell not only if something went wrong,
but also what. If Swap2Disk returns O to indicate failure, then ERR will
be set to one of the three BASIC error codes shown in Table IV-1.
Otherwise ERR is cleared to zero.

CRESCENT SOFfWARE, INC. 1111 4-5

Using P.D.Q., TSR Programming P.D.Q. Version3.10

TABLE IV-1
BASIC ERR Codes Set By Swap2Disk.

61 Disk full
75 Path/file access error
76 Path not found

Be aware that for programs that are swapped to disk, rebooting or turning
off the PC without first deinstalling the program leaves the swap file on
disk. Of course, the same file will be used the next time the program is
run, assuming you specify the same name.

Deinstallation
Deinstalling a swapping TSR is handled the same as for a TSR that doesn't
use swapping, except a program can deinstall itself only while popped
up-you cannot deinstall by running a second copy. PopDeinstall knows
if disk or EMS swapping has been employed, and if so erases the disk file
or frees the expanded memory respectively. Either way, deinstallation is
transparent to your program and you don't have to consider which, if either,
swapping method is in use.

Dynamic Memory Allocation
As with non-swapping TSR programs, you may not allocate DOS memory
once the program has been installed. This applies both to memory that is
allocated manually with the P.D.Q. AllocMem function, and memory that
is claimed implicitly using REDIM with numeric, TYPE, or fixed-length
string arrays. Therefore, it is essential that your program create any such
dynamic arrays it needs, before calling EndTSR to end and stay resident.
Dynamic conventional (not fixed-length) string arrays reside in the P.D.Q.
string pool and do not have this restriction.

Handling Interrupts In A Swapping TSR
Swap2Disk and Swap2EMS are suitable for use only with simplified popup
TSR programs. Further, you may not take over interrupts manually in a
TSR that employs swapping, unless you hook the interrupts within the
popup handler and unhook them again before calling PopDown. However,
you can combine manual interrupt handling and swapping by using a
second TSR program that communicates with the first one. By requiring
two programs for this special case we are able to keep the resident code
kernel as small as possible.

1111 4-6 CRESCENT SOFfWARE, INC.

P.D.Q. Version 3.10 Using P.D.Q., TSR Programming

To tell a swapping TSR that it is to pop up, use CALL INTERRUPT
specifying interrupt &HAA with a program ID number in the AX register
and the number of ticks to try to pop up for in CX. This number is
equivalent to the NumTicks argument used with PopRequest. Since all
P.D.Q. swapping programs use this interrupt, you need to identify which
is to be popped up in case more than one is loaded. This is the purpose
of the ProgramID % parameter that is passed to Swap2Disk and
Swap2EMS, and it must agree with the number in Registers.AX when you
use CALL INTERRUPT from another program.

If only one swapping TSR will be accessed with CALL INTERRUPT, you
can use a value of zero for the program ID variable both when calling
Swap2Disk or Swap2EMS and when assigning Registers.AX. But it is
also possible that you will want to have more than one swapping TSR
dormant, and be able to specify which is to be activated with CALL
INTERRUPT.

For example, you could have a communications program that needs to be
popped up at midnight when phone rates are lower, and another program
that pops up in response to an incoming RING command from a modem.
In this case the communications program and the timer interrupt handler
would use one program ID number, and the phone answering program and
the modem handler using another. As with programs that use PopUpHere,
you may optionally specify a hot key of zero to prevent someone from
popping up the program that way.

Communicating With A Swapped TSR
Besides specifying the program ID number in AX and the number of
system timer ticks to try to pop up for in CX, you may also pass an
additional integer parameter to a swapping TSR in BX. You can use this
parameter for any purpose; for example, to tell the TSR program to
de install itself. Whatever value was in the BX register when CALL
INTERRUPT was used is available within the TSR via the SwapCode
function. The following examples show this in context.

To invoke a swapping TSR from another program use CALL INTERRUPT
as follows:

DIM Registers AS RegType
Registers.AX= 0 'pop up the program whose ID is 0
Registers.BX= 1 'pass it a parameter value of 1
Registers.CX = 18 'try to pop up for one second
CALL INTERRUPT{&HAA, Registers)

CRESCENT SOFfWARE, INC. 11111 4- 7

Using P.D.Q., TSR Programming P.D.Q. Version 3.10

Then within the swapping 1SR you can retrieve the parameter passed in
BX using the SwapCode function. This example uses a code value of 1
to indicate that the program is to deinstall itself:

Parameter= SwapCode%
IF Parameter= 1 THEN

Success= PopDeinstall%(DGroup%, 10$)
CALL PopOown

END IF

IMPORTANT:

Be careful not to call Interrupt &HAA if no swapping TSR programs are
loaded. Since this interrupt is normally uninitialized (the segment is set
to zero by default), calling it will likely hang the PC. You can easily test
if the segment pointed to by Interrupt &HAA is zero like this:

DEF SEG = D
IF PDQPeek2%(&HAA * 4 + 2) THEN

'it is okay to call this interrupt
ELSE

'the interrupt is invalid, do not call it!
END IF

Please see the DEMOSWAP.BAS demonstration program for a complete
working example of a popup TSR program that swaps to either EMS or
disk.

The Unique Identification String

Every P.D.Q. TSR program must define a unique identification string,
which is used by PopUpHere, EndTSR, and 1SRinstalled to determine if
the program is already loaded into memory. This string must be at least
8 characters long, simply to ensure that the same bytes won't be found in
memory by coincidence.

The simplest way for a program to know for certain if it is already installed
is to search all of memory for a copy of itself. The routines that do this
in P.D.Q. begin at the bottom of memory that immediately follows DOS,
and search successively higher addresses until the ID string is located.

If the code segment and address where the ID string is found is the same
as the current code segment, then the program has "found" itself, and no
other copies are already resident. (This is why the string must not be
allowed to move. Instead of having to search all memory address, all that
is needed is to search a single address in all possible segments.) If the
ID$ is found in a lower segment, then that copy of the program was loaded
first, and this is an attempt at re-installation.

11111 4- 8 CRESCENT SOFI'WARE, INC.

P.D.Q. Version 3.10 Using P.D.Q., TSR Programming

We recommend that you use the program name and version number when
defining the ID string. For example, ID$ = "My TSR version 2.03".
This greatly minimizes the likelihood of inadvertently creating two dif
ferent programs with the same ID string. Note that only the first 16
characters of ID$ are used when searching for a match in memory.

You should not use the identification string after it has been passed to
EndTSR. As part of its own initialization, EndTSR modifies the first
character in the string. Therefore, you must not change it once your
program has become resident. If the string were not modified,
TSRinstalled could possibly find it in a DOS file buffer. All programs
that are loaded into memory pass through these buffers, and it is possible
that a copy of the string is still present there. This would confuse
TSRinstalled into thinking that the program was already resident.

Of course, it is not necessary for you to understand how the ID$ is
processed internally, and this information is provided solely for those who
are interested. All you need to remember are the following three rules:

1. Create a unique string that is at least eight characters long and
is not fixed length.

2. Define the string before any other string variables or functions
are referenced.

3. Do not use the string after calling EndTSR.

Specifying The Hot Key

The hot key is specified in two portions-a shift mask and a scan code.
The easiest way to indicate the hot key is by using an "&H" value, since
the high and low byte portions of an integer variable can be manipulated
separately. The code fragment below uses Alt-S as the hot key.

HotKey = &H081F

In this example, 08 is the shift mask for Alt, and lF is the scan code for
the "S" key.

The shift mask portion of the key code is derived as shown in Table IV-2.

CRESCENT SOFfWARE, INC. II 4- 9

11111

"" -0

(')
~
f;l
(')

~
(/J

0

j
~

TSR
Programming

B ~ tJEJEJEJ ltJtt]t] nlrnD
• 2!J

, .. -·
Up

0,, End
.... ·-

Ctr1 EttJ
!Figure I: Hexadecimal, Keyboard Scan Codes

- I """ 45

747 848 -· I

4~ 5,ic -
HF 250
End I

0 52 ..

* -
949
•• u,

6~ +
-
351
•• 0,

"''" 5J
0,,

C: .,
s·
.,,
b
i:::)
...,
(/J

~

l
i .
~

.,,
b
i:::)

<
(1>,
s·
::,
<,>

0

P.D.Q. Version 3.10

Table IV-2
Shift Mask Values

8 = Alt
4 = Ctrl
2 = Left Shift
1 = Right Shift

Using P.D.Q., TSR Programming

You may also use OR to combine the various components. For example,
to detect Ctrl-Alt-S the upper portion of the key code would be 8 OR 4
which equals 12 decimal, or 0C Hex. Therefore, the correct key code for
Ctrl-Alt-S is &H0ClF.

A listing of keyboard scan codes is shown in Figure 1. Notice that in most
cases, the scan codes are identical for all variations of the IBM PC
keyboard and its clones. However, some keyboards such as the 101-key
models have slight differences on some keys. The scan codes shown below
apply to all keyboards, and we have purposely omitted showing those codes
that are not the same on all keyboards. We recommend using only those
keys that produce the same scan codes regardless of the type of keyboard
being used.

Hexadecimal notation is used, because that is the simplest way to specify
the scan code when calling PopUpHere and TestHotKey.

Detecting Installation And
Deinstalling

One of the most useful features we have provided with P.D. Q. is the ability
to remove a TSR program from memory. Two options are provided-the
first allows one copy of a program to deinstall another, earlier copy. The
second lets a program remove itself from memory.

Many TSR programs accept a command-line parameter such as /U, to
indicate that the program is to be uninstalled. In that case, you are actually
running a second copy of the program, and asking it to remove the copy
that was installed earlier. However, it is also possible to have a TSR
program remove itself from memory. For example, this could be a menu
option selected from within the program. These two methods obviously
require very different code internally to implement. Fortunately, the
P.D.Q. routines shield you from much of the messy details.

Any P.D.Q. TSR program that will be deinstalled must invoke the
TSRinstalled function early in its execution, and save the value it returns

CRESCENT SOFrWARE, INC. 114-11

Using P.D.Q., TSR Programming P.D.Q. Version3.10

before calling EndTSR. If TSRinstalled returns zero, then the program
has not yet been installed and it is safe to do so. If, however, TSRinstalled
returns any other value, then that value is the DGROUP data segment
being used by the resident copy of the program. The TEMPLATE.BAS
example program shows how to detect prior installation and also how to
remove a previously loaded copy.

With TSR programs that use a command line switch to indicate deinstal
lation, you would use the non-zero segment value that TSRinstalled returns
to indicate that the previous copy is to be removed from memory. If a
program is going to remove itself from memory, then you would instead
use a value of zero for DGROUP. The appropriate logic for installing,
detecting installation, and de-installing both types of TSR is shown next.

Remove a previous copy via a command-line switch:
DGroup% = TSRinstalled%(ID$) 'see if we're already installed
IF INSTR(COMMAND$, "/u") THEN 'see if they want to deinstall

IF DGroup% THEN 'we're already installed
Okay%= PopDeinstall%(DGroup%, ID$) 'try to deinstall
IF NOT Okay% THEN 'if not successful then say so

PRINT "Unable to deinstall. Reboot now!"
ELSE 'otherwise report success

PR INT "Program successfully removed."
END IF

ELSE 'DGroup% was 0, not installed
PRINT "Program is not resident, try again without /u."

END IF
END

ELSE
IF DGroup% THEN

PRINT "Program already
END

END IF
END IF

'either way end the program
'they're not deinstalling
'if we're already installed

Installed, press the hot key."
'say so and end

CALL PopUpHere(HotKey%, ID$)
GOTO Endlt

'Install the program
'skip to the end to terminate

'the pop-up handler goes here

Endit:
CALL EndTSR(ID$) 'terminate and stay resident

Remove the current copy via a menu choice:

1111 4- 12

DGroup% = TSRinstalled%(ID$)
IF DGroup% THEN

PRINT "Already installed!"
END

ELSE
CALL PopUpHere(HotKey%, ID$)
GOTO Endlt

'see if we're already resident
' early in the program
'yes, say so and end

'no, install ourselves here
'skip to the end to terminate

CRESCENT SOFfWARE, INC.

P.D.Q. Version 3.10 Using P.D.Q., TSR Programming

GOTO Main
END IF

'jump into the pop-up handler

'show your menu here

IF MenuChoice% = Quit% THEN 'do they want to deinstall?
Okay%= PopDeinstall%(0, ID$) 'yes, try to do that
IF NOT Okay% THEN 'if not successful say so

PRINT "Unable to deinstall, reboot now!"
ELSE 'otherwise report success

PRINT "Program successfully removed."
END IF

END IF
CALL PopDown

Main:

'either way, pop down

'the pop-up handler goes here

Endit:
CALL EndTSR(ID$) 'terminate and stay resident

Advanced TSR Applications

Besides the simplified pop-up method, P.D.Q. TSR programs may also
intercept one or more interrupts directly. This is slightly more difficult
than using the simplified method, because it is up to you to determine
which DOS and BIOS services are "safe" to call. This is especially true
for programs that intercept a hardware interrupt such as keyboard Interrupt
9, because that interrupt could occur at any time-even when DOS is in
the middle of an operation. Because DOS is not reentrant, you are not
allowed to call a DOS service when DOS is already busy servicing another
request.

For example, if a DOS service called by the underlying program is
currently in progress and your program is invoked by someone pressing
a hot-key, using PRINT or OPEN is guaranteed to cause a crash.
Likewise, when a TSR program interrupts a BIOS service while it is
executing, that same service may not be called again by your program.

Unless your program is extremely simple, or does not use any BASIC
statements that call DOS or the BIOS, we strongly recommend that you
use the simplified method when writing pop-up keyboard handlers.
However, several example programs are provided with P.D.Q. that show
the steps necessary to create completely safe "manual" TSR programs.

It is important to point out that the various P. D. Q. interrupt handling
routines may also be used in non-TSR programs. For example, you could

CRESCENT SOFfWARE, INC. 1111 4- 13

Using P.D.Q., TSR Programming P.D.Q. Version3.10

create a subroutine that receives control each time the system timer
interrupt is generated, thus simulating BASIC's ON TIMER feature. Of
course, it is imperative that the interrupt be deinstalled with the Unhooklnt
routine before your program is allowed to terminate. This technique is
illustrated in the ONTIMER.BAS example program. Also see the section
P.D. Q. Runtime Reentrance for a discussion of potential problems when
handling interrupts manually this way.

P.D.Q. Interrupt Handling Services
Several routines are provided with P.D.Q. to support interrupt handling,
and each of these will be described in turn. For every interrupt that your
program will handle, an 18-element TYPE variable must be defined. This
TYPE variable is used to hold the contents of the processor's registers, as
well as the address and segment to use if the original interrupt is accessed.
Let's begin by examining each of the P.D.Q. interrupt routines.

The first is PointlntHere, and like PopUpHere it indicates where in your
program execution is to go when the specified interrupt occurs. Also like
PopUpHere, a call to PointlntHere must be immediately followed by a
Garo. The next program statement then receives control each time the
specified interrupt occurs. Please understand that any interrupts you
intercept with PointlntHere must be unhooked later, if you intend to remove
the TSR program from memory. For interrupt handlers that are not
resident, you must unhook the interrupts before ending. The Unhooklnt
routine is meant for this purpose, and it will be described in a moment.

The next two routines are IntEntry 1 and IntEntry2, and these must be the
very first two statements in the body of the BASIC interrupt handler code.
These routines copy the current register values into the Registers TYPE
variable, so they may be examined and set by your program. Each time
a program receives control through an interrupt, it must immediately call
IntEntryl and IntEntry2.

IntEntryl simply saves the current value of the AX register and establishes
"DGROUP addressability", so variables within the TSR program may be
accessed correctly. IntEntry2 copies the remaining register values into the
TYPE variable, and jumps to the correct location in the BASIC program.

lntEntry2 also expects an "Action" parameter, which tells it what to do if
another interrupt occurs before you have finished processing the first one.
There are two options: pass control on to the original interrupt handler,
or ignore the interrupt entirely and simply return to the caller. The only
situation in which a second interrupt could occur like this is when trapping

1111 4- 14 CRESCENT SOFTWARE, INC.

P.D.Q. Version 3.10 Using P.D.Q., TSR Programming

hardware interrupts such as the timer tick or the keyboard or communica
tions interrupts.

While your program is handling the interrupt, it may call one of the three
P.D.Q. routines. The first is GotoOldint, which passes control to the
original interrupt handler. GotoOldint is used when you are intercepting
only certain services, and the current service is not one of those. In that
case you would want to pass control on to the original (or subsequent)
handler. For example, if you are intercepting DOS interrupt 21h and care
only about, say, service 4Eh, then you would call GotoOldint for all of the
other services so DOS will handle them. Notice that a call to GotoOldint
does not return to your program.

The second routine is CallOldint, and it lets you call the original interrupt
as a subroutine and then receive control again when it has finished. This
would be useful when intercepting the printer interrupt, perhaps to test the
success of the last print attempt.

The last interrupt handling routine is ReturnFromint, which returns
control to the underlying application. ReturnFromint would be used when
your program has processed the interrupt entirely by itself, and no further
action is needed by the original handler. That is, you will use Return
Fromint when you do not call GotoOldint.

Related Routines
Besides the three core interrupt handling routines, there are several other
related routines. One of these is Unhookint, which lets you remove a
P.D.Q. program from an interrupt chain. Unhooklnt is designed as a
function and it returns a flag that indicates if it was successful.

Please understand that if another TSR program has been loaded after yours,
it is possible-even likely-that it has taken over the same interrupts that
you have. In that event there is no reasonable way to remove your program
from the interrupt chain, unless the other program is removed first.
Likewise, if you intend to load and deinstall multiple TSR programs
yourself, you must remove them in the reverse order from which they were
installed. This has nothing to do with P.D.Q. and the same rules apply to
all TSR programs that take over interrupts.

The next two related routines are TestHotKey and ResetKeyboard, and
these are used in programs that handle the keyboard Interrupt 9 directly.
TestHotKey lets your program quickly determine if the current key press
is one your program plans to act upon. If it is, then ResetKeyboard should

CRESCENT SOFfWARE, INC. 11114- 15

Using P.D.Q., TSR Programming P.D.Q. Version 3.10

also be called, to reset the keyboard hardware and interrupt controller
chip.

Again, you don't need to know the actual details within these routines,
only the sequence in which they must be called. TestHotKey and
ResetKeyboard are shown in the HIGUY.BAS demonstration program.
Also see the section in the manual that describes TestHotKey for an
example showing how to read the key from the keyboard hardware directly.

The next two P.D.Q. TSR routines are TSRinstalled and Deinstallt'SR.
TSRinstalled, described previously, lets you determine if a TSR program
is already resident, and it was already described. DeinstallTSR is similar
to PopDeinstall, and it is meant to remove a TSR that does not use
PopUpHere from memory. As with the "simplified" P.D.Q. TSR
programs, if you intend to remove the TSR from memory you must invoke
TSRinstalled as one of the first steps in your program before calling
EndTSR. TSRinstalled returns the current DGROUP segment value,
which allows DeinstallTSR to locate the program to remove. This is
exactly the same as when detecting and removing simplified TSR
programs, as described earlier.

Unlike the simplified method, though, it is up to you to determine when
it is safe to call DeinstallTSR. This is the purpose of the last function,
DOSBusy. DOSBusy reports if any DOS interrupts are currently in
progress, which would preclude DeinstallTSR from being used. Please
notice that like TSRinstalled, you must invoke DOSBusy once in your
program before it calls EndTSR to terminate and stay resident. Also notice
that programs that are deinstalled by running a second copy do not need
to bother with DOSBusy. This is shown in the DOSWATCH example
program. For programs that will be deinstalled from the DOS command
line, it is not necessary to use DOSBusy.

Resetting The 8259 PIC
Finally, if you have a program that intercepts a hardware interrupt and it
handles the interrupt entirely by itself, you must reset the 8259 Program
mable Interrupt Controller chip (PIC) at some point in your intem1pt
handling code. This is easily done with an OUT statement as shown below.

OUT &H20, &H20

This is not needed if the program subsequently uses CallOldlnt or
GotoOldlnt, because the original interrupt handler undoubtedly has code
to do this already.

1111 4- 16 CRESCENT SOFfWARE, INC.

P.D.Q. Version 3.10 Using P.D.Q., TSR Programming

The Registers TYPE Variable

For every interrupt you intend to process, an 18-element TYPE variable
is needed. This variable specifies the interrupt number, and also holds the
current values of the processor registers. Thus, your program may read
these registers when it gets control, and then optionally set them prior to
calling or jumping to the original interrupt handler. This TYPE variable
is shown in Figure 2.

TYPE RegType
AX AS INTEGER
BX AS INTEGER
ex AS INTEGER
DX AS INTEGER
BP AS INTEGER
SI AS INTEGER
DI AS INTEGER
Flags AS INTEGER
OS AS INTEGER
ES AS INTEGER
SS AS INTEGER
SP AS INTEGER
Busy AS INTEGER
Address AS INTEGER
Segment AS INTEGER
ProcAdr AS INTEGER
ProcSeg AS INTEGER
IntNum AS INTEGER

END TYPE
DIM Registers AS RegType

Figure 2: The Registers TYPE valible.

The Busy element is set automatically by IntEntry2, to prevent your
program from entering an endless loop if the same interrupt comes along
before you have finished processing the first one. This could happen only
with hardware interrupts; how the Busy flag is handled depends on the
value you use for Action when IntEntry2 is called. Your programs can
also test the status of the busy flag to prevent reentrance problems, and
this is described in the section P.D. Q. Runtime Reentrance.

The Address and Segment portions of the TYPE variable contain the
address and segment of the original interrupt handler. The ProcAdr and
ProcSeg components hold the address and segment to jump to within the
P.D.Q. interrupt handling program. These are used internally by the
P.D.Q. routines, so GotoOldlnt and CallOldlnt can access the replacement

CRESCENT SOFfWARE, INC. 111114- 17

Using P.D.Q., TSR Programming P.D.Q. Version 3.10

interrupt handler. None of these components are intended to be altered
by your programs, and they are explained solely for completeness.

The IntNum element is meant to be assigned by you, and it specifies which
interrupt is being intercepted. Simply assign Registers.IntNum to the
interrupt number you wish to trap, and then call PointlntHere.

Floating Point Considerations

When writing TSR programs with P.D.Q. it is best to link them with the
_ NOVAL. OBJ stub file, and avoid using BASIC's floating point commands
and functions if possible. Including the floating point library increases
the size of a program; therefore, less memory will be needed for the TSR
if floating point math can be avoided altogether. In many cases this is
easy. For example, if you need to obtain the value of a string such as a
numeric parameter from COMMAND$, you can use PDQValI or PDQ
ValL instead of VAL. Likewise, you can often use long integers and the
P.D.Q. Dollar$ function to simulate fractional values. This is shown in
the PDQCALC.BAS demonstration program.

But when floating point math really is necessary in a P.D.Q. TSR program,
only a few simple steps are needed. However, it is imperative that you
heed these instructions! The discussion that follows explains how floating
point math is handled generally by P. D. Q. (and indeed, by most high-level
languages). First, some background information is presented. Then,
specific instructions show how to safely include floating point operations
in a P.D.Q. TSR program.

Floating Point Interrupts
Floating point operations in most high-level languages are handled through
a system of interrupts. Interrupts provide a simple yet effective way to
invoke code whose address is not known when the program is created, or
whose address changes. This method is also used for accessing DOS and
BIOS services, and is described in the section Using CALL Interrupt
elsewhere in this manual.

Interrupts are also ideal for handling floating point math-a program can
generate an interrupt whenever it needs to perform a floating point
assignment or calculation, and the interrupt will be directed as needed. If
a numeric coprocessor is present, the interrupts are directed to code that
uses it. Otherwise, the same interrupts will instead invoke routines in a
software emulation library.

1111 4- 18 CRESCENT SOFfWARE, INC.

P.D.Q. Version 3.10 Using P.D.Q., TSR Programming

When a P.D.Q. program is first run, code in the startup module calls a
routine named P$HookFP. This routine first checks to see if a coprocessor
is installed in the host PC. If so, it saves the current contents of the floating
point interrupt vectors, and then points those vectors to the P.D. Q. floating
point library routines that use a coprocessor. Otherwise, it directs the
interrupt vectors to the P.D.Q. floating point emulator. This emulator
mimics the behavior of an 80x87 chip with routines written using conven
tional 8088 instructions only. Either way, a public flag variable is set or
cleared so other P.D.Q. routines can know if a coprocessor is present.

Because interrupts are used to invoke floating point operations, there is a
potential for conflict between a P.D.Q. TSR program and a conventional
program running in the foreground. More specifically, to which code do
the interrupts point at any given time? While the foreground program is
active the interrupts must be available, so it can use them if necessary.
But when your TSR program pops up it requires the interrupts to point to
itself. Otherwise, your program's interrupt calls will invoke the routines
in the underlying program's emulator. This will of course destroy any
calculations that were pending when your TSR received control.

Therefore, it is up to you to manually take over and release the floating
point interrupts as part of your program's operation. In fact, besides saving
the interrupts, you must also save the state of the coprocessor if one is
present. Just as your use of another program's emulator will overwrite its
data, so too will interrupting another program's use of a coprocessor.
Fortunately, the 80x87 family includes instructions to save and restore the
entire current context.

Using Floating Point In A TSR
Four routines are provided to let you control where the various floating
point interrupts point to, and when. HookFP and UnhookFP merely claim
and release the floating point interrupt vectors (interrupts &H34 through
&H3C). EnableFP and DisableFP call HookFP and UnhookFP respec
tively, and they also save the state of the coprocessor if one is present. It
is not usually necessary to call HookFP yourself. (If you have looked at
the startup code in PDQ.ASM, note that these routines refer to the same
code as the routines whose names begin with "P$" .)

Because the P.D.Q. startup code calls HookFP initially, you must call
UnhookFP manually before calling EndTSR to terminate and stay resident.
This releases the interrupts for use by other programs that are subsequently
run from the DOS command line. But you must also call EnableFP as the
first action when you pop up, and DisableFP just before calling PopDown.
This directs the interrupts to your program only while it is popped up.

CRESCENT SOFfWARE, INC. II 4 - 19

Using P.D.Q., TSR Programming P.D.Q. Version 3.10

The code fragment that follows is excerpted from the POPUPFP.BAS
example program supplied on the P.D.Q. disk.

CALL PopUpHere(&H819, ID$) 'pop up on Alt-P
GOTO Endlt 'skip over the pop up handler

CALL EnableFP
X! = 1.2
Y! = X! * 3.4
PRINT "You pressed A lt-P"

CALL DisableFP
CALL PopDown

Endlt:
CALL UnHookFP
CALL EndTSR(!D$)

'enable floating point interrupts
'F.P. assignments are now okay
'and so are calculations
'say hello

'always disable before popping down
'pop down

'unhook floating point interrupts
'then end as a TSR

When this program begins the floating point interrupts have already been
taken over. But they are immediately released at the Endlt: label before
the program ends and stays resident. Then when the program pops up,
EnableFP is called. Again, EnableFP takes over the interrupts, and also
saves the current state of the 80x87 if one is present. When the program
is ready to pop down, DisableFP restores the interrupts so the underlying
program can use them, and also restores the state of the coprocessor.

Another reason for manually releasing the interrupts when they are not
being used is to allow for a complete deinstallation. If the floating point
interrupts are pointing to the TSR when PopDeinstall is called, there is no
way for PopDeinstall to know this and also release those interrupts. Since
the interrupts are not taken over except while the TSR is active, a user can
safely deinstall your program at any time.

Floating Point Stub Files
If you link a P.D.Q. TSR program with the _EMONLY.OBJ stub file, the
version of HookFP in that file does not check to see if a coprocessor is
installed. However, interrupt handing code is employed so you must use
UnhookFP, EnableFP, and DisableFP. In truth, you can replace EnableFP
and DisableFP with HookFP and UnhookFP respectively. Since you are
certain that a coprocessor will not be used, there is no need to add the
code and data storage to save and restore its state.

When you use _ 87ONLY. OBJ the version of HookFP contained therein
assumes that a coprocessor is installed, and the emulator code is not added
to your program. But interrupts are still used even when a coprocessor is
present, so you again need U nhookFP, EnableFP, and DisableFP. Further,
EnableFP and DisableFP are required to save and restore the context of
the coprocessor.

1111 4 - 20 CRESCENT SOFfWARE, INC.

P.D.Q. Version 3.10 Using P.D.Q., TSR Programming

Finally, when you link with _NOVAL.OBJ, the empty versions ofHookFP
and UnhookFP it contains simply return immediately without doing
anything at all. Therefore, TSR programs that avoid floating point math
and are linked with _ NOVAL. OBJ do not have to call Unhook.Int,
EnableFP, or DisableFP, nor should they.

Accessing A Resident Program

There may be situations where you want to access data or code in a TSR
program that is already resident. For example, some TSR programs let
you modify their current parameters by running them again with a new
command line. This technique is used in the ENVELOPE.BAS and
PDQBLANK.BAS example programs.

Likewise, you may have code in a TSR that you want to invoke either from
a non-resident program, or from another TSR. For instance, Novell's
Btrieve includes a TSR that is activated by other programs through CALL
INTERRUPT. If you plan to write a TSR that other programs can call in
the same way, you will need to establish a custom interrupt handler in the
TSR, and then use CALL INTERRUPT to access it.

Because TSRinstalled returns the DGROUP segment of a TSR that is
already resident, poking new values into that segment is trivial. The
following example is taken from PDQBLANK.BAS, and shows how a
subsequent copy of that program assigns a new delay time to the currently
resident copy:

Delay= PDQValI%(COMMAND$)
DGroup = TSRinstalled%(ID$)
IF DGroup THEN

DEF SEG = DGroup
CALL PDQPoke2(VARPTR(Delay}, Delay)
END

END IF

'get the delay value
'already resident?
'yes
'access the resident data
'assign the new value
'end this second copy

The beauty and simplicity of this approach is made possible by the fact
that the address of Delay is the same for both the resident copy being
modified, and the currently executing subsequent copy. Therefore, al
though VARPTR(Delay) refers to the address of Delay in the currently
running copy, it is the same as the address for Delay in the resident copy.
Only the segments are different.

Strings may also be assigned, though it is easier if they are fixed-length.
Since conventional strings move around in memory as a program executes,
extra steps are needed to first find the descriptor in the resident copy, and
then read the string data address from the descriptor. Therefore, EN
VELOPE.BAS simply uses a fixed-length string for the file (or device)

CRESCENT SOFTWARE, INC. 11114-21

Using P.D.Q., TSR Programming P.D.Q. Version 3.10

name that is to be reassigned. Here's a code snippet adapted from
ENVELOPE.BAS that shows how to assign new data into a fixed-length
string:

DIM SHARED FileName AS STRING* 40

IF DGroup THEN
DEF SEG = DGroup
Temp= VARPTR(FileName$)
FOR X = 1 TO LEN(FileName$)

Char= MidChar%(FileName$, X)
POKE Temp+ X - 1, Char

NEXT
END IF

'FileName$ never moves

'we're already resident
'access resident DGROUP
'get address of FileName$

'read Char from this copy
'poke into resident copy

Where SADD is used to get the address of a conventional string's data,
VARPTR is meant for use with fixed-length strings. Although MidChar
and POKE are quite efficient, you could also use the P.D.Q. BlockCopy
routine when many bytes of data must be copied.

Accessing code in a TSR is also quite easy, and the only tricky part is
finding an interrupt that is not already in use. The IBM technical reference
manuals list Interrupts &H80 through &HF0 as being reserved for the
BASIC interpreter, so they are probably safe to use. This is especially
true now that GW-BASIC has been replaced by QBasic in DOS 5.

To determine for certain if an interrupt is available you can peek at the
interrupt vector table, to see if a given entry points to an empty handler.
An empty interrupt handler is one that has an Iret (Interrupt Return)
instruction as its first (and thus only) byte of code. A segment and address
value of zero in the interrupt vector table also identifies an unused
interrupt. The FREEINTS.BAS utility program examines every interrupt
in a PC, and reports which are available using these techniques.

P.D.Q. Runtime Reentrance

There are several potential problems that can occur when taking over
interrupts in a P.D.Q. program. As you have already seen, DOS is not
reentrant, and you may not invoke a DOS service when another one may
already be in progress. In a similar vein, the BASIC language routines in
the P.D.Q. runtime library are also not reentrant.

Imagine the situation where a P.D.Q. program is in the middle of using,
say, LEFT$, and a hardware interrupt occurs passing control to another
place in the same program. In this case, the currently executing portion
of the program may not use LEFT$, or any of the internal routines that

11111 4-22 CRESCENT SOFTWARE, INC.

P.D.Q. Version 3.10 Using P.D.Q., TSR Programming

LEFT$ uses. This seriously restricts what you can and cannot do within
a program that takes over hardware interrupts.

The TRAP3.BAS example program shows how to avoid this problem,
using a system of flags. TRAP3.BAS takes over three interrupts, and each
interrupt handler calls PDQPrint to show that it has received control. But
since PDQPrint is not reentrant either, each interrupt handler must test the
other handlers' busy flags, to be sure that PDQPrint wasn't interrupted.
Please understand that this potential problem affects only hardware
interrupts, because software interrupts do not occur asynchronously.

See the header comments in TRAP3.BAS for a more complete discussion
of this issue. Also see the section Using PopRequest that follows, which
discusses interrupt conflicts in terms of the real-world example programs
that are included with P.D.Q.

Using PopRequest
PopRequest is a major and important feature that lets you perform nearly
any DOS or BIOS service from within a manual interrupt handler. Unlike
the simplified pop-up TSR method P.D.Q. provides, manual interrupt
handlers are limited as to what they can do within an Interrupt Service
Routine (ISR).

To use PopRequest you will set up both a simplified PopUpHere hot key
handler, and one or more manual interrupt handlers. The hot key handler
ensures that it is safe to use any DOS service from within your ISR. When
the manual interrupt handler receives control and determines that a file
operation or some other usually forbidden service is needed, it uses
PopRequest to do the actual work of creating a safe environment for those
operations. If you do not want a hot key capability simply specify a key
code of 0, and the user will not be able to invoke the pop-up handling
code.

Understand that invoking PopRequest does not actually send the program
to the hot key handler. Rather, to use protected-mode terminology, it
spawns a thread that launches an independent, asynchronous action. This
thread examines the state of the machine at each timer tick (18.2 times
per second). If and when P.D.Q. determines that it is safe, it jumps into
the hot key handling code. Therefore, PopRequest always returns to your
program immediately, and at some later point in time (usually just a few
milliseconds) the hot key handler will receive control.

This is not unlike BASIC's ON TIMER GOSUB and other ON Event
GOSUB statements, because you in effect say, "Later on, when the time

CRESCENT SOFfWARE, INC. 11114-23

Using P.D.Q., TSR Programming P.D.Q. Version 3.10

is right, GOSUB to that block of code." A special flag variable is also
passed to PopRequest, so your program can determine if it arrived in the
hot key code from someone actually pressing the hot key or through a call
to PopRequest. We'll get to that in a moment.

Bear in mind that PopRequest simply triggers PopUpHere in the same way
that pressing the hot key does in a simplified TSR. When you use
PopUpHere and the hot key is pressed, all that really happens is that a flag
is set. Then at every timer tick, code in PopUpHere is invoked which
checks the various system interrupts to see if it is safe to pass control to
the simplified handler portion of the program. Thus, when you call
PopRequest the same flag is set, and it is Pop Up Here that checks the system
interrupts at each timer tick to see if it is safe to pop up. Where PopUpHere
continues to try to pop up for one second, PopRequest lets you specify for
how long to keep checking.

Because PopRequest launches an asynchronous action, the strategy to
implement it may appear a bit tricky at first. Therefore, we'll first show
a simple program that traps a single interrupt and also accepts a hot key.
A second example shows how to trap two interrupts, and determine which
one triggered the call to the simplified hot key handler. Several example
programs are also provided that show PopRequest in context, and you
should study them carefully. These are APPOINT.BAS,
DEMOINT8.BAS, KEY2FILE.BAS, LPT2FILE.BAS, and possibly
others that have been added since the printing of this manual.

IMPORTANT:

1. When using PopRequest be sure to install the manual interrupt
handlers first (in any order), and then call PopUpHere.

2. You may not call PopRequest from within an interrupt handler
that takes over DOS Interrupt &H21.

The following program takes over timer Interrupt 8 and also sets up Alt-J
as a hot key. When either event occurs an appropriate message is
displayed. This program is supplied on the P.D.Q. disk in the
POPREQl.BAS file.

1111 4-24

DEFINT A-Z
'$INCLUDE: 'PDQDECL.BAS'

DIM Regs AS RegType
ID$= "Pop up this program with Alt-J"
PRINT ID$

'--Setup the manual interrupt 8 handler.

CRESCENT SOFfWARE, INC.

P.D.Q. Version 3.10 Using P.D.Q., TSR Programming

Regs. I ntNum = 8
CALL PointintHere(Regs)
GOTO PopUp

'specify timer interrupt 8
'trap the interrupt
'skip past the Int 8 handler

CALL IntEntryl
CALL IntEntry2(Regs, 0)
CALL CallOldint(Regs)

'we arrive here at each timer tick
'these are the two mandatory calls
'first defer to original handler

Ticks= Ticks+ 1
IF Ticks> 182 THEN

'another 1/18th second has passed
'but has ten seconds passed yet?

DuJ11Tiy = PopRequest%(Flag,
END IF

18) 'yes, try to pop up for 1 second

CALL ReturnFromint(Regs) 'all done with this timer tick

'-- Set up the simplified pop-up handler.
PopUp:

CALL PopUpHere(&H824, ID$) '&H824 = Alt-J
GOTO Endlt 'skip over and end as a TSR

'-- The following block of code is executed each time Alt-J
' is pressed, and also every 10 seconds.
CLS
IF Flag THEN 'PopRequest sent us here

PRINT "The timer handler sent me here."
Flag= 0 'in case Alt-J is pressed later
Ticks= 0 'start a new 10-second period

ELSE 'Alt-J was pressed
PRINT "You pressed Alt-J."

END IF

CALL PopDown 'either way, pop down

Endit:
CALL EndTSR(ID$) 'terminate and stay resident

The first half of this program looks much like any other P.D.Q. manual
interrupt handling TSR, using PointlntHere and ReturnFromlnt to define
the portion of code that will receive control at each interrupt. However,
after calling PointlntHere this program also jumps to install a simplified
popup handler, before calling EndTSR to end the program and stay
resident.

The interrupt 8 handler counts the number of times it received control
from each timer tick. Once ten seconds have passed (182 ticks), it tells
PopRequest to try to jump into the simplified hot key handler. Two
parameters are passed to PopRequest, and a success code is returned as
the PopRequest function output. Now let's look at what the parameters
and return code mean.

The first parameter is a flag which is cleared to zero by PopRequest. When
PopRequest determines that it is safe to jump to the hot key code, it sets

CRESCENT SOFfWARE, INC. 11114-25

Using P.D.Q., TSR Programming P.D.Q. Version3.10

the flag to -1 (True) just before doing that. Thus, the hot key handler can
tell how control arrived there. That is, if the flag is zero then the hot key
was pressed. Otherwise, a call to PopRequest was made and PopRequest
has set the flag to -1 to show that. Notice that the flag must be cleared
manually within the simplified handler. If this is not done, you won't be
able to tell how execution arrived there the next time. Although Pop
Request does clear the Flag variable automatically, pressing a hot key does
not. Therefore, if the flag has been set but never cleared, it will still be
set when the hot key is pressed.

Arbitrating Multiple Requests
If more than one manual interrupt handler is using Pop Request, you should
use additional variables so that multiple requests can be arbitrated within
the hot key handler. For example, you might have variables named Flagl
and Flag2 which are assigned to O or -1 within the different interrupt
handlers. The example below is expanded from the previous one, and it
shows how to trap both the timer interrupt and the keyboard interrupt, so
a program can accommodate multiple hot keys. In this case we will detect
the Alt-A, Alt-B, and Alt-C keys.

Because the timer and keyboard interrupts can occur at any time and in
any order, this next example must also examine the "success" return status
of PopRequest. Imagine the following scenario: let's say the 182nd timer
tick has just happened, so the Interrupt 8 handler asks PopRequest to
invoke the hot key code. But before PopRequest can do that, one of the
hot keys the Int 9 handler recognizes is pressed, and that handler also calls
PopRequest.

In such a case, which service should PopRequst honor? We have not
designed PopRequest to support multiple, nested calls and service each in
turn. Therefore, if the Interrupt 8 timer handler calls PopRequest first,
then PopRequest will return zero (no success) to the Interrupt 9 handler
when it asks for control. This way the Interrupt 9 handler can know that
another request is already in the queue, and its own request cannot be
processed.

Notice that PopRequest can be executed directly within an IF test, and
using a Dummy or Success variable is not really necessary. That is, you
could use IFPopRequest%(Flag9, 18) THEN or whatever is appropriate.

Also notice that the Flag variable used by the earlier example is not needed,
since O was used for the hot key. Thus, it is impossible for the pop-up
handler to receive control via a hotkey. However, a different set of flags
(Flag8 and Flag9) are used to indicate which interrupt passed execution

II 4- 26 CRESCENT SOFTWARE, INC.

P.D.Q. Version 3.10 Using P.D.Q., TSR Programming

to the simplified handler. In truth, Flag9 is not really necessary since only
two handlers are being used. That is, if Flag8 is not true then the request
must have come from Flag9. However, both flags are tested in the next
example for clarity. This program is supplied on the P.D.Q. disk in the
POPREQ2.BAS file.

DEFINT A-Z
'$INCLUDE: 'PDQDECL. BAS'

DIM Rega AS RegType
DIM Reg9 AS RegType
ID$ = "Pop me up with Alt-A, Alt-B, or Alt-C"
PRINT ID$

Set up the manual interrupt 8 handler.
Reg8.IntNum = 8 'specify timer interrupt 8
CALL PointintHere(Reg8) 'trap the interrupt
GOTO Trap9 'go install the Int 9 handler
CALL IntEntryl 'arrive here at each timer tick
CALL IntEntry2(Reg8, Action)
CALL CallOldint(Reg8) 'first defer to original handler

Ticks= Ticks+ 1 'another 1/18th second has passed
IF Ticks> 182 THEN 'but has ten seconds passed yet?

Success= PopRequest(Flag8, 18) 'try to pop up for one second
END IF

CALL ReturnFromint(Reg8} 'all done with this timer tick

Trap9:
'--Setup the manual
Reg9.IntNum = 9

interrupt 9 handler.

CALL PointintHere(Reg9)
GOTO PopUp

CALL IntEntryl
CALL IntEntry2(Reg9, Action}

'specify keyboard interrupt 9
'trap the interrupt
'go set up the popup handler

'arrive here at each timer tick

IF TestHotKey%(&H81E) THEN
KeyHit$ = "Alt-A"

ELSEIF TestHotKey%(&H83O)
KeyHit$ = "Alt-B"

ELSEIF TestHotKey%(&H82E)
KeyHit$ = "Alt-C"

'test for each possible key, and
' assign a string based on which

THEN ' key it was

ELSE
CALL GotoOldint(Reg9)

END IF

THEN

'not our key, defer to the BIOS

CALL ResetKeyboard 'eat the key, clear the hardware
Success= PopRequest(Flag9, 18) 'try to pop up for one second
IF NOT Success THEN

'If PopRequest failed because the timer handler's PopRequest
' was already in progress, then ignore it. But you could

CRESCENT SOFrWARE, INC. 111114-27

Using P.D.Q., TSR Programming P.D.Q. Version 3.10

' set other flags here and perhaps try again later.
END IF

CALL ReturnFromint(Reg9) 'all done with keyboard handler

PopUp:
'--Setup the simplified pop-up handler.
CALL PopUpHere(O, ID$) 'O disables hot key detection
GOTO Endit 'skip over and end as a TSR

'-- We get here if any of the recognized hot keys are pressed,
' and also every ten seconds.
IF Flag8 THEN 'if non-zero the timer got us here

PRINT "The timer handler sent me here."
Flag8 = 0 'clear the service flag for later
Ticks= 0 'and start a new 10-second period

ELSEIF Flag9 THEN 'otherwise Int9 sent us here
PRINT "You pressed hot key"; KeyHit$
Flag9 = 0

END IF

CALL PopDown 'either way, pop down

Endit:
CALL EndTSR (ID$) 'terminate and stay resident

Deinstalling and Unhooking Interrupts
There are two final points you must understand that relate to TSR
installation and deinstallation. First, because a program that uses Pop
Request is in fact a simplified TSR, you must deinstall it using Pop
Deinstall, and not DeinstallTSR. DeinstallTSR is meant for use only in
programs that do not use PopUpHere. However, any program that takes
over interrupts manually with PointlntHere must of course release those
interrupts using Unhooklnt before removing itself from memory.

Second, programs that take over interrupts manually and also use Pop
Request must do these in the correct sequence. When installing the
program, call PointlntHere to take over all of the interrupts and then call
PopUpHere. When deinstalling, call PopDeinstall first, and then call
Unhooklnt to release the interrupts taken over earlier with PointlntHere.
If you try to release the interrupts before calling PopDeinstall, Unhooklnt
will fail because those interrupts have since been taken over by PopUp
Here. Of course, this applies only when you take over one or more of the
interrupts that PopUpHere (and thus PopRequest) also use. These inter
rupts are 8, 9, 10, 13, 14, 16, 17, 21, 25, 26, and 28.

111111 4- 28 CRESCENT SOFTWARE, INC.

P.D.Q. Version 3.10 Using P.D.Q., TSR Programming

The DOSWATCH Example Program

The supplied DOSWATCH program shows how to intercept DOS Interrupt
21h, and it also serves as a good example of writing a general purpose
interrupt handler. DOSWATCH is a TSR program that monitors every
call to Interrupt 21h, and then displays information about the current
service that is being requested. The service number is printed in the upper
left comer of the screen, and in many cases additional information is also
shown. Watching DOS as it works can be very enlightening, and
DOSWATCH lets you view not only the activity of your application
programs, but also DOS itself. We'll assume that you have a copy of the
DOSWATCH.BAS source listing in front of you, or are viewing it on the
screen as you read this.

As with most P.D.Q. programs, DOSWATCH begins by including
PDQDECL.BAS, which declares all of the available P.D.Q. extensions
and defines the Registers TYPE variable. Next, a unique ID string is
defined, which in this case is also the sign-on message. The next block
of code checks for a previous installation, or a request to remove
DOSWatch from memory. After that, the sign-on message is displayed
using PDQPrint.

Because DOSWATCH may receive control at any time, it is essential that
the regular BASIC PRINT statement is not used. Unlike the simplified
TSR method which allows nearly any BASIC statement to be used freely
without regard to the current state of DOS or the BIOS, DOSWATCH must
use PDQPrint which writes directly to video memory.

PDQPrint uses the BIOS to know what type of monitor is installed,
however it does this only once the first time it is called. Because PDQPrint
is also used to print the sign-on message, this ensures that the BIOS call
is performed when DOSWATCH is installed. Where BASIC's PRINT
always displays at the current cursor location, PDQPrint expects the row
and column as passed parameters. Therefore, we must use CSRLIN and
POS(0) to know where that is.

The next two statements define the strings that will receive the information
message later, and the file or directory name when appropriate. The
statements that follow establish several variables that are used by the
program. Note that using variables as parameters is always faster than
constants, because BC.EXE adds code to store constants in memory each
time they are used. Likewise, assigning Zero$ once eliminates repeated
references to CHR$0 each time INSTR is used later on in the program.

CRESCENT SOFfWARE, INC. 11114-29
G)

Using P.D.Q., TSR Programming P.D.Q. Version 3.10

Although it may not be obvious, using INSTR(DOSName$, Zero$) is
faster than INSTR(DOSName$, CHR$(0)), because CHR$0 is actually
a called routine. A few microseconds either way is unlikely to matter in
most programs, but in a TSR that steals interrupt processing time, speed
is generally more important than program size. (Defining and assigning
Zero$ adds a dozen or so bytes.)

The last preparatory step is to assign Registers.IntNum to the value &H21,
to specify which interrupt to monitor. Finally, PointintHere is called,
followed by a GITTO to the very end of the source listing where the program
is installed as a TSR.

The remaining program statements are executed every time Interrupt
&H21 is invoked. The first two steps call IntEntryl and IntEntry2, and
this is mandatory in all TSR programs that do not use the simplified
method. These routines simply save the current processor registers values,
so they can be restored when DOSWATCH passes control to DOS later
on.

The next two steps clear the Ticks variable, and derive the current service
number from the AX register. For DOS services that process a file or
directory name, DOSWATCH pauses for a half-second allowing time to
read the name. Ticks specifies the number of timer ticks in 18ths of a
second. For other services, only the service number is displayed, and
there is no added delay.

Fifteen different DOS services are reported, and these are filtered through
a SELECT/CASE block. All of the supported services assign Message$
to the appropriate text, and those services that process a file or directory
name also use the GetDOSName subroutine. GetDOSName copies the
current name into the DOSName$ variable, and also sets Ticks to 8 to
allow time to read it.

In some cases, additional information is assigned to Message$, for
example when reporting a drive letter or handle number. This information
is taken from the appropriate registers as necessary. If a particular service
is not supported, then Message$ is simply cleared to blanks in the CASE
ELSE code.

Because DOSWATCH is not actually processing any of the DOS services,
the final step is to call GotoOldlnt, which in turn jumps to the internal
DOS function dispatcher. Thus, DOSWATCH displays what is about to
happen, before DOS actually receives control.

1111 4-30 CRESCENT SOFTWARE, INC.

P.D.Q. Version 3.10 Using P.D.Q., TSR Programming

The remaining statements comprise the GetDOSName subroutine, which
copies the current file or directory name into the DOSName$ variable. In
this case, BlockCopy copies the first 50 characters pointed to by DS:DX
into DOSName$, and then INSTR is used to locate the CHR$(0) which
marks the end of the name. Only those characters that precede the zero
byte are retained, and the LEFT$ assignment clears any characters that
follow the name. (The unused characters are cleared because assignments
to a fixed-length string are treated as if LSET were used.)

Running DOSWATCH once installs it as a TSR, and all subsequent DOS
operations are then displayed on the top line of the screen. Observing
DOSWATCH as it works can provide much insight into DOS' internal
operation. For example, you will no doubt find it enlightening to start
QuickBASIC and load a program such as DOSWATCH itself. This shows
DOS at work as it loads and executes QB.EXE, and then you can watch
QuickBASIC as it loads the main program and the PDQDECL.BAS
$INCLUDE file. Equally interesting is all the unnecessary DOS activity
QuickBASIC performs to obtain a list of file names when you select
Alt-F-L from the pull-down menu.

You could also modify DOSWATCH to pause briefly for all of the DOS
services rather than just some of them. Even though the operation of your
PC will be slowed dramatically, many varied and interesting facets of DOS
become apparent. For example, each time you use the DIR command,
DOS (actually COMMAND.COM) changes to the current directory,
searches for all names that match "*. *", and then writes the directory
information to Handle 1. (Handle 1 is the standard console output device.)
An added delay also lets you observe DOS as it closes all available handles
each time a program terminates.

As you can see, besides providing an excellent way to learn more about
TSR programming, DOSWATCH is also a very useful utility program in
its own right.

CRESCENT SOFrWARE, INC. 114-31

Section 11, Chapter 5: P.D.Q. Extensions
Ill II 11111

P.D.Q. Version 3.10 Reference, P.D.Q. Extensions

Overview

This section provides a brief overview of the P.D.Q. language additions;
a more detailed description of each is given in the reference portion that
follows. Besides the actual extension routines, P.D.Q. also comes with a
number of useful example programs including a pop-up calculator, a
directory changing utility that features a scrolling menu and highlight bar,
and a unique program called DOSWATCH that lets you see DOS as it
works. Many other useful and informative examples are included as well.

DOS Extensions
Bufln is a very fast LINE INPUT replacement for use with sequential text
files. By default, P.D.Q. programs perform no file buffering when
reading, which makes INPUT# and LINE INPUT# relatively slow. Bufln
more than compensates for that, and is approximately four times faster
than BASIC's LINE INPUT.

CritErrOn and CritErrOff let you enable and disable critical errors during
DOS operations. Internally, DOS handles critical errors separately from
normal errors, reporting them with the familiar "Abort, Retry, Fail"
message. Some examples include attempting to read an unformatted disk,
or writing to a printer that is not available.

DOSVer allows your program to determine the version of DOS that is
currently running on the host PC. This is useful for programs that perform
network operations, or use other services which require a particular DOS
version.

Calling the EndLevel routine is an optional way to end a P.D.Q. program,
and set the DOS ERRORLEVEL value at the same time. This lets you
communicate with batch files, which can then make decisions based on
the success or failure of the program. However, if you have BASIC 7
PDS you can simply use END level.

The EnvOption routine allows your programs to manipulate either their
own environment, the environment of their parent, or the environment of
the current application from a TSR. EnvOption also lets you selectively
honor or ignore capitalization. These are powerful capabilities which are
sorely lacking in regular BASIC, as well as in other high-level languages.

Flush is a new "command"" that lets you flush the DOS file buffers to
disk without having to close and then re-open them. This lets you ensure
that data which has been written is safely on the disk.

CRESCENT SOFfWARE, INC. Ill 5 - l

Reference, P.D.Q. Extensions P.D.Q. Version 3.10

The PDQExist function quickly reports if a file exists, to eliminate errors
in programs that manipulate files.

SeekLoc is meant for use with the SMALLDOS.LIB stub library when
accessing random files, and it calculates the appropriate byte offset based
on a specified record number and record length.

Dynamic Memory Allocation
Dynamic memory allocation is supported with the AllocMem and Release
Mem routines, and these are based on standard DOS memory services.
Memory may then be used for any purpose, such as storing the contents
of the display screen. Memory that has been allocated manually may also
be treated as an array using the following routines.

GetlByte, GetlWord, GetlLong, and GetlType all accept a segment and
element number, and return the appropriate value from memory. The
complementary routines SetlByte, SetlWord, SetlLong, and SetlType
assign byte, integer, long integer, and TYPE variables.

These routines are useful for two reasons:

• They can be used to treat any arbitrary block of memory as an
array.

• They generally require less code than conventional array accesses.

If you dimension a dynamic array in a P.D.Q. program, approximately
850 bytes of code is added to the .EXE file. REDIM must be able to
accommodate all of BASIC's data types, which adds to its complexity.
Further, using REDIM also brings in ERASE, since REDIM must first
erase the array before recreating it. In contrast, AllocMem, ReleaseMem,
and the various Getl/Setl routines occupy only a few dozen bytes each.

Input And Keyboard Routines
Several INKEY$ and INPUT replacements are provided, to improve the
efficiency of your programs. Where INKEY$ returns a string with
different lengths to tell what type of key was pressed, PDQinkey instead
returns an integer value. Using an integer function not only reduces the
amount of code added to your programs, but it is also more flexible.

BIOSinkey is similar to PDQinkey, but it uses the BIOS rather than DOS
which is safer within a TSR program. BIOSinput is a small input/editing
routine which also lets you control the length of the string being entered.

Ill 5 - 2 CRESCENT SOFfWARE, INC.

P.D.Q. Version3.!0 Reference, P.D.Q. Extensions

BIOSinput2 is an enhanced version that adds capability in exchange for
an increase in code size.

The StuffBuf routine is used to insert characters into the keyboard buffer.
This lets your programs run batch files and perform other tricks that
conventional BASIC cannot. StuffBuf is provided in lieu ofBASIC's RUN
command.

Miscellaneous Routines
The BlockCopy routine lets you move a block of memory anywhere within
the PC's address space. It is ideal for copying screens to far (DOS)
memory, as well as for other general purpose memory moves.

BreakOn and BreakOff allow you to disable and enable the Ctrl-Break and
Ctrl-C keys. BreakHit can then be used to report how many times
Ctrl-Break or Ctrl-C were pressed while they were disabled.

GetCPU returns the type of CPU that is installed on the host PC. It was
originally written for our QuickPak Professional product, but we thought
P.D.Q. users would also find it beneficial.

GetSeg lets you retrieve the current DEF SEG setting in a program. This
lets you write reusable modules that are "well behaved", by restoring the
original DEF SEG setting to what it had been.

HookintO is an interrupt handler designed to prevent "Divide by zero"
errors from crashing your programs. Although most errors that occur in
a P.D.Q. program are simply ignored, dividing by zero generates a CPU
exception that tells DOS to end your program. But if that program is a
TSR, then the result is a hung computer.

The Pause routine provides a way to add delays to a P.D.Q. program with
a resolution of approximately 1118th second.

PDQCompare reports if two blocks of memory are the same.

PDQMessage is a string function that returns an error message for any of
the error numbers that are supported by P.D.Q. For example, given the
value 53 it will return the message "File not found".

PDQPeek2 and PDQPoke2 let your programs PEEK and POKE words
(two bytes) in one operation, resulting in much less code than using BASIC
commands alone.

CRESCENT SOFfWARE, INC. Ill 5 - 3

Reference, P.D.Q. Extensions P.D.Q. Version 3.10

PDQRand is an integer-only random number function, and
PDQRandomize lets you seed the initial value. These are provided as an
alterative to the BASIC versions, which add the floating point library
routines to your programs.

PDQShl and PDQShr let you shift integer bits left and right.

PDQSound is a direct replacement for BASIC 's SOUND command, except
it does not require the use of BASIC's floating point library.

PDQTimer returns the current setting of the system timer double-word
kept in low memory. It is similar to BASIC's TIMER function but does
not require floating point support.

PDQVall and PDQValL are for obtaining the value of a BASIC string, for
integer and long integer values respectively.

Power and Power2 let you raise integer numbers to a power, without
requiring floating point math as BASIC's exponentiation operator C) does.

RedimAbsolute is used to reassign a BASIC array to and arbitrary segment
in memory.

String Handling Routines

To accommodate dollar amounts in a P.D.Q. program the Dollar$ function
accepts a long integer that holds the number of pennies, and returns a
string formatted in dollars and cents. That is, the value 12345 is returned
as the string "123.45"".

FU sing is a numeric formatting function that provides most of the services
of BASIC's PRINT USING statement. However, it is more versatile
because it returns the result as a string that you can then manipulate in any
way necessary.

MidChar and MidCharS are integer-only replacements for BASIC's MID$
function and statement respectively. When you need to access only a single
character in a string, these routines are much faster and add less code than
MID$.

PDQParse is a small-code replacement for BASIC's READ and DATA
statements. It is also useful for breaking up a string such as COMMAND$
into separate components. PDQRestore is meant to be used with
PDQParse, and it mimics BASIC's RESTORE command. Another related

1111 5-4 CRESCENT SOFfWARE, INC.

P.D.Q. Version 3.10 Reference, P.D.Q. Extensions

routine, SetDelimitChar, lets you set the recognized delimiting character
that separates each item.

PoolOkay provides a simple way to test the integrity of string memory.
Since a P.D.Q. program does not halt when an error occurs, this function
lets you detect if string memory has become corrupted. PoolOkay is
intended primarily as a debugging aid.

Two functions are provided to help you assess the string memory needs of
your programs. StringUsed returns the number of bytes currently in use
by string variables, and StringShort tells if your program ever needed more
string memory than is available. Most programs do not have to deal with
string memory, unless they must take as little as possible such as in a TSR.

An assembler string sort routine, Sort, is included for sorting all or part
of a conventional (not fixed-length) string array in either ascending or
descending order.

TSR And Interrupt Support Routines

Interrupt and InterruptX let you access system interrupts from within a
P.D.Q. program. These are similar, but not identical, to the routines with
the same name that are provided with Microsoft BASIC.

A number of subroutines and functions are provided for creating TSR
pop-up programs and interrupt handlers. PopUpHere and PopDown
provide a simplified method for creating a TSR that pops up via a hot key.
Other routines allow you to gain complete control over any system
interrupt, and these include PointintHere, CallOldint, GotoOldint,
ReturnFromint, and PopRequest.

DeinstallTSR and PopDeinstall are used to remove a TSR program from
memory, and TSRlnstalled reports if a program is already resident. A
related routine, Unhooklnt, lets you manually remove an interrupt handler
from the PC's interrupt chain.

DOSBusy lets you determine if DOS is currently active, to prevent a
conflict from accessing a DOS service when it is not safe to do so.

EndTSR is used to end a program and leave it resident in memory.

EnableFP, DisableFP, HookFP, and UnhookFP are needed in P.D.Q. TSR
programs that use floating point math, to prevent a conflict with the
foreground program.

CRESCENT SOFfWARE, INC. 11111 5 - 5

Reference, P.D.Q. Extensions P.D.Q. Version 3.10

Swap2Disk and Swap2EMS let a TSR program remove itself from memory
when idle. SwapCode provides a way for a swapping TSR to receive
information from another application.

TestHotKey and ResetKeyboard let a TSR program manipulate the key
board hardware port and PIC chip (programmable interrupt controller)
directly and easily.

TSRFileOn and TSRFileOff are used to make DOS file operations safe
from within a P.D.Q. TSR program.

Video Routines

ColorSave and ColorRest let you easily save and restore the current
foreground and background colors. They are ideal when writing reusable
modules that change the current colors, but must be able to restore them
to their previous, but unknown, values.

CursorOn and CursorOff turn the cursor on and off using less code than
LOCATE.

CursorSave and CursorRest let you save and restore the current cursor
position and shape in a single operation. Like ColorSave and ColorRest
above, they are ideal when your program has changed the cursor, and must
restore it again later.

CursorSize lets you control the cursor size using less code than LOCATE.

HercMode lets you switch to Hercules graphics mode and back, and is
equivalent to using SCREEN 3 and then SCREEN O in BASIC.

NoSnow disables CGA "snow suppression" for faster access with CGA
adapters.

PDQ Monitor reports the type of video adapter installed in the PC.

PDQPrint is a "quick printing"" routine that accepts a string, a row and
column, and a print color. PDQ Print is extremely fast and doesn't access
the BIOS, making it especially suitable for use in TSR programs.

PDQCPrint is another quick printing routine, but it uses the current
COLOR setting. This eliminates an extra passed parameter, thus creating
less code when it is called many times with the same color value.

1111 5-6 CRESCENT SOFfWARE, INC.

P.D.Q. Version3.10 Reference, P.D.Q. Extensions

PDQSetMonSeg lets you set any arbitrary video segment for use by
PDQPrint and PDQCPrint. This makes it easy to write well-behaved
applications that run under Quarterdeck's DESQview. Being able to set
a new segment also provides the ability to create virtual screens stored in
an array.

PDQSetWidth lets PDQPrint and the other routines that access video
memory directly accommodate screen widths other than 80 characters.

Extensions Details

All of the subprograms and functions described herein are contained in
the PDQ.LIB, PDQ.QLB, and PDQ7.QLB library files. They are also
declared in the PDQDECL.BAS include file. BASIC equivalents of some
of the extensions are in the PDQSUBS.BAS program module. You should
therefore include the PDQDECL.BAS file in your programs that will use
these extensions, and load PDQSUBS.BAS as a module.

Note that PDQSUBS.BAS is needed only during development in the
QuickBASIC environment. If you plan to compile from within the
QuickBASIC environment, you must unload PDQSUBS.BAS first. All of
the P.D.Q. extension routines contained in PDQSUBS.BAS are listed in
Table V-1. Some of the routines are empty, such as those for TSR and
interrupt handling services.

To access routines in a Quick Library you need to tell QuickBASIC to load
it by using the /1 option on the QB command line:

QB [program] /1 pdq

If you are using BASIC 7 and QBX then you will instead specify
PDQ7 .QLB like this:

QBX [program] /1 pdq7

If you are already using another Quick Library, you will need to combine
those routines with the P.D.Q. routines into a new Quick Library.
Although Quick Libraries may not be combined directly, you can easily
create a new Quick Library. This requires access to the original object
modules or linking library (with an .LIB extension). See the section
entitled Creating A Quick Library elsewhere in this manual. Also see the
documentation that comes with Microsoft BASIC for further information
about creating Quick Libraries.

CRESCENT SOFTWARE, INC. Ill 5 -7

Reference, P.D.Q. Extensions P.D.Q. Version 3.10

TABLE V-1
Routines Contained In PDQSUBS.BAS

AllocMem
Bufln$
DelnstallTSR
EnableFP
EnvOption
IntEntryl
PoolOkay
ReleaseMem
StringUsed
TSRinstalled

BreakHit
CallOldlnt
DisableFP
EnableRead
GotoOldlnt
IntEntry2
PopDeinstall
ResetKeyboard
TestHotKey
UnhookFP

AllocMem function
II Purpose

BreakOff
CritErrOff
Dollar$
EndLevel
HookFP
PDQCPrint
PopDown
RetumFromlnt
TSRFileOff
Unhooklnt

BreakOn
CritErrOn
DOSBusy
EndTSR
HooklntO
PointlntHere
PopUpHere
StringShort
TSRFileOn
Unhooklnt0

AllocMem calls on the standard DOS services to allocate up to 64K of
memory when a program is running.

1111 Syntax

Segment= AllocMem%(NumBytes%}

11111 Where

NumBytes % is the number of bytes to be allocated, and Segment receives
the segment where that memory begins. The first available address within
that segment is always O. If DOS cannot allocate the requested amount of
memory, Segment will receive a value of zero. Notice that if NumBytes %
is larger than 32K (32,767), it must be specified as an equivalent negative
value. A long integer argument may also be used if that is more
convenient.

Comments

Because AllocMem has been designed as a function, it must be declared
before it may be used.

One important advantage of allocating memory at run time is to reduce
the size of the .EXE program file. Even though DIM could be used within
a program to reserve memory for screens and other data, that memory
would be included within the .EXE file. Although REDIM (or DIM with
a dynamic array) serves a similar purpose, AllocMem comprises less code
than REDIM. Further, when an undefined number of memory blocks is
needed, AllocMem avoids having to create multiple named arrays.

111115-8 CRESCENT SOFfWARE, INC.

P.D.Q. Version3.10 Reference, P.D.Q. Extensions

Memory that has been allocated may be treated as either a byte, integer,
long integer, fixed-length string, or TYPE array. The example below
requests 4,000 bytes for saving an entire text screen image, and then uses
the P.D.Q. BlockCopy routine to copy the screen there.

Segment%= AllocMem%(4000) 'request 4000 bytes
IF Segment%= 0 THEN 'see if there was an error

PRINT "Error allocating memory"
END

END IF

DEF SEG = 0

IF PEEK(&H463) = &HB4 THEN
ScreenSeg% = &HB000

ELSE
ScreenSeg% = &HBB00

END IF

'get the monitor type in low
' memory

'mono monitor

'color monitor

'copy the screen
CALL BlockCopy(ScreenSeg%, 0, Segment%, 0, 4000)

Memory that is allocated using AllocMem does not have to be released
before a program is ended. DOS remembers all memory allocations, and
will release the memory automatically. Further, any memory that is
allocated by a TSR program before it ends and remains resident will be
protected by DOS and thus be available when the TSR gets control.
However, it is imperative that you request any memory your program will
need before calling EndTSR. Most DOS applications claim all available
memory when they load, thereby preventing a TSR program from allocat
ing additional memory for itself when it pops up or receives control
through a system interrupt.

Even though a single call to AllocMem may specify no more than 64K
(65,535) bytes, AllocMem may be called more than once.

IMPORTANT:

If AllocMem is unable to allocate the requested amount of memory, it sets
ERR to 7 (Out of memory), and returns a segment value of zero. Do not
attempt to write data to segment zero under any circumstances, since this
will overwrite the PC's interrupt vector table.

Also see the ReleaseMem function which releases memory allocated by
AllocMem.

CRESCENT SOFfWARE, INC. 1111 5 - 9

Reference, P.D.Q. Extensions

BIOSlnkey function
111 Purpose

P.D.Q. Version3.10

BIOSinkey is similar to BASIC's native INKEY$ function, except it
returns an integer result.

1111 Syntax
KeyHit = BIOSinkey%

1111 Where

KeyHit receives O if no key is pending in the keyboard buffer, a positive
number that represents a normal key's ASCII code, or a negative value
that corresponds to an extended key code.

Comments

Because BIOSinkey has been designed as a function, it must be declared
before it may be used.

Unlike INKEY$ and the PDQinkey function, BIOSinkey does not support
DOS redirection. However, it may be used safely in a "simplified" TSR
program.

In general, integer functions such as BIOSinkey require less setup and
processing by the BASIC compiler than do string functions. Also, integer
comparisons are much faster and require less code than string com
parisons.

Please see the PDQinkey routine which also returns an integer result, but
supports DOS redirection.

BIOSlnput subroutine
11111 Purpose

BIOSinput is a general purpose text input routine which also allows editing
an existing string.

Ill Syntax
CALL BIOS!nput(Work$, EditColor%)

11111 Where

Work$ is the string being input or edited, and EditColor% is the field color
to use. Work$ must have already been assigned before BIOSinput may
be called. The left-most portion of the input field is placed at the current
cursor location.

1111 5 - 10 CRESCENT SOFfWARE, INC.

P.D.Q. Version 3.10 Reference, P .D .Q. Extensions

Comments

BIOSinput provides simple editing capabilities using the left and right
cursor arrow keys only. (The backspace key is handled as a left arrow.)
Pressing either Enter or Escape terminates editing.

Like BIOSinkey, BIOSinput does not support redirection. However, it
may be safely used at any time within a "simplified" TSR program.

The maximum string length that may be entered using BIOSinput is
dictated by the length of the string that is passed to it. For example, to
input a string and limit its length to, say, fifteen characters, you must first
assign a string to that length. This is shown in the example below.

or

Work$=" '15 spaces
CALL BIOS!nput(Work$, 112) '112 is black on white (inverse)

Work$= "This is a default response"
CALL BIOS!nput(Work$, 112)

Because BIOSinput uses PDQPrint to display the string being input, you
must first call the PDQSetWidth routine if your program has selected the
40-column video mode using WIDTH.

Note that BIOSinput can also be declared as an integer function. When
used this way the return value is either 13 if Enter was pressed, or 27 if
Escape was used:

DECLARE FUNCTION BIOS!nput%(Work$, EditColor%)
LastKey = BIOS!nput%(Work$, EditColor%)

Also see the PDQinput routine which supports redirection, but not an
editing color or the ability to edit an existing string.

BIOSlnput2 function

111!1 Purpose

BIOSinput2 is an enhanced version of BIOSinput that adds more
capability, but also more code to your programs. In particular, BIOSinput2
also recognizes the Home, End, Ins, and Del keys.

111!1 Syntax

LastKey = BIOS!nput2%(Work$, BYVAL Row%, BYVAL Column%,
BYVAL EditColor%)

CRESCENT SOFrWARE, INC. 11115 - 11

Reference, P.D.Q. Extensions P.D.Q. Version 3.10

11111 Where

Work$ is the string being input or edited, Row% and Column% specify
the left edge of the input field, and EditColor% is the field color to use.
LastKey then receives either 13 if the Enter key was pressed to terminate
editing, or 27 if Escape was used. Work$ must have already been assigned
before BIOSinput2 may be invoked.

Comments

Because BIOSinput2 has been designed as a function, it must be declared
before it may be used.

Like BIOSinput, BIOSinput2 does not support DOS command-line
redirection. However, it may be safely used at any time within a
"simplified" TSR program.

The maximum string length that may be entered using BIOSinput2 is
dictated by the length of the string that is passed to it. You can use either
SPACE$ to initialize the string, a quoted string constant, or both. The
example below lets the user edit default text and increase its length by up
to 10 characters:

Work$ = "This is a default response" + SPACE$(10)
LastKey = 8!0S!nput(Work$, 1, 10, 112)

Like BASIC's INPUT statement, BIOSinput2 saves the current cursor
state, turns the cursor on if necessary, and restores it to what it had been
afterward.

BIOSinput2 may also be declared as a subprogram if the value of the last
key pressed is not important in your program. PDQDECL.BAS includes
an additional DECLARE SUB statement as a comment showing
BIOSinput2 declared that way.

Comments in the assembler source code show how to have BIOSinput2
exit when an extended key is pressed, instead of ignoring the key. This
will let the program exit if the user presses, say, the Fl key for help. If
you make that modification, extended key codes are represented as
negative values.

Because BIOSinput2 uses PDQPrint to display the string being input, you
must first call PDQSetWidth if your program has selected the 40-column
video mode using WIDTH.

Also see the BIOSinput routine which has fewer capabilities but adds less
code to your program.

11111 5 - 12 CRESCENT SOFTWARE, INC.

P.D.Q. Version 3.10 Reference, P.D.Q. Extensions

BlockCopy subroutine
Ill Purpose

BlockCopy copies a block of memory between any locations within the
PC's address space.

II Syntax

CALL BlockCopy(FromSegment%, FromAddress%, ToSegment%, _
ToAddress%, NumBytes%)

1111 Where

FromSegment% and FromAddress % indicate the source memory to copy,
and ToSegment% and ToAddress% indicate where it is to be copied to.
NumBytes % is the number of bytes to copy, and may not exceed 64K
(65,535).

Comments

BlockCopy is useful in a variety of situations, for example when saving
or restoring portions of the display screen. Other uses include moving
data from "far" memory into a conventional string for printing, and
copying the contents of one entire numeric or TYPE array to another very
quickly.

For values of NumBytes % larger than 32K (32,767), an equivalent
negative value must be used. A long integer may also be used for
NumBytes % if that is more convenient.

BlockCopy is not suitable for copying ranges of memory that overlap one
another.

BreakHit function

11111 Purpose

BreakHit returns the number of times Ctrl-Break or Ctrl-C were pressed
since BreakOffwas last called, or since the last timeBreakHit was queried.

1111 Syntax

NumTimes = BreakHit%

1111 Where

NumTimes receives the number of times Ctrl-Break or Ctrl-C were
pressed.

CRESCENT SOFfWARE, INC. 115-13

Reference, P.D.Q. Extensions P.D.Q. Version 3.10

Comments

Because BreakHit has been designed as a function, it must be declared
before it may be used.

There are many occasions when a program needs to disable the Ctrl-Break
key, for example when using the PDQinput routine to prompt for, say, a
file name. If Break is not disabled, then the user would be able to terminate
the program inadvertently. But if someone really wants to break out of
the program, you will certainly want to know that. Therefore, BreakHit
lets you see if the Ctrl-Break or Ctrl-C keys were pressed while they were
disabled.

Also see the BreakOff and BreakOn routines which disable and reenable
Break.

BreakOff subroutine

111 Purpose

BreakOff disables the action of the Ctrl-Break and Ctrl-C keys until they
are re-enabled with a call to BreakOn.

1111 Syntax

CALL BreakOff

II Where

Ctrl-Break and Ctrl-C are disabled until a call is made to the BreakOn
subroutine.

Comments

Normal break operation must be explicitly restored by calling the BreakOn
subroutine before the program terminates, or the PC will crash.

Each time BreakOff is called, it resets the BreakHit function count to zero.

To intercept Break from inside a TSR, BreakOff must be called each time
the TSR becomes active, and BreakOn must be called before returning
control to the foreground program.

Also see the comments that accompany the BreakHit function.

11111 5 - 14 CRESCENT SOFfWARE, INC.

P.D.Q. Version 3.10

BreakOn subroutine

11 Purpose

Reference, P.D.Q. Extensions

BreakOn re-enables the Ctrl-Break and Ctrl-C keys after a call to
BreakOff.

111111 Syntax

CALL BreakOn

1111 Where

Ctrl-Break and Ctrl-C are re-enabled.

Comments

Calling BreakOn when BreakOff has not been called has no effect.

Also see the comments that accompany the BreakHit function.

Bufln function
■ Purpose

Bufln is a very fast LINE INPUT replacement for reading text data from
a sequential file.

II Syntax

Text$= Bufln$(FileName$, Done%)

1111 Where

FileName$ is the name of the file to read, Done% is returned as either 0
or -1 to indicate if all text in the file has been read, and Text$ receives the
current line from the file.

Comments

Because Bufln$ has been designed as a function, it must be declared before
it may be used.

Bufln is much faster than the default P.D.Q. LINE INPUT routine, and
also about four times faster than QuickBASIC's LINE INPUT. It is
extremely easy to use, since it opens and closes the file automatically.
However, only one file may be processed using Bufln at a time, and it is
not intended for returning strings that are longer than 4095 bytes.

Declare and use Bufln as shown in the short, complete program below.

DECLARE FUNCTION Bufln$ (FileName$, Done%)
FileName$ = "WHATEVER.DAT"
DO

CRESCENT SOFTWARE, INC. 11115 - 15

Reference, P.D.Q. Extensions P.D.Q. Version 3.10

This$= Bufin$(FileName$, Done%)
PRINT This$

LOOP UNTIL Done%

'read the file
'optionally print the data
'until Bufln$ says it's done

Normally you will use Bufln to read a file in its entirety. You can tell
Bufln to close the file and set Done% to -1 by calling it with a null string
as the file name.

Note that Buf1n does not set the Done% flag until it is called one more
time after the file has been completely read. Therefore, it always returns
an extra false null string at the end. You can avoid this by placing the test
within the loop as follows:

DO
This$= Bufin$(FileName$, Done%)
IF Done% THEN EXIT DO
PRINT This$

LOOP

You can also use the following, somewhat tricky method of declaring and
using Bufln, to reduce the amount of compiler-generated code and
minimize string memory usage:

DECLARE FUNCTION Bufln% (FileName$, Done%)
DECLARE SUB Assign ALIAS "B$SASS" (BYVAL Source%, Dest$)
DO

CALL Assign(Bufln%(FileName$, Done%), This$)
PRINT This$

LOOP UNTIL Done%

Normally, the output of all external string functions is assigned to a
temporary string, before being assigned to the final destination variable.
By declaring Buf1n as an integer function you are telling BASIC not to
add code to create the additional copy. BASIC's internal string assignment
routine, B$SASS, is then declared using ALIAS. ALIAS is needed to
allow the otherwise illegal dollar sign in a procedure name.

When Bufln is declared as an integer function BASIC generates 29 bytes
of code, compared to 36 when it is declared and invoked as a ~tring
function. An important side benefit is that only as much string space as
is really needed is taken, rather than twice as much for an extra copy.

A BASIC equivalent of Bufln is provided in PDQSUBS.BAS for use in
the QuickBASIC and QBX editors. In fact, the BASIC version also works
with regular QuickBASIC and BASIC PDS, although the assembly lan
guage version contained in PDQ. LIB does not.

1111 5 - 16 CRESCENT SOFfWARE, INC.

P.D.Q. Version 3.10

CallOldlnt subroutine
11111 Purpose

Reference, P.D.Q. Extensions

CallOldint is used within a P.D.Q. TSR or intenupt handler program to
call the original interrupt as a subroutine.

11111 Syntax

CALL CallOldlnt(Registers)

11111 Where

Registers is the TYPE variable being used to service the specified
interrupt.

Comments

Depending on what a TSR is intended for, there may be situations where
you need to call the original interrupt handler. For example, a printer
driver might be designed to intercept the printer stream, looking for a
special code that indicates a macro to be expanded. In that case, the
program couldn't simply use Int 17h to print the replacement string,
because that would invoke itself again! Therefore, CallOldint would be
called repeatedly for each character to be sent to the printer, before the
TSR returns control to the underlying application.

ColorRest subroutine

1111 Purpose

ColorRest restores the current foreground and background colors that
were obtained earlier using ColorSave, as a single operation.

II Syntax

CALL ColorRest(SavedColor%)

1111 Where

SavedColor% is the value that was returned by ColorSave earlier.

Comments

ColorSave and ColorRest allow you to retrieve the current COLOR settings
as a single parameter, and then restore them again later. This is useful
for writing reusable modules that need to change the colors and restore
them, when the original colors are not known. Because regular BASIC
provides no way to determine the current COLOR values, this routine is
not available in the QuickBASIC editing environment.

Also see the complementary ColorSave function.

CRESCENT SOFTWARE, INC. 11115-17

Reference, P.D.Q. Extensions

ColorSave function
II Purpose

P.D.Q. Version 3.10

ColorSave obtains the current foreground and background colors that were
set the last time COLOR was used.

11111 Syntax
SavedColor% = ColorSave%

11 Where

SavedColor% receives the current foreground and background colors
combined in a single integer word.

Comments

Because ColorSave has been designed as a function, it must be declared
before it may be used.

BASIC provides no way to determine the current COLOR values; there
fore, this routine is not available in the QuickBASIC editing environment.

Also see the comments that accompany the ColorRest function.

CritErtOff subroutine
1111 Purpose

CritErrOff lets you disable critical error handling, to avoid the DOS
"Abort, Retry, Ignore" error message.

Ill Syntax
CALL CritErrOff

11111 Where

Critical errors will be trapped until a subsequent call is made to the P.D.Q.
CritErrOn routine.

Comments

DOS handles critical errors separately from normal errors such as "File
not found". Critical errors are generated by hard 1/0 faults such as
attempting to read an unformatted disk, or accessing a floppy drive when
the door is open. Critical errors are also caused by trying to write to a
write-protected disk, as well as attempting to access a printer that is off-line
or otherwise unavailable.

1111 5 - 18 CRESCENT SOFfWARE, INC.

P.D.Q. Version 3.10 Reference, P.D.Q. Extensions

CritErrOff establishes a replacement critical error handler, which takes
control of the critical error vector (Intenupt &H24). When a critical error
occurs and CritErrOff is in effect, the error is not passed on to DOS.
Rather, CritErrOff assigns BASIC's ERR function to a value of 71 (disk
not ready) which you may then test.

Calling CritErrOff when it has already been activated has no effect.

CritErrOff should be used in TSR programs before performing any disk
or device I/0, to prevent an "Abort" response from terminating both the
TSR and the foreground program. Further, if the underlying application
has its own critical error handler (most do), then a critical error in your
TSR would hopelessly confuse both programs and undoubtedly crash the
PC.

If CritErrOff is used in a TSR, CritErrOn must be called before returning
control to the foreground program.

Neither CritErrOff nor CritErrOn may be used within the QuickBASIC
editor, because they access the internal P.D.Q. error handler.

Also see the section File Handling In P.D. Q., for more information about
critical error.

CritErtOn subroutine
Ill Purpose

CritErrOn re-enables critical error handling that had been disabled by a
call to CritErrOff.

Ill Syntax
CALL CritErrOn

Ill Where

Critical errors are reinstated, causing DOS to generate the familiar" Abort,
Retry, Ignore" message. In a TSR, CritErrOn returns control to the
underlying program's error handler.

Comments

Calling CritErrOn when CritErrOff has not been called has no effect.

Please see the comments that accompany the CritErrOff routine.

CRESCENT SOFrWARE, INC. 11115 - 19

Reference, P.D.Q. Extensions

CursorOff subroutine

111111 Purpose

CursorOff turns off the cursor making it invisible.

II Syntax

CALL CursorOff

Ill Where

P.D.Q. Version 3.10

The cursor is hidden until turned on again with a call to the CursorOn
routine.

Comments

Calling CursorOff is equivalent to using LOCATE, , 0.

CursorOff is necessary when you are linking with the limited-functionality
_LOCATE stub file. Using that version of LOCATE reduces the size of
your programs, but it does not allow the options to turn the cursor on and
off, or to change its size. By using CursorOff in conjunction with the
_ LOCATE stub file, only the code that is actually needed will be added
to your program.

Please see the section entitled Linking With Stub Files for more information
about this and other alternate language statements. Also see the CursorOn
routine which turns the cursor on.

CursorOn subroutine

111111 Purpose

CursorOn turns on the cursor making it visible.

Ill Syntax
CALL CursorOn

11111 Where

The cursor is made visible after a previous call to the CursorOff routine.

Comments

Calling CursorOn is equivalent to using LOCATE, , 1.

Please see the comments that accompany the CursorOff routine.

11111 5-20 CRESCENT SOFrWARE, INC.

P.D.Q. Version 3.10

CursorRest subroutine
Ill Purpose

Reference, P .D .Q. Extensions

Cursor Rest restores the current cursor location and size that were obtained
earlier using CursorSave.

Ill Syntax

CALL CursorRest(SavedCursor&)

II Where

SavedCursor& is the value that was returned earlier by CursorSave.

Comments

CursorSave and CursorRest allow you to retrieve the current cursor
location and size as a single parameter, and then restore them again later.
This is useful when writing reusable modules that need to change the cursor
parameters and restore them, when the original values are not known.
Although BASIC provides the CSRLIN and POS(0) function to obtain the
current location, there is no way to obtain the cursor shape or on/off state.
Further, using these routines results in much less code because only one
call is needed and only one parameter is used.

Also see the complementary CursorSave function.

CursorSave function

Ill Purpose

CursorSave obtains the current cursor location and size in a single
operation.

11111 Syntax

SavedCursor& = CursorSave&

1!111 Where

SavedCursor& receives the current cursor location and size combined into
a single long integer.

Comments

Because CursorSave has been designed as a function, it must be declared
before it may be used.

Please see the comments that accompany the CursorRest routine.

CRESCENT SOFTWARE, INC. 11111 5 - 21

Reference, P.D.Q. Extensions

CursorSize subroutine
1111 Purpose

P.D.Q. Version 3.10

CursorSize lets you control the size (in scan lines) of the cursor.

1111111 Syntax

CALL CursorSize(Topline%, Bottomline%)

111111 Where
TopLine% and BottomLine% indicate the start and stop cursor scan lines
respectively. As with BASIC's LOCATE command, the scan line values
may range ·from zero to the highest legal value supported by the installed
display adapter.

Comments

CursorSize is equivalent to LOCATE, , , TopLine%, BottomLine%.

Please see the comments that accompany the CursorOff routine.

DeinstallTSR function
111111 Purpose

DeinstallTSR is called by a non-simplified TSR program to remove itself
from memory.

11 Syntax
Success= DeinstallTSR%(DGroup%, ID$)

Ill Where

DGroup % was returned by TSRinstalled when the program was first run,
and ID$ is the unique identification string for this program. Success then
receives either -1 if the deinstallation was successful, or O if it was not.
If DGroup% is set to 0, then the current copy of the program is removed
from memory. That is, the program deinstalls itself rather than another,
already resident copy.

Comments

Because Deinsta!ITSR has been designed as a function, it must be declared
before it may be used.

DeinstallTSR is not meant for use with "simplified" P.D.Q. TSR
programs. Use PopDeinstall to remove those from memory. A program
that manually handles interrupts but also uses PopRequest is considered a
simplified TSR, and must also use PopDeinstall instead of DeinstallTSR.

II 5 - 22 CRESCENT SOFfWARE, INC.

P.D.Q. Version3.10 Reference, P.D.Q. Extensions

Before calling DeinstallTSR, all active interrupt vectors must have been
successfully unhooked. If this is not done and the TSR is deinstalled, the
PC will surely crash because the interrupt points to code that is no longer
present in memory (or may subsequently be overwritten by another
program). ·

DeinstallTSR uses several DOS functions, so conditions in the TSR must
be favorable. In other words, deinstalling should be considered a DOS
service, which requires the appropriate assurance that such a service is
safe to invoke.

If this function returns 0, then the memory control block chain has
probably been corrupted. The safest course of action is to print a message
advising the user to reboot the PC.

Please see TSRinstalled, which allows a program to determine if it has
already been installed.

TSR installation and de-installation are discussed in depth in the section
TSR Programming With P.D. Q. elsewhere in this manual.

DisableFP subroutine
1111 Purpose

DisableFP is called within a P.D.Q. simplified TSR program that uses
floating point math. It releases the floating point interrupt vectors, and
also restores the previous state of the coprocessor if one is present.

Ill Syntax

CALL DisableFP

11111 Where

The floating point interrupt vectors are restored to what they had been
before EnableFP was called. If a coprocessor is installed its entire state
is also restored, so computations in your program do not disturb the
under! ying program.

Comments

If DisableFP is called twice in a row or when EnableFP has not b'een
called, the second request is ignored.

See the topic Floating Point Considerations in the section TSR Program
ming.

CRESCENT SOFrWARE, INC. II 5 - 23

Reference, P.D.Q. Extensions P.D.Q. Version 3.10

Also see the description for EnableFP, and the POPUPFP.BAS sample
program for an example of using floating point math in a P.D.Q. simplified
1SR.

Dollar$ function
11111 Purpose

Dollar$ accepts an incoming long integer value, and returns an equivalent
string formatted as a dollar amount.

II Syntax
Amount$= Dollar$(Cents&)

1111 Where

Cents& is a long integer representing a dollar amount as pennies, and
Amount$ receives a string formatted to two decimal places but without a
dollar sign. That is, the value 12345 is returned as "123.45".

Comments

Because Dollar$ has been designed as a function, it must be declared
before it may be used.

Even though P.D. Q. programs may manipulate floating point values, there
may be occasions where you need only to accommodate dollar amounts.
By treating a value as the number of pennies and formatting it with Dollar$
when needed, a wide range of values may be represented (approximately
plus or minus 21 million dollars) without requiring the added overhead of
floating point math.

Also see the FUsing function which is more powerful than Dollar$, but
at the expense of increased code size.

DOSBusy function
II Purpose

DOSBusy lets a non-simplified P.D.Q. 1SR program determine when it
is safe to access DOS interrupt services.

1111 Syntax
Busy= DDSBusy%

1111 Where

Busy receives -1 if DOS is busy, or O if it is not, thus allowing any BASIC
statement (except INKEY$, PDQinkey, or PDQinput) to be used.

11111 5-24 CRESCENT SOFTWARE, INC.

P.D.Q. Version 3.10 Reference, P.D.Q. Extensions

Comments

Because DOSBusy has been designed as a function, it must be declared
before it may be used.

The internal DOS "busy" flag is set to a non-zero value whenever DOS
is servicing an interrupt and may not be intenupted. If the flag is zero,
then DOS is not currently servicing an interrupt. This flag is used by DOS
to prevent nested calls to its own services which are not supported.

Note that COMMAND.COM uses a DOS function to read input from the
command line. Thus, when at the command line, the DOS flag will always
indicate non-zero, or busy.

This function is normally used in a TSR to determine if the TSR may safely
execute a DOS interrupt. Because of the command line problem (as
described above), the call is of limited value unless it is used in conjunction
with other techniques. Further~ in many cases it is not sufficient to know
that DOS is not busy. For example, a TSR that intercepts the system timer
interrupt could receive control when DOS is free but a video BIOS routine
is in progress. If the TSR then calls DOS to print a string and DOS in
turn calls the BIOS-whammo !

If you plan to use DOSBusy you must use it once early in your program,
before calling EndTSR:

Durm1y = D0S8usy%

Please see the PopRequest function which allows manual interrupt handlers
to access DOS and BIOS services with the same level of safety thatP.D.Q.
"simplified" TSR programs enjoy.

DOSVer function
11111 Purpose

DOSVer returns the DOS version that is currently running on the host PC.

11111 Syntax

Version= DOSVer%

11111 Where

Version receives the DOS version times 100. For example, if a PC is
using DOS 3.20, then Version will receive the value 320.

CRESCENT SOFfWARE, INC. 11115-25

Reference, P.D.Q. Extensions P.D.Q. Version 3.10

Comments

Because DOSVer has been designed as a function, it must be declared
before it may be used.

Internally, the DOS service that reports the version number returns two
separate values-the major version and the minor version. In the example
above, the major version component would be 3, and the minor would be
20. These may be easily isolated as follows:

Major= DOSVer% \ 100
Minor= DOSVer% MOD 100

There are a number of situations where DOSVer will come in handy. One
would be when you are writing an application for use on a network, which
of course requires DOS version 3.0 or later. Also, a bug in some DOS
2.x versions prevents the SHELL statement from working reliably. By
knowing the version of DOS that is running, you can avoid potential
problems.

EnableFP subroutine
11111 Purpose

EnableFP is used within P.D.Q. simplified TSR programs that perform
floating point math.

111111 Syntax
CALL EnableFP

Ill Where

The floating point interrupt vectors are set to point to the P.D.Q. emulator
library if appropriate. If a coprocessor is installed its entire state is also
saved, so computations in your program do not disturb the underlying
program.

Comments:

You must call EnableFP as the first action in your popup handler, before
performing any floating point calculations. You must also call the
complementary routine, DisableFP, just before calling PopDown to return
to the foreground program or DOS prompt.

If EnableFP is called twice without an intervening call to DisableFP the
second request is ignored.

See the topic Floating Point Considerations in the section TSR Program
ming.

1111 5-26 CRESCENT SOFfWARE, INC.

P.D.Q. Version 3.10 Reference, P.D.Q. Extensions

Also see the description for DisableFP, and the POPUPFP.BAS sample
program for an example of using floating point math in a P.D.Q. simplified
TSR.

Endlevel subroutine
111111 Purpose

EndLevel is an alternate END routine, which allows your programs to set
the DOS ERRORLEVEL value from a BASIC program.

II Syntax

CALL EndLevel(ErrorLevel%)

111111 Where

ErrorLevel% is the desired error level, between O and 255.

Comments

The DOS ERRORLEVEL is a convenient way for your programs to
interact with a batch file. One example is to indicate the success or failure
of a program's actions. Another is when writing an "ASK" program to
create a DOS-only menu using batch files.

See the ASK.BAS example program, and its corresponding MENU.BAT
batch file which illustrates this in context.

If you are using Microsoft BASIC version 7, the END statement can be
used with an exit code directly, hence calling EndLevel is not necessary.

EndTSR subroutine
Ill Purpose

EndTSR is called by a P.D. Q. TSR program when it has finished its
installation sequence and will relinquish control to DOS.

11111 Syntax

CALL EndTSR (ID$)

11111 Where

ID$ is a unique program identifier that may be used later on in the program
to determine if it is already resident.

Comments

The ID$ string variable is used to trap against multiple installations, and
must be unique for every TSR program. Please note that ID$ is altered

CRESCENT SOFrWARE, INC. 11115-27

Reference, P.D.Q. Extensions P.D.Q. Version 3.10

by EndTSR, and should not be used after EndTSR is called. ID$ must
contain at least eight characters, and we suggest using your sign-on or
copyright notice.

The call to EndTSR should be the last statement in your program.

Please see the complete discussion about writing TSR programs elsewhere
in this manual. In particular, read the section entitled The Unique
Identification String.

EnvOption subroutine
II Purpose

EnvOption allows a program to switch between accessing its own environ
ment, that of its parent, or that of the currently active process from within
a TSR. EnvOption also provides an option to honor the capitalization of
strings being added to or retrieved from the DOS environment.

11111 Syntax

CALL Env0ption(Option%)

1111 Where

Option% is bit-coded as described below.

Comments

The environment handling routines in P.D.Q. have been significantly
enhanced over regular BASIC to improve their usefulness.

Every program in memory, starting with COMMAND.COM, has access
to an environment. If the program is run from the DOS command line,
COMMAND.COM creates a copy of its environment, and makes that
available to the program. In this case, COMMAND.COM is referred to
as the parent, and the program being run is referred to as the child.

Any changes made by the child to its own copy of the environment
disappear when the child program terminates, although·those changes will
be reflected in programs that it subsequently shells to. Unfortunately,
there is no normal means for a child to change its parent's environment.

When a P.D.Q. program is running as a child of COMMAND.COM, the
ENVIRON statement and the ENVIRON$ function act on the P.D.Q.
program's environment. If the EnvOption routine is used, however,
several additional options become available that let you use the environ
ment more effectively. These options are assigned using bit-coding as
shown in Table V-2.

1111 5 -28 CRESCENT SOFTWARE, INC.

P.D.Q. Version 3.10 Reference, P.D.Q. Extensions

The equivalent Decimal values are shown in Table V-3, with bit O in the
rightmost binary column.

Notice that if you set bit 1 to 1 when assigning variables into the
environment and then use lower case letters, you will not be able to access
them later using the DOS SET command.

Also notice that bit 2 allows a P.D.Q. TSR program to access the
environment of the underlying application. Further, this may be combined
with bit O to access the environment of the parent of the currently active
program.

BIT POSITION
0

1

2

TABLE V-2
Bit-Coded Values For EnvOption

BIT VALUE
0

1

0

0

1

DESCRIPTION
Access the current program's environ
ment.

Access the current program's parent's
environment.

Capitalize variables before adding or
retrieving them.

Don't capitalize the variables.

Access the current program's environ
ment.

Access the environment of the currently
active process.

TABLE V-3
Binary/Decimal Values For Use With EnvOption

BINARY DECIMAL

000 0
001 1
010 2
011 3
100 4
101 5
llO 6
111 7

CRESCENT SOFTWARE, INC. 111B 5 - 29

Reference, P.D.Q. Extensions P.D.Q. Version 3.10

If EnvOption is not called (or is called with an argument of zero), all
environment options use the normal BASIC defaults.

These environment options may not work with certain 2.xx versions of
DOS.

Please see the section entitled The Environment for more information on
this subject. Also, that section lists the error codes related to the
ENVIRON and ENVIRON$ BASIC language statements.

Flush subroutine
Ill Purpose

Flush lets you flush all or selected open DOS file buffers to disk without
having to close and then re-open the files.

1111 Syntax

CALL Flush ([File1%] [, File2%] [, File3%] [, ...])

11111 Where

Filel % , File2 % , and so forth specify the BASIC file numbers to be
flushed.

Comments

Flush lets you flush the DOS file buffers to disk without having to close
and then re-open the files. We have designed Flush to accept any number
of parameters, to emulate a new BASIC command. If Flush is used with
no arguments, then all open files are flushed to disk. You may also specify
individual files like this:

CALL Flush(l, 3, 4)

When data is read from or written to disk, it is always passed first through
an area of memory called a file buffer. The total size of the buffer is
determined by the setting of the BUFFERS= statement in your CON
FIG.SYS file. If CONFIG.SYS is not present or there is no BUFFERS=
statement, then the number of buffers defaults to either 2 for a PC or XT,
or 3 for an AT. Some 286 and 386 computers have a larger default. Each
buffer comprises 512 bytes of memory, which is the size of one disk sector.

Buffers are an important factor in speeding up the operation of a PC,
because they allow information that has previously been read or written
to be accessed again later, but without having to actually read it from the
disk. Further, by always reading an entire sector rather than only the
number of bytes an application requests, subsequent sequential reads will
not require DOS to physically access the disk again.

Ill 5-30 CRESCENT SOFfWARE, INC.

P.D.Q. Version3.10 Reference, P.D.Q. Extensions

However, one problem with buffering disk writing is that the information
is not written to disk at the time the write is performed. Rather, the data
sits there in memory until the buffer becomes full, or the file is closed. If
your program has just used a PRINT or PUT to write data to a disk file
and the power goes out, the data will never be transferred to the file.
Worse, the file's directory entry will not show the correct size, making it
nearly impossible to retrieve what has been written even if you use DEBUG
or the Norton Utilities. Flush therefore allows you to force DOS to write
the file buffer's contents to disk, but without having to close the file and
then re-open it again.

The _FLUSH.OBJ stub file flushes all files only and expects no arguments.
_FLUSH.OBJ is described in the section Linking With Stub Files.

FUsing function

II Purpose

FUsing accepts a number and formatting image string, and returns the
number as a formatted string much like BASIC's PRINT USING does.

II Syntax

Formatted$= FUsing$(STR$(Number), Image$)

111111 Where

Number is any number-integer, long integer, single, or double
precision-and Image$ indicates how the result is to be formatted. If the
result cannot fit within the allotted space, the first digit of the returned
string is replaced with a percent sign (%).

Comments

Because FU sing has been designed as a function, it must be declared before
it may be used.

By using the STR$ function, FU sing lets BASIC do most of the dirty work
to interpret floating point numbers. This also lets FU sing accept any type
of numeric variable. Normally, assembly language routines must be
written to expect one type of variable only.

Note that FUsing$ requires a leading blank space when passed a positive
number. Therefore, if you use the _STR$.OBJ or _STR$FP.OBJ stub
files you must add the leading blank manually:

IF SGN(Number) > 0 THEN
Number$=""+ STR$(Number)

ELSE
Number$= STR$(Number)

CRESCENT SOFrWARE, INC.

'if zero or positive
'add a leading blank

'use as is if negative

11111 5 - 31

Reference, P.D.Q. Extensions P.D.Q. Version3.10

END IF
Result$ = FUsing$(Number$, "####.##")

Most of the formatting options that PRINT USING recognizes are
supported, including commas, dollar signs, and leading asterisks.

Although regular BASIC accepts two different ways to specify commas in
the result number, FU sing honors only one of them. To specify commas
use a single comma immediately to the left of the decimal point like this:

Result$ = FUsing$(STR$(Number), "####, .##")

If there is no decimal point place the comma at the end of the formatting
string.

Table V-4 summaries FUsing's capabilities.

Also see the P.D.Q. Dollar$ function which requires much less code than
FUsing$ when its limitations are acceptable.

TABLE V-4
FUsing Image Codes

Represents a digit position.

Specifies a decimal point.

+ Used as the first character in the image string causes the sign
of the number (+ or-) to be added.

** Replace leading spaces with asterisks.

$$ Adds a dollar sign to the left of the number.

$ Combines the effects of and$$.

Placed to the left of the decimal point (or at the end of the
string if there is no decimal point) causes commas to be added
at every third position.

Get1 Byte function
111111 Purpose

GetlByte retrieves a single byte from the specified segment and element.

11111 Syntax

Value= Get1Byte%(Segment%, Element%)

1111 5-32 CRF.sCENT SOFfWARE, INC.

P.D.Q. Version 3.10 Reference, P.D.Q. Extensions

Ill Where

Segment% and Element% indicate where in memory the byte being
returned is located, and Value receives its value.

Comments

Because GetlByte has been designed as a function, it must be declared
before it may be used.

Element numbers start at one; there is no element zero.

GetlByte is intended primarily for accessing memory that was allocated
using the P.D.Q. AllocMem function. This effectively adds a new "byte"
variable type, which of course occupies less memory than a conventional
integer.

The values returned by GetlByte range from -128 to 127, as opposed to
0 to 255. However, you can link with the alternate GETlBYT.OBJ stub
file to have GetlByte return values between O and 255.

Because GetlByte will accept any segment value, it may also be used to
fake Pascal's "array of absolute" feature. For example, by specifying the
segment as &H40, any of the internal BIOS data variables may be accessed
without requiring DEF SEG and PEEK.

Also see the related GetlLong, GetlWord, and GetlType functions.

Get1 Long function
11111 Purpose

GetlLong retrieves a long integer from the specified segment and element.

11111 Syntax

Value&= Getllong&(Segment%, Element%)

1111 Where

Segment% and Element% indicate where in memory the long integer being
returned is located, and Value& receives its value.

Comments

Because GetlLong has been designed as a function, it must be declared
before it may be used.

Element numbers start at one; there is no element zero.

CRESCENT SOFfWARE, INC. 1115 - 33

Reference, P.D.Q. Extensions P.D.Q. Version 3.10

GetlLong is intended primarily for accessing memory that was allocated
using the P.D.Q. AllocMem function. AllocMem lets you simulate
dynamic arrays, which generates somewhat less code than using such
arrays directly.

Because GetlLong accepts any segment value, it may be used to retrieve
data from any arbitrary address. For example, by specifying the segment
as 0, any interrupt vector may be accessed directly. (Though in that case
interrupt O is accessed as element 1, interrupt 1 as element 2, and so forth.)

Also see the related GetlByte, GetlWord, and GetlType functions.

Get1Type subroutine
II Purpose

Getl Type retrieves a TYPE variable from the specified segment and
element.

II Syntax

CALL Get1Type(Segment%, Element%, Length%, TypeVar)

11111 Where

Segment% and Element% indicate where in memory the type element
being retrieved is located, Length% is its length in bytes, and Type Var is
the TYPE variable in near memory that is to receive its contents.

Comments

Element numbers start at one; there is no element zero.

Getl Type is intended primarily for accessing memory that was allocated
using the P.D.Q. AllocMem function. AllocMem lets you simulate
dynamic arrays, which generates somewhat less code than using such
arrays directly.

Using LEN(1ype Var) as the length parameter causes BASIC to use the
correct value even if the TYPE structure is changed.

Also see the related GetlByte, GetlLong, and GetlWord functions.

Get1 Word function

11111 Purpose

GetlWord retrieves an integer word (two bytes) from the specified segment
and element.

1111 5 - 34 CRESCENT SOFTWARE, INC.

P.D.Q. Version 3.10 Reference, P.D.Q. Extensions

Iii Syntax

Value= Get1Word%(Segment%, Element%)

lllill Where

Segment% and Element% indicate where in memory the word being
returned is located, and Value receives its value.

Comments

Because Getl Word has been designed as a function, it must be declared
before it may be used.

Element numbers start at one; there is no element zero.

GetlWord is intended primarily for accessing memory that was allocated
using the P.D. Q. AllocMem function. AllocMem lets you simulate
dynamic arrays, which generates somewhat less code than using such
arrays directly.

Because Getl Word accepts any segment value, it may be used to retrieve
data from any arbitrary address. For example, by specifying the segment
as &HB000 (for a monochrome display), the entire screen may be treated
as if it were a data array.

Also see the related GetlByte, GetlLong, and GetlType functions.

GetCPU function

II Purpose

GetCPU returns an integer value that indicates the type of CPU installed
in the host PC.

II Syntax

CPU = GetCPU%

1111 Where

CPU receives either 86, 286, or 386 to indicate the presence of an 8086/88
(or NEC V20/30), an 80286, or an 80386 respectively.

Comments

Because GetCPU has been designed as a function, it must be declared
before it may be used.

CRESCENT SOFTWARE, INC. 11115 - 35

Reference, P.D.Q. Extensions

GetSeg function
111 Purpose

P.D.Q. Version 3.10

GetSeg returns BASIC's current DEF SEG setting.

Ill Syntax

CurrentSeg = GetSeg%

II Where

CurrentSeg receives the value used in the most recent DEF SEG command,
or BASIC's default data segment if DEF SEG hasn't been used.

Comments

Because GetSeg has been designed as a function, it must be declared before
it may be used.

In most cases, you will know the current DEF SEG value because your
program set it. But when writing reusable modules that are added to more
than one program, the current setting may not be known. Of course, any
well-behaved routine should always clean up after itself and return things
to the way they were. Therefore, you would use GetSeg before changing
the current DEF SEG segment, and then use DEF SEG with the original
value when you are finished:

SaveSeg = GetSeg%
DEF SEG = 0
MonAddress = PEEK(&H463)
DEF SEG = SaveSeg

GotoOldlnt subroutine

111 Purpose

'save the current segment
'look at an address in low memory
'get the info from segment 0
'restore it to what it had been

GotoOldint is used in a P.D.Q. TSR or interrupt handler program to pass
control on to the original interrupt routine.

Ill Syntax

CALL GotoOldlnt(Registers)

Ill Where

Registers is the P.D. Q. TYPE variable being used to service the interrupt.

Comments

In many TSR programs, control must be passed on to the original interrupt
handler. For example, a program that has intercepted the keyboard

1111 5 -36 CRESCENT SOFfWARE, INC.

P.D.Q. Version 3.10 Reference, P.D.Q. Extensions

interrupt will probably act on only one key. Thus, it will defer to the
original interrupt routine for all keys except its own hot key.

HercMode subroutine
1111 Purpose

HercMode switches a Hercules display into either graphics mode or text
mode.

1111 Syntax

CALL HercMode(Action%)

fill Where

Action% is non-zero to switch to graphics mode, or zero to switch back
to text mode.

Comments

HercMode is a substitute for both SCREEN 3 and SCREEN O afterward.

We decided not to add SCREEN 3 to the SCREEN statement, because it
would add that code to programs that do not need Hercules support.

Note that HercMode does not require MSHERC.COM or QBHERC.COM
to be loaded as does regular BASIC. Use HercMode as follows:

CALL HercMode(l)
CALL HercMode(O)

'enable graphics mode
'go back to text mode

Please understand that HercMode does not allow you to use PRINT or any
of BASIC's graphics commands. Rather, it simply puts the display adapter
into graphics mode. It is then up to you to POKE pixels or whatever into
display memory, or use an assembly language routine to do that.

Hookf P subroutine

11 Purpose

HookFP takes over the floating point interrupts in a P.D.Q. TSR program.

II Syntax
CALL HookFP

1111 Where

The original floating point interrupt vectors (&H34 through &H3C) are
saved, and the vectors are then directed to point to the P.D.Q. TSR
program.

CRESCENT SOFrWARE, INC. 1115 -37

Reference, P.D.Q. Extensions P.D.Q. Version3.10

Comments

You do not normally need to call HookFP manually, and it is documented
here in the interest of completeness only.

See the topic Floating Point Considerations in the section TSR Program
ming for information about taking over and releasing the floating point
interrupt vectors.

Also see the description for UnhookFP, and the POPUPFP.BAS sample
program for an example of using floating point math in a P.D.Q. simplified
TSR.

HooklntO subroutine
Ill Purpose

Hooklnt0 takes over the "Divide by zero" interrupt (Interrupt 0), to
prevent that condition from crashing a program.

II Syntax
CALL HooklntO(Action%)

11111 Where

Action% is zero to take over Interrupt 0 for the duration of the program,
or non-zero to take it over only until Unhooklnt0 is called.

Comments

When the CPU performs an integer or long integer divide (or MOD)
operation that results in division by zero it generates hardware Interrupt
0. This interrupt may not be prevented using normal methods. The default
Interrupt 0 handler is inside DOS, and it simply ends the program and
displays an error message. To avoid this problem you can call HooklntO
and Unhooklnt0, and they are used in a manner similar to the CritErrOn
and CritErrOff routines.

An enhancement to Hooklnt0 lets you specify that you will be turning this
trapping on and off manually, rather than simply leaving it on all the time.
In most cases you can simply call Hooklnt0 once and forget it. Unlike
the CritErr routines, Hooklnt0 ties itself into the P.D.Q. termination
procedure (B _ ONEXIT) and restores the interrupt vector automatically
when your program ends. This behavior is specified with an argument of
zero:

CALL HooklntO(O)

1111 5 - 38 CRESCENT SOFfWARE, INC.

P.D.Q. Version 3.10 Reference, P.D.Q. Extensions

A non-zero argument instead tells HookintO that you need full control over
when Interrupt O is trapped, and you will therefore be calling UnhookintO
manually to disable it. This is necessary when writing a TSR application.
In a TSR that might possibly cause a "Division by zero" error you would
want to trap the interrupt only while the TSR is active, and then disable
trapping before returning to the underlying program. This is shown below.

Call PopUpHere(HotKey%, ID$)
GOTO Endit

CALL HookintO(l) 'first disable Interrupt 0
'do whatever you need here

CALL UnhookintO 'reenable the original handler

CALL PopDown 'return to the underlying program
Endit:

If HookintO were never called, dividing by zero in the TSR would either
crash the underlying program or jump into its error handler. And if the
interrupt trapping were not removed with UnhookintO, division by zero
in the underlying program would jump into the TSR's HookintO handler.
In either case, a hung computer is guaranteed.

Again, HookintO affects integer and long integer operations only. Floating
point math that results in division by zero never halts a running program
regardless of whether an 8087 coprocessor or the emulator is being used.
When division by zero does occur, both the floating point emulator and
HookintO set BASIC's ERR function to 11, "Division by zero".

lntEntry1 and lntEntry2 subroutines

11111 Purpose

IntEntryl and IntEntry2 are used by P.D.Q. TSR programs to copy the
calling program's context to a TYPE variable before processing the
interrupt.

1111 Syntax

CALL IntEntryl
CALL IntEntry2(Registers, Action%)

1111 Where

Registers is the P.D. Q. TYPE variable being used to service this interrupt,
and Action% tells IntEntry2 what to do if another interrupt comes along
before processing of the first one has been completed.

CRESCENT SOFfWARE, INC. 1115 - 39

Reference, P.D.Q. Extensions P.D.Q. Version 3.10

Comments

Every interrupt handler written using P.D.Q. must immediately call two
routines each time it gets control. The first routine is IntEntryl, which
saves the AX register and then sets DS to the correct value for the program
to access its variables. Next, IntEntry2 must be called before the BASIC
program does anything that might destroy the remaining register contents.

The Action% parameter lets you specify what action to take if another
interrupt occurs before the first one has been processed. Because P.D.Q.
TSR programs are not re-entrant, it is important to prevent a routine from
being invoked more than once. However, this is possible only with
hardware interrupts such as the timer, keyboard, or communications
interrupts.

Action% also lets you indicate whether the interrupt handler is to become
active immediately, or is not to receive control until the call to EndTSR
has been completed. Because it is possible to write interrupt handlers that
are not necessarily TSR programs, you would set the second bit to a value
of 1 in that case.

In most situations Action% will be left unassigned, holding a default value
of zero.

A complete, detailed discussion of each bit in the Action% variable follows
in Table V-5, followed by decimal equivalents for each value in Table V-6.

BIT POSITION

0

1

1111 5-40

TABLE V-5
Bit-Coded Values For Action%

BIT VALUE DESCRIPTION

0 Jump to old interrupt
1 Ignore the interrupt

0 Wait until resident
1 Work immediately

CRESCENT SOFTWARE, INC.

P.D.Q. Version3.10 Reference, P.D.Q. Extensions

TABLE V-6
Binary/Decimal Values For Use With Action%

BINARY

00
01
10
11

DECIMAL

0
1
2
3

Bit 0, handling subsequent interrupts:
An interrupt can occur at any time in the DOS environment. This causes
a problem for P.D.Q. programs that intercept interrupts, such as TSR,
filter, and system programs. If, while servicing the first occurrence of an
interrupt, a second interrupt of the same type occurs, three possible options
exist.

First, the interrupt service routine (ISR) may possibly be reentrant. This
means that it can be invoked at any time without losing track of previous
interrupt levels. However, neither DOS nor P.D.Q. support this type of
code.

Second, the JSR can simply terminate the interrupt immediately by
performing an IRET. This treatment can have dire consequences since
the action that was to be performed by the interrupt never occurred. If
the interrupt was the hardware timer tick, for example, then the internal
PC clock will begin to lose time. And if the keyboard interrupt were used,
an unserviced interrupt would disable the keyboard, effectively disabling
the computer. This option is therefore provided mostly for completeness,
although it could have application when servicing software interrupts.

Third, the ISR can pass the interrupt request on to the original JSR. So,
for example, an ISR that intercepted the printer interrupt could itself call
the printer interrupt, which would in tum go directly to the BIOS.

Because the code that is executed when an interrupt is redirected by P.D. Q.
is not reentrant, the decision of how to handle nested interrupts must be
made at the assembly code level.

Bit 1, the option flag:
This second option determines whether P.D. Q. should intercept the
interrupt immediately, or only after becoming memory resident.

CRESCENT SOFrWARE, INC. 11111 5 - 41

Reference, P.D.Q. Extensions P.D.Q. Version 3.10

This option is provided to allow a TSR to install all interrupt hooks before
allowing any action to take place. For example, if an JSR that performed
disk access was allowed to pop up on a hotkey before it established an
intercept to the disk interrupt, it might crash the machine.

Non-TSR programs will never become resident, so they should use the
activate immediately option when trapping interrupts.

In general, a TSR would normally use Action% = 0, jump to old interrupt,
wait until resident to activate. A non-TSR would normally use Action%
= 2, jump to old interrupt, and become active immediately.

Interrupt subroutine
1111 Purpose

Interrupt is the P.D.Q. replacement for BASIC's CALL INTERRUPT
routine, and it allows a program to access system interrupts.

II Syntax
CALL Interrupt(IntNum%, Registers)

111 Where

IntNum % is the interrupt number to invoke, and Registers is the TYPE
variable that holds the register values for this interrupt.

Comments

Interrupt requires a TYPE variable to access each of the processor's
registers. This variable should be designed as follows:

TYPE Registers
AX AS INTEGER
BX AS INTEGER
ex AS INTEGER
DX AS INTEGER
BP AS INTEGER
SI AS INTEGER
DI AS INTEGER
FL AS INTEGER
DS AS INTEGER
ES AS INTEGER

END TYPE

This is similar to the examples shown in the BASIC manuals, and our
version shares the same problem-it is difficult to access the individual
halves of those registers that can be split. The best solution is to use
integer division with the BASIC AND operator, to isolate the low and high
portions. The variables AL and AH below receive the low and high
components respectively:

1111 5-42 CRESCENT SOFfWARE, INC.

P.D.Q. Version 3.10 Reference, P.D.Q. Extensions

AL= AX AND 255
AH= AX\ 256

'AL gets just the low part
'and AH gets the high part

Likewise, you could use multiplication and addition to assign a register
from the low and high halves as follows:

AX= AL+ 256 * AH

Since most DOS and BIOS services require you to assign the AH portion
only, this may also be simplified:

AX= 256 * AH

Using Hex notation is equally appropriate, when the register values are
known in advance and numbers are being used instead of variables:

AX = &H4E01 'assign &H4E to AH, 1 to AL

Interrupt uses the current setting of the DS and ES registers when calling
an interrupt, and the values returned in DS and ES are not available. Also
notice that the Registers variable defined in the PDQDECL.BAS file
contains additional components for use with the various TSR interrupt
handling routines. The additional elements in that type definition will
cause no problems when used with Interrupt or lnterruptX. Of course,
you could also define a smaller, subset TYPE for use only with the
Interrupt routine.

The DS and ES portions of this TYPE variable are not used by Interrupt,
and may be omitted. However, they are used by the InterruptX routine.

Interrupt differs from Microsoft BASIC's implementation in that the same
TYPE variable is used both when calling the interrupt, and when examin
ing the register values that are returned. This reduces the amount of code
that is added to your programs, and (usually) the amount of work you must
do as well.

The P.D.Q. program's stack is used by the interrupt being called.

Interrupt may be used from within a P.D.Q. TSR program.

Do not use Interrupt to access Interrupts &H25 or &H26. These are the
DOS interrupts that directly read and write disk sectors, and they leave
extra information on the stack that cannot be removed by a P.D.Q. BASIC
program. If you really do need to access these interrupts, use the
INTERRUPT routine that comes with later versions of BASIC 7 PDS,
because it contains extra code to accommodate the stack problem.

CRESCENT SOFTWARE, INC. 11115 - 43

Reference, P.D.Q. Extensions

lnterruptx subroutine
Ill Purpose

P.D.Q. Version 3.10

InterruptX is the P.D.Q. replacement for BASIC's CALL INTERRUPTX
routine, and it allows a program to access system interrupts.

II Syntax

CALL InterruptX(IntNum%, Registers)

111111 Where

IntNum % is the interrupt number to invoke, and Registers is the TYPE
variable that holds the register values for this interrupt.

Comments

InterruptX requires a TYPE variable to access each of the processor's
registers. See the comments that accompany the Interrupt routine for a
description of this TYPE variable.

If the DS portion of the TYPE variable is set to -1 when InterruptX is
called, the current value of BASIC's data segment is sent to the interrupt
in the DS register. That is, DS is passed unchanged. If the ES portion is
set to -1, then ES is set to the current value of DS. Regardless of which
values you use for DS and ES when the interrupt is called, the register
contents returned by the interrupt are assigned to those components of the
TYPE variable for access by your BASIC program.

InterruptX differs from regular BASIC's implementation in that the same
TYPE variable is used both when calling the interrupt, and when examin
ing the register values that are returned.

The P.D.Q. program's stack is used by the interrupt being called.

InterruptX may be used from within a P.D.Q. TSR program.

Do not use InterruptX to access Interrupts &H25 or &H26. These are the
DOS interrupts that directly read and write disk sectors, and they leave
extra information on the stack that cannot be removed by a P.D.Q. BASIC
program. If you really do need to access these interrupts, use the
INTERRUPTX routine that comes with later versions of BASIC 7 PDS,
because it contains extra code to accommodate the stack problem.

II 5 - 44 CRESCENT SOFfWARE, INC.

P.D.Q. Version3.10 Reference, P.D.Q. Extensions

MidChar function
■ Purpose

MidChar returns the ASCII value for a single character within a string.

II Syntax

Char= MidChar%(Work$, Position%)

111111 Where

Char receives the ASCII value for the specified character, or -1 if
Position% is less than 1 or past the end of Work$.

Comments

Because MidChar has been designed as a function, it must be declared
before it may be used.

Every time you use the MID$ function in either regular BASIC or P.D.Q.
a copy of that portion of the string is extracted, and new memory is
allocated to receive the copy. This takes a lot of time and adds a fair
amount of code to your program each time MID$ is used. Because
Mid Char is an integer function, no string operations are required. Further,
BASIC can compare integers much faster than it can compare strings.
Therefore, Mid Char is most useful when you are walking through a string
looking for a particular single character.

The first example below shows a typical use for MidChar, by searching
for the backslash that separates a file name from its path. The line that
compares MidChar to 92 compiles to 26 bytes of code, not counting the
MidChar routine itself:

DEFINT A-Z
FileName$ = "C:\SUBDIR1\SUBDIR2\FILENAME.EXT"

FOR X = LEN(FileName$) TO 1 STEP -1
IF MidChar%(Fi leName$, X) = 92 THEN '92 = ASC("\")

Path$= LEFT$(FileName$, X) 'isolate the path
FileName$ = MID$(FileName$, X + 1) 'and the name

END IF
NEXT

Contrast that to this next example which uses MID$ to do the same thing,
but with a compiled code size of 32 bytes (not counting the actual MID$
routine):

FOR X = LEN(FileName$) TO 1 STEP -1
IF MID$(FileName$, X, 1) ="\"THEN

Path$= LEFT$(FileName$, X)
FileName$ = MID$(FileName$, X + 1)

CRESCENT SOFrWARE, INC. 11115 - 45

Reference, P.D.Q. Extensions P.D.Q. Version 3.10

END IF
NEXT

Although the code size savings may seem small, it quickly adds up when
MID$ is used many times in a program. More important, the MidChar
routine is at least five times faster than MID$-and that's where the real
benefit becomes obvious!

MidCharS subroutine
11 Purpose

MidCharS inserts a single character into a string much faster than using
the MID$ statement.

1111 Syntax
CALL MidCharS(Work$, BYVAL Position%, BYVAL Char%)

II Where

CHR$(Char%) is assigned into Work$ at the indicated position. If
Position% is less than 1 or greater than the length of Work$ the request is
ignored.

Comments

MidCharS (the "S" stands for statement, as opposed to function) comple
ments the Mid Char function described earlier, and it is much more efficient
than using the statement form of MID$ when inserting a single character
into an existing string.

A typical example of using MidCharS is shown below, along with the
equivalent using MID$ in BASIC:

BASIC:

MID$(Work$, Start, 1) = Char$

MidCharS:

CALL MidCharS(Work$, Start, Char)

One reason MidCharS is so efficient is because MID$ must be able to
handle varying lengths in both the source and destination strings. Because
MidCharS works with only single characters it is much faster. Another
factor is that fewer passed parameters are required. In the example above,
MID$ requires 25 bytes of compiler-generated code, compared to only 17
for MidCharS. More important, however, MidCharS is more than five
times faster than equivalent code using the MID$ statement.

11111 5 - 46 CRESCENT SOFfWARE, INC.

P.D.Q. Version 3.10

NoSnow subroutine

II Purpose

Reference, P.D.Q. Extensions

NoSnow lets you disable CGA "snow suppression" in PDQPrint,
PDQCPrint, BIOSinput, and BIOSinput2, to achieve the fastest display
speed possible when using a CGA display adapter.

11 Syntax

CALL NoSnow(Flag%)

11 Where

Flag% is either O to disable snow suppression, or non-zero to reenable it
again later.

Comments

Most CGA displays require using a special timing loop within "quick
print" routines, to prevent interference when the routines write directly
to display RAM. If this is not done, a disturbing burst of static appears
on the screen each time display memory is read from or written to.
(However, this static causes no harm to the PC or display hardware.)

Unfortunately, the timing loop slows down the printing process consider
ably. Many newer CGA boards do not require such special treatment, but
there's no way for PDQPrint and PDQCPrint to know that a newer adapter
is present. NoSnow therefore lets you manually override the assumptions
these routines make, by either allowing or preventing the suppression
timing. You can also use NoSnow with older CGA adapters to sacrifice
esthetics for speed.

Pause subroutine

11111 Purpose

Pause delays a program for a specified number of 18ths of a second.

II Syntax

CALL Pause(Ticks%)

1111 Where

Ticks% is the number of system timer ticks (18ths of a second) to delay.

Comments

Pause provides an easy way to add short delays to your programs, while
providing a finer resolution than the SLEEP command. Pause was adapted
from our QuickPak Professional package, and it is used internally by

CRESCENT SOFrWARE, INC. 11115 - 47

Reference, P.D.Q. Extensions P.D.Q. Version3.l0

several of the BASIC language statements in P.D. Q. Thus, it seems only
sensible to include and document it as a separate subroutine.

Although P.D.Q. supports the BASIC TIMER function, you should avoid
that when possible because TIMER requires floating point math. Even if
you do not otherwise need floating point math, using TIMER even once
adds the entire P.D.Q. floating point emulator to your program.

Note that the system timer event occurs 18.206481 times per second.
Therefore, you may want to use 18.2 instead of 18 in your calculations
when more accuracy is necessary. For example, to delay 10 seconds you
would use 182 instead of 180.

PDQCompare function
111111 Purpose

PDQCompare compares two TYPE variables and reports if they are the
same.

1111 Syntax
IF PDQCompare%(SEG Typel, SEG Type2, NumBytes%) THEN

'they match
END IF

1111 Where

Typel and Type2 are TYPE variables, and NumBytes % is the number of
bytes to compare (usually the full length of one of the variables).

Comments

Because PDQCompare has been designed as a function, it must be declared
before it may be used.

PDQCompare lets you compare any two TYPE variables or blocks of
memory (up to 64K) to see if they are identical. If the TYPE variables
are equal PDQCompare returns -1 (True); otherwise O is returned (False).
This lets you use Nor with the function result:

IF NOT PDQCompare%(SEG Type!, SEG Type2, NumBytes%) THEN
'they are different

END IF

PDQCompare is especially valuable with TYPE variables, because com
paring them using purely BASIC statements requires a separate test for
each component:

1111 5 - 48 CRESCENT SOFfWARE, INC.

P.D.Q. Version 3.10 Reference, P.D.Q. Extensions

IF Typel.LastName = Type2.LastName AND_
Typel.FirstName = Type2.FirstName AND_
Typel.DatePaid = Type2.DatePaid AND

PDQCompare may be declared and invoked in either of two ways: with
the source and target segments and addresses passed individually by value,
or as SEG addresses for each variable.

We used the BYVAL method in PDQDECL.BAS, however a second
DECLARE using SEG is also shown there as a remark. The examples
below show both methods in context.

1. DECLARE FUNCTION PDQCompare%(SEG Source AS ANY,_
SEG Dest AS ANY, NumBytes AS ANY)

IF PDQCompare%(Typel, Type2, LEN(Typel)) THEN
'the two TYPE variables are the same

END IF

2. DECLARE FUNCTION PDQCompare%(BYVAL Seg1%, BYVAL Addr1%,
BYVAL Seg2%, BYVAL Addr1%, NumBytes AS ANY)

IF PDQCompare%(Seg1%, Addr1%, Seg2%, Addr2%, NumBytes%) THEN
'the two blocks of memory are the same

END IF

Note that you must use a long integer (or equivalent negative value) to
specify NumBytes values larger than 32,767. NumBytes is declared using
the AS ANY option, so you can use either type of variable interchangeably
in the same program.

PDQCPrint subroutine
II Purpose

PDQCPrint is a "quick print" routine that bypasses DOS and writes
directly to screen memory using the current COLOR setting.

II Syntax

CALL PDQCPrint(Work$, Row%, Column%)

II Where

Work$ is the string to be printed, and Row% and Column% specify where
on the screen to print.

Comments

PDQCPrint is an alternate version of PDQPrint. Unlike PDQPrint,
PDQCPrint uses the current COLOR settings to avoid an extra passed
parameter when the same color will be used repeatedly. This saves a few
bytes of code each time PDQCPrint is called.

CRESCENT SOFfWARE, INC. 111115 -49

Reference, P.D.Q. Extensions P.D.Q. Version3.10

PDQCPrint may be directed to print to any arbitrary segment, by using
the PDQSetMonSeg routine.

Please see the discussion that accompanies PDQPrint elsewhere in this
section.

PDQExist function
111111 Purpose

PDQExist provides a simple way to determine if a file exists.

11111 Syntax
There= PDQExist%(FileName$)

II Where

FileName$ is either a file name or a file specification such as "*.BAS",
and There receives -1 if the file exists, or zero if it does not.

Comments

Because PDQExist has been designed as a function, it must be declared
before it may be used.

A drive and path specification may be optionally used to specify other than
the current defaults. For example, you could use:

FileName$ = "C:\BASIC7\MYFILE.DAT"
IF PDQExist%(FileName$) THEN ...

Because of the way P.D.Q. programs handle DOS errors, PDQExist is not
as necessary as when writing in regular BASIC alone. That is, attempting
to open a file that doesn't exist will not halt your program.

PDQlnkey function
1111 Purpose

PDQinkey serves the same purpose as BASIC's INKEY$ function, except
it returns an integer value rather than a string.

Ill Syntax
KeyHit = PDQ!nkey%

II Where

KeyHit receives zero if no keys are pending in the keyboard buffer, a
positive number equal to a normal key's ASCII value, or a negative value
corresponding to an extended key code.

1111 5- 50 CRESCENT SOFfWARE, INC.

P.D.Q. Version 3.10 Reference, P.D.Q. Extensions

Comments

Because PDQinkey has been designed as a function, it must be declared
before it may be used.

Even though P.D.Q. fully supports BASIC's INKEY$ function, using
PDQinkey adds less code and is faster. The example below shows this in
context.

DO
KeyHit = PDQinkey%

LOOP UNTIL KeyHit

IF KeyHit > 0 THEN
'they pressed a regular key

ELSE
'it was an extended key

END IF

Like BASIC's INKEY$ function, PDQinkey fully supports DOS command
line redirection using the " < " symbol.

PDQinkey is not intended for use within a P.D.Q. TSR program. You
must instead use BIOSinkey, which does not support redirection.

PDQlnput subroutine
11111 Purpose

PDQinput is a P.D.Q. substitute for BASIC's LINE INPUT command.

II Syntax
CALL PDQinput(Work$)

11111 Where

Work$ is the string that is to receive the entered text.

Comments

Although P.D.Q. supports the normal INPUT command, it is not available
when linking with the SMALLDOS.LIB library. Further, each time
BASIC's INPUT is used, many bytes of assembler instructions are added
to your program which is avoided when PDQinput is used. PDQinput
calls on the built-in DOS command-line editor, which is already present
in RAM. The maximum string length that may be input is 127 characters.

PDQinput supports redirection from the DOS command line.

CRESCENT SOFTWARE, INC. Ill 5 - 51

Reference, P.D.Q. Extensions P.D.Q. Version 3.10

PDQ Input is not intended for use within a P. D. Q. TSR program. You must
instead use the BIOSinput or BIOSinput2 routines which do not support
redirection, but provide several additional features.

If the operator presses Ctrl-C or Ctrl-Break during input the program will
be ended, unless BreakOff has been called.

See the BreakOff, BreakOn, and BreakHit routines, which let you disable
the Ctrl-Break and Ctrl-C keys. Also see the BIOSinput and BIOSinput2
routines which allow editing an existing string, and specifying an input
field color.

PDQMessage function
Ill Purpose

PDQMessage accepts a BASIC error number, and returns an appropriate
text message as a string.

111111 Syntax
ErrMsg$ = PDQMessage$(ErrNumber%)

II Where

ErrNumber% is one of the BASIC error numbers supported by P.D.Q.,
and ErrMsg$ receives the equivalent text message.

Comments

Because PDQ Message has been designed as a function, it must be declared
before it may be used.

You may also print the output of PDQ Message directly, as shown below.

PRINT PDQMessage$(ErrNumber%)

Supported error numbers are listed in Table 1-1 on Page 1-7. Any error
number that is not represented in the table will return the message
"Undefined error".

If you have an assembler you may also add new messages, or remove those
that are not necessary to reduce your program's size. Complete instruc
tions are provided in the PDQMSG.ASM source file.

11111 5 - 52 CRESCENT SOFfWARE, INC.

P.D.Q. Version 3.10 Reference, P .D .Q. Extensions

PDQMonitor function
11111 Purpose

PDQ Monitor reports the type of display adapter that is installed in the host
PC.

11111 Syntax

MonType = PDQMonitor%

11111 Where

MonType receives a code number that corresponds to the monitor type.

Comments

Because PDQ Monitor has been designed as a function, it must be declared
before it may be used.

If two monitors are installed, the one that is currently active is reported.
Note that PDQMonitor remembers the type of monitor internally, to
increase the speed for subsequent invocations. Since PDQ Monitor is used
by PDQPrint and PDQCPrint, having to assess the monitor type at each
call would slow those routines considerably. Therefore, if the active
monitor is changed on a two-monitor system after PDQMonitor has
already been used, the original monitor code number is returned. How
ever, PDQSetMonSeg lets you force PDQ Monitor to reevaluate the display
adapter.

You can easily determine if the current monitor is monochrome or color
using a simple PEEK as follows:

DEF SEG = 0
IF PEEK(&H463) = &HB4 THEN

'it is a monochrome monitor using video segment &HBOOO
ELSE

'it is a color monitor using video segment &HB800
END IF

PDQ Monitor recognizes all of the popular display adapter types; however,
it does not report which screen mode is currently active. The type of
monitor detected is returned using the codes shown in Table V-7.

CRESCENT SOFrWARE, INC. 11115 - 53

Reference, P.D.Q. Extensions P.D.Q. Version 3.10

TABLE V-7
Values Returned By Monitor

RETURNED VALUE

1
2
3
4
5
6
7
8
9

10
11

PDQParse function
111 Purpose

DESCRIPTION

Monochrome adapter
Hercules monochrome adapter
CGA adapter
EGA adapter w/mono monitor
EGA adapter w/color monitor
VGA adapter w/mono monitor
VGA adapter w/color monitor
MCGA adapter w/mono monitor
MCGA adapter w/color monitor
EGA adapter w/CGA monitor
IBM 8514/A

PDQParse extracts individual portions from a delimited string.

II Syntax

Thisltem$ = PDQParse$(Work$)

II Where

Thisltem$ receives the next delimited portion of Work$.

Comments

Because PDQParse has been designed as a function, it must be declared
before it may be used.

PDQParse serves two important purposes in a P.D.Q. program. First, it
can be used to parse delimited information in a string such as the current
DOS PATH. It also provides an easy way to simulate READ and DATA,
to reduce the amount of code that is added to your programs. Further,
READ is in not supported when you are using the SMALLDOS library
provided with P.D.Q.

There are actually three related routines in this group. The first is
PDQParse, which is designed as a string function with a single string
argument. Each time PDQParse is invoked, it returns the next successive
item in the string. Once the last item in the string has been returned,
subsequent calls to PDQParse return a null string.

II 5 - 54 CRESCENT SOFfWARE, INC.

P.D.Q. Version3.10 Reference, P.D.Q. Extensions

PDQRestore is used to reset reading at the beginning again-either with
the same string or with a new one.

The last routine is SetDelimitChar, and it lets you establish any character
as a delimiter.

The short program below shows PDQParse in action.

Work$= "One; Two; Three"
FOR X = 1 TO 3

PRINT PDQParse$(Work$);
NEXT

And this is the result on the screen:

One Two Three

By default, PDQParse uses a semicolon (;) as a delimiter, since parsing
the DOS PATH is a fairly common operation. But you may also change
the delimiter to, say, a comma, which is what BASIC uses when reading
DATA items. If your data has a comma in it, then you could change the
delimiter to some other character, for example a " I" or even a Ctrl-A.
The delimiter can even be changed mid-read if necessary.

Like BASIC's READ statement, PDQParse also strips leading blanks and
Tab characters from each item.

PDQParse and the other related routines mentioned here are demonstrated
in the PDQPARSE.BAS example program.

PDQPeek2 function
111 Purpose

PDQPeek2 peeks one word (two bytes) in a single operation.

Ill Syntax
Value= PDQPeek2%{Address%)

1111 Where

Address% is the address of the first of two bytes to be examined, and Value
receives their contents.

Comments

Because PDQPeek2 has been designed as a function, it must be declared
before it may be used.

The current DEF SEG setting is used to identify the segment PDQPeek2
will access.

CRESCENT SOFfWARE, INC. 1115 - 55

Reference, P.D.Q. Extensions P.D.Q. Version3.10

Reading two bytes from memory has always been tedious in BASIC. For
example, without PDQPeek2 the following steps are necessary:

Value= PEEK(Address) + 256 * PEEK(Address + 1)

PDQPeek2 lets you do the same thing in a single operation:

Value= PDQPeek2%(Address%)

This not only· requires you to do less typing, but it also adds much less
code to the final .EXE program.

Also see the PDQPoke2 routine which assigns two bytes at once.

PDQPoke2 statement
II Purpose

PDQPoke2 pokes one word (two bytes) in a single operation.

II Syntax

CALL PDQPoke2(Address%, Value%)

1111 Where

Address% is the address of the first of two bytes to be assigned, and Value%
is placed there.

Comments

The current DEF SEG setting is used to identify the segment PDQPoke2
will access.

Writing two bytes into memory has always been tedious in BASIC. For
example, without PDQPoke2 the following steps are needed:

POKE Address%, Value% AND 255
POKE Address%+ 1, Value%\ 256

PDQPoke2 lets you do the same thing in a single operation:

CALL PDQPoke2(Address%, Value%)

This not only requires you to do less typing, but it also adds much less
code to the final .EXE program.

Also see the PDQPeek2 routine which retrieves two bytes at once.

1111 5 - 56 CRESCENT SOFfWARE, INC.

P.D.Q. Version 3.10 Reference, P.D.Q. Extensions

PDQPrint subroutine
II Purpose

PDQPrint is a "quick print" routine that bypasses DOS and writes directly
to screen memory.

Ill Syntax
CALL PDQPrint(Work$, Row%, Column%, Colr%)

Ill Where

Work$ is the string to be printed, Row% and Column% specify where on
the screen to begin printing, and Colr% is the combined foreground and
background color to use.

Comments

PDQPrint assumes an 80 column display using text page zero.

PDQPrint fully supports the 25-, 43-, and 50-Iine modes available with
EGA and VGA adapters.

Because PDQPrint accepts row and column parameters, your program
should use BASIC's built-in CSRLIN and POS(0) functions if you want to
print at the current cursor location. This is shown below.

CALL PDQPrint(Work$, CSRLIN, POS(O), Colr%)

The foreground and background colors must be combined into a single
value using the following formula:

Colr% = (FG AND 16) * 8 + ((BG AND 7) * 16) + (FG AND 15)

The simplified formula below does not accommodate flashing:

Colr% = FG + 16 * BG

The first time PDQPrint is called, it examines the type of display adapter
installed using a BIOS service, and saves that information internally.
Thus, subsequent calls to PDQPrint will be extremely fast. This also
makes PDQPrint ideal for use within a TSR program. As long as it is
called once before the program becomes resident, it may be used at any
time without regard to whether the BIOS is in an "interruptable" state.

See the PDQSetMonSeg routine which lets you direct PDQPrint to write
to any arbitrary segment, and PDQSetWidth which is used to accommodate
column widths other than 80. Also see PDQCPrint which uses the current
COLOR setting instead of requiring a color parameter, and COLORS.BAS
which displays a chart of color values.

CRESCENT SOFfWARE, INC. 11115-57

Reference, P.D.Q. Extensions

PDQRand function
II Purpose

P.D.Q. Version3.10

PDQRand is an integer-only replacement for BASIC's RND function.

II Syntax
Value= PDQRand%{Limit%)

Ill Where

Limit% is any positive integer value, and Value receives a random integer
number between O and Limit% .

Comments

Because PDQRand has been designed as a function, it must be declared
before it may be used.

BASIC's RND function requires floating point support, which adds a
substantial amount of code to programs that do not otherwise need it.
Therefore, PDQRand is preferable in many cases. PDQRand further
expands on BASIC's RND because it lets you specify an upper limit for
the returned number.

Like BASIC's RND, PDQRand produces the same sequence of numbers
each time it is used. Please see the PDQRandomize routine, which lets
you seed the random number function with a new starting value.

PDQRandomize subroutine
111 Purpose

PDQ Randomize assigns a new seed value that affects the numbers returned
by the PDQRand function.

11111 Syntax
CALL PDQRandomize{Seed%)

11111 Where

Seed% is used to start a new sequence of random numbers.

Comments

Any non-zero integer value may be used as a seed.

See the PDQRand function described elsewhere in this section.

II 5 - 58 CRESCENT SOFfWARE, INC.

P.D.Q. Version 3.10

PDQRestore subroutine
11111 Purpose

Reference, P.D.Q. Extensions

PDQRestore is used with PDQParse to force that routine to begin reading
from the beginning of whichever string is used in the next call to
PDQ Parse.

II Syntax
CALL PDQRestore

II Where

The internal pointer PDQParse uses is reset to 1.

Comments

See the PDQParse routine elsewhere in this section for more information
about using PDQRestore.

PDQSetMonSeg subroutine
111111 Purpose

PDQSetMonSeg directs the PDQPrint and PDQCPrint routines to write
to a specified segment.

11111 Syntax
CALL PDQSetMonSeg(NewSegment%)

11111 Where

NewSegment% is the new segment that PDQPrint and PDQCPrint will
use. If NewSegment is 0, the next time PDQPrint or PDQCPrint are
called they will reevaluate the type of monitor installed and use the
appropriate video segment.

Comments

PDQSetMonSeg has two important uses. The first, and perhaps most
useful, is to create well-behaved programs that run under DESQview.
Because PDQPrint writes directly to video RAM, it is not otherwise
compatible with DESQview. However, DESQview provides services that
report a partition's video segment, and these services may be accessed
from BASIC using CALL INTERRUPT. Once the correct segment is
known and assigned using PDQSetMonSeg, your program may then use
PDQPrint.

The second use is to create "virtual screens", by directing PDQPrint to
write to an array, or a block of memory that has been claimed using the

CRESCENT SOFrWARE, INC. 1115 - 59

Reference, P.D.Q. Extensions P.D.Q. Version 3.10

P.D.Q. AllocMem routine. This opens up all sorts of possibilities, such
as printing in the background. Once a "phantom" screen has been created,
it is a simple matter to copy it to the actual screen video segment:

'--- create an 80 x 25 screen, and make that the new segment
REDIM Array(l TO 2000)
ArraySeg% = VARSEG(Array(l))
CALL PDQSetMonSeg{ArraySeg%)

'--- write some test messages there
FOR X = 1 TO 25

CALL PDQPrint("Test on line"+ STR$(X), X, 1, 112)
NEXT

'--- copy screen from the array to color text video RAM
VideoSeg = &HB800
CALL BlockCopy{ArraySeg, 0, VideoSeg, 0, 4000)

CALL PDQSetMonSeg(O) 'restore to normal for later

See the MULTPAGE.BAS example program, which shows how to simulate
BASIC's SCREEN,, a page, vpage capability. This program selects both
the video page that is written to, and also the page that is currently being
displayed.

PDQSetWidth subroutine
11111 Purpose

PDQSetWidth lets PDQPrint, PDQCPrint, BIOSinput, and BIOSinput2
use a screen width other than 80 columns.

11111 Syntax

CALL PDQSetWidth(NewWidth%)

Ill Where

NewWidth% is the new number of columns (40, 80, 132, or whatever).

Comments

Unlike the video routines in our QuickPak Professional product that
accommodate any screen size automatically, it is important to keep code
size (and thus features) to a minimum in P.D.Q. To support this feature
added only two bytes to PDQPrint and PDQCPrint, and ten or so more
are added only if you actually call PDQSetWidth.

If you plan to use 40 columns you also must use the WIDTH 40 command
in your program. PDQSetWidth merely tells the print routines how many
columns to use in their internal calculations.

1111 5 - 60 CRESCENT SOFTWARE, INC.

P.D.Q. Version 3.10

PDQShl and PDQShr functions
111 Purpose

Reference, P.D.Q. Extensions

PDQShl and PDQShr return an integer value with the bits shifted left or
right a specified number of places.

■ Syntax
Shifted= PDQShl%(BYVAL Value%, BYVAL NumBits%)
Shifted= PDQShr%(BYVAL Value%, BYVAL NumBits%)

111 Where

Shifted receives the result of shifting the bits in Value% by NumBits %
places. Value% itself is not changed.

Comments

Because PDQShl and PDQShr have been designed as functions, they must
be declared before they may be used.

Shifting bits is one area where BASIC is particularly weak, and these
functions can replace a substantial amount of code. In most cases bits
may be shifted by multiplying or diving by a power of 2. For example,
to shift the bits in a variable right one position you would divide by 2 like
this:

Shifted= Value%\ 2

The problem is that BASIC treats all integer and long integer values as
being signed, which produces incorrect results if the highest bit is set.
PDQShr and PDQShl actually use the assembly language Shr and Shl
instructions, to shift the bits directly.

The arguments to these functions are passed by value, to let them operate
as quickly as possible.

PDQSound subroutine
11111 Purpose

PDQSound is a small-code replacement for the BASIC SOUND command.

11111 Syntax

CALL PDQSound(Frequency%, Duration%)

1111 Where

Frequency% is the desired frequency in Hz. (cycles per second), and
Duration% is the number of 18ths of a second to sustain the tone for.

CRESCENT SOFrWARE, INC. 1115 - 61

Reference, P.D.Q. Extensions P.D.Q. Version3.10

Comments

Although P.D.Q. supports BASIC's SOUND command, SOUND requires
the floating point library. For programs that do not otherwise require
floating point math, using PDQSound can provide a considerable reduction
in code size.

PDQSound is nearly identical to the SOUND command from regular
BASIC, except it operates in the foreground only. Where BASIC's
SOUND returns to your program immediately and continues to play the
tone in the background, PDQSound does not return until the sound has
completed.

You may also use a negative value for Duration%, which tells PDQSound
not to turn off the PC's speaker when it is finished. This lets you create
smoother glissandos and other effects by using negative values for all but
the last call. Otherwise, having the speaker turned on and off between
calls creates a slight clicking sound. To see this in action run the following
program:

FOR X = 500 TO 1000 STEP 10
CALL POQSound(X, 1)

NEXT

FOR X = 500 TO 1000 STEP 10
CALL POQSound(X, -1)

NEXT

CALL PDQSound(lOlO, 1)

PDQTimer function
11111 Purpose

'make a siren
'use a positive duration

'this sounds smoother
'using a negative duration

'now turn the speaker off

PDQTimer returns the number of timer ticks stored in the BIOS data area
in low memory.

Ill Syntax

NumTicks& = PDQTimer&

11111 Where

NumTicks& receives the contents of the four-byte system timer.

Comments

Because PDQTimer has been designed as a function, it must be declared
before it may be used.

1111 5-62 CRESCENT SOFfWARE, INC.

P.D.Q. Version 3.10 Reference, P.D.Q. Extensions

Even though P.D.Q. supports BASIC's TIMER command, TIMER re
quires the floating point library. For programs that do not otherwise
require floating point math, using PDQTimer will reduce their size
considerably.

As with TIMER, when the clock passes midnight the system time is reset
to zero:

Start&= PDQTimer&
FOR X = 1 TO 10000

NEXT
Done&= PDQTimer&

'start the timer
'we want to time how long this takes

'done timing

IF Done& < Start& THEN 'we passed midnight·
Done&= Done&+ 1573040

END IF
PRINT Done& - Start&; "clock ticks have elapsed"

Please see the TIMER.BAS demonstration program for an example of
simulating BASIC's TIMER resolution and results.

PDQVall and PDQVall functions
1111 Purpose

PDQVall returns an integer that represents the value of a string, and
PDQValL returns a long integer.

11!11 Syntax
Value= PDQVall%(Work$)
Value= PDQValL&(Work$)

Ill Where

Work$ is a string containing a number such as "1234", and Value receives
its value.

Comments

Because PDQVall and PDQValL have been designed as functions, they
must be declared before they may be used.

Although P.D.Q. supports BASIC's VAL function, it requires the floating
point library. For programs that do not otherwise require floating point
math, using PDQVall or PDQValL can reduce their size considerably.
Because floating point operations are not required, PDQ Vall and PDQValL
are also extremely fast.

CRESCENT SOFrWARE, INC. 1115 - 63

Reference, P.D.Q. Extensions P.D.Q. Version 3.10

The default PDQVall and PDQValL functions recognize a leading "&H"
in the string to specify Hex values, but not a leading "&O" for Octal. The
PDQVAL. OBJ stub file does not recognize "&H" values or a leading

plus sign (+) , and also must not be used with concatenated strings. That
is, the following code should be avoided if you are linking with
_PDQVAL.OBJ:

Value= PDQValI%(First$ + Second$)

Also see the section entitled Linking With Stub Files for information on
other reduced-capability routines provided with P.D.Q.

PointlntHere subroutine

II Purpose

PointlntHere is used to show where in a BASIC program control is to go
when the specified interrupt occurs.

Ill Syntax

CALL PointlntHere(Registers)

Ill Where

Registers is the TYPE variable that holds the register values for this
interrupt.

Comments

PointlntHere is intended for use in P.D.Q. TSR and interrupt handler
programs. It indicates where in your BASIC program control should be
passed when the specified interrupt occurs. The statement following a
call to PointlntHere must be a GITTO, and the line that follows the GOIO
is the one that receives control each time the interrupt occurs.

Do not use PointlntHere to intercept Interrupts &H25 or &H26. These
are the DOS interrupts that directly read and write disk sectors. Due to
a "design decision" at Microsoft, these interrupts leave extra information
on the stack that cannot be removed by a P.D.Q. BASIC program.

PointlntHere may not be called from within a SUB, FUNCTION, or DEF
FN function.

Interrupts that have been intercepted using PointlntHere may be removed
from the interrupt chain with the complementary routine Unhookint.

If you are writing a manual interrupt handler that intercepts timer interrupt
8, be sure to use CallOldlnt as the very first action in your handler code,
so the original BIOS routines will be executed immediately. When you

II 5 - 64 CRESCENT SOFfWARE, INC.

P.D.Q. Version3.10 Reference, P.D.Q. Extensions

are finished servicing the interrupt, call ReturnFromint to return to the
underlying application.

In most cases, the order in which interrupts are serviced does not matter.
Therefore, you could just as easily do whatever work is needed, and then
use GotoOidint to continue on to the original handler. But in the case of
the timer interrupt it is essential that the original BIOS services be executed
as soon as possible, especially if there is a chance that your code will take
longer than one timer tick to complete. All of the examples that trap
interrupt 8 show this in context, as do the examples shown in the section
entitled Using PopRequest elsewhere in this manual.

Due to a bug in DOS 2.x.x versions (so what else is new) there is an
unavoidable interaction between PointlntHere and the use of ENVIRON
and ENVIRON$. Programs that manually trap one or more interrupts
may not use ENVIRON or ENVIRON$ in conjunction with an EnvOption
of 4. Attempting to do so results in an "Environment not found" error.
See EnvOption in this section for more information on setting environment
options in P.D.Q.

TSR programming is described in depth elsewhere in this manual.

PoolOkay function

11111 Purpose

PoolOkay tests if string memory has been corrupted.

11111 Syntax

Okay= Pool0kay%

111B Where

Okay receives -1 if string memory is intact, or O if it is not.

Comments

Because PoolOkay has been designed as a function, it must be declared
before it may be used.

PoolOkay provides a simple way to test the integrity of string memory.
Since a P.D.Q. program does not halt when an error occurs, this function
lets you detect if string memory has become corrupted. PoolOkay is
intended primarily as a debugging aid.

In practice, you would probably test Pool Okay in an IF statement like this:

IF Pool0kay% THEN PRINT "No errors so far!"

CRESCENT SOFTWARE, INC. 1115 - 65

Reference, P.D.Q. Extensions P.D.Q. Version 3.10

or

IF NOT Pool0kay% THEN PRINT "String space corrupt"

PopDeinstall function
II Purpose

PopDeinstall is used by a P.D.Q. "simplified" pop-up program to remove
itself from memory.

11111 Syntax

Success= PopDeinstal1%(DGroup%, ID$)

II Where

DGroup% is the value returned by TSRinstalled when it was invoked
earlier, and it identifies the data segment of the program to deinstall. If
zero is used for DGroup % , then the current copy of the program is
deinstalled.

ID$ is the unique identification string that has been defined for this
program, and it must be at least 8 characters long.

Success is assigned either -1 or 0, to indicate the success or failure of the
deinstallation respectively.

Comments

Because PopDeinstall has been designed as a function, it must be declared
before it may be used.

PopDeinstall is intended only for use with P.D.Q. "simplified" pop-up
programs that use the PopUpHere routine. For other P.D.Q. TSR
programs you should instead use DeinstallTSR.

If your program accepts a command line switch as a flag to deinstall its
resident copy, then you must invoke the TSRinstalled function before
calling EndTSR.

If PopDeinstall is successful, you must immediately end the program. If
a program is removing itself from memory-as opposed to removing a
previously installed copy-you must call PopDown to terminate the
program.

The only likely reason for PopDeinstall to fail is when another program
has intercepted one or more of the same interrupts that are used by a P.D. Q.
pop-up program. The original version of Borland 's SideKick is notorious

1111 5 - 66 CRESCENT SOFrWARE, INC.

P.D.Q. Version 3.10 Reference, P.D.Q. Extensions

for stealing interrupts. Therefore, attempting to deinstall a P.D.Q. TSR
program when SideKick is resident is sure to fail.

Deinstallation will also fail if PopDeinstall is unable to release the
program's memory to DOS. However, this is unlikely to happen.

PopDeinstall is typically used like this:

Success= PopDeinstal1%(DGroup%, ID$)
IF NOT Success THEN

PRINT "Sorry, unable to deinstall. Reboot now!"
ELSE

PRINT "Program successfully removed."
END IF
CALL PopDown

Please see the section entitled TSR Programming With P.D. Q. Also see
the description for the TSRinstalled function elsewhere in this section.
ID$ is discussed in the section The Unique Identification String.

PopDown subroutine
1111 Purpose

PopDown is used by a P. D. Q. TSR program to return control to the
underlying application.

11111 Syntax

CALL PopDown

llllll Where

Control is returned to the underlying application.

Comments

PopDown is intended for use in P.D.Q. TSR programs that use the
simplified PopUpHere method of detecting a hot key. Please see the
complete discussion on writing TSR programs elsewhere in this manual.

PopRequest function

11111 Purpose

PopRequest lets a manual interrupt handling TSR program enjoy the same
safe DOS and BIOS access as "simplified" TSR programs.

11111 Syntax

Success= PopRequest%(Flag%, NumTicks%)

CRESCENT SOFfWARE, INC. 11115-67

Reference, P.D.Q. Extensions P.D.Q. Version 3.10

111111 Where

Flag% is cleared to zero by PopRequest when it is invoked, and then set
to -1 when control is passed to the simplified portion of the program.
NumTicks% tells PopRequest for how many system timer ticks (18ths of
a second) it is to try to find DOS and the BIOS not busy. Success is
assigned either -1 (True) if no other interrupt handlers currently have a
PopRequest pending, or O (False) if PopRequest is already servicing
another handler's request.

Comments

Because PopRequest has been designed as a function, it must be declared
before it may be used.

PopRequest is a major and important feature that lets you perform nearly
any service from within a manual interrupt handler. The explanation and
examples are fairly lengthy, so PopRequest is described separately in the
section entitled Using PopRequest.

PopUpHere subroutine
1111 Purpose

PopUpHere is used in "simplified" P.D.Q. TSR programs, to show where
in the BASIC program control is to go when the specified hot key is
pressed.

11111 Syntax
CALL PopUpHere(HotKey%, ID$)

11111 Where

HotKey% indicates which key is being used as the hot key, and the code
that begins two lines after the call to PopUpHere will receive control when
that key is pressed. ID$ is the unique identification string that is required
by all P.D.Q. TSR programs.

Comments

PopUpHere is intended for creating pop-up TSR programs using P.D.Q.
It indicates where in your BASIC program control is to go when the
specified hot key has been pressed. The statement following the call to
PopUpHere must be a GITTO, and the line that follows the GOID is the
one that receives control each time the specified key is pressed. Programs
that use PopUpHere to gain control when a hot key is pressed must use
the complementary PopDown routine to return to the underlying applica
tion.

1111 5 - 68 CRESCENT SOFfWARE, INC.

P.D.Q. Version 3.10 Reference, P.D.Q. Extensions

PopUpHere should be called only once, since a simplified TSR can only
have one entry point. Subsequent calls to PopUpHere are ignored.

PopUpHere will also fail if another copy of the program is already resident
in memory. A copy is defined as another program having an identical ID
string. Other, previously installed copies may be detected with the
TSRinstalled function.

When the resident section of the P.D.Q. program gets control, you must
not use BASIC's INKEY$ function, the PDQinkey function, PDQinput,
or any DOS interrupt service lower than &HOD (13).

PopUpHere intercepts the interrupts listed in Table V-8.

If the TSR cannot gain control safely when the hot key is pressed, it will
continue to try for approximately one second before giving up. This time
may be altered by changing an Equate constant in the assembly language
source code.

TABLE V-8
Interrupts Intercepted By PopUpHere

8, 9, 10, 13, 14, 16, 17, 21, 25, 26, 28

All preparations for file and device I/O are made by this routine, and there
is no need to call the TsrFileOn and TsrFileOff routines.

TSR programming and defining the hot key and ID string are described
in depth elsewhere in this manual.

Power and Power2 functions

II Purpose

Power and Power2 raise any number to a power, or the value 2 to a power
respectively.

11 Syntax
X = Power(Y%, Number%)
X = Power2(Number%)

CRESCENT SOFfWARE, INC. 1111 5 - 69

Reference, P.D.Q. Extensions P.D.Q. Version 3.10

Iii Where

The first example assigns X equal to Y% A Number% and the second
example assigns X equal to 2 A Number%.

Comments

Because Power and Power2 have been designed as functions, they must
be declared before they may be used.

Power and Power2 may be declared as either integer or long integer
functions, depending on the expected range of return values. The
PDQDECL.BAS file declares them as long integer functions, to accom
modate either situation. If you declare Power or Power2 as integer
functions and the result exceeds 32,767, the number returned may be
negative.

Whenever you use BASIC's exponentiation operator (A) the numbers are
converted to floating point. Although P.D.Q. does support floating point
math, raising a number to a power is not supported in this version.
Therefore, these functions let you perform integer-only exponentiation in
your P.D.Q. programs.

RedimAbsolute subroutine
Iii Purpose

RedimAbsolute lets you assign any arbitrary segment to an existing
dynamic array.

Ill Syntax

CALL RedimAbsolute(Array(), LoBound%, UpBound%, NewSeg%)

11111 Where

ArrayO is an existing dynamic array, LoBound % and UpBound % indicate
the new upper and lower element numbers, and NewSeg% specifies the
new segment that references to elements in ArrayO will access.

Comments

RedimAbsolute is useful in a variety of situations. For example, you can
use it to treat video memory or the interrupt vector table as a BASIC array.
It can also be used to mimic a C-style Union whereby different data items
overlap the same area of memory.

It is essential that the array already exist, and also that it is dynamic.
RedimAbsolute can be used with any type of dynamic arrays except
conventional (not fixed-length) string arrays.

Ill 5 - 70 CRESCENT SOFfWARE, INC.

P.D.Q. Version 3.10 Reference, P.D.Q. Extensions

To establish an integer array with elements numbered 1 through 2000 using
color text-mode display memory you would do this:

REDIM Array%{! TO 1)
CALL RedimAbsolute(Array%(), 1, 2000, &HBBOO)

Because the original array contents remain in memory, you should use
only one element initially to minimize memory waste. Note that there is
no way to make this routine work in the QB or QBX editor.

Once you have used RedimAbsolute, do not attempt to use ERASE or
REDIM with the array. You can, however, use RedimAbsolute again any
number of times with the same array.

Do not call RedimAbsolute within a non-static SUB or FUNCTION
procedure if the array was first dimensioned within that procedure.

See REDIMABS.BAS for more information and some examples.

ReleaseMem function

■ Purpose

ReleaseMem releases a block of memory that had previously been
allocated with the AllocMem routine.

1111 Syntax
ErrorFlag = ReleaseMem%(Segment%)

1111111 Where

Segment% is the segment value that was originally returned by AllocMem.
ErrorFlag receives either zero if the memory was successfully released,
or -1 if it was not.

Comments

Because ReleaseMem has been designed as a function, it must be declared
before it may be used.

The only error that is likely to occur would be caused by specifying an
invalid segment.

Also see the complementary AllocMem function, which allocates memory.

CRESCENT SOFfWARE, INC. 1115 - 71

Reference, P.D.Q. Extensions

ResetKeyboard statement
111111 Purpose

P.D.Q. Version3.10

ResetKeyboard is needed by any P.D.Q. TSR program that intercepts the
keyboard interrupt (Interrupt 9) directly. It is not needed by programs that
use the simplified PopUpHere/PopDown method.

Ill Syntax

CALL ResetKeyboard

1111 Where

The keyboard and 8259 programmable interrupt controller (PIC) are reset.

Comments

Each time a key is pressed, an Interrupt 9 is generated by the keyboard
hardware. Any program that is inserted in the Interrupt 9 chain will then
receive control. If the key pressed is not going to be acted upon, then the
TSR should use GotoOldlnt to pass control on to the original (or
subsequent) keyboard handler. However, if the key that was pressed is
the correct hot key, and the original BIOS routine will not be called, then
the keyboard hardware must be reset manually.

TSR programming is described in depth elsewhere in this manual.

Returnfromlnt subroutine

11111 Purpose

ReturnFromlnt is used to return control to the currently executing program
when an interrupt handler has finished servicing an interrupt.

11111 Syntax

CALL ReturnFromint(Registers)

11111 Where

Registers is the TYPE variable that holds the register values for this
interrupt.

Comments

ReturnFromint is primarily intended for use in P.D.Q. TSR programs, and
it provides a way to return to the underlying application after an interrupt
has been processed. However, interrupts may also be handled in non-TSR
programs.

1111 5 - 72 CRESCENT SOFfWARE, INC.

P.D.Q. Version 3.10 Reference, P.D.Q. Extensions

TSR programming and interrupt handling are described in depth elsewhere
in this manual.

SeekLoc function
11111 Purpose

SeekLoc is for use with the P.D.Q. SMALLDOS library, and it calculates
a binary offset given a record number and record length.

11111 Syntax

Offset&= SeekLoc&(RecNumber%, RecLength%)

11111 Where

RecNumber% is the desired 1-based record number to be read or written,
RecLength % is its length in bytes, and Offset& receives the offset into
the file where the record begins.

Comments

Because SeekLoc has been designed as a function, it must be declared
before it may be used.

When you use the PUT statement to write a record to a random access
file, BASIC calculates the offset to seek to based on the record length it
saved when the file was opened. But if you are linking with the
SMALLDOS library to reduce a program's size, random access operations
are not permitted. SeekLoc can therefore be used to quickly calculate the
necessary offset for an equivalent operation using the binary form of PUT.

The formula SeekLoc uses is as follows:

SeekLoc& = ((RecNumber% - 1) * RecLength%) + 1

SeekLoc is demonstrated in the RANDOM.BAS example program.

Sell Byte subroutine
II Purpose

SetlByte assigns a single byte to the specified segment and element.

11111 Syntax

CALL Set1Byte(Segment%, Element%, Value%)

11111 Where

Segment% and Element% indicate where in memory the byte is to be
assigned, and Value% ranges either from -128 to 127, or Oto 255.

CRESCENT SOFTWARE, INC. 11 5 - 73

Reference, P.D.Q. Extensions P.D.Q. Version3.10

Comments

Element numbers start at one; there is no element zero.

SetlByte is intended primarily for accessing memory that was allocated
using the P.D.Q. AllocMem function. This effectively adds a new "byte"
variable type, which of course occupies less memory than a conventional
integer.

Please see the comments that accompany the GetlByte function.

Also see the related Setl Word, SetlLong, and Setl Type routines.

Set1 Long subroutine

II Purpose

SetlLong assigns a long integer to a specified segment and element.

11 Syntax
CALL Set1Long(Segment%, Element%, Value&)

II Where

Segment% and Element% indicate where in memory the value is to be
assigned, and Value& is any long integer value.

Comments

Element numbers start at one; there is no element zero.

SetlLong is intended primarily for accessing memory that was allocated
using the P.D.Q. AllocMem function.

Please see the comments that accompany the GetlByte function.

Also see the related SetlByte, SetlWord, and SetlType routines.

Set1Type subroutine
Ill Purpose

Setl Type assigns a TYPE variable to a specified segment and element.

1111 Syntax
CALL Set1Type{Segment%, Element%, Length%, TypeVar)

1111 5- 74 CRESCENT SOFfWARE, INC.

P.D.Q. Version 3.10 Reference, P.D.Q. Extensions

1111 Where

Segment% and Element% indicate where in memory the element is to be
assigned, Length% is its length in bytes, and Type Var is the TYPE variable
in near memory that will be copied there.

Comments

Element numbers start at one; there is no element zero.

Setl Type is intended primarily for accessing memory that was allocated
using the P.D.Q. AllocMem function.

Because the P.D.Q. memory allocation routines are limited to allocating
64K (65,536) bytes at one time, the maximum number of elements that
may be assigned will vary, depending on their length. For example, if you
have created a TYPE variable that is 100 bytes long, then only 655 elements
may be stored in a sine array.

Using LEN(1ype Var) as the length parameter causes BASIC to use the
correct value even if the TYPE structure is changed.

Please see the comments that accompany the GetlByte function.

Also see the related SetlByte, SetlLong, and SetlWord routines.

Set1Word subroutine

1111 Purpos,e

SetlWord assigns a word (two bytes) to the specified segment and element.

11111 Syntax

CALL Set1Word(Segment%, Element%, Value%)

1111 Where

Segment% and Element% indicate where in memory the word is to be
assigned, and Value% is the integer value.

Comments

Element numbers start at one; there is no element zero.

SetlWord is intended primarily for accessing memory that was allocated
using the P.D.Q. AllocMem function.

Please see the comments that accompany the GetlByte function.

CRESCENT SOFrWARE, INC. 111115 - 75

Reference, P.D.Q. Extensions

Also see the SetlByte, SetlLong, and SetlType routines.

SetDelimitChar subroutine
Ill Purpose

P.D.Q. Version 3.10

SetDelimitChar lets you change the default delimiter recognized by the
PDQParse function.

1111 Syntax

CALL SetDelimitChar(NewChar%)

Ill Where

NewChar% is the ASCII value of the new delimiting character.

Comments

See the PDQParse routine elsewhere in this section for a discussion of
using SetDelimitChar.

Sort subroutine

■ Purpose

Sort is a general purpose assembly language Quick Sort for string arrays.

Ill Syntax
CALL Sort(BYVAL VARPTR(Array$(Start)), NumEls%, Direction%)

11111 Where

Array$(Start) is the first element in the portion of the array being sorted,
NumEls % is the total number of elements to include, and Direction% is
0 to sort ascending, or anything else to sort descending.

Comments

Sort is intended for use with conventional (not fixed-length) string arrays
only.

The alternate SORT. OBJ stub file contains a much smaller version of this
routine, but at the expense of sorting speed. Please see the section entitled
Linking With Stub Files for more information on this and other reduced
capability versions of P.D.Q. statements and extensions.

1111 5 - 76 CRESCENT SOFTWARE, INC.

P.D.Q. Version 3.10

StringShort function
11111 Purpose

Reference, P.D.Q. Extensions

StringShort reports the number of bytes, if any, that were requested but
not available in the P.D.Q. string pool.

II Syntax

BytesShort = StringShort%

1111 Where

BytesShort receives the number of additional bytes that are needed by your
program.

Comments

Because StringShort has been designed as a function, it must be declared
before it may be used.

You may also use the BASIC FRE(0) and FRE(" ") functions, which return
the number of bytes that are free.

See the section String Memory Considerations for more information about
the P.D.Q. string pool.

StringUsed function
11111 Purpose

StringUsed reports the number of bytes that are currently in use within
the P.D.Q. string pool.

111111 Syntax

BytesUsed = StringUsed%

111 Where

Bytes Used receives the current number of bytes in use.

Comments

Because StringUsed has been designed as a function, it must be declared
before it may be used.

StringUsed can tell you how many bytes of string memory are actually
needed by your program. However, you should first use the FRE(" ")
function to compact string space. If a given program needs, say, only
4000 bytes, then you could link it with the STR04096.OBJ file to reduce
the amount of memory required when it runs.

CRESCENT SOFTWARE, INC. 111115 - 77

Reference, P.D.Q. Extensions P.D.Q. Version3.10

Using the alternate STR.xxxxx.OBJ string pools is discussed in the section
entitled Linking With Stub Files. Also see the section String Memory
Considerations elsewhere in this manual.

The BASIC FRE(O) and FRE("") functions return the number of bytes
that are free.

StuffBuf subroutine
11111 Purpose

StuffBuf places characters into the PC's keyboard buffer, as if they had
been entered by the user.

11111 Syntax

CALL StuffBuf(Argument$)

■ Where

Argument$ is a string up to fifteen characters long. Argument$ may
exceed fifteen characters, but only when used to specify extended keys.

Comments

StuffBuf is useful in a variety of applications, for example to run batch
files from a BASIC program, or to insert keystrokes from a TSR program
into an underlying application. To run a batch file you would call StuffBuf
specifying its name, and then immediately end the program.

Because StuffBuf is limited to only fifteen keystrokes, you may not be able
to run programs located in another directory if the complete path name
exceeds this limit. In that case you should create a batch file in the current
directory from within the program, and then run that batch file.

To "stuff" an extended key you must specify it as a two-character
combination, where the first character is CHR$(0), and the second is the
ASCII equivalent of the key's extended code. The example below specifies
the F3 key, followed by the string "TEST", followed by an Enter key press
(for a total of six keystrokes).

CALL StuffBuf(CHR$(0) + CHR${61) +"TEST"+ CHR$(13))

Please note that any characters which are already present in the keyboard
buffer are discarded when StuffBuf is called.

Specifying more than fifteen keys or using CHR$(0) for other than the
first of a valid two-character single-key sequence is guaranteed to cause a
crash.

1!11 5 - 78 CRESCENT SOFrWARE, INC.

P.D.Q. Version 3.10

Swap2Disk function
II Purpose

Reference, P.D.Q. Extensions

Swap2Disk lets you create "swapping" TSR programs whose code and
data are removed from memory when they are not active.

II Syntax
Success= Swap20isk%(FileName$, ProgramID%)

1111 Where

FileName$ is the name of the swap file to use, and ProgramID% is either
0 or the program number when more than one TSR program will be
invoked using CALL INTERRUPT.

Success receives either -1 if sufficient free disk space was available, or 0
if swapping to disk cannot be performed.

Comments

Because Swap2Disk has been designed as a function, it must be declared
before it may be used.

See the section entitled TSR Programs That Swap To Disk Or EMS for
information on naming the swap file and accessing a swapping TSR with
CALL INTERRUPT.

Swap2EMS function

Ill Purpose

Swap2EMS lets you create "swapping" TSR programs whose code and
data are removed from memory when they are not active.

11111 Syntax
Success= Swap2EMS%(ProgramID%)

II Where

ProgramID% is either 0, or the program number when more than one
TSR program will be invoked using CALL INTERRUPT.

Success receives either -1 if sufficient expanded memory is available on
the host PC, or O if swapping to EMS cannot be performed.

Comments

Because Swap2EMS has been designed as a function, it must be declared
before it may be used.

CRESCENT SOFTWARE, INC. 11115- 79

Reference, P.D.Q. Extensions P.D.Q. Version3.10

See the section entitled TSR Programs That Swap To Disk Or EMS for
information on assigning the program ID value.

SwapCode function
Ill Purpose

SwapCode lets a swapping TSR program receive information from another
application that caused it to pop up using CALL INTERRUPT.

11111 Syntax

Parameter= SwapCode%

11111 Where

Parameter receives whatever was in the BX register when CALL INTER
RUPT was used to pop up this swapping TSR program.

Comments

Because SwapCode has been designed as a function, it must be declared
before it may be used.

See the section TSR Programs That Swap To Disk Or EMS elsewhere in
this manual for information on using SwapCode.

TestHotKey function

11111 Purpose

TestHotKey is used to test the key that was just pressed, as part of an
Interrupt 9 keyboard handler.

11111 Syntax

IF TestHotKey%(KeyCode%) THEN

1111111 Where

'this is our key

KeyCode% is a special code that indicates which key is being tested for.

Comments

Because TestHotKey has been designed as a function, it must be declared
before it may be used.

KeyCode% is comprised of two elements, a shift mask and a scan code.
The shift mask lets you specify Alt, Ctr!, either Shift key, or any
combination. The scan code is the keyboard scan code for the key being
tested. These are described in detail in the section that discusses TSR
programming elsewhere in this manual.

1i111 5 - 80 CRESCENT SOFfWARE, INC.

P.D.Q. Version 3.10 Reference, P.D.Q. Extensions

Although TestHotKey will check for a single specified key, there is no way
to have it return which key was just pressed. The following code fragment
shows how to do this:

ScanCode = INP(&H60) 'first get the current key manually
DEF SEG = 0 'then look in low memory at the shift

' status byte
ShiftMask = PEEK(&H417) AND &HF

Then to combine these two bytes into a single word using the same method
that PopUpHere and TestHotKey uses, add and multiply as follows:

KeyCode = ScanCode + (256 * ShiftMask)

TSRFileOff subroutine
11111 Purpose

TSRFileOff works in conjunction with the TSRFileOn routine to ensure
that file operations performed by a P.D. Q. TSR program do not fail because
of conflicts with the underlying application.

1111 Syntax

CALL TSRFi leOff

11111 Where

The underlying application's PSP and DTA address are restored.

Comments

TSRFileOff restores the program state that was saved by TSRFileOn. It
uses DOS functions lAH (Set DTA) and 50H (Set Active PSP).

It is not necessary to use TSRFileOff in a "simplified" TSR program.

Please see the discussion that accompanies the TSRFileOn routine.

TSRFileOn subroutine
II Purpose

TSRFileOn is meant for use in a P.D.Q. TSR program, and it saves the
portion of the current machine state that is affected by DOS-based file or
device I/0 in a TSR.

11111 Syntax

CALL TSRF i leOn

CRESCENT SOFfWARE, INC. 11111 5 - 81

Reference, P.D.Q. Extensions P.D.Q. Version 3.10

11111 Where

The underlying application's PSP and DTA address are saved, and then a
new, local PSP address is assigned for subsequent use by DOS.

Comments

In order for a TSR to function properly, it must exactly restore the state
of the PC and DOS to what they were when it gained control. TSRFileOn,
and its companion TSRFileOff, perform the task of saving and restoring
respectively two important conditions. TSRFileOn should be called before
performing any file or device I/0 through DOS.

Note that TSRFileOn itself uses three DOS functions, 2Fh (Get Current
DTA), 50h (Set Active PSP) and 51h (Get Active PSP). The assumption
is that if the P.D.Q. environment is such that it is safe to perform DOS
disk activity, then these functions will also execute safely.

If you call TSRFileOn, it is imperative that you also call TSRFileOffbefore
returning to the underlying application.

Also note that a TSR that has gone resident and uses this call may open
files when activated, and leave them open between activations. This is
because the file information is stored in the PSP of the TSR, not the
currently active process. DOS will not close these files.

It is not necessary to use TSRFileOff in a "simplified" TSR program. We
recommend using the PopRequest function if you need to perform file
operations in a manual interrupt handling TSR. Because PopRequest ties
into the simplified PopUpHere routine, TSRFileOn and TSRFileOff are
not needed.

TSRlnstalled function

11111 Purpose

TSRinstalled is used inside a P.D.Q. TSR program to determine if another
copy of the same program already exists in memory.

11111 Syntax
DGroup% = TSRinstalled%(ID$)

11111 Where

ID$ is the unique identification string required by every P.D.Q. TSR
program, and DGroup % receives either O if the program is not already
resident, or the DGROUP data segment of the previously installed copy
if it is.

II 5 - 82 CRESCENT SOFfWARE, INC.

P.D.Q. Version 3.10 Reference, P.D.Q. Extensions

Comments

Because TSRinstalled has been designed as a function, it must be declared
before it may be used.

If your program accepts a command-line switch as a flag to deinstall its
resident copy, then you must invoke TSRinstalled before calling EndTSR.

Knowing if a TSR program has already been installed is important in a
number of situations. For example, many TSR programs use a command
line switch such as /U to indicate that the user wants to remove it from
memory. By knowing if it is already installed, a program could either
deinstall the resident copy, or display an appropriate error message when
such a switch is used.

While the DGROUP address of the resident copy does not need to be
known from the point of view of the P.D.Q. program, it identifies the data
segment of the resident version that contains all of the information
regarding the program. This value must be known to perform certain
functions, such as removing the resident copy or unhooking an interrupt.

Knowing this segment also allows a subsequent copy of a program to
modify data in the resident copy of the same program. This is shown in
ENVELOPE.BAS whereby running the program additional times lets you
change parameters.

When writing a TSR program that is designed to be loaded only once, it
is appropriate to detect an attempt by the user to load multiple copies and
prevent it. Reference TSRinstalled early in your program, before you call
EndTSR to terminate and stay resident. If TSRinstalled returns a value of
zero, no other copy of the program is installed and the program can proceed
to install itself normally. If the returned value is non-zero, then another
copy of the program is already resident. A message such as "Program
already resident" should be displayed. Then end the program, but without
calling EndTSR.

Please see the section TSR Programming With P.D. Q. Also see the
PopDeinstall and DeinstallTSR functions described elsewhere in this
manual, and the TEMPLATE.BAS program skeleton you can use as a
starting point for your own TSR programs.

CRESCENT SOFTWARE, INC. 11115 - 83

Reference, P.D.Q. Extensions

UnhookFP subroutine
1111 Purpose

P.D.Q. Version 3.10

UnhookFP restores the floating point interrupts in a P.D.Q. TSR program
to their original contents after they had been hooked by a previous call to
UnhookFP, or automatically as part of the P.D.Q. startup process.

II Syntax

CALL UnhookFP

II Where

The original floating point interrupt vectors (&H34 through &H3C) are
restored.

Comments

See the topic Floating Point Considerations in the section TSR Program
ming for information about using this routine.

Also see the description for HookFP and the POPUPFP.BAS sample
program for an example of using floating point math in a P.D.Q. simplified
TSR.

Unhooklnt function

1111 Purpose

Unhooklnt lets a P.D.Q. program that intercepts interrupts remove itself
from the interrupt chain, thus reversing the action of PointintHere.

11111 Syntax

Success= Unhooklnt%(Registers, DGroup%)

Ill Where

Registers is the TYPE variable that was established for this interrupt, and
DGroup % is the value returned by TSRinstalled when the program was
first run. Success then receives either -1 if everything went as planned,
or O if the interrupt was not able to be unhooked.

Comments

Because Unhooklnt has been designed as a function, it must be declared
before it may be used.

Unhooklnt attempts to restore the interrupt vector that was in effect when
PointlntHere redirected it. If another process has since changed that

II 5 - 84 CRESCENT SOFTWARE, INC.

P.D.Q. Version 3.10 Reference, P.D.Q. Extensions

vector, it cannot be restored. Therefore, programs that chain into an
interrupt vector must be unchained in reverse order.

The DGroup% parameter is normally set to the value returned by
TSRinstalled when this routine is used to deinstall a manually installed
Interrupt Service Routine (ISR). If you are handling interrupts in a
non-TSR program, use a value of zero for DGroup % .

UnhooklntO subroutine
11 Purpose

UnhooklntO restores the "Divide by zero" interrupt (Interrupt 0) after
using HooklntO to disable that condition.

II Syntax
CALL UnhooklntD

11111 Where

The interrupt vector for Interrupt O is restored.

Comments

See the comments that accompany HooklntO earlier in this section.

CRESCENT SOFrWARE, INC. 11115 - 85

Chapter 6: Using P.D.Q. With
Assembly Language Programs

Ill 11111 1111

P.D.Q. Version 3.10

Introduction

Assembly Toolbox, Using P.D.Q With Assembly
Language Programs

If P.D. Q. is a tool for BASIC, why should assembly language programmers
be interested? Because P.D. Q. is, at heart, a collection of assembly
language routines. You can use those routines to add BASIC-like power
to your assembly language programs. Instead of struggling over the parts
that would be easy to write in BASIC, you can let P.D. Q. take care of the
details while you focus on the important parts of your program.

If you are familiar with both BASIC and assembly language, you'll soon
feel at home working with the P. D. Q. library. You will still have the control
that assembly language programmers insist on, but you will also have the
capabilities of a tested, flexible set of library routines that let you write
high quality programs very quickly.

When you add P.D.Q. to your arsenal of assembly language tools, you get:

• BASIC-like string handling including management of dynamic
string memory

• Simple and powerful screen and keyboard I/O

• BASIC-like file handling

• A powerful method of allocating and managing arrays

• A floating point emulation library that will let you add real number
calculations to your program painlessly

• A simple method for writing TSR programs and interrupt handlers

P.D.Q. also includes the complete, commented source code for all of its
library routines. If you want to see how we handle dynamic strings or
floating point emulation, all you need to do is study the code. If you want
to change the way that a P.D.Q. routine works, you can do so easily.

This section of the P.D.Q. manual is divided into two parts. The first
chapter explains the mechanics of working with the P.D.Q. library in an
assembly language program. Please read that chapter carefully. If you
forget an important step or use the wrong assembler directives, your
program may not run at all.

You'll find a discussion of assemblers, memory models, segment names,
and calling conventions in this chapter, along with a description of P.D.Q. 's
method of handling strings, arrays, errors, and floating-point emulation.

CRESCENT SOFfWARE, INC. Ill 6 - 1

Assembly Toolbox, Using P.D.Q With Assembly
Language Programs P.D.Q. Version 3.10

The second chapter is a programmer's reference. It contains detailed
information about each of the P.D.Q. memory variables and routines you
may want to use in your own programs. Look up the information you need
for your present project, and browse through the chapter often to see what
is available.

Although a lot of information is presented in this section, we have not
duplicated the discussions that appear elsewhere in the P.D.Q. manual.
For more information about what a particular routine does or why you
might want to use, you should refer to the reference portion of this manual.

Assembly Language Details
Please read this chapter carefully. P.D.Q. has a lot to offer assembly
language programmers, but you have to abide by its rules. If you just start
calling the routines that are described in the next chapter without a little
preparation, you will almost certain! y cause a system crash and end up
spending a lot of time chasing bugs. This chapter has the information you
will need to make the best use of the P.D.Q. library in your own programs.

To use P.D. Q. routines in your own assembly language programs, you will
have to follow many of the same rules as the BC.EXE BASIC compiler.
Those rules include the way your program initializes itself, the way you
use segments in your program, and the way you set up to call the routines.
In effect, the assembly language code you write will be similar to the code
that BASIC compilers create-but more efficient.

If you are confused about how to do something-perhaps how to code a
floating point multiplication-write a short test program with QuickBASIC
or BASIC 7. Then, from the command line, compile it with the /a switch.
The compiler will create an assembly language listing file which you can
examine. You can also compile your test program to include CodeView
debugging information, and look at the details with Code View or a
compatible debugger. In either case, you will see the way that BASIC
writes the assembly code and you can use the same techniques in your own
program.

Throughout this section of the manual, we assume that you have some
experience with assembly language and some experience with
QuickBASIC or BASIC 7 PDS. We assume that you have (or will) read
the applicable sections in the rest of this manual about P.D.Q. and its
extensions to the BASIC language. You will also need to read the sections
about TSR programming if you want to use the P.D.Q. library to write
memory-resident programs.

11111 6-2 CRESCENT SOFfWARE, INC.

P.D.Q. Version 3.10
Assembly Toolbox, Using P.D.Q With Assembly

Language Programs

The remainder of this chapter explains the general techniques of using
P.D.Q. with your assembly language programs. The next chapter contains
detailed discussions of each of the P.D. Q. routines and variables that you
may want to use.

Choice Of Assembler

Before you can write an assembly language program, you need an
assembler. To call the P.D.Q. library procedures you will need an
assembler that can create Microsoft-compatible object (.OBJ) files. You
cannot use the DOS DEBUG utility because it does not create object files
at all. Some shareware or freeware assemblers are unsatisfactory because
they cannot create the appropriate object files either.

Specifically, your assembler must be able to create object files that contain
the same segment and naming information that are included in Microsoft's
object files. You don't necessarily need to create CodeView-compatible
object files unless you want to use Microsoft's Code View debugger.

If you want to use the P.D.Q. floating point emulator or any of the library
routines that support floating point operations, your assembler must also
be able to create the correct LINK fixup information.

We suggest that you use Microsoft's MASM version 5 .1 or later or a
compatible assembler. MASM 5.1 meets all of the criteria above. The
examples in this and the next chapter make use of several of MASM's
"high-level language" features, which were introduced in that version of
MASM. We relied on many of those features to write the source code for
the P.D.Q. library and the examples in this manual. With the introduction
of MASM 6.0 even more "helper" features have been added to the
language.

We have not tested the P.D.Q. library with any assemblers other than
MASM 5.1 and 6.0. However, Borland International's TASM and SLR
Systems' OPTASM assemblers should both be satisfactory. Other as
semblers may work as well. If you are using an assembler like TASM that
includes options for MASM 5 .1 compatibility, we strongly suggest that
you use those options.

This chapter includes information about using an assembler that can create
appropriate object files, but which doesn't support MASM's high-level
language or simplified directive features. If you are using such an
assembler, it is your responsibility to apply those techniques to the
examples in both this chapter and the next.

CRESCENT SOFrWARE, INC. 111111 6 - 3

Assembly Toolbox, Using P.D.Q With Assembly
Language Programs

Memory Models

P.D.Q. Version 3.10

The segmented memory architecture used by the 8086 CPU (and the
80286, 386, and 486 in real, or DOS mode) gives every location in
memory both a segment and an offset address. The memory model that
you choose for a program establishes what items will require explicit
segment addresses and what items will have implied segment addresses.

The P.D.Q. library routines have been written to work with the Medium
memory model. In this memory arrangement, procedure calls are far by
default. This means that procedures must be called by specifying both a
segment and offset address, and that the called procedures must end with
a far return, usually to a different segment.

The Medium memory model also assumes that all data objects are in one
segment and that the segment pa1t of their addresses is always in both the
DS and SS segment registers. This doesn't mean that your program is
limited to 64K bytes of data, but it does mean that you will have to do
some extra work to access memory that is not normally addressable via
the DS segment register.

To write a program that uses the P.D.Q. library you should specify the
Medium memory model at the beginning of each of your assembly
language modules. If you are using MASM 5.1, the correct memory
directive is as follows:

.Model Medium, BASIC

The Medium directive word tells the assembler to make far calls to
procedures (using both a segment and an offset address) by default, and
to use far returns as a default. Most assemblers use the same command
to specify the medium memory model.

The BASIC directive word tells the assembler how to write the prologue
and epilogue for each procedure, which sets up and releases the stack
frame. It also tells the assembler how arguments will be arranged on the
stack for calls from one procedure to another. Finally, when you add the
BASIC directive, MASM 5 .1 and compatible assemblers will correctly
interpret the OFFSET assembler directive in your programs. Adding
BASIC also makes all of your procedures public automatically.

You can override the default settings of the medium memory model quite
easily when you need to do so. Generally, procedure calls from one object
module to another must be far, but calls entirely within a module may be
either near or far at your discretion. If you don't do anything other than
use the PROC and ENDP directives at the beginning and end of each

1111 6 - 4 CRESCENT SOFfWARE, INC.

P.D.Q. Version 3.10
Assembly Toolbox, Using P.D.Q With Assembly

Language Programs

procedure, calls to those procedures will use far addressing by default. If
you define a procedure with the directive PROC NEAR, calls to that
procedure will require an offset address only and the procedure will end
with a "near" return. But be careful! You will be able to call near
procedures only from within their own .OBJ modules, and not from other
modules.

Programs written in the Medium model can access more than 64K bytes
of data memory. All you need to do is to use a DOS call to allocate a
block of memory for your program and then remember where that block
is. The block is yours to use as you wish and will be released back to
DOS when your program ends.

If your assembler does not support the Model Medium, BASIC directive
described above, you will have to do some extra work. When you call
P.D.Q. library routines, be sure to tell your assembler that they are in far
memory, using whatever mechanism your assembler supports. For some
assemblers, you may define the location (near or far) of a procedure when
you declare it as external to the current module. Such a declaration line
usually looks something like this:

Extrn PDQProcedure:FAR

You should put this declaration outside of all segments in order to avoid a
possible fixup overflow error from the linker if the procedure happens to
be physically more than 64K bytes from the calling address.

When you use the .Model Medium, BASIC directive and incoming
parameters have been defined, MASM 5.1 creates a procedure prologue
and epilogue automatically. Each procedure begins with the following
instructions:

PUSH BP
MDV BP,SP

;Save caller's BP
;Establish stack frame

This creates a local stack frame that is addressable via the BP register.
The prologue may also include space for local variables and may save some
registers on the stack automatically. The epilogue retrieves any saved
registers from the stack and then performs these instructions:

MDV SP,BP
POP BP
RET

;Restore original SP
;Restore caller's BP

If the procedure declaration includes the names of values received on the
stack, the RET command is modified to remove them from the stack before
returning to the calling procedure. For example, if there are two incoming
word-sized arguments, MASM creates the instruction RETF 4 when you
use RET alone.

CRESCENT SOFfWARE, INC. 1111 6 - 5

Assembly Toolbox, Using P.D.Q With Assembly
Language Programs P.D.Q. Version 3.10

If you are using an assembler which is not compatible with MASM 5 .1,
you will have to write any necessary prologue and epilogue yourself. You
will also have to make other changes to your program, which will be
explained in the following sections.

Finally, you will have to decide how you want to pass parameters and values
between your procedures, and how you will set up stack frames (if you
need them) in each of your own procedures.

Segments, Segment Names, And
DGROUP

When programmers talk about an 80x86 memory segment, they usually
mean the 64K bytes of memory that can be addressed without changing a
particular segment register. For example, if the value in DS is 1000h,
then a program can access memory from 10000h to lFFFFh (1000:000
through 1000:FFFF) without altering DS.

But to assembly language programmers, the word segment also means a
block of named memory. The block can be any length from O bytes to
64K bytes. You begin one of these named segments with a SEGMENT
directive and end it with an ENDS directive in your assembly language
program. MASM 5 .1 and compatible assemblers also let you use
simplified commands for starting and stopping segments with standard
names.

Code Segments
In the Medium memory model, the source code in every object file may
be in a different named segment. By tradition, programmers use the
filename of the module plus "_ TEXT" as the name of the code segment.
For example, if you have a source code file called CLEANUP.ASM, the
code in that module would be placed in a segment called
CLEANUP_ TEXT. The code segment will be just large enough to hold
the code in that particular source code module.

MASM 5 .1 and compatible assemblers will create the correct code
segment name for you if you begin each section of code with the directive
.CODE. For example, you would begin your source code module this
way:

.Model Medium, BASIC

.CODE
MyProc Proc

Ill 6-6 CRESCENT SOFTWARE, INC.

P.D.Q. Version 3.10
Assembly Toolbox, Using P.D.Q With Assembly

Language Programs

If you prefer to write the segment directives yourself, you can do so this
way:

filename_TEXT SEGMENT WORD PUBLIC 'CODE'
;your code goes here

filename_TEXT ENDS

The result will be the same, but you will have to do more typing. In
exchange, you will be able to put the procedures from multiple source
code files into the same code segment, if you wish. However, remember
that almost every P.D.Q. library routine is in its own code segment.

Data Segments
In the Medium memory model, all data by default must fit within a single
64K memory segment. You could use just one named segment for the
entire data area, but you will give up some of the assembler's and linker's
power by doing so.

Instead, by convention, several named data segments are combined with
a GROUP directive. The resulting group still cannot exceed 64K bytes in
length, but you can control data placement much more easily by using
individual named segments for each kind of data. By convention, the
entire data group is called DGROUP, and that convention is followed in
the P.D.Q. library.

The size of DGROUP can range from 2 bytes to 64K bytes in length. In
BASIC programs, DGROUP contains all scalar (non-array) variables, all
strings and string descriptors, all static arrays, all array descriptors
(whether static or dynamic), DATA statements, quoted strings, and the
program stack. Airrays of numeric values, fixed-length strings,
and TYPE variables may optionally be stored outside of DGROUP by
establishing the arrays as dynamic.

Many of the routines in the P.D. Q. library assume that you have followed
this standard organization. If you haven't, you will have to study the
P.D.Q. source code carefully to make sure that it is compatible with the
data organization that you want to use.

Inside DGROUP, there are three named segments that you will be
concerned with the most. These segments contain initialized data, unini
tialized data, and your program's stack.

Initialized Data
The difference between initialized and uninitialized data is suggested by
their names. You give an initial value to each item of initialized data when

CRESCENT SOFTWARE, INC. II 6 - 7

Assembly Toolbox, Using P.D.Q With Assembly
Language Programs P.D.Q. Version 3.10

you assemble the program. If you use an initial value of "?" then the
assembler will assume that you want to initialize the data to 0.

The initial values are stored in your .EXE executable file, along with your
program code. If you are using MASM 5 .1 's simplified naming conven
tions, the initialized data segment is called .DATA. If you would rather
name segments yourself, use the following definition for the segment:

DATA SEGMENT WORD PUBLIC 'DATA'

Uninitialized Data

Ill

When you use uninitialized data, the assembler and linker reserve space
for your data items but they do not store any initial values in the .EXE
executable file. Your programs will be shorter and load faster if you make
sure to put as many data items as possible into the uninitialized data
segment.

The starting value of uninitialized data items is undefined. Normally, it
is whatever bytes happen to be sitting around in memory from the last
program. If you use uninitialized data, you must be sure that your code
assigns a value to each item before it tries to read from that item. Note
that many of the syntax examples that will follow show data in the
uninitiaiized data segment. It is assumed that you have already assigned that
data, or at least cleared it to zeros. Of course, you may also store data in
the initialized segment.

If you use simplified segment names, use . DATA? to start each uninitialized
data segment. If you use full names, use_ BSS as the name of the segment:

BSS SEGMENT WORD PUBLIC 'BSS'

In order to prevent the assembler and linker from putting uninitialized data
into your executable file, you have to make sure that you and the assembler
agree that you don't care about the starting values of these data items. The
only way to do so with MASM is to define every uninitialized data item
using a name count dup (?) construction. For example, to define one
uninitialized integer value, you can use these commands:

.DATA?
my_integer dw 1 dup (?)

You may, of course, replace the count of 1 with any other number if you
are defining an array. But if you omit the dup (?) part of the definition
and use a specific value or even a question mark without the dup directive,
the assembler and linker will decide that all data items in BSS should
have initial values. And all of the values from all modules will be placed

6-8 CRESCENT SOFTWARE, INC.

P.D.Q. Version3.10
Assembly Toolbox, Using P.D.Q With Assembly

Language Programs

into your .EXE file. This won't hurt the program at all, but it will make
the .EXE file much larger than it needs to be.

If the size of your program suddenly seems to balloon from one version
to another, the likely reason is that you added an uninitialized data item
without using dup (?). Please understand that your program will be the
same size in memory no matter what mix of initialized and uninitialized
data it contains. The only difference is the size of the .EXE executable
file.

The Stack
Your program's runtime stack is also part of DGROUP. The runtime stack
is defined in STARTUP.ASM, which sets the stack size to 1,024 bytes.
This is usually sufficient, but if you need a larger stack, you can edit
STARTUP.ASM and compile a new STARTUP.OBJ file to link with your
program. Easier still, you can use the /stack: linker directive to change
the stack size when you link your program.

The stack is used for procedure return addresses, for passing parameters
from one procedure to another, and as temporary variable space by several
routines in the P.D.Q. library. You probably won't have to increase the
size of the stack unless your own procedures are very deeply nested, call
themselves recursively, or use large blocks of stack space for temporary
variables.

One way to check your program's stack usage is to edit STARTUP.ASM
and put a known ASCII value in each byte of the stack. Run your program
inside Code View or another debugger, and put a break point just before
the end of the program. Run your program and exercise as much of it as
you can. When you hit the breakpoint, look at the stack area and see how
much of your ASCII text has been overwritten. You can also compare the
current stack pointer to the public variable PDQ_ Stack _Foot, as shown in
the FRE.ASM source code. In fact, this is a much simpler method.

You should not, however, limit the program's stack size to exactly those
bytes which it has used. Give it a little leeway because some device drivers
and memory-resident programs also use your stack, and you may not have
exercised all possible paths through your code. You'll have to learn what
the optimum stack size is by experimenting and experience. In general,
we recommend leaving at least 256 bytes for system resources.

CRESCENT SOFfWARE, INC. 1111 6- 9

Assembly Toolbox, Using P.D.Q With Assembly
Language Programs

Variable References

P.D.Q. Version 3.10

When you use the OFFSET directive to find the address of a variable the
assembler can resolve the address immediately, or let the linker find the
address of your variable once you are ready to combine all .OBJ and .LIB
modules into a complete program.

If the assembler does the work itself, it finds the variable's address from
the beginning of the named segment in the current source file. This is
usually not the address you intended, especially if the variable is in a
segment which spans several source code modules and .OBJ files. Neither
you nor the assembler have any idea of how much space other modules
will use in the segment before the current module's variables are placed
in memory.

Normally, what you really want to know is the variable's offset address
from the beginning of DGROUP, because the DS segment register will
contain the address of DGROUP and not the portion of the segment in the
current module. If the offset address is calculated by the linker-as
opposed to by the assembler-then it will be the offset from the beginning
of the group or named segment, which is what you probably intended.

You can find the correct offset address in two ways. If you are using
MASM 5 .1 or a compatible assembler, you can use the .Model Medium,
BASIC directive at the beginning of each source file. By including ,BASIC
you are telling the assembler how to address parameters on the stack. This
also tells the assembler to defer all Offset calculations to the linker.

If you omit ,BASIC from the .Model directive, you will have to explicitly
defer every offset calculation manually. To do so, you must tell the
assembler what reference point to use for each and every Offset command.
Generally, that reference point is the beginning of DGROUP, so you will
write a line that looks like this:

MOV AX,Offset DGROUP:my_variable

If your assembler is not compatible with MASM 5 .1 and requires you to
do that extra typing, you might want to use a text macro to change all
Offset commands to Offset DGROUP.

Omitting ,BASIC also tells MASM not to make your procedure names
public by default.

1111 6- 10 CRESCENT SOFfWARE, INC.

P.D.Q. Version 3.10

Assembly Specifics

Assembly Toolbox, Using P.D.Q With Assembly
Language Programs

There are only a few simple rules that you have to follow when you want
to add pa1ts of the P.D.Q. library to your assembly language programs.
The easiest way to describe the rules is to go through the process of writing
a short program, step-by-step.

At the beginning of your program, after any opening comments, you'll
need a . Model directive. Assuming that you are using MASM 5 .1 or later
and simplified segments, your first line should look like this:

.Model Medium, BASIC

Next, you'll probably want to include the set of simple macros that will
help you use some of P.D.Q. 's features. To do so, the next line of your
program will look like this:

Include MACROS.ASM

You can place the .DATA, .DATA?, and .CODE segments in any order
you choose, and start and stop segments as often as you like in your source
code file. Some programmers like to place all of the data at the beginning
of the file; others like to place each data item immediately above the first
reference to it. Assuming that you agree with the first group you'll want
to define your data items next in the .DATA and .DATA? segments.
Remember to use name count dup (?) to create space for all items in the
uninitialized data segment.

Your program's code goes into the .CODE segment. You must have a
procedure called MAIN somewhere in your program; that procedure will
be the first part of your program that runs, and will usually contain or call
your initialization code.

When your program is loaded by DOS, the P.D.Q. startup code (in the file
called STARTUP. OBJ) will get control before any of your code. STAR
TUP is responsible for doing a small amount of housekeeping to get the
P.D.Q. library ready to run. When the initialization code is done, it jumps
to MAIN to give your program control of the computer.

At the end of your source code module, close any open procedures, and
also any open segments if you're not using simplified segment conven
tions. Then end the file with the END directive. Do not specify the
optional starting address as part of the END statement, because the
program must begin in STARTUP.OBJ, not in your code.

When you are ready to assemble your program you can use the batch file
called C.BAT that is on the distribution diskette. If you prefer you can

CRESCENT SOFfWARE, INC. 116-11

Assembly Toolbox, Using P.D.Q Wilh Assembly
Language Programs P.D.Q. Version 3.10

simply run MASM directly and assemble your program as you always
have. You must use the /e assembler switch if you are using the P.D.Q.
floating point library, and you may use the /zi assembler switch if you want
to include Code View debugging information.

To link your program, you must include STARTUP. OBJ as well as the
PDQ.LIB library (and perhaps the SMALLDOS library) to make a
complete program. You must use the /noe link option (No extended
dictionary search). You may also use /co to link for CodeView, or /ex,
/far, and /packc to get the smallest possible program when you link a final
copy. To create a program from a source code module called
MYPROG.ASM, you could use the following MASM and LINK command
lines:

MASM myprog;
LINK /ex/noe/far/packc myprog startup , , nul, \pdq\pdq;

This line assumes that STARTUP. OBJ is in the current directory and that
PDQ.LIB is in the \PDQ directory.

Calling Conventions In The P.D.Q.
Library

The P.D.Q. library has three kinds of procedures that you can call from
an assembly language program. Almost all procedures, regardless of their
type, receive their arguments on the stack. The routines that return a
2-byte value place that value in AX. A few routines return a 4-byte long
integer value in the DX:AX register pair. A few routines receive one or
more arguments in registers instead of on the stack.

Each of the extensions that P.D.Q. adds to BASIC is the name of a
procedure. These extension procedures normally receive arguments by
reference, which means that you pass the address of the arguments to the
procedure, and not the argument values themselves. For example, sup
pose you want to call NoSnow to disable CGA snow checking. NoSnow
expects to receive a reference, or pointer, to the actual data value that you
send it. Therefore, you must place the data into a 2-byte integer, get the
offset of the integer, and pass that offset to NoSnow on the stack.

The second class of routines in the P.D. Q. library are internal, "helper"
procedures that P.D.Q. uses to get other work done. The names of these
routines typically start with P$-like P$Delay. These routines normally
receive their arguments by value, so to delay 20 timer ticks you would
push a 20 onto the stack and then call P$Delay.

Ill 6 - 12 CRESCENT SOFfWARE, INC.

P.D.Q. Version 3.10
Assembly Toolbox, Using P.D.Q With Assembly

Language Programs

The third class of routines are the substitutes for items in the BASIC library.
Each of these routines has a name that begins with B$ and ends with 4
letters, which often seem unintelligible at first glance. The routines have
the same names in the P.D.Q. library as they do in the BASIC libraries
that Microsoft ships with QuickBASIC and BASIC 7. The names were
chosen by Microsoft; please don't blame us for the strange, cryptic
nomenclature!

All library routines expect SS and DS to point to DGROUP when you call
them. The routines preserve the DS, SS, BP, DI, and SI registers, but are
free to change ES, AX, BX, CX, and DX. If you have important data in
any of those registers, you should either push them onto the stack or save
them in a data variable before you call a library routine. The direction
flag should always be cleared when you call a library routine, and it will
remain cleared when the routine returns. Any data that you pass to a
routine on the stack will be removed before the routine returns.

Table 1-1 will help you find the BASIC emulation procedures that you need.
It lists each of the BASIC key words that are supported in the library,
followed by the corresponding procedure name. Most of the procedures
are discussed in detail in the following chapter. Those marked with an
asterisk are not generally useful to assembly language programmers and
are discussed very briefly at the end of the next chapter.

TABLE VI-I
BASIC Keywords Cross-Referenced By Call Name.

BASIC NAME
ASC()
BLOAD
BSAVE
CHDIR
CHDRIVE
CHR$()
CLOSE
CLS
COLOR
COMMAND$
CSRLIN
CURDIR$
CVD()
CVI()
CVL
CVS()
DATE$ function
DATE$ statement
DEFSEG
DIM (dynamic)

CRESCENT SOFfWARE, INC.

LIBRARY ROUTINE(S)
B$FASC
B$BLOD
B$BSAV
B$CDIR
B$CHDR *
B$FCHR
B$CLOS
B$SCLS
B$COLR
B$FCMD
B$CSRL
B$FCD0, B$FCD1
B$FCVD
B$FCVI
B$FCVL
B$FCVS
B$FDAT
B$SDAT
B$DSEG *
B$DDIM

111116 - 13

Assembly Toolbox, Using P.D.Q With Assembly
Language Programs P.D.Q. Version 3.10

TABLE VI-1 (Continued)
BASIC Keywords Cross-Referenced By Call Name

1111 6 - 14

BASIC NAME
DIR$
END()
ENVIRON statement
ENVIRON$(Environ$)
ENVIRON$(n)
EOF()
ERASE
ERR
ERROR
FILEATIR()
FILES
FIX()
FRE("")
FRE()
FREEFILE
GET
HEX$()
INKEY$
INPUT #n
INPUT (from keyboard)
INPUT$
INSTR
INT()
IOCTL
IOCTL$
KILL
LBOUND
LCASE$()
LEFT$
LEN
LINE INPUT
LOC
LOCATE
LOCK and UNLOCK
LOF()
LPRINT
LSET
LTRIM$
MID$ function
MID$ statement

. MKD$
MKDIR
MKI$
NAME
OCT$()
ON ERROR GOTO
OPEN ("wordy" syntax)
OPEN ("terse" syntax)
PLAY

LIBRARY ROUTINE(S)
B$FDR0, B$FDR1
B$CENC *
B$SENV
B$FEVS
B$FEV1
B$FEOF
B$ERAS
B$FERR
B$SERR
B$FATR
B$FILS
B$FIX4, B$FIX8 *
B$FRSD
B$FRI2
B$FREF
B$GET3, B$GET4
B$FHEX
B$INKY
B$DSKI
B$INPP
B$FJNP
B$1NS2, B$1NS3
B$1NT4, B$INT8 *
B$SJCT
B$FICT
B$KILL
B$LBND
B$LCAS
B$LEFT
B$FLEN *
B$LNIN
B$FLOC
B$LOCT
B$LOCK
B$FLOF
B$LPRT *
B$LSET
B$LTRM
B$FMID
B$SMID
B$FMKD
B$MDIR
B$FMKI
B$NAME
B$FOCT
B$OEGA *
B$OPEN
B$OOPN
B$SPLY

CRF.sCENT SOFTWARE, INC.

P.D.Q. Version 3.10
Assembly Toolbox, Using P.D.Q With Assembly

Language Programs

TABLE VI-1 (Continued)
BASIC Keywords Cross-Referenced By Call Name

BASIC NAME
PRINT
PRINT tin
PRINT;
PRINTX!
PRINTX!,
PRINTX!;
PRINT XII
PRINT XII,
PRINT XII;
PRINTX$
PRINTX$,
PRINTX$;
PRINTX%
PRINTX%,
PRINTX%;
PRINTX&
PRINTX&,
PRINTX&;
PUT
RANDOMIZE
REDIM
RESET
RES1DRE
RESUME
RIGHT$
RMDIR
RND
RSET
RTRIM$
SADD
SCREEN function
SCREEN statement
SEEK function
SEEK statement
SETMEM
SGN
SHELL
SLEEP
SOUND
SPACE$
SPC
SSEG
S1DP()
STR$ double-precision
STR$ single-precision
STR$ long integer
STR$ integer
STRING$
SWAP

CRESCENT SOFrWARE, INC.

LIBRARY ROUTINE(S)
B$PESD
B$CHOU *
B$PSSD
B$PER4
B$PCR4
B$PSR4
B$PER8
B$PCR8
B$PSR8
B$PESD
B$PCSD
B$PSSD
B$PEl2
B$PCl2
B$PSl2
B$PEI4
B$PCl4
B$PSl4
B$PUT3, B$PUT4
B$RNZP
B$RDIM
B$REST.
B$RSTA, B$RSTB *
B$RESA, B$RESN *
B$RGHT
B$RDIR
B$RND0
B$RSET
B$RTRM
B$SADD *
B$FSCN
B$CSCN
B$FSEK
B$SSEK
B$SETM *
B$SGN4
B$SSHL
B$SLEP
B$SOND
B$SPAC
B$FSPC
B$SSEG *
B$STP1 *
B$STR8
B$STR4
B$STI4
B$STl2
B$STRI, B$STRS
B$SWPN, B$SWP2, B$SWSD

111116 - 15

Assembly Toolbox, Using P.D.Q With Assembly
Language Programs P.D.Q. Version 3.10

TABLE VI-I (Continued)
BASIC Keywords Cross-Referenced By Call Name

BASIC NAME
TAB()
TIME$ function
TIME$ statement
TIMER function
UBOUND
UCASE$ function
VAL()
WIDTH (video)
WIDTH (device or file)
WIDTH (LPRINT)

Using P.D.Q. String Routines

LIBRARY ROUTINE(S)
B$FTAB
B$FTIM
B$STIM
B$TIMR
B$UBND
B$UCAS
B$FVAL
B$WIDT
B$DWID, B$FWID *
8$LWID*

The P.D.Q. library contains routines which let your programs manipulate
string data as easily in assembly language as you can in BASIC. But you
will need to understand how the string routines work and what they expect
from you.

Both BASIC and P.D.Q. make a distinction between fixed-length strings
and variable-length or "normal" strings. Fixed-length strings are nothing
more than a block of memory set aside to hold some data. You can
manipulate a fixed-length string just as you would any other data block or
buffer. However, you cannot normally perform string operations (like
LEFT$, UCASE$, and so forth) on a fixed-length string unless you first
copy it into a variable-length string first (using B$ASSN, for example).

The string data normally is inside a block of memory that P.D. Q. maintains
called the string pool. By default, the string pool is 32,768 bytes long,
but you can choose a different size by linking your program to one of the
alternate STRnnnnn. OBJ files. The nnnnn value indicates the number of
bytes allocated to the string pool. When you are writing a TSR program,
you will probably want to pick the smallest string pool possible to keep
the memory requirements of your program low. For other programs, the
default will probably be sufficient.

Every variable-length string is stored as three data items: a 4-byte string
descriptor, a 2-byte back pointer, and the actual string data. The first word
of the descriptor contains the string's length. The second word is the offset
of the string data within DGROUP.

1111 6 - 16 CRESCENT SOFfWARE, INC.

P.D.Q. Version 3.10
Assembly Toolbox, Using P.D.Q With Assembly

Language Programs

String descriptors are usually stored in the .DATA segment just like any
other data item, because they should be initialized to zero. However, there
is one restriction: it is essential that every string descriptor begin on an
even-numbered address.

Each string inside the string pool is preceded by a 2-byte back pointer that
contains the address of the string's descriptor. When the address in the
back pointer is an even number, P.D.Q. knows that the string data is in
use. When it is odd, P.D.Q. assumes that the string data has been discarded
and can be erased during string pool compaction. If your string descriptor
is stored at an odd address, the entire string pool may be corrupted the
next time P.D.Q. compacts the string pool.

The 4-byte string descriptor exists in your normal data space inside
DGROUP. It never moves, and its information remains up to date unless
your program explicitly changes it, which it should never do. The string
data, however, is in the string pool that P.D. Q. maintains, and it may move
during almost any P.D. Q. routine call that involves strings.

If P.D.Q. is asked to create a new string, it looks for space in the string
pool. The request for a new string can come explicitly from your program
or from a P.D.Q. library routine that needs to create a temporary string.

If there is insufficient memory available to create a new string, P.D.Q.
calls its string compaction, or II garbage collection II routine. This routine
examines the string pool and, when possible, moves strings in memory to
overwrite string data that is marked as abandoned. The compaction
routine updates the string descriptors associated with valid string data
every time it moves a string in memory. After compaction, all of the free
space in the string pool will be in one contiguous block.

If there is sufficient space for the requested string after compaction P.D. Q.
allocates the space and returns normally. If there is still insufficient space,
P.D.Q. allocates as much space as possible for the string.

You can often save significant string pool space by keeping literal text
separate from string variables. Normally, a BASIC statement like:

KeyPress$ = "Press any key"

forces the program to store the text twice, once as a literal value and once
again in the string pool. You don't need to copy literal text to the string
pool in an assembly language program, even if you want to use the string
with P.D.Q. string routines. You can simply store the string in your data
list and build your own string descriptor for it. You don't need a back

CRESCENT SOFTWARE, INC. 11116-17

Assembly Toolbox, Using P.D.Q With Assembly
Language Programs P.D.Q. Version3.10

pointer because the string is outside the string pool and will never be moved
by the P.D.Q. heap compaction garbage collection.

To create a literal string and its own permanent string descriptor, you can
use the DefStr macro in the MACROS.ASM file. If you do, the code that
creates a literal string will look like this:

DefStr KeyPress$, "Press any key"

In this example, the DefStr macro will create a string descriptor and attach
KeyPress$ to it as its label. The descriptor will contain the necessary
length word and the address of the literal text, which is stored in your
.DATA segment. Other useful macros are provided in MACROS.ASM,
and you should look at those as well.

You can set aside space for string descriptors in either the .DATA or
.DATA? segments. To do so, use code like this:

.DATA?
Even
StringDesc dd 1 dup (?)

or like this:

.DATA
Even
StringDesc dd O

IMPORTANT:

If a string is initialized with constant data using either DefStr or DB it is
considered to be a constant, and you must not reassign it later with the
P.D.Q. string memory routines.

Temporary Strings
Many of the string functions in the P. D. Q. library return what is called a
temporary string as their result. For example, the P.D. Q. routines that
implement LEFT$, UCASE$, and RTRIM$ all create such a temporary
string.

P.D.Q. contains a pool of string descriptors for its internal use. A
temporary string is simply a normal string that is attached to one of these
descriptors. A back-pointer and the string text are stored in the string
pool, and the descriptor is in P.D.Q.'s array of 20 temporary descriptors.

It is your responsibility to release these descriptors for further internal use
by P.D.Q. as soon as is practical. If you don't and more than 20 temporary

II 6 - 18 CRF.SCENT SOFfWARE, INC.

P.D.Q. Version 3.10
Assembly Toolbox, Using P.D.Q With Assembly

Language Programs

strings have been assigned, the results will be unpredictable and your
program will probably crash.

If you want to keep the contents of a temporary string, use P.D.Q. 's
B$SASS routine to copy it to your own string descriptor. B$SASS will
then delete the temporary string for you. All other P.D.Q. "B$" routines
that accept a string as an argument also delete the string if it is temporary.
However, the P.D.Q. extensions do not do this, because BASIC normally
adds code to delete temporary strings passed to an external procedure.
Note that none of the P.D.Q. routines change any arguments that have
descriptors outside of the P.D.Q. temporary string pool.

If you want to delete a temporary string yourself, you have two choices.
The safest way is to pass the string to the P.D.Q. routine P$FreeTemp,
which examines the descriptor and deletes the string only if the descriptor
is in the temporary string pool. A more direct method is to pass the string
to B$STDL which deletes any string that it receives.

You can also use B$STDL to delete other strings from the string pool when
you no longer have a use for them. By doing so, you release string pool
memory for future strings. However, you must not pass a string defined
using DefStr (or any other string constant you have defined) to B$STDL.
As when assigning, B$STDL is for use with strings whose data resides in
the string pool only.

Using Arrays

An array is nothing more than a block of contiguous memory space and
some rules for addressing that space. In many cases you will find it easier
to manipulate arrays manually using normal assembly language techni
ques. However, the P.D.Q. routines can be very helpful when you need
to manipulate multi-dimensional arrays, or arrays larger than 64k.

P.D.Q. will help you use arrays by creating array descriptors and allocating
the necessary memory space, and it will also find the address of individual
array items for you. But you can address and use array memory in any
way that you wish. If you want to see how BASIC does it, write a short
test program and view the results with Code View.

If you create an array of integers, long integers, single- or double-precision
floating point values, fixed-length strings, or TYPE variables, the values
themselves are stored in the array. The array can either be stored inside
DGROUP, or outside of DGROUP in a memory block allocated with a
DOS memory service. Because of the way the DOS memory services
work, all dynamic arrays that are stored outside of DGROUP (that is, all

CRESCENT SOFfWARE, INC. 11116-19

Assembly Toolbox, Using P.D.Q With Assembly
Language Programs P.D.Q. Version 3.10

but variable-length string arrays) always start at address O in a particular
segment.

If you create an array of variable-length strings, the 4-byte string descrip
tors are stored in the array, which must be inside DGROUP. The text of
each string and the corresponding back pointer are stored in the string
pool. Please understand that P.D. Q. does all the work of maintaining the
string data and back pointers. We describe how dynamic string manage
ment works in P.D.Q. for your interest only.

BASIC recognizes two kinds of arrays: static and dynamic. A static array
is simply a data block inside DGROUP that is set aside for the array of
values. The values can be integers, long integers, string descriptors,
floating point values, TYPE variables, or fixed-length strings.

A dynamic array is referenced through an array descriptor that is stored
inside DGROUP. The values themselves are stored in a memory block
which can either be inside or outside of DGROUP. A dynamic array of
variable-length strings has an array descriptor like any other array. But
the block of string descriptors must be inside DGROUP and the string text
must be stored inside the string pool.

You can create the array descriptor and allocate the memory for a dynamic
array with the B$DDIM (or B$RDIM) routine in the P.D.Q. library.
Before you do, you must set aside memory inside DGROUP for the array
descriptor. The descriptor requires 12 bytes plus 4 bytes for each
dimension of the array. The descriptor for a single-dimension array will
contain 16 bytes (12 + 1 * 4), 20 bytes for a 2-dimensional array (12 +
2 * 4), and so forth.

The organization of the array descriptor is shown in Table VI-2.

1111 6-20 CRESCENT SOFfWARE, INC.

P.D.Q. Version 3.10
Assembly Toolbox, Using P.D.Q With Assembly

Language Programs

TABLE VI-2
The Organization Of A BASIC Array Descriptor.

OFFSET
00
04

08
09

OA
oc
OE

10
12
14

SIZE DESCRIPTION
4 Offset and segment of the data block in memory.
4 Far heap descriptor and array size. Not used or set by

P.D.Q. routines.
1 Number of dimensions in the array.
1 Array type, stored as a bit record:

Bit O set means a far (non-DGROUP) array.
Bit 1 set means a huge (/ah) array.
Bit 6 set means a static array.
Bit 7 set means a string array.

2 Adjusted Array Offset for optimized access.
2 Length of each array element in bytes.
2 Number of elements in the last subscript. This number

is calculated as UBOUND - LBOUND + 1.
2 Number of the first element in the last subscript (LBOUND).
2 Number of elements in the next-to-last subscript.
2 Number of the first element in that subscript.
2 Repeat as necessary,
2 until the.first subscript is reached.

The Adjusted Array Offset deserves some explanation because it can
significantly reduce the amount of time required to find a location in an
array. BASIC calculates the location of an array element by assuming that
all dimensions sta1t at 0 instead of their LBOUND subscript. Then,
instead of finding the location of an item as an offset from the first element
of the array, BASIC adds the Adjusted Array Offset to the element's
location within the array.

For example, suppose you dimension a dynamic array with the statement
DIM Array%(1 to 10) and the array data block (reflected in bytes Oto 3
in the descriptor) is placed at 8000:0000. Because the array contains
integer values, each array item requires two bytes of storage. To find
Array%(5), BASIC could subtract the LBOUND from the subscript of 5
to get 4, multiply 4 * 2 to find the number of preceding bytes in the array,
and then add 8000:0000 to the result to find the location of item 5. But
it is faster (especially for multi-dimensioned arrays), to store OFFFEh as
the Adjusted Array Offset. Now item 5 can be found by multiplying 5
times the item size and adding that to the Adjusted Array Offset. The
result is the same but the process is faster.

BASIC stores items in multi-dimension arrays in such a way that the first
subscript changes the fastest and the last subscript changes the slowest as
you move from one data item to another. For example, suppose you
dimension an array with this statement:

CRESCENT SOFrWARE, INC. 11116 - 21

Assembly Toolbox, Using P.D.Q With Assembly
Language Programs

DIM Array%(0 TO 9, 0 TO 9)

P.D.Q. Version 3.10

and that the array data block is placed at 8000:0000. The memory address
for representative elements of the array is shown in this table:

Array%(0,0) 8000:0000
Array%(1,0) 8000:0002
Array%(2,0) 8000:0004

Array%(0,l) 8000:0014
Array%(1,l) 8000:0016
Array%(2,l) 8000:0018

Array%(7,9) 8000:00SE
Array%(8,9) 8000:0060
Array%(9,9) 8000:0062

Of course, there is no requirement that you follow BASIC's method of
numbering array items in a program that you write completely in assembly
language. You can consider an array's data block as simply one large
chunk of memory to work with as you see fit. If you do not follow BASIC's
method of addressing array items, however, you cannot use the routine
called B$HARY which can calculate the address of an array item for you.

Error Handling

No matter how you try to guard against them, errors happen. Any program
may face a "File not found" or "Access denied" error. A well-written
program knows how to handle such errors and take appropriate action
when they occur.

Many of the P.D.Q. library routines can report errors, which range in
severity from inconvenient to catastrophic. It is up to your program to
handle the errors gracefully.

The P.D.Q. word variable P$PDQErr holds the number of the last error
or zero if no error occurred. Many library routines that can report an
error condition begin by setting this variable to zero to clear any prior
error. When these routines report an error, they do so by loading the error
number into the AX register and then calling P$DoError.

The P$DoError routine stores the error number in P$PDQErr and then
checks to see if ON ERROR Garo is in effect. If so, P$DoError sets up
some internal variables for a possible Resume, and then jumps to the
designated error handler. If ON ERROR GITTO is not in effect, P$Do
Error simply stores the error number in P$PDQErr and then returns.

11111 6 - 22 CRESCENT SOFfWARE, INC.

P.D.Q. Version 3.10
Assembly Toolbox, Using P.D.Q With Assembly

Language Programs

From a purely assembly language perspective, it is unlikely that you will
be using BASIC's ON ERROR mechanism. We therefore suggest that you
always link with the _NOERROR.OBJ stub file, and examine P$PDQErr
manually when you want to see if the most recent action caused an error.
You could also create a custom version of P$DoError, and this will be
described in a moment.

Critical errors (errors caused by hardware failures such as an open drive
door or an off-line printer) can also set P$PDQErr if you have invoked
the routine called CritErrOff. If CritErrOff has been called, a critical
error will set the error number but not halt program flow. At its next
invocation, P$DoError will recognize that a critical error has occurred,
and report the critical error instead of the new error that invoked
P$DoError.

Assembly language programs can use ON ERROR Garo but not
RESUME, which depends on BASIC's system of module-level code with
subprogram and function procedures. The lack of an effective RESUME
command makes ON ERROR Garo almost useless. However, your
assembly language programs can use several different methods to recog
nize and report errors.

First, you can set up your code with a system of polling. As soon as you
return from any routine which could cause an error, your program could
check P$PDQErr to see if an error has been reported. If so, it can look
at the error number, perhaps call PDQ Message to print an error message,
and then decide what to do next. Polling like this works well in small and
simple programs, but can grow to be too complex in larger programs.

Another simple method of detecting errors is to write your own P$DoError
routine. Then your code will be called whenever an error occurs and you
can handle the error in whatever way makes sense for your program. If
you take this approach, you should look carefully at the error handling
routines that are built into P.D.Q. In particular, you should look at
ERR.ASM, ERROR.ASM, ERRDATA.ASM, and PDQMSG.ASM.
P.D.Q. has to do some translation to get DOS and BASIC error numbers
to jibe. The details of those translations and of other parts of the error
system are in those four files.

The following routines in the P.D.Q. library call P$DoError to report
errors:

AllocMem
B$CLOS
B$FCD1

B$BLOD
B$CSCN
B$FEOF

CRESCENT SOFrWARE, INC.

B$BSAV
B$DDIM
B$FICT

B$CDIR
B$FCD0
B$FILS

11116 - 23

Assembly Toolbox, Using P.D.Q With Assembly
Language Programs

B$FINP
B$HARY
B$LOCK
B$OPEN
B$PUT3
B$SICT
Bufln

B$FLOC
B$INPP
B$MDIR
B$PCxx
B$PUT4
B$SSEK
HooklntO

B$FLOF
B$KILL
B$NAME
B$PExx
B$RDIM
B$SSHL
P$TempStr

P.D.Q. Version 3.10

B$GET3
B$LNIN
B$OOPN
B$PSxx
B$REST
B$WIDT

FLUSH

Using The P.D.Q. Floating Point Emulator

The fastest and most efficient way to perform floating point arithmetic is
with a numeric coprocessor chip like the 8087, 80287, 80387, or the
coprocessor built into the 486DX processor. Writing a program that uses
a math coprocessor is no more difficult than writing any other kind of
assembly language program. However, you and everyone who runs your
program must have a coprocessor installed. If a coprocessor is not
installed, programs written for a math coprocessor will normally hang or
crash the system.

P.D.Q. includes a coprocessor emulation library that lets you write
coprocessor instructions as part of your assembly language routines and
run those programs on a computer that doesn't have a coprocessor chip.
Once you have linked the P.D.Q. emulation library with your program,
floating point instructions will perform as you expect on any computer.
Of course, the calculations will be much faster if a coprocessor is available.

The P.D. Q. emulation library supports all of the operations that the BASIC
compiler generates, which is most of the 8087 and 80287 instruction set.
The tables at the end of this section shows which instructions are supported
and which are not.

Using the floating point library requires three separate steps:

1. You must begin your program with a call to the P.D.Q. routine
P$HookFP.

2. You must end your program with a call to the P.D.Q. routine
P$U nhookFP.

3. You must use the MASM switch /e (assemble for emulator)
when you assemble each source code module that contains
floating point instructions.

The /e switch tells MASM to include fixup information for LINK so it
can convert the floating point operations in your program into equivalent
interrupt calls. The emulator routines intercept those interrupts so that

Ill 6-24 CRESCENT SOFfWARE, INC.

P.D.Q. Version3.10
Assembly Toolbox, Using P.D.Q With Assembly

Language Programs

the appropriate part of the P.D.Q. floating point library can carry out each
operation. P$UnhookFP releases those interrupts before your program
ends so that any future calls to those interrupts won't hang your system.

If P$HookFP detects that you have a coprocessor installed, it directs the
interrupts to a routine that patches the calling code back into the cor
responding coprocessor instructions. This happens only the first time the
interrupt is executed. Once the code is back-patched, control is returned
to that instruction so it can execute. The first time a given block of code
executes additional time is needed to patch the code. Thus, a coprocessor
provides the most benefit when a section of floating point code is executed
in a loop.

You can use floating point operations with 4-byte single-precision values
and 8-byte double-precision values. You can also use the floating point
operations with 2-byte integers and 4-byte long integers. Conversions
between one numeric type and another is a simple matter of loading the
value in one form onto the coprocessor stack, and then storing it in a
different form to another variable.

If you are sure that your program will never be run without a coprocessor
and won't need the floating point library at all, you can link your program
with the _870NLY.OBJ stub file. If you are sure that your program will
never run on a computer that has a coprocessor-or if you want to force
the use of the emulator library, perhaps for testing purposes-you can link
your program with the _EMONLY.OBJ stub file. You can also dispense
with all FWAIT instructions if you link with _EMONLY.OBJ. In either
case, you still need to call P$HookFP and P$UnhookFP to handle the
floating point interrupts that have been assembled into the library routines.

It is beyond the scope of th is manual to teach you how to write coprocessor
instructions. The MASM manual contains a useful introduction to using
the coprocessor. You can also compile short test programs with the BC
compiler and view them with Code View or another debugger to see how
BC compiles the instructions that you are interested in.

For example, if you compile the one-line BASIC program

A! = A! * Y#

the compiler creates the following floating point instructions:

FLD DWORD PTR [A!] ; Load A! onto the FP stack
FMUL QWORD PTR [Y#] ;Multiply it times Y#
FSTP DWORD PTR [A!] ;Store result in A! and clear the stack
FWAIT ;Wait for the 8087 to finish

CRESCENT SOFfWARE, INC. 1111 6 - 25

Assembly Toolbox, Using P.D.Q With Assembly
Language Programs P.D.Q. Version 3.10

All coprocessor instructions begin with the letter F. The assembler adds
a memory type to the instructions that access memory, so that the
coprocessor knows how to interpret the bits it receives from memory, and
how to translate them to or from its own, internal 80-bit format. Inside
the coprocessor there is no distinction between integers and real numbers,
or between single precision and double precision numbers.

Using Floating Point Math In A TSR
You may use floating point operations safely inside a simplified TSR by
following a few simple rules. If floating point operations are needed within
the popup handling code, you must call EnableFP as the first action, and
then call DisableFP just before popping down again. These routines hook
and unhook the floating point interrupts, and also save the state of the
80x87 coprocessor if one is installed. If you are certain that a coprocessor
will not be present when the program runs, you can replace EnableFP and
DisableFP with P$HookFP and P$UnhookFP respectively.

If you need to execute floating point instructions during the initialization
portion of your program, you must call P$HookFP before using those
instructions. However, you must be sure to then call P$UnhookFP before
calling EndTSR. This way you will release the interrupts back for use by
a subsequent program that may be run. Many high-level languages use
the same system of interrupts to implement floating point emulation, and
it is important that your use of floating point math does not call an
underlying program's emulator-especially if that program is in the middle
of a computation!

Supported Coprocessor Instructions
Table VI-3 lists all of the coprocessor instructions that are supported by
the P.D.Q. library at this time, and Table VI-4 shows which are not now
supported. You may, of course, use the unsupported instructions if you
are sure that a coprocessor will be installed, and if you link with the
_87ONLY.OBJ stub file. In that case you should not use the /e (emulator)
switch when assembling your main program.

1111 6-26 CRESCENT SOFfWARE, INC.

P.D.Q. Version 3.10
Assembly Toolbox, Using P.D.Q With Assembly

Language Programs

TABLE VI-3
Coprocessor Instructions Supported By The P.D.Q. Emulator.

FABS
FCOM
FDIV
FIADD
FIDIVR
FIST
FLD
FMUL
FSTP
FSUBR

FADD
FCOMP
FDIVP
FICOM
FILD
FISTP
FLDl
FMULP
FSTSW
FSUBRP

FADDP
FCOMP
FDIVR
FICOMP
FIMUL
FISUB
FLDCW
PST
FSUB
FTST

TABLE VI-3:

FCHS
FCOMPP
FDIVRP
FIDIV
FINIT
FISUBR
FLDZ
FSTCW
FSUBP
FXCH

Coprocessor Instructions Not Supported By The P.D.Q. Emulator.

F2XM1 FBLD FBSTP FCLEX
FDECSTP FDISI FENI FFREE
FFREE FINCSTP FLD L2E FLDL2T
FLDLG2 FLDLN2 FLD PI FLDENV
FPATAN FPREM FPTAN FRNDINT
FRSTOR FSAVE FSCALE FSQRT
FSTENV FXAM FXTRACT FYL2X
FYL2XP1

CRESCENT SOFfWARE, INC. 116 - 27

Chapter 7: Programmer's Reference
II II 1111

P.D.Q. Version3.10 Assembly Toolbox, Programmer's Reference

This chapter contains the details that you will need to use the P.D.Q.
library with your own assembly language programs. You'll find details
here about the routines and internal data variables that you can use, along
with hundreds of examples that will help you learn to use the routines.

There are three sections in this chapter. The first explains the P.D.Q. data
areas that you may find useful. Many of these internal P.D.Q. variables
contain information that your program may need. You can change the
values in some of these variables to change the way that some of the library
routines act.

The second and longest section in this chapter is a detailed explanation of
more than 200 library routines that you can call from your own programs.
Each explanation includes an example to show you how the routine works.

The chapter concludes with a short description of another 75 routines in
the P.D.Q. library which have limited usefulness for assembly language
programmers. Many of these descriptions include a short explanation of
how you can accomplish the same task in fewer bytes or fewer clock cycles.

Browse through this chapter occasionally. Besides the routines that
directly implement BASIC statements and functions and the P.D.Q.
extensions to BASIC, there are several powerful "helper" routines which
could make your next programming project a lot easier.

All of the source code for the library is on the P.D.Q. diskettes. If you
need to see exactly what happens in a library routine, or if you need to
tweak a routine to make it work just the way you want, you should have
no problem altering and re-assembling the routines.

If you make extensive changes to the library, please test them carefully.
Several of the library routines interact or depend on the data set by other
routines. If you do change and re-assemble some source code, use a text
search utility such as the P.D.Q. FINDTEXT.BAS program to see whether
any other library routines call the ones that you have changed or share
data with it. Searching for cross references between source code files is
often a lot easier than trying to swat obscure bugs with Code View or Turbo
Debugger.

External Variables

This section documents 21 variables that P.D.Q. maintains and which you
may want to access directly from your own programs.

CRESCENT SOFfWARE, INC. 11 7 - l

Assembly Toolbox, Programmer's Reference P.D.Q. Version3.10

Some of these variables contain data which alters the behavior of P.D.Q.
library routines. Directly changing the data in these variables is usually
much faster than calling a routine to make the change for you. For
example, you can set the character color and attribute byte used by
PDQCPrint and CLS with a single MOV instruction. Doing so is much
easier than setting up and calling B$COLR.

Many of these variables contain information that you may want to read but
which you should not change directly. They are marked Read Only in the
list below. If you set one of these variables directly, you may confuse some
of the P.D.Q. library routines. For the sake of your own sanity during
debugging, please do not alter the data in these Read Only variables unless
you are positive that you understand all of the possible side effects.

Each of the items below starts with a variable name followed by the variable
size in parentheses and then the name of the source file which defines the
variable. Then the variable's use is explained.

All of these variables are in the initialized data segment, called _ DATA
or, if you use simplified segment names, .DATA. To use a variable in your
programs, you must declare it "Extrn" in the .DATA segment of the source
code module that includes a reference to it. For example, if you want to
set P$Color directly, you would declare it this way:

.DATA
Extrn P$Color:Word

You can then access the P$Color variable just as you would any other
named data space in your program.

B$SEG (Word) in \SOURCE\PDQDATA.ASM. The segment value
which is set with DEF SEG in BASIC, and which PEEK, BLOAD, and
so forth use.

P$1Space (String descriptor) in \SOURCE\PRINTDAT.ASM. A descrip
tor for a string that contains a single space. Read only.

P$87Used (Byte) in \FPSOURCE\P$HOOKFP.ASM, and also in
\FPSOURCE\ 87ONLY.ASM and \FPSOURCE\ EMONLY.ASM. This - -
value is O if the emulator library is being used, or -1 if an 80x87
coprocessor is installed and operating.

P$BytesFree (Word) in \SOURCE\STR#####.ASM. The number of
bytes free in the string pool. May be increased by garbage collection.
Read only.

11111 7-2 CRESCENT SOFTWARE, INC.

P.D.Q. Version 3.10 Assembly Toolbox, Programmer's Reference

P$BytesShort (Word) in \SOURCE\STR#####.ASM. The maximum
number of bytes requested but not available in the string pool. Read only.

P$BytesUsed (Word) in \SOURCE\STR#####.ASM. The number of
bytes used in the string pool. May be decreased by garbage collection.
Read only.

P$CGAPort (Word) in \SOURCE\MONSETUP.ASM. If non-zero,
video memory access routines, including screen printing, will be slowed
down to avoid snow on a CGA screen. This must be set to 3DAh (the CGA
port address) to enable snow checking. Affects P.D.Q. extensions only.

P$Color (Byte) in \SOURCE\COLORDAT.ASM. The attribute byte used
by the screen display routines which support color.

P$DelimitChar (Byte) in \SOURCE\PDQPARSE.ASM. The character
used by the PDQParse routine as an item delimiter.

P$Descr (Word) in \SOURCE\PRINTDAT.ASM. A descriptor for a
string that contains a carriage return and line feed. Read only.

P$DirtyFlag (Word) in \SOURCE\PDQDATA.ASM. When this word is
non-zero, there is space in the string pool that can be reclaimed by
compaction. Read only.

P$DOSVer (Word) in \SOURCE\PDQDATA.ASM. This contains the
current DOS version that P. D. Q. reads during startup. It is the value
returned in AX from an Int 21h, service 30h call. Read only.

P$HandleTbl (15 words) in \SOURCE\FHANDLES.ASM. This table
contains the DOS handle number for each of the open BASIC files. See
the comments in the file. Read only.

P$MonSeg (Word) in \SOURCE\MONSETUP.ASM. Contains the cur
rent video segment address. You can change it for compatibility with
DESQview and to "print" to memory instead of the screen as long as you
use the output routines which write directly to memory.

P$Nu11Desc (String descriptor) in \SOURCE\PRINTDAT.ASM. A
descriptor for a null (0-length) string. Read only.

P$PDQErr (Word) in \SOURCE\ERRDATA.ASM. This holds the most
recent error number. You can check it to see if an error has occurred.

CRESCENT SOFrWARE, INC. 1111 7-3

Assembly Toolbox, Programmer's Reference P.D.Q. Version 3.10

P$PrintHandle (Word) in \SOURCE\PHANDLE.ASM. This holds the
DOS handle for the current PRINT device and defaults to 1 (screen).
LPTl (the device used for LPRINT statements) is print handle 4.

P$PrintWidth (Word) in \SOURCE\PDQPWIDE.ASM. This is the
screen width times 2 and is used by PDQPrint and PDQCPrint.

P$PSPSeg (Word) in \SOURCE\PDQDATA.ASM. This is the segment
address of the current program's PSP. Read only.

P$RecordTbl (15 words) in \SOURCE\FHANDLES.ASM. This has the
record length for each file that has been opened in random-access mode.
Read only.

P$TubTable (20 bytes) in \SOURCE\FHANDLES.ASM. This table
contains the current tab position for every open file and device.

P$TermCode (Byte) in \SOURCE\PDQ.ASM. This is the termination
code (ERRORLEVEL value) that the program will return to DOS when
it exits.

Procedure Details

What can you do with the P.D.Q. library? This section has the answer,
with a detailed explanation of most of the library routines. In the interest
of completeness, several less-useful routines are briefly described in the
last section of this chapter.

Each of the descriptions below begins with a procedure's name and the
source file (or files) that define the procedure. The name is the one you
must use when you call the procedure.

A few of the procedures have synonyms which are other names for the
same code. The synonyms exist because QuickBasic and BASIC? do not
always use the same naming conventions.

After the names, most of the descriptions identify the BASIC or P.D.Q.
equivalent for the procedure. For example, the name B$PSR8 may not
be crystal clear on first reading, but the equivalent PRINT X#; should
help you decide whether or not you have found the right procedure.

Note that many routines use B$F.xxx to indicate a function, and B$S.xxx to
mean statement. For example, B$FDAT is the function form of DATE$,
and B$SDAT is the statement form. Routines that have both zero- and
one-argument forms often end with the digits "O" or "1". For instance,

1111 7-4 CRESCENT SOFTWARE, INC.

P.D.Q. Version 3.10 Assembly Toolbox, Programmer's Reference

B$FCD0 stands for "Function CURDIR$ with zero arguments", while
B$FCD 1 means "Function CURD IR$ with one argument".

Also note that all of the PRINT services begin with B$P. The next letter
is either "E" for End of line, "S" for Semicolon, or "C" for Comma.
The last two characters indicate the type of data they handle. That is, "12"
stands for Integer 2-byte, and "RS" means Real 8-byte.

Next, the procedure's use is explained in a couple of sentences and then
the necessary calling convention is described, along with any return value
from the procedure.

The section of each description called Notes includes details about the
procedure's use, any necessary warnings, and sometimes an explanation
about how the procedure works.

The final part of each description is a code fragment which demonstrates
how the procedure can be called. The fragments assume that you are using
simplified segments with MASM 5.1 or later (or a compatible assembler)
and that you have included the directive .MODEL MEDIUM, BASIC at
the beginning of your source code module. Also, several of the examples
use the DefStr macro from the file called MACROS.ASM on your
distribution diskette (it's inside the ASM.ZIP file).

We have attempted to include enough information in each description so
that you can use the procedure without any confusion. However, if you
need more information about a procedure, the source code files on the
P.D.Q. diskette are the final authority about how each one works.

CRESCENT SOFTWARE, INC. 1111 7-5

Assembly Toolbox, Programmer's Reference P.D.Q. Version 3.10

B$ASSN \SOURCE\ASSIGN.ASM

Synonyms:

11111 Use

B ASSN
SfRINGASSIGN

Assign a fixed-length string or a TYPE variable. Either the source or
destination (but not both) may be a normal, variable-length string (with a
normal string descriptor). This routine moves the data from the source to
the destination. If the destination is a variable-length string, it will be the
same length as the original, fixed-length string or memory block.

II Calling Convention

PUSH Segment of source
PUSH Offset of source
PUSH Length of source (or O if variable-length string)
PUSH Segment of destination
PUSH Offset of destination
PUSH Length of destination (or O if variable-length string)
CALL B$ASSN
No return value.

II Notes

This routine calls several other P.D.Q. subroutines to do much of its work.
Which routines are called depends on which string (if either) is variable
length.

When you copy data from a fixed-length string to a variable-length string,
memory for the variable-length string is claimed from the string pool. The
destination will be the same length as the source. If you are copying to a
fixed length string or memory block, the data will be padded (with ASCII
spaces) or truncated to fit the size of the destination.

To copy from one variable-length (conventional) string to another, use
B$SASS. B$ASSN is also useful for copying to or from an arbitrary block
of memory such as the file name portion of a DTA.

Example

If A$ is a normal, variable-length string and F$ is a fixed-length string,
then the following example will copy data from A$ to F$ (F$ = A$ in
BASIC):

Extrn B$ASSN:Proc

.DATA?

II 7 - 6 CRESCENT SOFfWARE, INC.

P.D.Q. Version 3.10 Assembly Toolbox, Programmer's Reference

EVEN
A$ dd
F$ db

.CODE
MDV
PUSH
PUSH
SUB
PUSH

PUSH
MDV
PUSH
MDV
PUSH
CALL

1 dup (0)
50 dup (?)

AX.Offset A$
OS
AX
AX.AX
AX

OS
AX,Offset F$
AX
AX,50
AX
B$ASSN

;Storage for A$'s string descriptor
;Room for 50-byte F$

;Get offset of source
;Push segment and
; offset of source
;AX= 0 to show source
; is variable-length

;Push segment of destination
; and offset of destination

;Length of destination

8$BLOD \SOURCE\BLOAD.ASM

BASIC Equivalent: BLOAD

11111 Use

Load a BLOAD-formatted file into program, data, or video memory.

11111 Calling Convention

MDV Segment of memory block into B$Seg
PUSH Offset of string descriptor of file name
PUSH Offset address of memory block
PUSH anything at all (dummy word argument)
CALL B$BLOD

No return value. May report an error by calling P$DoError.

11111 Notes

This routine does no checking to make sure that the file has a legitimate
BLOAD header. It simply skips the first seven bytes of the file and loads
the remainder into the memory block that you specify. The file may not
be more than 65542 bytes long (0FFFFh plus the header length). The
memory block must either be in allocated memory or memory outside of
DOS's control (video memory, an EMS memory page frame, and so forth).

Example

BLoad the file whose name is in FileName$ to 0B800:0000H. It assumes
that the file name has already been placed in the string FileName$:

Extrn B$BLOD:Proc

CRESCENT SOFfWARE, INC. 11111 7-7

Assembly Toolbox, Programmer's Reference P.D.Q. Version 3.10

.DATA
Extrn B$Seg:Word ;Holds DEF SEG segment address

.DATA?
EVEN
FileName$ dd 1 dup (?) ;String descriptor for file name

.CODE
MOV [B$Seg] ,0B800H ;Save segment of destination
MOV AX,Offset FileName$
PUSH AX ;Pass file name
SUB AX,AX ;AX= 0
PUSH AX ;Pass offset of destination
PUSH AX ;DulTdlly argument
CALL B$BLOD

8$8SAV \SOURCE\BSAVE.ASM

BASIC Equivalent: BSAVE

1111 Use

Saves a portion of memory (including video memory) in BASIC's
BSAVE/BLOAD format.

1111 Calling Convention

MOV Segment of memory block into B$Seg
PUSH Offset of file name string descriptor
PUSH Offset portion of memory block address
PUSH Number of bytes to save
CALL B$BSAV

No return value. May report an error by calling P$DoError.

1111 Notes

This routine opens a file, writes BASIC's 7-byte BSAVE header, and then
copies the memory block to the file. Before you call this routine, you
must set the segment of the memory block into B$Seg, the location where
BASIC stores the current DEF SEG segment address.

Example

This example saves an 80 by 25 text screen (4000 bytes) at address
0B800:0000H. It assumes that the file name has already been placed in
the string FileName$:

Extrn B$BSAV:Proc

.DATA
Extrn B$Seg:Word

11111 7-8 CRESCENT SOFTWARE, INC.

P.D.Q. Version 3.10 Assembly Toolbox, Programmer's Reference

.DATA?
EVEN
FileName$ dd 1 dup (?)

. CODE
MDV B$Seg,0B800h
MDV AX,Offset FileName$
PUSH AX
SUB AX,AX
PUSH AX
MDV AX,4000
PUSH AX
CALL B$BSAV

;Space for string descriptor .

;Save the segment address
;Get address of string descriptor

;AX= 0, the offset of the
; memory block to save
;Save 4,000 bytes

8$CDIR \SOURCE\CHDIR.ASM

BASIC Equivalent: CHOIR

11111 Use

Set a new default directory on the current drive.

II Calling Convention

PUSH Offset of string descriptor of new directory
CALL B$CDIR

No return value. May report an error by calling P$DoError.

1111 Notes

You will probably want to call Int 21h, service 3Bh directly most of the
time. This routine will be useful if the name of the new directory is already
stored in a BASIC-style string.

Example

Implement CHDIR NewDir$:

Extrn B$CDIR:Proc

.DATA?
EVEN
NewDir dd 1 dup (?)

.CODE
MDV AX,Offset NewDir
PUSH AX
CALL B$CDIR

CRESCENT SOFTWARE, INC.

;Space for string descriptor

;Get descriptor address
;Pass it on
;Let P.D.Q. do the work

1111 7 - 9

Assembly Toolbox, Programmer's Reference

B$CLOS

BASIC Equivalent: CLOSE

II Use

P.D.Q. Version 3.10

\SOURCE\ CLOSE.ASM
\SMALLDOS\ CLOSE.ASM

Close one or more open files. The file(s) must have been opened with
calls to B$OPEN or B$OOPN. Files that you open with your own calls
to DOS will not be affected by this procedure.

II Calling Convention

This procedure can be called to close all open files or to close specific
files. For each specific file,

PUSH BASIC file number, then
PUSH total number of listed files
CALL B$CLOS

No return value. May report an error by calling P$DoError.

11111 Notes

This procedure looks at the last parameter on the stack to see how many
other parameters have been passed to it. If you want to perform the
equivalent of a BASIC CLOSE statement (close all open files), PUSH a
0 (zero) on the stack and then call B$CLOS. (You can also close all open
files using B$REST). If you want to close specific files, PUSH the number
of each, PUSH the number of files you have listed, and then call B$CLOS.
See the example below.

The SMALLDOS version of B$CLOS requires exactly one file number.
If you use that version, the second argument (number of listed files) must
always be 1.

Example

Perform the equivalent of CLOSE (close all open files):

Extrn B$CLOS:Proc

.CODE
SUB AX.AX
PUSH AX
CALL B$CLOS

;AX= 0
;No specific files listed

Perform the equivalent of CLOSE #3 or CLOSE 3:

Extrn B$CLOS:Proc

1111 7 - 10 CRESCENT SOFfWARE, INC.

P.D.Q. Version 3.10 Assembly Toolbox, Programmer's Reference

.CODE
MDV AX,3
PUSH AX
MDV AX,1
PUSH AX
CALL B$CLOS

;File number
; is on the stack
;One specified file

Perform the equivalent of CLOSE #2, #3:

Extrn B$CLOS:Proc

.CODE
MDV AX,2
PUSH AX
INC AX
PUSH AX
DEC AX
PUSH AX
CALL B$CLOS

;First file number

;AX= 3, the second file number

;AX= 2, two files specified

8$COLR \SOURCE\ COLOR.ASM

BASIC Equivalent: COLOR
1111 Use

Set the color to be used for future calls to B$SCLS (equivalent to BASIC's
CLS) and PDQCPrint.

1111 Calling Convention

COLOR can be called to emulate any of 3 possible BASIC syntax
constructions. In the list below, FG = foreground color number, BG =
background color number.

For COLOR FG:

PUSH 1, PUSH FG, PUSH 2, Call B$COLR

For COLOR , BG:

PUSH 0, PUSH 1, PUSH BG, PUSH 3, Call B$COLR

For COLOR FG, BG:

PUSH 1, PUSH FG, PUSH 1, PUSH BG, PUSH 4, Call B$COLR

No return value.

11111 Notes

B$COLR recognizes four other syntax forms, but each specifies a border
color, which P.D.Q. 's B$COLR ignores.

CRESCENT SOFfWARE, INC. 111117- 11

Assembly Toolbox, Programmer's Reference P.D.Q. Version 3.10

You can perform the same action as COLOR by combining the foreground
and background colors yourself and storing them in the external data byte
called P$Color. The figure below shows the bit arrangement of P$Color,
which is the same bit arrangement used by video memory in text modes:

7 6 5 4 3 2 1 o--- bits in P$Color

blink bit _J I I I
background =--i_J__j

Example

'--'-'-----------foreground
'--------------- intensity bit

Set color for gray text on a red background, equivalent to the BASIC
statement COLOR 7, 4:

Extrn B$COLR
.CODE
MOV BX,1
PUSH BX
MOV AX,7
PUSH AX
PUSH BX
MOV AX,4
PUSH AX
PUSH AX
CALL B$COLR

;Show that FG value is coming
;Foreground color value
;Pass value for gray foreground
;Show that BG value is coming
;Background color value
;Pass value for re&background
;Show 4 preceding data values

or, to accomplish the same thing:

.DATA
Extrn P$Color: Byte

.CODE
MOV P$Color,47h ;Combined color stored directly.

B$CPl4 \SOURCE\ COMPARE4.ASM

II Use

Compares two signed, long integers (4 bytes each) using 8088 instructions.

II Calling Convention

PUSH high word of VALl&
PUSH low word of VALl&
PUSH high word of VAL2&
PUSH low word of VAL2&
CALL B$CPI4

Results returned in the flags register.

11111 7- 12 CRESCENT SOFfWARE, INC.

P.D.Q. Version3.10 Assembly Toolbox, Programmer's Reference

11111 Notes

If you are compiling with 386 instructions enabled (.386) you can make
the comparison directly, or call the special 386 version of this routine (see
the source file \SOURCE\COMPAR43.ASM).

Because BASIC considers long integers as being signed, you will use Jg
and JI and so forth, but not J a or Jb or Jbe.

Example

Implement IF A& < B& THEN do something:

@:

Extrn B$CPI4:Proc

.DATA?
A dd 1 dup (?)
B dd 1 dup (?)
.CDDE
PUSH Word Ptr [A+2]
PUSH Word Ptr [A]
PUSH Word Ptr [B+2]
PUSH Word Ptr [BJ
CALL B$CPI4
JGE @F

;Space for A&
; Space for B&

;Pass A&, high word first

;Now pass B&

;Go if B& >= A&
: do something here
;Common code again.

B$CSCN \SOURCE\SCREEN2.ASM

BASIC Equivalent: SCREEN statement

11111 Use

Changes video mode.

11111 Calling Convention

PUSH mode number (required)
PUSH colorswitch (optional, ignored)
PUSH apage (optional, ignored)
PUSH vpage (optional, ignored)
PUSH number of arguments above (1 - 4)
CALL B$CSCN

No return value. May report an error by calling P$DoError.

1111 Notes

If you know what kind of video system your program is running under, it
is faster to simply make a BIOS call to switch screen modes. The

CRESCENT SOFfWARE, INC. 11117- 13

Assembly Toolbox, Programmer's Reference P.D.Q. Version3.10

advantage of this routine is that P.D.Q. checks to make sure that the
requested mode and the current hardware are compatible.

Note that the first argument is a BASIC mode number, not a BIOS mode
number.

Also notice that P.D.Q. considers only the first and last arguments. It
completely ignores the colorswitch, apage, and vpage arguments.

Example

Switch into screen mode O (text mode):

Extrn B$CSCN:Proc

.CODE
SUB AX,AX
PUSH AX
INC AX
PUSH AX
CALL B$CSCN

8$CSRL

;AX= 0, the screen mode

;AX= 1, # of arguments passed

\SOURCE\CSRUN.ASM

BASIC Equivalent: CSRLIN

II Use

Returns the current line (row) of the cursor.

Ill Calling Convention

CALL B$CSRL

Returns row in AX.

11111 Notes

The return value is 1-based. B$CSRL uses Int 10h to find the current
cursor position and then adds 1 to bring the value into sync with BASIC's
1-based line and column numbers.

Example

Extrn B$CSRL:Proc

.CODE
CALL B$CSRL ;Now cursor line is in AX

1111 7 - 14 CRESCENT SOFfWARE, INC.

P.D.Q. Version 3.10 Assembly Toolbox, Programmer's Reference

8$DDIM \SOURCE\DIM.ASM
\SOURCE_ DIM.ASM

Synonyms: B$RDIM
BASIC Equivalent: DIM (dynamic) and REDIM

111111 Use

Dimension (create) a dynamic array.

■ Calling Convention

PUSH LBOUND of first dimension
PUSH UBOUND of first dimension
PUSH LBOUND of next dimension (optional)
PUSH UBOUND of next dimension (optional)
repeat preceding two lines for each dimension
PUSH Size of each element in bytes
PUSH Features Word (see description below)
PUSH Offset of Array Descriptor
CALL B$RDIM

No return value. May report an error by calling P$DoError.

111111 Notes

Dynamic arrays are addressed through an array descriptor (which is not
the same thing as a string descriptor). The size of an array descriptor
depends on the number of dimensions in the array, and can be calculated
as (number of dimensions * 4) + 12. Therefore, the descriptor for a
one-dimensional array is (1 * 4) + 12 = 16 bytes long.

B$DDIM fills in the necessary information in the array descriptor. If the
array elements are anything but conventional (variable length) strings,
B$DDIM will allocate the necessary data space for the array outside of
DGROUP, the default data segment, by using a DOS memory allocation
call. A dynamic array of conventional strings creates an array of string
descriptors (4-bytes each) inside DGROUP (where the string text also
resides).

The Features %rd is really two separate bytes. The low-order byte
contains the number of dimensions in the array. The high-order byte is a
bit record. This is the same bit record that is stored in the array descriptor
as the Array Type word at offset 9.

Bit O set means the array is stored outside of DGROUP.

Bit 1 set means that it may be a huge array (greater than 64K total
data storage space).

CRESCENT SOFTWARE, INC. 1111 7 - 15

Assembly Toolbox, Programmer's Reference

Bit 6 set indicates a static array.

Bit 7 set indicates a string array.

P.D.Q. Version 3.10

For a complete description of how to address each element of the array,
see the section Using Arrays in the previous chapter. Also see the source
code for UBOUND.ASM which contains a table showing each component
in an array descriptor.

The version of this routine in the file _DIM.ASM is similar, but excludes
support for arrays that have more than 64K total elements.

Example

Implement the equivalent of REDIM Array%(1 to 10, 4 to 12):

Extrn B$DDIM:Proc

.DATA?
Array dw 2*4+12 dup (?)

.CODE
MOV AX, 1
PUSH AX
MDV AL, 10
PUSH AX
MDV AL,4
PUSH AX
MDV AL,12
PUSH AX
MDV AL,2
PUSH AX
MDV AH,000000018
MDV AL,2
PUSH AX
MDV AX,Offset Array
PUSH AX
CALL B$0DIM

B$DSKI

;Room for the descriptor

;LBOUND of first dimension

;UBOUND of first dimension

;LBOUNO of second dimension

;UBOUND of second dimension

;Size of an integer

;Record: store outside DGROUP
;Number of dimensions
;Pass feature word
;Get array address
;And pass that
;Dimension the array

\SOURCE\R$DSKI.ASM

BASIC Equivalent: INPUT #n

11111 Use

Disk initialize in preparation for reading data items from a file.

111111 7 - 16 CRESCENT SOFfWARE, INC.

P.D.Q. Version 3.10

II Calling Convention

PUSH Offset of file number
CALL 8$0SKI

No return value.

11111 Notes

Assembly Toolbox, Programmer's Reference

This routine prepares a file for input into one or more variables. The
actual input is done during processing of the B$RDxx routines (B$RDI2,
B$RDI4, B$RDR4, B$RDR8, and B$RDSD) as they read and assign their
variables.

After you have called the necessary B$RDxx routines, you must call
B$PEOS before the next input or print to clean up internal flags and reset
the default print handle to the console.

Example

Perform INPUT #1, Num&:

Extrn B$DSKI:Proc
Extrn B$ROI4:Proc
Extrn B$PEOS:Proc

.DATA?
Num dd 1 dup (?)
FileNum dw 1 dup (?)

.CODE
MDV AX, [Fi l eNumJ
PUSH AX
CALL B$DSKI
MDV AX.Offset Num
PUSH OS
PUSH AX
CALL B$RDI4
CALL 8$PEOS

8$DVl4

Ill Use

;Read long integer
;End this input session

;Room for result long integer
;Room for file number

;Load the file number
;Pass it on to B$DSKI
;Set input from file
;Get pointer to result area
;Pass segment of result
; and its offset
;Get a number
;Then clean up

\SOURCE\DIVLONG.ASM

Long integer division: X& \ Y &

Ill . Calling Convention

PUSH high word of divisor (Y&)
PUSH low word of divisor (Y&)
PUSH high word of dividend (X&)
PUSH low word of dividend (X&)
CALL 8$DVI4

CRESCENT SOFfWARE, INC. 111 7 - 17

Assembly Toolbox, Programmer's Reference P.D.Q. Version 3.10

Returns X& \ Y& in DX:AX.

II Notes

Like all BASIC arithmetic, this routine works with signed values. If the
high bit of either number is 1, the routine treats it as a negative number.

Example

Perform Z& = X& \ Y &:

Extrn B$DVI4:Proc

.DATA?
X& dd 1 dup (?)
Y& dd 1 dup (?)
Z& dd 1 dup (?)

.CODE
LES AX, [Y&]
PUSH ES
PUSH AX
LES AX, [X&]
PUSH ES
PUSH AX
CALL B$DVI4
MDV Word Ptr [Z&],AX
MDV Word Ptr [Z&+2] ,DX

B$ERAS

;Memory for long integers

;Get Y& value in ES:AX
;Send the hjgh word
; and the low word
;Now get X&
;And send it

;Do the division
;Save the low word
; and the high word

\SOURCE\ERASE.ASM

BASIC Equivalent: ERASE

11111 Use

Deallocates the memory of a dynamic array; reinitializes a static array.

II Calling Convention

PUSH Offset of array descriptor
CALL B$ERAS

No return value.

11111 Notes

See B$DDIM and Using Arrays in the previous chapter for information
about the array descriptor and the memory allocated for an array. If you
use B$ERAS on a static array, the array's memory is erased (and, for a
string array, each string is deleted) but the array remains allocated. Erasing
a dynamic array returns the allocated array memory to DOS.

1111 7 - 18 CRESCENT SOFTWARE, INC.

P.D.Q. Version 3.10 Assembly Toolbox, Programmer's Reference

Example

Perform ERASE Array:

Extrn B$ERAS:Proc

.DATA?
Array db l6dup (?)

.CODE
MOV AX,Offset Array
PUSH AX
CALL B$ERAS

;Space for the array descriptor

;Pass the address of the
; array descriptor

8$FASC \SOURCE\ASC.ASM

BASIC Equivalent: ASC()

11 Use

Returns the ASCII value of the first character in a string.

1111 Calling Convention

PUSH Offset of string descriptor
CALL B$FASC

Value returned in AX.

11111 Notes

If you don't need to perform this task often, you can save a few bytes and
cycles by finding the ASCII value directly. The source code in this routine
in ASC.ASM will make the process clear. The P.D.Q. version of ASCO
returns a value of -1 in AX if you request the ASCII value of a null string.

Example

Find the ASC value of the string X$:

Extrn B$FASC:Proc

.DATA?
EVEN
X$ dd 1 dup (?)
AscValue dw 1 dup (?)

.CODE
MOV AX,Offset X$
PUSH AX

CALL B$FASC
OR AH,AH

CRESCENT SOFfWARE, INC.

;Space for string descriptor

;Get string descriptor address
;Pass address on stack

;Get ASC(X$) in AX
;Was it -1?

1111 7 - 19

Assembly Toolbox, Programmer's Reference

JNZ NullString
MDV AscValue,AX

;String had length of 0
;Else save ASC value

P.D.Q. Version 3.10

B$FATR \SOURCE\FILEATTR.ASM

BASIC Equivalent: Fl LEATTR()

1111 Use

Returns the DOS file handle for a BASIC file number.

II Calling Convention

PUSH BASIC file number
PUSH anything
CALL B$FATR

Returns the file's equivalent DOS handle number in DX:AX.

1111 Notes

In regular BASIC, the second argument to FILEATIR may be either 1 or
2. If it is 2, the function returns the DOS file handle for a BASIC file; if
it is l, FILEATIR returns a value that indicates the file's mode. The
P.D.Q. version of B$FATR assumes that the second argument is 2-it
doesn't check or use the received value at all.

Example

Find the equivalent DOS file handle for BASIC file #2:

Extrn B$FATR:Proc

.CODE
MDV AX,2 ;Get the BASIC file number
PUSH AX ;Pass it on
PUSH AX ;Now pass a dummy argument
CALL B$FATR ;Get the DOS file number
; now AX has the equivalent DOS file handle and DX=O

B$FCDO and B$FCD1 \SOURCE\CURDIR$.ASM

BASIC 7 Equivalent: CURDIR$

1111 Use

Find the current default directory on either the default drive or on any
drive in the system.

1111 7-20 CRESCENT SOFfWARE, INC.

P.D.Q. Version 3.10 Assembly Toolbox, Programmer's Reference

11111 Calling Convention

For the default drive:

CALL B$FCDO

For a specific drive (like CURDIR$ "A"):

PUSH Offset of string descriptor holding drive name
CALL B$FCD1

Returns offset of temporary string descriptor in AX. May report an error
by calling P$DoError.

II Notes

The return value in AX is the offset of the string descriptor of a temporary
string. If you want to keep the directory name for further processing, you
should use B$SASS to copy it to a permanent string.

Example

Find the current directory on the default drive:

Extrn B$FCDO:Proc
Extrn B$SASS:Proc

.DATA?
EVEN
Direct$ dd 1 dup (?)

.CODE
CA l l B$FCOO
PUSH AX
MDV AX.Offset Direct$
PUSH AX
CALL B$SASS

;Storage for result descriptor

;Get current directory
;Now pass result
; and final storage place

;Put directory in Direct$

B$FCHR \SOURCE\CHR$.ASM

BASIC Equivalent: CHR$()

1111111 Use

Creates a 1-character string from an ASCII value.

Ill Calling Convention

PUSH ASCII value (0 to 255) as a word
CALL B$FCHR

Returns with the offset of a temporary string descriptor in AX.

CRESCENT SOFfWARE, INC. 11117- 21

Assembly Toolbox, Programmer's Reference P.D.Q. Version3.l0

111111 Notes

The high byte of the passed value is ignored by B$FCHR. It does not have
to be a 0.

The return value in AX is the offset of the string descriptor of a temporary
string. If you want to keep the character string for further processing, you
should use B$SASS to copy it to a permanent string.

Example

Assign the ! -character string "A" to A$:

Extrn B$FCHR:Proc

.DATA?
EVEN
A$ dd 1 dup (?)

.CODE
MDV AL,' A'
PUSH AX
CALL B$FCHR
PUSH AX
MDV AX.Offset A$
PUSH AX
CALL B$SASS

B$FCMD

;Room for string descriptor

;Get character for string in AL
;Pass it on
;Create a temporary string
;Pass on the pointer
;Get pointer to permanent descriptor

;Assign string to A$

\SOURCE\COMMAND$.ASM

BASIC Equivalent: COMMAND$

11111 Use

Returns the command line in a temporary string.

Ill Calling Convention

CALL B$FCMD

Returns the offset of the temporary string descriptor in AX.

11111 Notes

Unlike regular BASIC, the P.D.Q. COMMAND$ routine does not convert
the command line to upper case. However, it does strip leading spaces
and Tab characters. If you want to save the command line, you should
follow a call to B$FCMD with a call to B$SASS to move the string to
permanent memory.

11111 7-22 CRESCENT SOFfWARE, INC.

P.D.Q. Version 3.10 Assembly Toolbox, Programmer's Reference

Example

Implement A$= COMMAND$:

Extrn 8$FCMD

.DATA? EVEN
A$ dd 1 dup(?)

.CODE
CALL 8$FCMD
PUSH AX
MOV AX.Offset A$
PUSH AX
CALL 8$SASS

;Space for A$'s descriptor

;Get the command string
;Pass its descriptor address
;Get address for new string

;Copy command line to new string

8$FCMP \FPSOURCE\B$FCMP.ASM

Ill Use

Compares two real numbers, ST(0) and ST(l) on the floating point stack,
and sets the CPU flags appropriately. ST(0) and ST(l) are popped from
the floating point stack.

11111 Calling Convention

Load the numbers onto the floating point stack
CALL B$FCMP

No return value, but the flags are set to show the result of the comparison.

1111 Notes

This routine uses floating point operations. You must initialize the floating
point emulator by calling P$HookFP before you call this procedure.

Floating point comparisons do not return signed information. Therefore,
after a comparison you will use Ja or Jb or Jae, and so forth, instead of
Jg or Jle.

B$FCMP assumes that both ST(0) and ST(l) are valid floating point
numbers-not NAN (not a number) or Infinity.

Example

Jump if ST(0) > ST(l) (if Num2# > Numl !):
Extrn 8$FCMP:Proc

.CODE
FLO DWORD PTR [Numl!]
FLO QWORD PTR [Num2#]

CRESCENT SOFfWARE, INC.

;load a single-precision
;then a double-precision

111117-23

Assembly Toolbox, Programmer's Reference

FWAIT
; Now Numl! is
CALL B$FCMP
JA ItsBigger

;wait for 80x87
in ST(l) and Num2# is in ST(O)

;Make the comparison
;Go if ST(O) > ST(l)
;(Go if Num2# > Numl!)

P.D.Q. Version3.IO

B$FCVD \SOURCE\CVS.ASM

BASIC Equivalent: CVD()

11 Use

Converts the first eight characters of a string into a double-precision value.
This command is often used in BASIC to change a fielded string variable
into a double-precision number.

II Calling Convention

PUSH Offset of string's descriptor
CALL B$FCVD

Returns with AX pointing to the 8-byte double-precision value.

Example

Extrn B$FCVD:Proc

.DATA?
EVEN
Work$ dd dup(?)

.CODE
MDV AX,Offset Work$
PUSH AX
CALL B$FCVD

B$FCVI

BASIC Equivalent: CVI()

II Use

;Space for string descriptor

;Pass pointer to string

;Pointer to value returned in AX

\SOURCE\CVI.ASM

Converts the first two characters of a string into an integer. This command
is often used in BASIC to change a fielded string variable to an integer.

11111 Calling Convention

PUSH Offset of string's descriptor
CALL B$FCVI

11111 7- 24 CRESCENT SOFfWARE, INC.

P.D.Q. Version3.10 Assembly Toolbox, Programmer's Reference

Returns the integer value in AX.

Example

Extrn B$FCVI:Proc

.DATA
EVEN
Work$ dd ?

.CODE
MOV AX.Offset Work$
PUSH AX
CALL B$FCVI

;Space for string descriptor

;Pass pointer to string

;Value returned in AX

8$FCVL \SOURCE\CVLASM

BASIC Equivalent: CVL

11 Use

Converts the first four characters of a string into a long integer. This
command is often used in BASIC to change a fielded string variable to a
long integer.

Ill Calling Convention

PUSH Offset of string's descriptor
CALL B$FCVL

Returns the long integer value in DX:AX.

Example

Extrn B$FCVL:Proc

.DATA?
EVEN
Work$ ddl dup (?)

.CODE
MOV AX.Offset Work$
PUSH AX
CALL B$FCVL

CRESCENT SOFfWARE, INC.

;Space for string descriptor

;Pass pointer to string

;Value returned in DX:AX

11117 - 25

Assembly Toolbox, Programmer's Reference

B$FCVS

BASIC Equivalent: CVS()

1111 Use

P.D.Q. Version 3.10

\SOURCE\ CVS.ASM

Converts the first four characters of a string into a single-precision value.
This command is often used in BASIC to change a fielded string variable
into a single-precision number.

11111 Calling Convention

PUSH Offset of string's descriptor
CALL B$FCVS

Returns with AX pointing to the 4-byte single-precision value.

Example

Extrn B$FCVS:Proc

.DATA?
EVEN
Work$ dd 1 dup (?)

.CODE
MDV AX,Offset Work$
PUSH AX
CALL B$FCVS

B$FDAT

;Space for string descriptor

;Pass pointer to string

;Pointer to value returned in AX

\SOURCE\DATE$.ASM

BASIC Equivalent: DATE$ function

Ill Use

Get the current system date in a string in the format mm-dd-yyyy.

1111 Calling Convention

CALL B$FOAT

Returns offset of the descriptor holding a date string in AX.

1111 Notes

The date string is held in static memory. You can either copy the string
with B$SASS or just save the pointer. The date string won't move in
memory nor will it change unless B$FDAT is called again and the system
clock has passed midnight since the last call.

1111 7-26 CRESCENT SOFrWARE, INC.

P.D.Q. Version3.l0 Assembly Toolbox, Programmer's Reference

Example

Get system date and store it in a normal string called Today$:

Extrn B$FDAT:Proc

.DATA?
EVEN
Today$ dd 1 dup (?)

.CODE
CALL B$FDAT
PUSH AX
MOV AX,Offset Today$
PUSH AX
CALL B$SASS

;Space for descriptor

;Get system date in ASCII
;Pass its descriptor address
;Get pointer to new string

;Assign date to new string

8$FDRO and B$FDR1 \SOURCE\DIR$.ASM

BASIC 7 Equivalent: DIR$

1111 Use
Returns a filename that matches a specific filespec pattern. Call B$FDR1
with a filespec pattern to find the first matching file name. Then call
B$FDRO repeatedly to collect additional file names until B$FDRO returns
a null string.

111 Calling Convention

PUSH Offset of filespec string descriptor
CALL B$FDR1

Returns the offset of a string descriptor holding the first matching file
name found in AX.

Then:

CALL B$FDRO

Returns offset of string descriptor of next matching file name in AX.
When the word at address in AX = 0, there are no more matching names.

11111 Notes
You must call B$FDR1 at least once before calling B$FDRO. Each call
to B$FDR1 initiates a new search. You do not have to wait for a null string
from B$FDRO before starting a new search with B$FDR1.

This routine resets the DTA (disk transfer area). If you are using the ITTA
for other purposes, make sure you save the address of your DTA and then

CRESCENT SOFTWARE, INC. 1117-27

Assembly Toolbox, Programmer's Reference P.D.Q. Version3.10

restore yours (with DOS service Int 21h, Function lAh) after you call
either of these services.

The address of the returned string is offset lEh in the DfA used for a Find
First/Find Next call (Int 21h, Functions 4Eh and 4Fh). You can use the
returned address to find other directory information about the file.

Example

Find and print the names of all* .ASM files in the current directory (similar
to performing DIR *.ASM from DOS):

Extrn B$FDRO:Proc
Extrn B$FDR1:Proc

.DATA
DefStr DIR$, "*.ASM"
.CODE
MOV AX,Offset DIR$
PUSH AX
CALL B$FDR1

@@: MOV BX,AX

@:

CMP Word ptr [BX] ,0
JE @F
PUSH AX
CALL B$PESD
CALL B$FDRO
JMP @B

;Get address of descriptor
;Pass it on
;Get the first file
;Put offset in BX
; Is it null?
;Yes, all done
;Else pass on name
; and print it
;And look for another
;Then try to print that

code continues after all .ASM files are printed

B$FEOF

BASIC Equivalent: EOF()

1111 Use

Test for an end-of-file condition.

11111 Calling Convention

PUSH BASIC file number
CALL B$FEOF

\SOURCE\EOF.ASM

Returns AX = -1 if EOFO is true, or AX = 0 if not at end of file. May
report an error by calling P$DoError.

1111 7 - 28 CRESCENT SOFfWARE, INC.

P.D.Q. Version 3.10 Assembly Toolbox, Programmer's Reference

11 Notes

EOFO can be used with any file that you have opened by calling B$OPEN
or B$OOPN. You also must have made all file accesses through P.D.Q.
library routines.

The file number is a BASIC file number, not a DOS handle number.

Example

Test if EOF(#l), assuming that file number 1 is already open:

Extrn B$FEOF:Proc

.CODE
MOV AX, 1
PUSH AX
CALL B$FEOF
OR AX,AX
JNZ Fi leDone

;Pass a BASIC file number

;At end of file
; Test result
;Go if EOF
;Continue processing file here

B$FERR \SOURCE\ERR.ASM

BASIC Equivalent: ERR

1111 Use

Returns the number of the last error, or zero if there was none.

1111 Calling Convention

CALL B$FERR

Returns error number in AX.

1111 Notes

The return value is the BASIC error code, not the DOS error code. The
error number is always less than 256, so AH is always O on return and you
can use either AX or AL as the return value. See File Handling in P.D. Q.
and also the description for the PDQMessage function.

Example

Extrn B$FERR:Proc

.CODE
CALL B$FERR

CRESCENT SOFrWARE, INC.

;Get the error code
; which is now in AX

■ 7-29

Assembly Toolbox, Programmer's Reference P.D.Q. Version 3.10

B$FEV1 \SOURCE\ENVIRON1 .ASM

BASIC Equivalent: ENVIRON$(n) function

11111 Use

Returns the nth string in the environment, or a null string if there are less
than n strings.

Ill Calling Convention

PUSH number of string to return
CALL B$FEV1

Returns offset of a temporary string descriptor in AX.

11111 Notes

The returned string is a temporary string and is not actually part of the
environment. If you want to keep the string, you should copy it to your
own string variable using B$SASS.

Example

Print all of the environment strings:

1111 7- 30

Extrn B$FEV1:Proc

.CODE
SUB SI,SI

@@: INC SI
PUSH SI
CALL B$FEV1
MDV BX,AX

@@:

CMP Word ptr [BX],O
JE @F
PUSH AX
CALL B$PESD
JMP @B

;We'll use SI to count strings
;Move to next string
;Pass string number
;Get the string
;Copy descriptor address to BX
; Is it null?
;Yes -- we're done!
;Else pass string address
; and print it
;And get another one

continue here when all strings are printed

CRESCENT SOFTWARE, INC.

P.D.Q. Version 3.10 Assembly Toolbox, Programmer's Reference

B$FEVS \SOURCE\ENVIRON2.ASM

BASIC Equivalent: ENVIRON$(Environ
String$)

11111 Use

Searches the environment for a specific variable and returns its contents.

II Calling Convention

PUSH Offset of EnvironString$ descriptor
CALL B$FEVS

Returns offset of result descriptor in AX, or of a null string if no match
is found.

1111 Notes

The returned string is a temporary string and is not actually part of the
environment. If you want to keep the string you should copy it to your
own string variable using B$SASS.

The string in EnvironString$ must be in the same case as it appears in the
environment. Normally, this means that it must be in upper case. See the
EnvOption for information on accessing mixed-case environment strings.

Example

Print the current PATH setting:

Extrn B$FEVS:Proc
Extrn B$PESD:Proc

.DATA
DefStr PATH$, "PATH"

.CODE
MDV AX,Offset PATH$
PUSH AX
CALL B$FEVS
MDV BX,AX
CMP Word ptr [BX],O
JE @F
PUSH AX
CALL B$PESD

@@:

CRESCENT SOFfWARE, INC.

;Get address of descriptor
; and send it on
;Look for PATH in environment
;Copy output offset
;Is it a null string?
;Yes -- nothing to print
;Pass address of result
;Print the result
;Jump here if no string

11117 - 31

Assembly Toolbox, Programmer's Reference P.D.Q. Version 3.10

8$FHEX \SOURCE\HEX$.ASM

BASIC Equivalent: HEX$()
Ill Use

Translates a long integer into hexadecimal notation.

II Calling Convention

PUSH High-order word of value to translate
PUSH Low-order word of value to translate
CALL B$FHEX

Returns offset of a temporary string descriptor in AX.

11111 Notes

This routine returns with the result in a temporary string. If you want to
keep the string for further processing, be sure to assign it to a permanent
string variable using B$SASS.

Example

Translate 12345678h to hexadecimal notation:

Extrn B$FHEX:Proc

.DATA?
EVEN
HexStr$ dd 1 dup(?)

.CODE
MDV AX, 1234h
PUSH AX
MDV AX,5678h
PUSH AX
CALL B$FHEX
PUSH AX
MDV AX.Offset HexStr$
PUSH AX
CALL B$SASS

8$FICT

;Space for a string descriptor

;Send the high-order word

; and the low-order word

;Translate to a string
;Pass temporary descriptor
; and a pointer to our
; string descriptor
;Copy it to our string

\SOURCE\IOCTL$.ASM

BASIC Equivalent: IOCTL$
111111 Use

Receives a control string from an open device driver.

1111 7-32 CRESCENT SOFfWARE, INC.

P.D.Q. Version3.10 Assembly Toolbox, Programmer's Reference

Ill Calling Convention
PUSH BASIC file number of the device
CALL B$FICT

Returns AX holding the address of a temporary string descriptor. May
report an error by calling P$DoError.

11 Notes

The returned string is part of P.D.Q. 's temporary string pool. You must
copy it to a permanent string (with B$SASS) if you want to store it or use
it further.

Example

Perform Control$ = IOCTL$(3):

Extrn B$FICT:Proc

.DATA?
EVEN
Control$ dd 1 dup(?)

.CODE
MDV AX,3
PUSH AX
CALL B$FICT
OR AX,AX
JZ NoControl
PUSH AX
MDV AX,Offset Control$
PUSH AX
CALL B$SASS

;Result string descriptor

;Get the BASIC file number

;Get the control string
;Valid result?
;No -- handle the error
;Else pass on the temp. string
; and result location

;Assign string to Control$

B$FILS \SOURCE\FILES.ASM

BASIC Equivalent: Fl LES

11111 Use

Prints the names of files matching a give filespec.

Ill Calling Convention

PUSH Offset of filespec string descriptor
CALL B$FILS

No return value. May report an error by calling P$DoError.

CRESCENT SOFTWARE, INC. 1117-33

Assembly Toolbox, Programmer's Reference P.D.Q. Version 3.10

11111 Notes

This routine resets the DTA (disk transfer area) to its own buffer. If you
are using the DTA for other purposes, be sure to reset it (using DOS Int
21h, function lAh) after you call B$FILS.

If you want B$FILS to list all files in the default directory, you can either
send it a filespec of "*. *" or you can send it a pointer to a null word,
which it will interpret as a zero-length string descriptor.

Example

Equivalent of BASIC's FILES:

.DATA
Nu l lWord dw 0 ;Fake null string descriptor

.CODE
MDV AX,Offset NullWord ;Point to fake descriptor
PUSH AX
CALL B$FILS ;Print the directory

8$FINP \SOURCE\INPUT$.ASM

BASIC Equivalent: INPUT$

Ill Use

Reads a string of a specific length from the keyboard or a file.

Ill Calling Convention

PUSH Number of characters
PUSH File number or 7FFFh to read from the keyboard
CALL B$FINP

Returns offset of string descriptor in AX. May report an error by calling
P$DoError.

Ill Notes

Notice that you must include a file number when you call INPUT$, using
the file number 7FFFh for the keyboard.

Example

Perform A$ = INPUT$(1):

11111 7-34

Extrn B$FINP:Proc
Extrn B$SASS:Proc

.DATA?

;For string assignment

CRESCENT SOFfWARE, INC.

P.D.Q. Version3.l0

EVEN
A$ dd 1 dup (?)

.CODE
Keyboard EQU 7fffh
MOV AX, 1
PUSH AX
MOV AX,Keyboard
PUSH AX
CALL B$FINP
PUSH AX
MOV AX,Offset A$
PUSH AX
CALL B$SASS

8$FLOC

BASIC Equivalent: LOC

1111 Use

Assembly Toolbox, Programmer's Reference

;Space for A$'s descriptor

;Let the assembler remember this
;Get 1 keystroke

;From the keyboard

;Get the keystroke
;Pass on the address
;Send a pointer to the destination

;Now it is in our string

\SOURCE\LOC.ASM

Find the current position within a file.

1111 Calling Convention

PUSH the BASIC file number
CALL B$FLOC

Result is returned in DX:AX. May report an error by calling P$DoError.

11111 Notes

If the file was opened as a random file, LOC returns the current record
number. If it was opened in any other mode, LOC returns the current
byte position. In both cases, the result is 0-based; that is, the first byte of
the file is position 0.

Notice that the result is returned as a long integer.

Example

Find LOC(#2):

Extrn B$FLOC:Proc

.CODE
MOV AX,2
PUSH AX
CALL B$FLOC

CRESCENT SOFTWARE, INC.

;Get the file number

;File position now in DX:AX

II 7 - 35

Assembly Toolbox, Programmer's Reference

B$FLOF

BASIC Equivalent: LOF()

111 Use

Finds the length of an opened file in bytes.

Ill Calling Convention

PUSH the BASIC file number
CALL B$LOF

P.D.Q. Version3.10

\SOURCE\lOF.ASM

Returns the length in DX:AX. May report an error by calling P$DoError.

Example

Find the length of File #4:

Extrn B$FLOF:Proc

.CODE
MDV AX,4 ;Get file number
PUSH AX
CALL B$FLOF ;Get the length
; the length of File #4 is now in DX:AX

B$FMID \SOURCE\M1D$.ASM

BASIC Equivalent: Ml D$ function

1111111 Use

Extract a portion of a string as in MID$(Source$, Start%, Length%).

1111111 Calling Convention

PUSH Offset of source string descriptor
PUSH Start Position
PUSH Length to extract
CALL B$FMID

Returns offset of a temporary string descriptor in AX.

Ill Notes

The Length is truncated if it would cause a read beyond the end of the
string. If you want to extract the entire string from Start Position to the
end, use 7FFFh (the highest possible value) as the Length parameter.

1111 7-36 CRESCENT SOFfWARE, INC.

P.D.Q. Version3.10 Assembly Toolbox, Programmer's Reference

The result is a temporary string descriptor. Make sure you copy it to a
permanent string variable with B$SASS if you want to save it.

Example

Perform A$ = MID$(A$, 3, 2):

Extrn B$FMID:Proc
Extrn B$SASS:Proc
.DATA?
EVEN
A$ dd 1 dup (?)

.CODE
MDV AX.Offset A$
PUSH AX
MDV AX,3
PUSH AX
DEC AX
PUSH AX
CALL B$FMID
PUSH AX
MDV AX,Dffset A$
PUSH AX
CALL B$SASS

;For string assignment

;Room for string descriptor

;Get address of source

;Get start position

;AX=2, the length

;AX==> result descriptor
;Pass the temporary descriptor
;Get address of destination

;Result now stored in A$

8$FMKD \SOURCE\MKD$.ASM

BASIC Equivalent: MKD$

1111 Use

Converts a double-precision value into an 8-byte string.

1111111 Calling Convention

PUSH Most significant word of the value
PUSH Next-most significant word of the value
PUSH Next-most significant word of the value
PUSH Least significant word of the value.

Returns offset of string descriptor in AX.

11111 Notes

All this routine does is copy eight bytes from the stack into a string. You
probably will find little use for it in an assembly language program.

Notice that the double-precision number is passed by value, not by
reference as you might expect.

CRESCENT SOFfWARE, INC. 11117-37

Assembly Toolbox, Programmer's Reference

Example

Perform MKD$(Double#):

Extrn B$FMKD:Proc

.DATA?
Double dq 1 dup (?) ;Space for 8 bytes

.CODE
PUSH Word ptr [Double+6] ;Push high word
PUSH Word ptr [Double+4]
PUSH Word ptr [Double+2]
PUSH Word ptr [Double] ;Push low word
CALL B$FMKD
; AX contains the offset of result string descriptor

P.D.Q. Version 3.10

B$FMKI \SOURCE\MKl$.ASM

BASIC Equivalent: MKI$

Ill Use

Converts a two-byte integer into a two-character string.

111 Calling Convention

PUSH the integer value
CALL B$FMKI

Returns offset of result string descriptor in AX.

11 Notes

All this routine does is copy two bytes from the stack into a string. You
probably will find little use for it in an assembly language program.

Example

Perform MKI$(Integer):

Extrn B$FMKI:Proc

.DATA?
Integer dw 1 dup (?)

.CODE
PUSH [Integer]
CALL B$FMKI

;Space for 2 bytes

;Pass the integer value

; AX contains the offset of result string descriptor

1111 7-38 CRESCENT SOFfWARE, INC.

P.D.Q. Version 3.10 Assembly Toolbox, Programmer's Reference

B$FMKL \SOURCE\MKL$.ASM

Synonyms: B$FMKS

BASIC Equivalents: MKL$ and MKS$
111111 Use

Converts a 4-byte long integer or a 4-byte single-precision value into a
4-byte string.

Ill Calling Convention

PUSH High order word of the input value
PUSH Low order word of the input value
CALL B$FMKL

Offset of the result string's descriptor is returned in AX.

11111 Notes

B$FMKL and B$FMKS are identical. The same block of code is used
for each.

All this routine does is copy four bytes from the stack into a string. You
probably will find little use for it in an assembly language program.

Notice that the input number is passed by value, not by reference as you
might expect.

Example

Perform MKL$(Long&):

Extrn B$FMKL:Proc

.DATA?
Long dd 1 dup (?) ;Space for 4 bytes

.CODE
PUSH Word ptr [Long+2] ;Push high order word
PUSH Word ptr [Long] ;Push low word
CALL B$FMKL
; AX contains the offset of result string descriptor

CRESCENT SOFrWARE, INC. 1117- 39

Assembly Toolbox, Programmer's Reference P.D.Q. Version 3.10

B$FOCT \SOURCE\HEX$.ASM

BASIC Equivalent: OCT$()

111111 Use

Translates a long integer into octal notation.

Ill Calling Convention

PUSH High-order word of value to translate
PUSH Low-order word of value to translate
CALL B$FOCT

Returns offset of a temporary string descriptor in AX.

Ill Notes

This routine returns with the result in a temporary string. If you want to
keep the string for further processing, be sure to assign it to a permanent
string variable using B$SASS.

Example

Translate 12345678h to octal notation:

Extrn B$FOCT:Proc

.DATA?
EVEN
Octal$ dd 1 dup (?)

.CODE
MDV AX,1234h
PUSH AX
MDV AX,5678h
PUSH AX
CALL B$FOCT
PUSH AX
MDV AX,Offset Octal$
PUSH AX
CALL B$SASS

B$FREF

;Space for a string descriptor

;Send the high-order word

; and the low-order word

;Translate to a string
;Pass temporary descriptor
; and a pointer to our
; string descriptor
;Copy it to our string

\SOURCE\FREEFILE.ASM

BASIC Equivalent: FREEFILE

11111 Use

Returns the number of the next free BASIC file.

1111 7 - 40 CRF.SCENT SOFTWARE, INC.

P.D.Q. Version 3.10 Assembly Toolbox, Programmer's Reference

Ill Calling Convention

CALL B$FREF

AX has file number (1 - 15) or -1 if all numbers are in use.

Example

Extrn B$FREF:Proc

.CODE
CALL B$FREF ;Get first free file number
OR AX,AX ;Test result
JS NoFilesAvailable ;Go if -1 (bit 15 set)
; AX has a valid and free file number

8$FRl2 \SOURCE\FRE.ASM

BASIC Equivalent: FRE()

111111 Use

Returns the size of the largest available block of free DOS memory, the
amount of unused stack space, or the size of the next free block of string
memory.

1111 Calling Convention

PUSH Action value word
CALL B$FRI2

Returns size in bytes in DX:AX.

11 Notes

The Action parameter is either -1 for DOS memory size, -2 for unused
stack space, or any other value for string memory.

Unlike B$FRSD, this routine does not compact the string pool before
checking its size (if the action word is other than -1 or -2).

You may prefer to compute the available stack memory directly using code
like this:

.DATA?
Extrn PDQ_Stack_Foot:Byte

.CODE
MDV AX,SP
SUB AX.Offset PDQ_Stack_Foot
; now AX holds the free stack memory

CRESCENT SOFTWARE, INC. 11117- 41

Assembly Toolbox, Programmer's Reference

Example

Find the amount of free DOS space:

Extrn B$FRI2:Proc

.CODE
MDV AX,-1
PUSH AX
CALL B$FRI2

;Select action
;Pass it on
;DX:AX holds available memory

P.D.Q. Version 3.10

B$FRSD \SOURCE\FRE$.ASM

BASIC Equivalent: FRE("")
Ill Use

Compacts the string pool and then reports the number of bytes that are
unused and thus available.

11111 Calling Convention

PUSH anything
CALL B$FRSD

Returns number of free bytes in DX:AX.

1111 Notes

The number of free bytes in the string pool is always less than 64K, so
DX is always 0. If you want to look at the return value in AX only, be
sure to treat it as an unsigned number.

If your only reason for calling B$FRSD is to force compaction of the string
pool, you can save a few cycles by calling P$Compact directly.

Example

Ill 7-42

Extrn B$FRSD:Proc

.CODE
SUB AX,AX
PUSH AX
CALL B$FRSD
; number of free bytes

;Create a dummy parameter
; of zero
;Compact string pool

in the string pool is in DX:AX

CRESCENT SOFTWARE, INC.

P.D.Q. Version 3.10 Assembly Toolbox, Programmer's Reference

B$FSCN \SOURCE\SCREEN.ASM

BASIC Equivalent: SCREEN function

1111 Use

Returns either the character or the color attributes of a location on the
screen.

11111 Calling Convention

PUSH Row (!-based)
PUSH Column (!-based)
PUSH Action word

The value is returned in AL, with AH = 0.

1111 Notes

The Action word is either O to get character, or any other value to get the
attribute.

This routine calls CursorSave to save the cursor. It then moves the cursor
to the location you have specified with a BIOS call, reads the character
and attribute with another BIOS call, and ends by calling CursorRest to
restore the cursor to its previous location. If you know the screen mode
and page, you can get the same information much faster by directly
accessing video memory.

Example

Get the character in the top left corner of the screen (equivalent to
SCREEN(l, 1) in BASIC):

Extrn:B$FSCN:Proc

.CODE
MOV AX, 1
PUSH AX
PUSH AX
DEC AX
PUSH AX
CALL B$FSCN

CRESCENT SOFfWARE, INC.

;Row 1

;Column 1 also
;AX= 0: Get character

;Character is now in AL

11117- 43

Assembly Toolbox, Programmer's Reference

B$FSEK

BASIC Equivalent: SEEK

11111 Use

Find the current position within a file.

1111 Calling Convention

PUSH the BASIC file number
CALL B$FSEK

File position returned in DX:AX.

11 Notes

P.D.Q. Version 3.10

\SOURCE\LOC.ASM

If the file was opened for random access, SEEK returns the current record
number. If it was opened in any other mode, SEEK returns the current
byte position. In both cases, the result is 1-based; that is, the first byte or
record of a file is 1, not 0.

Notice that the result is returned as a long integer.

Example

Find SEEK(4):

Extrn B$FSEK:Proc

.CODE
MDV AX,4
PUSH AX
CALL B$FSEK

B$FSPC

;Pass the file number

;Position is now in DX:AX

\SOURCE\SPC.ASM

BASIC Equivalent: SPC function

111 Use

Prints a specified number of spaces to the screen or current print device.

1111 Calling Convention

PUSH number of spaces
CALL B$FSPC

No return value.

Ill 7-44 CRESCENT SOFfWARE, INC.

P.D.Q. Version 3.10 Assembly Toolbox, Programmer's Reference

1111 Notes

This routine creates a temporary string of the correct length with B$STRI
(STRING$), and then prints it without a carriage return or line feed by
calling B$PSSD which deletes the temporary string. See B$PSSD for
information about the current print device.

Example

Perform PRINT SPC(80);

Extrn B$FSPC:Proc

.CODE
MOV AX,80
PUSH AX
CALL B$FSPC

8$FTAB

BASIC Equivalent: TAB()

Ill Use

;Number of characters to print

;Print it

\SOURCE\ TAB.ASM

Moves the cursor to the specified column in the current output device by
printing a series of spaces.

1111 Calling Convention

PUSH desired column
CALL B$FTAB

No return value.

111 Notes

If the cursor has already moved past the specified column, this routine
takes no action.

This routine calls B$SPAC and B$PSSD to create and print a string of the
required number of space characters.

Example
Perform PRINT TAB(20);

Extrn B$FTAB:Proc

.CODE
MOV AX,20
PUSH AX
CALL B$FTAB

CRESCENT SOFrWARE, INC.

;Column to move to

;Tab to column 20

1117-45

Assembly Toolbox, Programmer's Reference P.D.Q. Version3.10

B$FTIM \SOURCE\ TIME$.ASM
\SOURCE_ TIME$.ASM

BASIC Equivalent: TIME$ function

111 Use

Returns the current system time in 24-hour format.

1111 Calling Convention

CALL B$FTIM

Returns with offset of the result's string descriptor in AX.

■ Notes

This routine does not use the DOS time services. It reads the number of
clock ticks since midnight from memory and calculates the time from the
number of clicks. Therefore, it is safe to use this routine within any TSR.

The returned string is in P.D.Q. 's temporary string space. If you want to
process it further, you should copy the result to your own string with
B$SASS.

The version in _TIME$.ASM uses less code, but cannot be used inside a
non-simplified interrupt handler. Use the shorter version to save a few
bytes in all non-TSR and simplified TSR programs.

Example

Perform A$ = TIME$:

11111 7-46

Extrn B$FTIM:Proc
Extrn B$SASS:Proc

.DATA?
EVEN
A$ dd 1 dup (?)

.CODE
CALL B$FTIM
PUSH AX
MOV AX.Offset A$
PUSH AX
CALL B$SASS

;Space for string descriptor

;Get the current time
;Pass on the result
;Get pointer to our string desc.

;Result now in A$

CRESCENT SOFTWARE, INC.

P.D.Q. Version 3.10 Assembly Toolbox, Programmer's Reference

8$FVAL \FPSOURCE\B$FVALASM

BASIC Equivalent: VAL()

11 Use

Converts a string into a numeric value.

II Calling Convention

PUSH Offset of the string descriptor
CALL B$FVAL

Returns AX = offset of 8-byte floating point number.

Ill Notes

This routine strips leading blanks, tabs, and line feeds. Only 16 or fewer
significant digits are converted. The conversion process halts as soon as
this routine encounters a character that it can't interpret as part of a number.

This routine uses floating point operations. You must initialize the floating
point emulator by calling P$HookFP before you call this procedure.

Example

Convert Work$ to a number and place in ST(0):

Extrn B$FVAL:Proc

.DATA?
EVEN
Work$ dd 1 dup (?)

.COOE
MOV AX,Offset Work$
PUSH AX
CALL B$FVAL
MOV BX,AX
FLD QWORD PTR [BX]

B$GET3

BASIC Equivalent: GET

II Use

;Room for string descriptor

;Get pointer to string

;Convert to floating point
;Put pointer in BX
;Put on real number stack

\SOURCE\ GET.ASM

Reads from a file at the current file pointer location into a variable.

CRESCENT SOFfWARE, INC. 11117- 47

Assembly Toolbox, Programmer's Reference P.D.Q. Version 3.10

1111 Calling Convention

If the destination is a numeric variable, a TYPE variable, or a fixed-length
string then:

PUSH the BASIC file number
PUSH the Segment of the destination
PUSH the Offset of the destination
PUSH the number of bytes to read
CALL B$GET3

If the destination is a variable-length string then:

PUSH the BASIC file number
PUSH DS (the Segment of the string descriptor)
PUSH the Offset of the string descriptor
PUSH Oto flag that this is a variable-length string
CALL B$GET3

No return value. May report an error by calling P$DoError.

Ill Notes

If any kind of error occurs other than input past end, this routine calls the
general error handler, P$DoError.

If you ask for more bytes than remains in the file, an error value of 62
(Input Past End) is posted in P$PDQErr, but no action is taken.

If the destination is a variable-length string, then the current length of the
string determines how many bytes will be read by this routine.

Example

Read one long integer from File #1 (which is presumed open):

llil 7-48

Extrn B$GET3:Proc

.DATA
Extrn P$PDQErr:Word
Result& dd ?

.CODE
MDV AX,1
PUSH AX
PUSH DS
MDV AX,Offset Result
PUSH AX
MDV AX,4
PUSH AX
CALL B$GET3
TEST P$PDQErr,-1
JNZ ReadPastEnd
; Now the data is safely

;Space for error report
;Room for the data

;Get the file number
;Pass it on
;Segment of destination
;Get address of destination
; and pass it on
;Number of bytes to read
;Pass the last parameter
;Read the data
;Past the end?
;Yes -- go handle the error

in Result&

CRESCENT SOFfWARE, INC.

P.D.Q. Version 3.10 Assembly Toolbox, Programmer's Reference

B$GET4 \SOURCE\ GETSEEK.ASM

BASIC Equivalent: GET
■ Use

B$GET4 reads data into a variable from a specific position in a file.

II Calling Convention

If the destination is a numeric variable, a TYPE variable, or a fixed-length
string then:

PUSH the BASIC file number
PUSH the high-order word of the desired file position
PUSH the low-order word of the desired file position
PUSH the Segment of the destination
PUSH the Offset of the destination
PUSH the number of bytes to read
CALL B$GET4

If the destination is a variable-length string then:

PUSH the BASIC file number
PUSH the high-order word of the desired file position
PUSH the low-order word of the desired file position
PUSH DS (the segment of the string descriptor)
PUSH the Offset of the string descriptor
PUSH Oto flag that this is a variable-length string
CALL B$GET4

No return value. May repo1t an error by calling P$DoError.

111111 Notes

The file locations are 1-based, so the first byte in the file is at position 1
(DOS calls the first byte position 0).

This routine simply calls B$SSEK and then B$GET3. You could make
those calls directly but would probably save little, if any, time by doing
so.

If the file has been opened in random access mode, the file position is a
record number, not a byte position.

Example
Perform the BASIC statement GET #1, 5, MyType assuming the file has
been opened in binary mode:

Extrn B$GET4:Proc

CRESCENT SOFfWARE, INC. 117 - 49

Assembly Toolbox, Programmer's Reference P.D.Q. Version3.10

.DATA
Extrn P$PDQErr:Word
MyType db 10 dup (?)
MyTypeLen EQU $-MyType

;Where the error code will be
;You could make this any length
;Length of the TYPE variable

.CODE
MOV AX,l
PUSH AX
DEC AX
PUSH AX
MDV AX,5
PUSH AX
PUSH DS
MDV AX,Offset MyType
PUSH AX

;First send the file number

;Now AX = 0
;High word of file location
;Low word of file location

;Segment of destination
;Offset of destination

MDV AX,MyTypeLen ;Number of bytes to read
PUSH AX
CALL B$GET4 ;Read the data
TEST P$PDQErr,-1 ;Did an error occur?
JNZ ReadPastEnd ;Yes -- go handle it
; Now the data is safely in MyType waiting for processing.

B$HARY

Synonyms: B$HAR1
Ill Use

\SOURCE\HUGARRAY.ASM

Finds the segment and offset address of an array element. Includes support
for huge arrays.

Ill Calling Convention

PUSH Leftmost subscript value
PUSH Second-to-left subscript value

PUSH Rightmost subscript value
PUSH Number of subscripts
MDV BX,Offset of array descriptor
CALL B$HARY

Returns with address of array element in ES:BX. May report an error by
calling P$DoError.

II Notes

Notice that one of the arguments to B$HARY is passed in the BX register,
not on the stack.

B$HARY contains support for huge (larger than 64K) arrays; however, it
is useful for arrays of any type.

1111 7-50 CRESCENT SOFfWARE, INC.

P.D.Q. Version 3.10 Assembly Toolbox, Programmer's Reference

Example

Load DX:AX with the value of Array&(4, 7, 2):

Extrn B$HARY:Proc

.DATA
Array db 3*4+12 dup (?)

.CODE
MDV AX,4
PUSH AX
MDV AX,7
PUSH AX
MDV AX,2
PUSH AX
MDV AX,3
PUSH AX
MDV BX,Dffset Array
CALL B$HARY
MDV AX, ES: [BX]
MDV DX,ES: [BX+2]

B$1NKY

BASIC Equivalent: INKEY$

1111 Use

Reads a character from the console.

II Calling Convention

CALL B$INKY

;Room for array descriptor

;Push left-most subscript

;Finish with right-most one

;Number of subscripts

;Pointer to array descriptor

;Get low word in AX
; and high word in DX

\SOURCE\INKEY$.ASM
\SOURCE_ INKEY$.ASM

Returns with offset of result string descriptor in AX.

11111 Notes

This routine reads the keyboard with DOS calls, so redirection of input is
possible (BIOSinkey doesn't allow redirection).

The result string and descriptor are internal to B$INKY. They will not be
overwritten until the next call to this procedure, so you may not need to
copy the result to your own string.

The version of this routine in the stub file _INKEY$.ASM uses the BIOS
instead of DOS. Therefore, it does not accept redirected input.

CRESCENT SOFfWARE, INC. 11117 - 51

Assembly Toolbox, Programmer's Reference

Example

Perform the equivalent of:

DO
A$= INKEY$

LOOP UNTIL A$ <> ""

Extrn B$INKY:Proc
Extrn B$SASS:Proc

.DATA?
EVEN
A$ dd 1 dup (?)

.CODE
@: CALL B$ INKY

MDV BX.AX
CMP [BX], 0

JE @B
PUSH AX
MDV AX.Offset A$
PUSH AX
CALL B$SASS

;For string assignment

;Space for A$'s descriptor

; Look for a key
;Copy the descriptor.
;Does result have O length?
;Yep -- try again
;Else copy result to

our variable for
; more processing

P.D.Q. Version 3.10

B$1NPP \SOURCE\INPUT.ASM

BASIC Equivalent: INPUT (from the
keyboard)

11111 Use

Optionally prints a prompt and then gets the user input from the keyboard
(or from a redirected input source).

11111 Calling Convention

Set flags variable (see below)
PUSH Offset of prompt string descriptor
PUSH Segment of flags variable
PUSH Offset of flags variable
CALL B$INPP

No return value. May report an error by calling P$DoError.

11111 Notes

In most cases you will find the PDQinput routine much simpler to set up
and use.

1111 7-52 CRESCENT SOFfWARE, INC.

P.D.Q. Version 3.10 Assembly Toolbox, Programmer's Reference

If you don't want to display a prompt, use a null string. You can simply
pass the address of a data word of O instead of the address of a real string
descriptor.

The flags variable is a bit record which controls the way that the prompt
is displayed and what happens after the user presses Enter:

Bit O = 0 - Add a question mark to the prompt
1 - Do not add a question mark

Bit 1 = 0 - Go to a new line after user presses Enter
1 - Do not go to a new line

All other bits are reserved and should be set to 0.

This routine puts the user's input into a string. After you have called it,
each of the B$RD.xx routines (B$RDI2, B$RDI4, B$RDR4, B$RDR8,
and B$RDSD) will get their values from that string until you call B$PEOS.

If the user does not enter enough data to fill your expected variables, the
trailing variables will have a value of O or (for strings) a length of 0. The
P.D.Q. routines never issue a warning or "Redo from start" message.

After you have called the necessary B$RD.xx routines, you must call
B$PEOS before the next INPUT from the keyboard or from a disk file.

Example
Perform INPUT "Enter a number", Num&:

Extrn B$INPP:Proc
Extrn B$RDI4:Proc
Extrn B$PEOS:Proc

.DATA?
FlagVar dw 1 dup (?)
Num dd 1 dup (?)

.DATA

; To get result
;To end this input session

;Room for flags
; and for result

DefStr Prompt$,"Enter a number: "

.CODE
MDV
MDV
PUSH
MDV
PUSH
PUSH
CALL
MDV

[F lagVAr] , 1
AX,Offset Prompt$
AX
AX.Offset FlagVar
DS
AX
B$INPP
AX.Offset Num

CRESCENT SOFfWARE, INC.

;No question mark, go to next line
;Get pointer to string

;Get pointer to flags
;Push their segment
; and their offset
;Get user input
;Get pointer to result variable

11117-53

Assembly Toolbox, Programmer's Reference

PUSH DS
PUSH AX
CALL B$RDI4
CALL B$PEOS

;Push its segment
; and its offset
;Fill it with user's data
;Tell everyone we're done

P.D.Q. Version 3.10

B$1NS2 \SOURCE\INSTR2.ASM

BASIC Equivalent:
INSTR (Source$, Search$)

Ill Use

Finds the first occurrence of a substring in a string.

111111 Calling Convention

PUSH Offset of Source$ descriptor
PUSH Offset of Search$ descriptor
CALL B$INS2

Returns with position in AX.

II Notes

This is the two-argument form of INSTRO.

If the search string is not found in the source string, AX will contain O on
return.

Example

Find INSTR(A$, B$):

11111 7- 54

Extrn B$INS2:Proc

.DATA?
EVEN
A$ dd 1 dup (?)
B$ dd 1 dup (?)

.CODE
MDV AX,Offset A$
PUSH AX
MDV AX,Offset B$
PUSH AX
CALL B$INS2

;Space for string descriptors

;Pointer to source string

;Pointer to search string

;Returns position in AX

CRESCENT SOFfWARE, INC.

P.D.Q. Version 3.10 Assembly Toolbox, Programmer's Reference

B$1NS3 \SOURCE\INSTR.ASM

BASIC Equivalent:
INSTR (Start%, Source$, Search$)

1111 Use

Finds the first occurrence of a substring in a string, with the search starting
at a specified position.

II Calling Convention

PUSH Start position
PUSH Offset of Source$ descriptor
PUSH Offset of Search$ descriptor
CALL 8$INS3

Returns with position in AX.

II Notes

This is the three-argument form of INSTRO.

If the search string is not found in the source string, AX will contain O on
return.

Example

Find INSTR(5, A$, B$):

Extrn 8$INS3:Proc

. DATA?
EVEN
A$ dd 1 dup (?)
8$ dd 1 dup (?)

.CODE
MDV AX,5
PUSH AX
MDV AX,Offset A$
PUSH AX
MDV AX.Offset 8$
PUSH AX
CALL 8$INS3

CRESCENT SOFfWARE, INC.

;Space for string descriptors

;Get start position

;Pointer to source string

;Pointer to search string

;Returns position in AX

11117- 55

Assembly Toolbox, Programmer's Reference

B$KILL

BASIC Equivalent: KILL

111 Use

Deletes one or more files from disk.

1111 Calling Convention

PUSH Offset of string descriptor of filespec
CALL B$KILL

P.D.Q. Version 3.10

\SOURCE\KILL.ASM
\SOURCE_ KILL.ASM

No return value. May report an error by calling P$DoError.

1111111 Notes

This routine erases all files that match the given filespec. You may use
wildcards in the filespec.

B$KILL sets the OTA (disk transfer area) to its own data area. If you are
using the OTA for other purposes, make sure you reset the OTA (using Int
21h, Service lAh) after you have called B$KILL.

The version in the stub file KILL.ASM is much shorter because it does
not support wildcards in the filespec.

Example

Perform KILL FileSpec$:

Extrn B$KILL:Proc

.DATA?
FileSpec$ dd 1 dup (?) ;Space for string descriptor

.CODE
MOV AX,Offset Filenames$;Get pointer to descriptor
PUSH AX ; and send it on
CALL B$KILL ;All done

B$LBND \SOURCE\ UBOUND.ASM

BASIC Equivalent: LBOUND

11111 Use

Return the lowest available subscript for a dimension of an array.

11111 7-56 CRESCENT SOFfWARE, INC.

P.D.Q. Version3.10 Assembly Toolbox, Programmer's Reference

II Calling Convention

PUSH Offset of array descriptor
PUSH Dimension number
CALL B$LBND

Returns lowest subscript in AX.

111\1 Notes

It may be faster to read the LBound value directly from the array descriptor.
See Using Arrays in the preceding chapter for information about the format
of the descriptor.

Example

Find LBOUND(Array, 2):

Extrn B$LBND:Proc

.DATA?
Array db 20 dup (?)

.CODE
MDV AX,Offset Array
PUSH AX
MDV AX,2
PUSH AX
CALL B$LBND

;Room for descriptor for
;2-dimensional array

;Get pointer to array desc.

;Dimension we want LBOUND of

;Now the result is in AX

B$LCAS \SOURCE\LCASE$.ASM

BASIC Equivalent: LCASE$()

11111 Use

Copies and converts all upper case characters in a string to lower case.

Ill Calling Convention

PUSH Offset of string descriptor
CALL B$LCAS

Returns with the offset of the converted string's descriptor in AX.

1111 Notes

The return value is a temporary string. If you want to save it for further
processing, be sure to assign it to a permanent string descriptor.

Example

Perform A$ = LCASE$(A$):

CRESCENT SOFfWARE, INC. 11117-57

Assembly Toolbox, Programmer's Reference

Extrn B$LCAS:Proc
Extrn B$SASS:Proc

.DATA?
EVEN

;For string assignment

P.D.Q. Version 3.10

A$ dd 1 dup (?) ;Space for the string descriptor

.CODE
MOV AX,Offset A$
PUSH AX
CALL B$LCAS
PUSH AX
MOV AX,Offset A$
PUSH AX
CALL B$SASS

B$LDFS

11111 Use

;Pass pointer to the string

:Convert it to lower case
;Pass the result string
; and a pointer to A$

;Assign result to A$

\SOURCE\FLEN2STR.ASM

Copies a fixed-length string or string portion of a user TYPE variable into
near memory with a normal variable-length string descriptor.

11111 Calling Convention

PUSH Segment of fixed-length string
PUSH Offset of fixed-length string
PUSH Number of bytes to copy
CALL B$LDFS

Returns offset of temporary string descriptor in AX.

111111 Notes

The returned string is in a temporary string descriptor. If you need to
keep it for further processing, you can copy it to your own data space by
calling B$SASS.

B$LDFS is really a general-purpose routine that will copy any piece of
memory into a normal variable-length string. You could, for example,
copy the screen into a string with this routine, or use it to transfer data
from an EMS page frame window into a string.

Example

Assign A$ = FarString$:

1111 7-58

Extrn B$LDFS:Proc
Extrn B$SASS:Proc

.DATA?
EVEN

;For string assignment

CRESCENT SOFrWARE, INC.

P.D.Q. Version3.10 Assembly Toolbox, Programmer's Reference

FarString dd 1 dup (?}
FarStringLen dw 1 dup (?}
A$ dd 1 dup (?}

.CODE
PUSH Word Ptr FarString[2)
PUSH Word Ptr FarString
PUSH FarStringLen
CALL B$LDFS
PUSH AX
MOV AX,Dffset A$
PUSH AX
CALL B$SASS

;Pointer to fixed-length string
;Length of fixed string
;Room for A$'s descriptor

;Push segment of far string
; and then the offset
;Now send its length
;Copy to a temporary variable
;Pass temporary descriptor
;Pointer to our descriptor
;Send it along
;Assign result to A$

8$LEFT \SOURCE\LEFT$.ASM

BASIC Equivalent: LEFT$

11111 Use

Copies a specified number of characters from the left side of a string to a
new, temporary string variable.

Ill Calling Convention

PUSH Offset of source string's descriptor
PUSH Number of characters to copy

CALL B$LEFT

Returns with offset of descriptor of result string in AX.

1111111 Notes

If the number of characters requested is more than the length of the source
string, the result string will be a copy of the source string.

The result is a temporary string. If you want to use it for further
processing, be sure to assign it to a permanent string.

Example

Perform B$ = LEFT$(A$, 10):

Extrn B$LEFT:Proc
Extrn B$SASS:Proc

.DATA?
EVEN
A$ dd 1 dup (?}
8$ dd 1 dup (?}

CRESCENT SOFfWARE, INC.

;For string assignment

;Space for string descriptors

11117- 59

Assembly Toolbox, Programmer's Reference

.CODE
MDV AX,Offset A$
PUSH AX
MDV AX,10
PUSH AX
CALL B$LEFT
PUSH AX
MDV AX.Offset B$
PUSH AX
CALL B$SASS

;Pass pointer to source string

;Pass number of characters

;Pass temporary descriptor
;Pass pointer to destination

;Assign result to B$

P.D.Q. Version 3.10

8$LNIN \SOURCE\UNEINPT.ASM

BASIC Equivalent: LINE INPUT

111 Use

Reads a line of text from the console or a file into a string.

111 Calling Convention

PUSH Offset of prompt string descriptor
PUSH Segment of result string or string descriptor
PUSH Offset of result string or string descriptor
PUSH Length of result string, or O for variable-length string
PUSH End-of-line flag
CALL B$LNIN

No return value. May report an error by calling P$DoError.

111111 Notes

You will probably find the PDQinput routine easier to use in an assembly
language program.

For line input from a file, precede this routine with a call to B$DSKI to
start input from the appropriate file. The input device is set to the console
at the end of this routine, so repeated line input from a file will also require
repeated calls to B$DSKI.

The End-of-line flag is in effect only if input comes from the console. Set
the flag to O if you want the cursor to go to a new line when the user
presses Enter, or 1 if you want to cursor to remain on the current line.

The prompt string and end-of-line flag are completely ignored if input
comes from a file. However, you still must push something for those
arguments to keep the stack aligned properly.

1111 7-60 CRESCENT SOFfWARE, INC.

P.D.Q. Version3.I0 Assembly Toolbox, Programmer's Reference

Example

Perform LINE INPUT "Enter a string: "; Work$:

Extrn B$LNIN:Proc

.DATA
DefStr Prompt$,"Enter a string: "
DefStr Work$

.CODE
MDV AX,Offset Prompt$
PUSH AX
MDV AX,Offset Work$
PUSH DS
PUSH AX
SUB AX,AX
PUSH AX
PUSH AX
CALL B$LNIN

;Point to the prompt

;Point to the result

;AX= 0: move cursor down
;use O for flag too

;Get a line of input

B$LOCK \SOURCE\LOCK.ASM

BASIC Equivalent: LOCK and UNLOCK

111111 Use

Locks or unlocks a file or portion of a file.

II Calling Convention

PUSH a BASIC file number
PUSH the High Word of start of region to lock
PUSH the Low Word of start of region to lock
PUSH the High Word of end of region to lock
PUSH the Low Word of end of region to lock
PUSH the Action Word (see below)
CALL B$LOCK

No return value. May report an error by calling P$DoError.

1111 Notes

The Action Word is a bit record:

Bit 0: 0 to lock, 1 to unlock

Bit 1: 0 for whole file, 1 for a portion of a file

Bits 2 to 15: reserved. All should be set to 0

CRESCENT SOFrWARE, INC. 1117 - 61

Assembly Toolbox, Programmer's Reference P.D.Q. Version3.10

LOCK and UNLOCK require DOS 3.0 and later, and also that SHARE
be installed.

A call to unlock a previously-locked portion of a file must have the same
start and end values and the same action word except for bit 0.

If you want to lock the entire file (bit 1 of the Action Word is 0) then the
start region and end region values will be ignored.

If the file was opened in random mode, the start and end region numbers
refer to records (the first record is 1). If the file was opened in any other
mode, the start and end region numbers refer to bytes (the first byte in the
file is 1).

Example

LOCK and UNLOCK records 4 to 20 of file #2 (assumes that file #2 was
opened in random mode):

1111 7- 62

Extrn B$LOCK:Proc

.CODE
SUB DX,DX
MOV AX,2
PUSH AX
MOV AX,4
PUSH DX
PUSH AX
MOV AX,20
PUSH DX
PUSH AX
MOV AX, !Ob
PUSH AX
CALL B$LOCK

SUB DX,DX
MOV AX,2
PUSH AX
MOV AX,4
PUSH DX
PUSH AX
MOV AX,20
PUSH DX
PUSH AX
MOV AX, llb
PUSH AX
CALL B$LOCK

;DX= 0
;Get file number

;Starting record
;High 11ord of start
;Low word of start
;Ending record
;High word of end
;Low word of end
;Action: Lock a region

;Now the region is locked
;process the locked region of the file
;DX= 0 -- ready to unlock
;Get file number

;Starting record
;High word of start
;Low word of start
;Ending record
;High word of end
;Low word of end
;Action: Unlock a region

;Now the region is unlocked

CRESCENT SOFfWARE, INC.

P.D.Q. Version3.10 Assembly Toolbox, Programmer's Reference

B$LOCT \SOURCE\LOCATE.ASM
\SOURCE_ LOCATE.ASM

BASIC Equivalent: LOCATE
11 Use

Set the screen location and shape of the cursor.

11111 Calling Convention

Push the arguments in this order:

Row
Column
Cursor
Start
Stop

For each of these arguments, push a O if you want to leave the current
value, or a 1 followed by the new value:

or

PUSH Oto show that Row stays unchanged

PUSH 1 to show that Row should be changed
PUSH New row setting

You must go through the list in order, but you can stop at any time. If you
want to set the Cursor value, for example, you will need to also set Row
and Column (or push O for each). But you won't have to pass any values
for Start and Stop.

After the arguments above are on the stack, do this:

PUSH the number of words ahead of this argument
CALL B$LOCT

No return value.

To set the Row and Column only:

PUSH 1
PUSH New Row
PUSH 1
PUSH New Column
PUSH 4
CALL B$LOCT

To set cursor to O only:

PUSH 0
PUSH 0

CRESCENT SOFTWARE, INC. 11117 - 63

Assembly Toolbox, Programmer's Reference P.D.Q. Version 3.10

PUSH 1
PUSH 0
PUSH 4
CALL B$LOCT

To set Start and Stop only:

PUSH 0
PUSH 0
PUSH 0
PUSH 1
PUSH New Start
PUSH 1
PUSH New Stop
PUSH 7
CALL B$LOCT

11111 Notes

You may find it easier to use P.D.Q.'s Cursor routines or to use BIOS
routines directly instead of B$LOCT.

The version of LOCATE in the stub file, _ LOCATE.ASM, requires that
you push the following arguments and no others:

PUSH 1
PUSH New Row
PUSH 1
PUSH New Column
PUSH 4

Example

Perform LOCATE 10, 1, 1 (Row 10, Column 1, Cursor On):

1111 7- 64

Extrn B$LOCT:Proc
.CODE
MOV BX, 1
MOV AX, 10
PUSH BX
PUSH AX
MOV AX,1
PUSH BX
PUSH AX
PUSH BX
PUSH AX
MOV AX,6
PUSH AX
CALL B$LOCT

;To show active arguments
;New row value
;Set a new row value
;Here it is
;Get new column value
;Here comes a new column
;Move to column 1
;Here comes a new Cursor arg.
;Turn cursor on
;Number of arguments

CRESCENT SOFfWARE, INC.

P.D.Q. Version 3.10 Assembly Toolbox, Programmer's Reference

B$LSET \SOURCE\LSET.ASM

BASIC Equivalent: LSET

111 Use

Copies and left-justifies data from a variable-length string into either a
variable-length string or a fixed block of memory (normally part of a
TYPE or FIELD variable).

II Calling Convention

PUSH Offset of source string descriptor
PUSH Segment of destination or of destination descriptor
PUSH Offset of destination or of destination descriptor
PUSH Length of destination (or zero)
CALL B$LSET

No return value.

■ Notes

If the destination is a variable-length string use a value of zero for its
length.

This routine automatically pads the destination with spaces if it is longer
than the source. If the source is longer, it is truncated to fit into the
destination.

Example

LSET A$ = B$ (both are variable-length strings):

Extrn B$LSET:Proc

.DATA?
EVEN
A$ dd 1 dup (?)
B$ dd 1 dup (?)

.CODE
MDV AX,Offset B$
PUSH AX
MDV AX.Offset A$
PUSH OS
PUSH AX
SUB AX,AX
PUSH AX
CALL B$LSET

CRESCENT SOFTWARE, INC.

;Space for string descriptors

;Point to source descriptor

;Point to dest. descriptor
;Push its segment
; and its offset
;AX= 0: destination is a
; variable-length string

11117-65

Assembly Toolbox, Programmer's Reference P.D.Q. Version 3.10

B$LTRM \SOURCE\LTRIM$.ASM

BASIC Equivalent: LTRIM$

1111 Use

Copies and removes leading CHR$(32) spaces and CHR$(0) null charac
ters from the left end of a string.

Ill Calling Convention

PUSH Offset of string descriptor
CALL B$LTRM

Returns with offset of the result string descriptor in AX.

Ill Notes

The result is returned in a temporary string. You must copy the temporary
string to a permanent string if you want to save it for processing at a later
time.

Example

Perform A$ = LTRIM$(A$):

Extrn B$LTRM:Proc
Extrn B$SASS:Proc

.DATA?
EVEN
A$ dd 1 dup (?)

.CODE
MOV AX,Offset A$
PUSH AX
CALL B$LTRM
PUSH AX
MOV AX.Offset A$
CALL B$SASS

B$MDIR

;For string assignment

;Room for string descriptor

;Create pointer to A$

;Strip leading spaces & nulls
;Pass pointer to result descriptor
;Where we want the result
;The result is now in A$

\SOURCE\MKDIR.ASM

BASIC Equivalent: MKDIR

1111 Use

Creates a new subdirectory.

Ill 7-66 CRESCENT SOFfWARE, INC.

P.D.Q. Version 3.10 Assembly Toolbox, Programmer's Reference

Ill Calling Convention

PUSH Offset of descriptor holding the directory name
CALL B$MDIR

No return value. May report an error by calling P$DoError.

Example

Perform MKDIR DirName$:

Extrn B$MDIR:Proc

.DATA?
EVEN
DirNam$ dd 1 dup (?)

.CODE
MDV AX,Offset DirNam$
PUSH AX
CALL B$MDIR

;Space for string descriptor

;Get pointer to descriptor

;Create the subdirectory

B$MUl4 \SOURCE\MULTLONG.ASM
\SOURCE\MULTLNG3.ASM

1111 Use

Multiplies two signed long integers: X& * Y &

Ill Calling Convention

PUSH High Word of Y&
PUSH Low Word of Y&
PUSH High Word of X&
PUSH Low Word of X&
CALL B$MUI4

Returns with result in DX:AX.

11111 Notes

The alternate routine in MULTLNG3.ASM performs the same function
for 386 and 486 CPUs using 32-bit registers. Use it, or perform the
operation directly, if you know that your code will be running on a 386 or
486 computer.

Example

Perform Z& = X& * Y &:

Extrn B$MUI4

.DATA
X& dd ?
Y& dd ?

CRESCENT SOFTWARE, INC.

;Space for variables

1117 - 67

Assembly Toolbox, Programmer's Reference

Z& dd ?

.CODE
PUSH Word ptr [Y&+2)
PUSH Word ptr [Y&)
PUSH Word ptr [X&+2)
PUSH Word ptr [X&)
CALL B$MUI4
MDV Word ptr [2&+2),DX
MDV Word ptr [Z&),AX

;Push high word of Y&
; and low word
;Push high word of X&
; and low word
;Multiply them
;Save high word of result
; and low word

P.D.Q. Version 3.10

B$NAME \SOURCE\NAME.ASM

BASIC Equivalent: NAME

111 Use

Rename a file (and optionally move it to a new subdirectory on the same
drive).

II Calling Convention

PUSH Offset of descriptor holding the current name
PUSH Offset of descriptor holding the new name
CALL B$NAME

No return value. May report an error by calling P$DoError.

111 Notes

You can use B$NAME to move a file to a new subdirectory on the same
drive by using a fully-qualified path and file specification for the new
name. Note, however, that this works with DOS 3.0 or later only.

Example

Perform NAME A$ AS B$:

1111 7- 68

Extrn B$NAME:Proc

.DATA?
EVEN
A$ dd 1 dup (?)
B$ dd 1 dup(?)

.CODE
MDV AX,Offset A$
PUSH AX
MDV AX.Offset B$
PUSH AX
CALL B$NAME

;Space for string descriptors

;Get pointer to current name

;Get pointer to new name

CRESCENT SOFrWARE, INC.

P.D.Q. Version 3.10 Assembly Toolbox, Programmer's Reference

B$OGSA and B$OGTA \SOURCE\ONGOTO.ASM

BASIC Equivalents: ON GOSUB
(B$OGSA) and ON GOTO (B$OGTA)

111 Use

Perform an indexed jump or call to a NEAR location.

11111 Calling Convention

For ON Value GOSUB Labell, Label2, Label3:

MDV BX.Value
CALL B$0GSA
OB Number of labels that follow
OW Offset of Labell
DW Offset of Label2
DW Offset of Label3
The next statement in sequence continues here

No return value.

11111 Notes

ON GOSUB and ON GOTO can branch only to labels that are in the same
code segment. Therefore, if you use B$OGSA (ON GOSUB), make sure
that each routine ends with a near return.

For most assembly-language programs, a normal jump or call table, for
either near or far branches, will probably be more efficient than calling
these routines.

Notice that control falls through without a branch if Value is O or is greater
than the number of labels specified.

Example

Perform ON X GOTO Locl, Loc2, Loc3, Loc4:

Extrn B$0GTA:Proc

.DATA?
X dw 1 dup (?)

.CODE
MDV BX, [X]
CALL B$0GSA
DB 4
DW Offset Locl
DW Offset Loc2
DW Offset Loc3

CRESCENT SOFfWARE, INC.

;Space for value variable

;Get the value
;Branch to a subroutine
;Number of labels
;First branch address

1117-69

Assembly Toolbox, Programmer's Reference P.D.Q. Version 3.10

DW Offset Loc4
;Control goes here if X = O or X > 4
;Else control returns here when the routine returns

8$00PN \SOURCE\ OPENOLD.ASM

BASIC Equivalent: OPEN (older, terse syntax)

1111 Use

OPEN a file and assign it to a BASIC file number.

1111 Calling Convention

PUSH Offset of string descriptor holding the open mode
PUSH File number
PUSH Offset of string descriptor holding the filename
PUSH Record length (ignored except for RANDOM files)

No return value. May report an error by calling P$DoError.

Ill Notes

This routine simply translates the old-style open mode ("I", "O", "R",
"A", or "B ") into a number and then calls B$OPEN to do all the real
work. Capitalization of the open mode code is not important.

You must include a Record Length parameter for all calls to OOPN,
regardless of the open mode you are using. For non-random files, the
value is necessary but ignored.

See the comments for B$OPEN for more details about opening files.

Example

Perform OPEN "R", #3, FileName$, 212:

Extrn B$00PN:Proc

.DATA
DefStr FileName$
DefStr Mode$,"r"

.CODE
MOV AX.Offset Mode$;Pointer to mode descriptor
PUSH AX
MOV AX,3 ;Get file number
PUSH AX
MOV AX.Offset FileName$;Pointer to name descriptor
PUSH AX
MOV AX,212 ;Record length

11111 7 - 70 CRESCENT SOFfWARE, INC.

P.D.Q. Version 3.10 Assembly Toolbox, Programmer's Reference

PUSH AX
CALL 8$00PN ;Go open the file

B$0PEN \SOURCE\OPEN.ASM

BASIC Equivalent: OPEN (newer, "wordy" syntax)

11111 Use

OPEN a file and assign it to a BASIC file number.

Ill Calling Convention

PUSH Offset of file name string descriptor
PUSH File number
PUSH Record length (ignored except for RANDOM files)
PUSH Open type (see below)
CALL 8$0PEN

No return value. May report an error by calling P$DoError.

1111 Notes

The file number must be greater than O and less than 16, and cannot be a
number already in use.

The low byte of the Open Type defines the open mode for the file:

1 = INPUT mode
2 = OUTPUT mode
4 = RANDOM mode
8 = APPEND mode
32 = BINARY mode

The high byte of the Open Type defines the sharing modes, and indicates
what access, if any, other processes have to the file:

0 = No sharing
1 = Deny both reading and writing
2 = Allow reading but not writing
3 = Allow writing but not reading
4 = Allow both reading and writing

If you are opening the file in RANDOM mode and want the default record
length of 128, you can use either -1 or 128 as the record length value.
You must pass some record length for all calls to B$0PEN, but the value
will be ignored for files opened in modes other than RANDOM.

Example

Perform OPEN FileName$ FOR RANDOM AS #3 LEN = 212:

CRESCENT SOFfWARE, INC. 1117 - 71

Assembly Toolbox, Programmer's Reference

Extrn B$OPEN:Proc

.DATA?
EVEN
FileName$ dd 1 dup (?) ;Space for string descriptor

.CODE
MOV AX,Offset FileName$;Pass pointer to descriptor
PUSH AX
MOV AX,3 ;Pass the file number
PUSH AX
MOV AX,212 ;Pass the record ~ength
PUSH AX
MOV AX,4 ;Pass Open Type: 4 = RANDOM
PUSH AX
CALL B$OPEN ;Open the file

P.D.Q. Version 3.10

8$PCl2 \SOURCE\PRINTINT.ASM

BASIC Equivalent: PRINT X%,

11111 Use

Prints an integer value and then moves to the next tab stop.

1111 Calling Convention

PUSH integer value
CALL B$PCI2

No return value. May report an error by calling P$DoError when printing
to a file.

111111 Notes

This routine converts the integer to a string, and then uses B$PSSD to do
the printing and B$PCSD to tab. It updates the tab position and does not
reset the print handle.

Example

Perform PRINT 9,

Extrn B$PCI2:Proc

1111 7-72

.CODE
MOV AX,9
PUSH AX
CALL B$PCI2

;Get the value to print

CRESCENT SOFfWARE, INC.

P.D.Q. Version 3.10 Assembly Toolbox, Programmer's Reference

B$PCl4 \SOURCE\PRINTLNG.ASM

BASIC Equivalent: PRINT X&,

111 Use

Print a long integer value and then move to the next tab stop.

11111 Calling Convention

PUSH high word of value
PUSH low word of value
CALL B$PCI4

No return value. May report an error by calling P$DoError when printing
to a file.

1111 Notes

This routine converts the long integer to a string, and then uses B$PSSD
to do the printing and B$PCSD to tab. It updates the tab position and does
not reset the print handle.

Example

Perform PRINT 12345678h,

ExtrnB$PCI4:Proc

.CODE
MDV AX,1234h
PUSH AX
MDV AX,5678h
PUSH AX
CALL B$PCI4

;Get high word

; and the low word

B$PCR4 \FPSOURCE\ B$PCR4.ASM

BASIC Equivalent: PRINT X!,

11111 Use

Print a 4-byte (single precision) real number, and then move to the next
tab stop.·

II Calling Convention

PUSH Most significant word of the number
PUSH Least significant word of the number
CALL B$PCR4

CRESCENT SOFfWARE, INC. 11117-73

Assembly Toolbox, Programmer's Reference P.D.Q. Version 3.10

No return value. May report an error by calling P$DoError when printing
to a file.

11111 Notes

This routine converts the number to a string by calling B$STR4, and then
prints the string with B$PCSD.

This routine uses floating point operations. You must initialize the floating
point emulator by calling P$HookFP before you call this procedure.

Example

Print the real number at ST(O) and then a tab:

Extrn B$PCR4:Proc

.DATA?
TempSingle dd 1 dup (?)

.CODE
FSTP DWord ptr [TempSingle]
PUSH Word ptr [TempSingle+2]
PUSH Word ptr [TempSingle]
CALL B$PCR4

;Room for the number

;Pop number off fp stack
:Push it onto the stack

;And print it

B$PCR8 \FPSOURCE\B$PCR8.ASM

BASIC Equivalent: PRINT X#,

1111 Use

Print an 8-byte (double precision) real number and then move to the next
tab stop.

1111 Calling Convention

PUSH Most significant word of the number
PUSH Next most significant word of the number
PUSH Next most significant word of the number
PUSH Least significant word of the number
CALL B$PCR8

No return value. May report an error by calling P$DoError when printing
to a file.

1111 Notes

This routine converts the number to a string by calling B$STR8, and then
prints the string with B$PCSD.

1111 7- 74 CRESCENT SOFfWARE, INC.

P.D.Q. Version 3.10 Assembly Toolbox, Programmer's Reference

This routine uses floating point operations. You must initialize the floating
point emulator by calling P$HookFP before you call this procedure.

Example

Print the real number at ST(0) and then a tab:

Extrn B$PCR8:Proc

.DATA?
TempDouble dq 1 dup (?)

.CODE
FSTP QWord ptr [TempDouble]
MOV BX,Offset TempDouble
PUSH Word Ptr [BX+6]
PUSH Word Ptr [BX+4]
PUSH Word Ptr [BX+2]
PUSH Word Ptr [BX]
CALL B$PCRB

;Room for the number

;Pop number off stack
;Get pointer for addressing
;Push in onto the stack

;And print it

B$PCSD \SOURCE\PRNCOMMA.ASM

BASIC Equivalent: PRINT X$,

1111 Use

Prints a string and then moves to the next print zone.

11111 Calling Convention

PUSH Offset of string descriptor
CALL B$PCSD

No return value. May report an error by calling P$DoError when printing
to a file.

11111 Notes

After this routine prints a string, it updates the tab position.

Example

Perform PRINT WORK$,

Extrn B$PCSD:Proc

.DATA?
EVEN
Work$ dd 1 dup (?)

.CODE
MOV AX,Offset Work$

CRESCENT SOFTWARE, INC.

;Space for descriptor

11117-75

Assembly Toolbox, Programmer's Reference

PUSH AX
CALL B$PCSD

P.D.Q. Version 3.10

B$PEl2 \SOURCE\PRINTINT.ASM

BASIC Equivalent: PRINT X%

11 Use

Print an integer value followed by a CRLF

II Calling Convention

PUSH the integer value
CALL B$PEI2

No return value. May report an error by calling P$DoError when printing
to a file.

11 Notes

This routine calls B$PESD, which resets the tab position on the current
device to O and resets the print handle so that the next print will be to the
screen.

Example

Print 127:

Extrn B$PEI2:Proc

.CODE
MOV AX,127
PUSH AX
CALL B$PEI2

;Get value to print

B$PEl4 \SOURCE\PRINTLNG.ASM

BASIC Equivalent: PRINT X&

11111 Use

Prints a long integer value followed by a CRLF.

11111 Calling Convention

PUSH the high word of the value
PUSH the low word of the value
CALL B$PEI4

1111 7- 76 CRESCENT SOFfWARE, INC.

P.D.Q. Version 3.10 Assembly Toolbox, Programmer's Reference

No return value. May report an error by calling P$DoError when printing
to a file.

111111 Notes

This routine calls B$PESD, which resets the tab position on the current
device to O and resets the print handle so that the next print will be to the
screen.

Example

Print 456789Ah:

Extrn B$PEl4:Proc

.CODE
MOV AX,456h
PUSH AX
MDV AX, 789Ah
PUSH AX
CALL B$PEl4

B$PEOS

11111 Use

;Get high word

;Get low word

\SOURCE\R$PEOS.ASM

Cleans up after a non-console input or output.

Ill Calling Convention

CALL B$PEOS

No return value.

111111 Notes

The name of this routine means Print End Of Statement and it is used to
make sure that output from each PRINT statement gets sent to the right
place. Without it, a PRINT #n, "xxx"; followed by PRINT "yyy" would
send the "yyy" to a file instead of the screen.

Just as important, this routine cleans up after an INPUT or INPUT #n and
the subsequent reads to fill variables. It ensures that future reads from
the console will be handled properly.

Example

Extrn B$PEOS:Proc

.CODE
CALL B$PEOS ;Everything's back to normal

CRESCENT SOFTWARE, INC. ■ 7-77

Assembly Toolbox, Programmer's Reference

B$PER4

BASIC Equivalent: PRINT X!

111111 Use

P.D.Q. Version 3.10

\FPSOURCE\B$PER4.ASM

Print a 4-byte (single precision) real number with a trailing carriage return
and line feed.

11111 Calling Convention

PUSH High word of the number
PUSH Low word of the number
CALL B$PER4

No return value. May report an error by calling P$DoError when printing
to a file.

111 Notes

This routine converts the number to a string by calling B$STR4 and then
prints the string with B$PESD.

This routine uses floating point operations. You must initialize the floating
point emulator by calling P$HookFP before you call this procedure.

Example
Print the real number TempSingle and then a carriage return and line feed:

Extrn B$PER4:Proc

.DATA?
TempSingle dd 1 dup(?)

.CODE
PUSH Word Ptr [TempSingle+2]
PUSH Word Ptr [TempSingle]
CALL B$PER4

B$PER8

BASIC Equivalent: PRINT X#

1111 Use

;Room for the number

;Pass the high word
; then the low word
;And print it

\FPSOURCE\B$PER8.ASM

Print an 8-byte (double precision) real number with a trailing carriage
return and line feed.

Ill 7- 78 CRESCENT SOFfWARE, INC.

P.D.Q. Version 3.10 Assembly Toolbox, Programmer's Reference

11111 Calling Convention

PUSH Most significant word of the number
PUSH Next most significant word of the number
PUSH Next most significant word of the number
PUSH Least significant word of the number
CALL B$PER8

No return value. May report an error by calling P$DoError when printing
to a file.

1111 Notes

This routine converts the number to a string by calling B$STR8 and then
prints the string with B$PESD.

This routine uses floating point operations. You must initialize the floating
point emulator by calling P$HookFP before you call this procedure.

Example

Print the real number at ST(O) and then a carriage return and line feed:

Extrn B$PER8:Proc

.DATA?
TempDouble dq

.CODE

dup (?)

FSTP QWord ptr [TempDouble]
MDV BX,Offset TempDouble
PUSH Word Ptr [BX+6]
PUSH Word Ptr [BX+4]
PUSH Word Ptr [BX+2]
PUSH Word Ptr [BX]
CALL B$PER8

B$PESD

BASIC Equivalent: PRINT X$

1111 Use

;Room for the number

;Pop number off fp stack
;Get pointer for addressing
;Push in onto the CPU stack

;And print it

\SOURCE\PRINT.ASM
\SOURCE_ CPRINT.ASM

Print a string with a trailing carriage return and line feed.

Ill Calling Convention

PUSH Offset of string descriptor
CALL B$PESD

No return value. May report an error by calling P$DoError when printing
to a file.

CRESCENT SOFTWARE, INC. 11117-79

Assembly Toolbox, Programmer's Reference P.D.Q. Version 3.10

111111 Notes

This routine resets the tab column for the current device to 0, and resets
the print handle to 1 (standard output) for the next print operation.

The version in CPRINT. ASM uses the current color attributes stored in
P$Color for each character that it prints if output is to the screen

Example

Print Work$:

Extrn B$PESD:Proc

.DATA?
EVEN
Work$ dd 1 dup{l)

.CODE
MOV AX,Offset Work$
PUSH AX
CAL B$PESD

B$PSl2

;Room for the string descriptor

;Get address of descriptor

\SOURCE\PRINTINT.ASM

BASIC Equivalent: PRINT X%;

111 Use

Print an integer value without a trailing carriage return and line feed.

11111 Calling Convention

PUSH Integer value
CALL B$PSI2

No return value. May report an error by calling P$DoError when printing
to a file.

1111 Notes

This routine calls B$PSSD after converting the integer into a string. It
updates the tab column for the current device and does not reset the print
handle.

Example

Perform PRINT A%;

.DATA?
A% dw 1 dup {?)

.CODE

1111 7- 80

;Space for the integer

CRESCENT SOFfWARE, INC.

P.D.Q. Version 3.10 Assembly Toolbox, Programmer's Reference

MDV AX, [A%]
PUSH AX
CALL B$PSI2

;Get the value

B$PSl4 \SOURCE\PRINTLNG.ASM

BASIC Equivalent: PRINT X&;

II Use

Print a long integer value without a trailing carriage return and line feed.

II Calling Convention

PUSH High word of value
PUSH Low word of value
CALL B$PSI4

No return value. May report an error by calling P$DoError when printing
to a file.

1111 Notes

This routine calls B$PSSD after converting the integer into a string. It
updates the tab column for the current device and does not reset the print
handle.

Example

Perform PRINT A&;

.DATA?
A& dd 1 dup (?)

.CODE
LE SAX, [A&]
PUSH ES
PUSH AX
CALL B$PSI4

;Space for the long integer

;Get the value
;Push the high word
; and the low word

B$PSR4 \FPSOURCE\B$PSR4.ASM

BASIC Equivalent: PRINT X!;

111111 Use

Print a 4-byte (single precision) real number and then a trailing space.

CRESCENT SOFfWARE, INC. II 7 - 81

Assembly Toolbox, Programmer's Reference

1111 Calling Convention

PUSH High word of the number
PUSH Low word of the number
CALL B$PSR4

P.D.Q. Version 3.10

No return value. May report an error by calling P$DoError when printing
to a file.

1\1111 Notes

This routine converts the number to a string by calling B$STR4 and then
prints the string with B$PSSD.

This routine uses floating point operations. You must initialize the floating
point emulator by calling P$HookFP before you call this procedure.

Example

Print the real number at ST(O) and then a blank space:

Extrn B$PSR4:Proc

.DATA?
TempSingle dd 1 dup (?)

.CODE
FSTP QWord Ptr [TempSingle]
PUSH Word Ptr [TempSingle+2]
PUSH Word Ptr [TempSingle]
CALL B$PSR4

8$PSR8

BASIC Equivalent: PRINT X#;

11111 Use

;Room for the number

;Pop number off fp stack
:Put it onto the CPU stack

;And print it

\FPSOURCE\B$PSR8.ASM

Print an 8-byte (double precision) real number and then a trailing space.

1111 Calling Convention

PUSH Most significant word of the number
PUSH Next most significant word of the number
PUSH Next most significant word of the number
PUSH Least significant word of thenumber
CALL B$PSR8

No return value. May report an error by calling P$DoError when printing
to a file.

II 7 - 82 CRESCENT SOFfWARE, INC.

P.D.Q. Version3.10 Assembly Toolbox, Programmer's Reference

1111 Notes

This routine converts the number to a string by calling B$STR8 and then
prints the string with B$PSSD.

This routine uses floating point operations. You must initialize the floating
point emulator by calling P$HookFP before you call this procedure.

Example

Print the real number TempDouble and then a blank space:

Extrn B$PSR8:Proc

.DATA?
TempDouble dq 1 dup (?) ;Room for the number

.CODE
MDV BX.Offset TempDouble ;Get pointer for addressing
PUSH Word Ptr [BX+6] ;Push in onto the stack
PUSH Word Ptr [BX+4]
PUSH Word Ptr [BX+2]
PUSH Word Ptr [BX]
CALL B$PSR8 ;And print it

8$PSSD \SOURCE\PRINT.ASM
\SOURCE_ CPRINT.ASM

BASIC Equivalent: PRINT X$;

111111 Use

Print a string without a trailing carriage return and line feed.

111111 Calling Convention

PUSH Offset of string descriptor
CALL B$PSSD

No return value. May report an error by calling P$DoError when printing
to a file.

111111 Notes

Unlike B$PESD, this routine updates (but does not reset) the tab column
for the current print device and does not reset the print handle.

The version in CPRINT. ASM uses the current color attributes stored in
P$Color for each character that it prints when output is to the screen.

CRESCENT SOFTWARE, INC. II 7 - 83

Assembly Toolbox, Programmer's Reference

Example

Perform PRINT Work$;

Extrn B$PSSD:Proc

.DATA?
EVEN

P.D.Q. Version3.10

Work$ dd 1 dup(?) ;Space for descriptor

.CDDE
MDV AX,Dffset Work$
PUSH AX
CALL B$PSSD

B$PUT3

BASIC Equivalent: PUT
1111 Use

\SOURCE\PUT.ASM

Outputs a series of bytes to a file using the current seek location.

1111 _ Calling Convention

PUSH the BASIC file number
PUSH the Segment of the variable to PUT
PUSH the Offset of the variable to PUT
PUSH the number bytes to PUT (or zero)
CALL B$PUT3

No return value. May report an error by calling P$DoError.

111111 Notes

This routine requires a BASIC file number, not a DOS file handle, as its
first parameter.

If you want to PUT a variable-length string into a disk file, set the length
word to 0. If you are using any other kind of variable (including a
fixed-length string or TYPE variable), be sure to specify the correct
number of bytes.

Example

Perform PUT #1, , A&:

Extrn B$PUT3:Proc

.DATA?
A& dd 1 dup (?) ;Space for the variable

Ill 7 - 84 CRESCENT SOFfWARE, INC.

P.D.Q. Version 3.10 Assembly Toolbox, Programmer's Reference

.COOE
MOV AX,1
PUSH AX
PUSH DS
MOV AX.Offset A&
PUSH AX
MOV AX,4
PUSH AX
CALL B$PUT3

;Get the BASIC file number

;Segment of the variable
;Get the offset

;Length of a long integer

8$PUT4 \SOURCE\PUTSEEK.ASM

BASIC Equivalent: PUT #n

11111 Use

Move the file pointer to a specified location in the file and then output a
series of bytes to that file.

Ill Calling Convention

PUSH BASIC file number
PUSH High word of the file location
PUSH Low word of the file location
PUSH Segment of the variable to PUT
PUSH Offset of the variable to PUT
PUSH Number of bytes to PUT, or O if writing a variable-length string.

No return value. May report an error by calling P$DoError.

Ill Notes

This routine requires a BASIC file number, not a DOS file handle, as its
first parameter.

If you want to PUT a variable-length string into a disk file be sure to set
the length word to O. If you are using any other kind of variable (including
a fixed-length string or TYPE variable), be sure to specify the correct
number of bytes.

It is your responsibility to calculate the (1-based) file location for the
output. When you use random access record numbers in BASIC (as in
PUT #1, 5, F$), the compiler determines the offset for you by calculating:

((RecordNumber - 1) * Recordlength) + 1)

This routine expects the result of that calculation, expressed as a long
integer, as its second and third parameters.

CRESCENT SOFTWARE, INC. II 7 - 85

Assembly Toolbox, Programmer's Reference P.D.Q. Version 3.10

Example

Assuming that file #1 has a record length of 70 bytes but the file was
opened for BINARY mode, emulate PUT #1, 3, F$:

Extrn B$PUT4:Proc

.DATA?
EVEN
F$ dd 1 dup (?)

.CODE
MOV BX, 1
PUSH BX
DEC BX
PUSH BX
MOV AX,141
PUSH AX
PUSH OS
MOV AX.Offset F$
PUSH AX
PUSH BX
CALL B$PUT4

B$RDl2

111111 Use

;Space for a string descriptor

;Get the file number
;Pass it on
;BX= 0
;High word of 0
;File location for record 3

;Segment of F$
;Offset of string descriptor

;Set length= 0 for a string

\SOURCE\READINT.ASM

After a call to B$INPP (INPUT) or B$DSKI (INPUT #), reads a value
from the current input file or device into an integer.

11111 Calling Convention

PUSH Segment of the integer variable
PUSH Offset of the integer variable
CALL B$RDI2

No return value. May report an error by calling P$DoError.

11111 Notes

This procedure retrieves the next item as a string and then calls PDQVall
to convert the string to an integer. If the item cannot be converted to an
integer (for example, if it is text or null), the result will be 0.

Example

Perform INPUT #1, Num%:

1111 7 - 86

Extrn B$RDI2:Proc
Extrn B$DSKI:Proc
Extrn B$PEOS:Proc

.DATA

;Starts file input
;Ends file input

CRESCENT SOFfWARE, INC.

P.D.Q. Version3.IO Assembly Toolbox, Programmer's Reference

Num dw ?
FileNum dw

.CODE
MDV AX.Offset FileNum
PUSH AX
CALL B$RDSKI
MDV AX,Offset Num
PUSH DS
PUSH AX
CALL B$RDI2
CALL B$PEOS

;Space for the result
;File to read from

;Get pointer to file number

;Start file input
;DS:AX points to Num

;Get integer input
;Then clean up

B$RDl4 \SOURCE\READLONG.ASM

■ Use

After a call to B$INPP (INPUT) or B$DSKI (INPUT#), reads a value
from the current input file or device into a long integer.

11111 Calling Convention

PUSH Segment of the long integer variable
PUSH Offset of the long integer variable
CALL 8$RDI4

No return value. May report an error by calling P$DoError.

Ill Notes

This procedure retrieves the next item as a string and then calls PDQValL
to convert the string to a long integer. If the item cannot be converted to
a long integer (for example, if it is text or null), the result will be 0.

Example

Perform INPUT #1, Num&:

Extrn B$RDI4:Proc
Extrn B$DSKl:Proc
Extrn B$PEOS:Proc

.DATA
Num dd ?
Fi leNum dw 1

.CODE
MOV AX.Offset FileNum
PUSH AX
CALL B$RDSKI
MDV AX.Offset Num
PUSH DS
PUSH AX

CRESCENT SOFfWARE, INC.

;Starts file input
;Ends file input

;Space for the result
;File to read from

;Get pointer to file number

;Start file input
;DS:AX points to Num

11 7 - 87

Assembly Toolbox, Programmer's Reference

CALL B$RDI4
CALL B$PEOS

;Get long integer input
;Then clean up

P.D.Q. Version 3.10

B$RDIR \SOURCE\RMDIR.ASM

BASIC Equivalent: RMDIR

11111 Use

Removes an existing, empty subdirectory.

Ill Calling Convention

PUSH Offset of string descriptor holding directory name
CALL B$RDIR

No return value. May report an error by calling P$DoError.

II Notes

If the directory name isn't already in a normal BASIC string, it is faster
and easier to call DOS Int 21h, service 3Ah yourself. If the directory
name is in a string, this routine does the work of extracting the name,
adding a trailing NULL character, and making the call for you.

Example
Remove the directory whose name is in Dir$:

Extrn B$RDIR:Proc

.DATA?
EVEN
Dir$ dd 1 dup (?)

.CODE
MDV AX.Offset Dir$
PUSH AX
CALL B$RDIR

B$RDR4

II Use

;Room for a string descriptor

;Make a pointer to descriptor

\F PSOURCE\READSNGL.ASM

After a call to B$INPP (INPUT) or B$DSKI (INPUT#), reads a value
from the current input file or device into a single-precision variable.

11111 7- 88 CRESCENT SOFfWARE, INC.

P.D.Q. Version 3.10 Assembly Toolbox, Programmer's Reference

11111 Calling Convention

PUSH Segment of result variable
PUSH Offset of result variable
CALL B$RDR4

No return value. May report an error by calling P$DoError.

11111 Notes

This procedure retrieves the next item as a string and then calls B$FVAL
to convert the string to a single precision value. If the item cannot be
converted (for example, if it is text or null), the result will be 0.

This routine uses floating point operations. You must initialize the floating
point emulator by calling P$HookFP before you call this procedure.

Example

Perform INPUT #1, Num!:

Extrn B$RDR4:Proc
Extrn B$DSKI:Proc
Extrn B$PEOS:Proc

.DATA
Num dd ?
Fi leNum dw

.CODE
MOV AX,Offset FileNum
PUSH AX
CALL B$DSKI
MDV AX,Offset Num
PUSH DS
PUSH AX
CALL B$RDR4
CALL B$PEOS

;Starts file input
;Ends file input and cleans up

;Location for result
;File number to use

;Pointer to file number

;Start file input
;DS:AX points to result

;Get a single-precision value
;Stop file input and tidy up

B$RDR8 \FPSOURCE\READDBLASM

11111 Use

After a call to B$INPP (INPUT) or B$DSKI (INPUT #), reads a value
from the current input file or device into a double-precision variable.

Ill Calling Convention

PUSH Segment of result variable
PUSH Offset of result variable
CALL B$RDR8

No return value. May report an error by calling P$DoError.

CRESCENT SOFfWARE, INC. 11117 - 89

Assembly Toolbox, Programmer's Reference P.D.Q. Version3.10

11111 Notes

This procedure retrieves the next item as a string and then calls B$FVAL
to convert the string to a double precision value. If the item cannot be
converted (for example, if it is text or null), the result will be 0.

This routine uses floating point operations. You must initialize the floating
point emulator by calling P$HookFP before you call this procedure.

Example

Perform INPUT #1, Num#:

Extrn B$RDR8:Proc
Extrn B$DSKI:Proc
Extrn B$PEOS:Proc

.DATA
Num dq ?
F ileNum dw 1

.CODE
MDV AX,Dffset FileNum
PUSH AX
CALL B$DSKI
MDV AX,Offset Num
PUSH OS
PUSH AX
CALL B$RDR8
CALL B$PEOS

B$RDSD
111111 Use

;Starts file input
;Ends file input and cleans up

;Location for result
;File number to use

;Pointer to file number

;Start file input
;DS:AX points to result

;Get a double-precision value
;Stop file input and tidy up

\SOURCE\READSTR.ASM

After a call to B$INPP (INPUT) or B$DSKI (INPUT#), reads a value
from the current input file or device into a string.

1111 Calling Convention

PUSH Segment of string or descriptor
PUSH Offset of string or of variable-length string descriptor
PUSH Length of string (or 0)
CALL B$RDSD

No return value. May report an error by calling P$DoError.

1111 Notes

This procedure can read into either a fixed- or variable-length string. If
the destination is a fixed-length string you must specify its memory location
and length. If it is a variable-length string you instead specify the segment
and address of its descriptor, and use a length of 0.

Ill 7-90 CRESCENT SOFfWARE, INC.

P.D.Q. Version 3.10 Assembly Toolbox, Programmer's Reference

If the next item does not exist (if you have read past the end of user input
or past the end of a file), the result will be a null string (if it is
variable-length) or padded with spaces. This routine calls B$ASSN or
B$SASS to make the string assignment.

Example

Perform INPUT #1, Work$:

Extrn B$RDSD:Proc
Extrn B$DSKI:Proc
Extrn B$PEOS:Proc

.DATA
DefStr Work$
FileNum dw

.CODE
MDV AX,Offset FileNum
PUSH AX
CALL B$DSKI
MDV AX.Offset Work$
PUSH DS
PUSH AX
SUB AX,AX
PUSH AX
CALL B$RDSD
CALL B$PEOS

B$REST

BASIC Equivalent: RESET

1111 Use

;Starts file input
;Ends file input and cleans up

;Room for string descriptor
;File to read from

;Point to the file number

;Start file input
;Get address of result descriptor
;Pass its segment
; and its offset
;0 means a variable-length string

;Get one string
;Then clean up

\SOURCE\RESET.ASM

Closes all open files (files that were open through calls to B$0PEN or
B$00PN only).

II Calling Convention

CALL B$REST

No return value. May report an error by calling P$DoError.

II Notes

B$REST will not close files that you opened with direct calls to DOS
unless you have also manipulated P.D. Q. 's list of open files, P$HandleTbl.

Example

Close all open files:

CRESCENT SOFfWARE, INC. 11117 - 91

Assembly Toolbox, Programmer's Reference P.D.Q. Version3.10

Extrn B$REST:Proc

.CODE
CALL B$REST

B$RGHT

'Now all files are closed

\SOURCE\RIGHT$.ASM

BASIC Equivalent: RIGHT$

11111 Use

Creates a new temporary string that contains the rightmost n characters
of a given string.

Ill Calling Convention

PUSH Offset of original string descriptor
PUSH Number of characters to retain
CALL B$RGHT

Returns the offset of a temporary string descriptor.

11 Notes

The maximum length of the returned string is the number of characters in
the original string.

The returned string descriptor is in P.D.Q. 's temporary string pool. You
should copy the string to your own string descriptor (using B$SASS) if
you want to save the result.

Example

Get the rightmost 10 characters from Work$ and save the result in
Saved$-Saved$ = RIGHT$(Work$, 10):

Ill 7- 92

Extrn B$RGHT:Proc

.DATA?
EVEN
Work$
Saved$

.CODE

dd 1 dup (?)
dd 1 dup (?)

MOV AX.Offset Work$
PUSH AX
MDV AX,10
PUSH AX
CALL B$RGHT
PUSH AX
MDV AX.Offset Saved$

;Space for original string
;Space for the result

;Get address of original descriptor

;Pass the number of characters

;Get the right 10 characters
;Pass along the temporary string
;Pointer to the new string

CRESCENT SOFrWARE, INC.

P.D.Q. Version3.l0 Assembly Toolbox, Programmer's Reference

PUSH AX
CALL 8$SASS ;String is assigned

B$RMl4 \SOURCE\MODLONG.ASM
\SOURCE\MODLONG3.ASM

11111 Use

Find the MOD (remainder after integer division) of two long integers: X&
MODY&

11111 Calling Convention

PUSH High Word of Divisor (Y&)
PUSH Low Word of Divisor (Y&)
PUSH High Word of Dividend (X&)
PUSH Low Word of Dividend (X&)
CALL 8$RMI4

Returns with the MOD value in DX:AX.

11111 Notes

Note that both arguments are passed by value. This routine, like all BASIC
arithmetic, treats the values as being signed. It returns the proper MOD
after performing a signed long integer division (IDIV).

The alternate version of B$RMI4 in MODLONG3.ASM uses the special
32-bit registers of 386 and 486 CPUs. It is much faster than the 8088 and
80286 version, but can run only on 386 and 486 computers.

Example

Perform Z& = X& MOD Y &:

Extrn B$RMI4:Proc

.DATA?
X& dd 1 dup (?)
Y& dd 1 dup (?)
Z& dd 1 dup (?)

.CDDE
PUSH Word ptr [Y&+2]
PUSH Word ptr [Y&]
PUSH Word ptr [X&+2]
PUSH Word ptr [X&]
CALL B$RMI4
MDV Word ptr [Z&+2] ,DX
MDV Word ptr [Z&],AX

CRESCENT SOFI'WARE, INC.

;Space for variables

;High word of divisor
; and low word
;High word of dividend
; and low word
;Perform X% MODY%
;Store high word of result
; and low word

111117- 93

Assembly Toolbox, Programmer's Reference P.D.Q. Version 3.10

B$RNDO
B$RND1

BASIC Equivalent: RND

Ill Use

\FPSOURCE\RND.ASM

Returns a single-precision random number between O and 1.

11111 Calling Convention

For B$RNDO:

CALL B$RNDO

For B$RND1:
PUSH any word (a dummy argument)
CALL B$RND1 Both return with AX containing a pointer to the single
precision result.

11111 Notes

The P.D.Q. library does not support BASIC's use of RND(n) when n is
less than or equal to 0, so the argument passed to B$RND 1 is ignored.

This routine uses floating point operations. You must initialize the floating
point emulator by calling P$HookFP before you call this procedure.

Example

Get the next random number and place it on the floating point stack:

Extrn B$RNDO:Proc

.CODE
CALL B$RNDO
MOV BX,AX
FLD DWord Ptr [BX]

B$RNZP

;Get the random number
;Put pointer where we can use it
;Load it into ST(O)

\FPSOURCE\RANDOMIZ.ASM

BASIC Equivalent: RAN DO MIZE

1111 Use

Sets the random number generator seed value from a single-precision
number.

1111 7- 94 CRESCENT SOFrWARE, INC.

P.D.Q. Version 3.10 Assembly Toolbox, Programmer's Reference

111 Calling Convention

PUSH Most significant word of seed number
PUSH Least significant word of seed number
CALL 8$RNZP

No return value.

1111 Notes

This routine uses floating point operations. You must initialize the floating
point emulator by calling P$HookFP before you call this procedure.

Example

Seed the random number generator with a value of 2 .0:

Extrn 8$RNZP:Proc

.DATA
SeedNum dd 2.0 ;Seed number

.CODE
PUSH Word ptr [SeedNum+2] ;Pass the value
PUSH Word ptr [SeedNum] ; on the stack
CALL 8$RNZP

8$RSET \SOURCE\RSET.ASM

BASIC Equivalent: RSET

11111 Use

Copies and right-justifies data from a variable-length string into either a
variable-length string or a fixed block of memory (normally part of a
TYPE or FIELD variable).

Ill Calling Convention

PUSH Offset of source string descriptor
PUSH Segment of destination or of destination descriptor
PUSH Offset of destination or of destination descriptor
PUSH Length of the destination.

No return value.

11111 Notes

Use a length of zero for the destination when assigning to a variable-length
string.

CRESCENT SOFfWARE, INC. 11117 - 95

Assembly Toolbox, Programmer's Reference P.D.Q. Version 3.10

This routine automatically pads the destination with spaces if it is longer
than the source. If the source is longer, it is truncated to fit into the
destination.

Example

Perform RSET A$ = B$ when both are variable-length strings:

Extrn B$RSET:Proc

.DATA?
EVEN
A$ dd 1 dup (?)
B$ dd 1 dup (?)

.CODE
MDV AX,Offset B$
PUSH AX
MDV AX,Offset A$
PUSH OS
PUSH AX
SUB AX,AX
PUSH AX
CALL B$RSET

B$RTRM

;Space for string descriptors

;Point to source descriptor

;Point to destination descriptor
;Push its segment
; and its offset
;AX= 0: destination is a
; variable-length string

\SOURCE\RfRIM$.ASM

BASIC Equivalent: RTRIM$

11 Use
Copies and removes trailing CHR$(32) spaces and CHR$(0) nulls from
the right end of a string.

Ill Calling Convention

PUSH Offset of string descriptor
CALL B$RTRM

Returns with the offset of the result string descriptor in AX.

11111 Notes
The result is returned in a temporary string descriptor. You must copy the
temporary string to a permanent string if you want to process it further.

Example

Perform A$ = RTRIM$(A$):

11111 7- 96

Extrn B$RTRM:Proc
Extrn B$SASS:Proc ;For string assignment

CRESCENT SOFfWARE, INC.

P.D.Q. Version3.IO Assembly Toolbox, Programmer's Reference

.DATA?
EVEN
A$ dd 1 dup (?)

.CODE
MDV AX,Offset A$
PUSH AX
CALL B$RTRM
PUSH AX
MDV AX,Offset A$
PUSH AX
CALL B$SASS

;Room for string descriptor

;Create pointer to A$

;Strip trailing spaces and nulls
;Pass pointer to result descriptor
;Where we want the result

;The result is now in A$

B$SACT \SOURCE\ CONCAT2$.ASM

11111 Use

Concatenates two strings and stores the result in a specified string location
(C$ = A$ + B$).

11111 Calling Convention

PUSH Offset destination string descriptor
PUSH Offset of first source string descriptor
PUSH Offset of second source string descriptor
CALL B$SACT

No return value.

11111 Notes

This routine simply calls B$SCAT and then B$SASS, just as the example
code in the description of B$SCAT does.

If there is insufficient space in the string pool for the result, no error will
be generated but the result string will be truncated to the amount of space
available.

Example

Implement C$ = A$ + B$:

Extrn B$SACT:Proc

.DATA?
EVEN
A$ dd 1 dup(?)
B$ dd 1 dup (?)
C$ dd 1 dup (?)

.CODE
MDV AX.Offset C$
PUSH AX

CRESCENT SOFfWARE, INC.

;Space for three
string

; descriptors

;Pass destination first

11117- 97

Assembly Toolbox, Programmer's Reference

MOV AX,Offset A$
PUSH AX
MOV AX.Offset B$
PUSH AX
CALL B$SACT

;Then pass the source
; strings in any order

;Now C$ =A$+ B$

P.D.Q. Version 3.10

B$SASS \SOURCE\ASSIGN$.ASM

Synonyms:

1111 Use

B$SAS1
B$SASF

Create a new variable-length string and assign it a value.

Ill Calling Convention

PUSH Offset of source string descriptor
PUSH Offset of destination string descriptor
CALL B$SASS

No return value.

Ill Notes

This routine takes care of all the dirty work of creating a string; it puts
the correct values in the string descriptor, then finds space in the string
pool for the back pointer and string text. See the section Using Strings
for information about string descriptors, back-pointers, string compaction,
and other related topics.

This is the routine that BASIC calls for assignments like A$ = B$, C$ =
"P.D.Q.", and D$ = "", as well as for creating and storing the result of
string expressions like E$ = LEFf$(F$, 1).

Do not use B$SASS to assign a string constant that was defined using the
DefStr macro.

Call B$STDL to delete a string from memory when you want to release
its space in the string pool.

Example

Implement A$ = B$:

Extrn B$SASS:Proc

.DATA?
EVEN
A$ dd 1 dup(?) ;Space for two string descriptors

1111 7 - 98 CRESCENT SOFfWARE, INC.

P.D.Q. Version 3.10 Assembly Toolbox, Programmer's Reference

B$ dd 1 dup (?)

.CODE
MDV AX.Offset B$
PUSH AX
MDV AX.Offset A$
PUSH AX
CALL B$SASS

;Assumes B$ has been initialized
;Pass pointer to B$ descriptor
;Pass pointer to A$ descriptor

;Get the work done

B$SCAT \SOURCE\ CONCAT$.ASM

Synonyms: B$SCT1
111111 Use

Concatenates two strings (A$ + B$).

1111 Calling Convention

PUSH Offset of the first string's descriptor
PUSH Offset of the second string's descriptor
CALL B$SCAT

Offset of result descriptor returned in AX.

11111 Notes

The result string will be truncated if there aren't enough bytes left in the
string pool for the entire concatenated string.

Neither source string is changed and the result is stored in a temporary
string. If you want to use it for future manipulation, call B$SASS to copy
it to a new string. Use B$SACT if you want to concatenate and save the
result all in one operation.

Example

Implement C$ = A$ + B$:

Extrn B$SCAT:Proc

.DATA
A$ dd 1 dup (?)
B$ dd 1 dup (?)
C$ dd 1 dup (?)

.CODE
MDV AX.Offset A$
PUSH AX
MDV AX,Offset B$
PUSH AX
CALL B$SCAT

CRESCENT SOFfWARE, INC.

;Space for the
string
descriptors

;Pass A$'s descriptor address

;And the same for B$

;Put them together

11117-99

Assembly Toolbox, Programmer's Reference P.D.Q. Version3.l0

PUSH AX
MOV AX,Offset C$
PUSH AX

;Pass result's descriptor address
;And the location for the result

CALL B$SASS ;Store the concatenated string in C$

B$SCLS

BASIC Equivalent: CLS

11111 Use

\SOURCE\CLS.ASM

Clear the text screen using the current color, and move the cursor to the
top left corner.

Ill Calling Convention

CALL B$SCLS

No return value.

111111 Notes

The color used for CLS can be set with by calling B$COLR, or by directly
setting the color value in the external data byte called P$Color.

This routine will work properly regardless of the number of text rows on
the display.

Example

Clear the screen to the current colors:

Extrn B$SCLS:Proc

.CODE
CALL B$SCLS

B$SCMP \SOURCE\ COMPARE$.ASM

1111 Use

Compares two strings and returns with the flags set appropriately.

11111 Calling Convention

PUSH Offset of string l's descriptor
PUSH Offset of string 2's descriptor
CALL B$SCMP

Result returned in the flags register.

11111 7- 100 CRESCENT SOFTWARE, INC.

P.D.Q. Version 3.10 Assembly Toolbox, Programmer's Reference

Ill Notes

Strings are compared until either a difference is found, or the end of one
string is reached. If two strings are identical through to the end of one of
them, then the longer string is considered to be "greater".

After calling B$SCMP you will use an unsigned conditional jump rather
than one that is signed, because ASCII characters are considered to have
a range of O through 255. That is, you will use Ja or Jbe and so forth,
and not J ge or JI.

Example

Implement IF A$ > B$ THEN do something:

Extrn B$SCMP:Proc

.DATA
A$ dd 1 dup (?)
B$ dd 1 dup (?)

.CODE
MDV AX,Dffset A$
PUSH AX
MDV AX,Offset B$
PUSH AX
CALL B$SCMP
JNA @F

;do something here
@@:

;Space for A$'s descriptor
;Space for 8$'s descriptor

;Get address of string 1

; and address of string 2

;Go if A$<= B$

;Common code again

B$SDAT \SOURCE\DATE$$.ASM

BASIC Equivalent: DATE$ statement

11 Use

Sets the system date from a date in a string.

111!1 Calling Convention

PUSH Offset of string descriptor
CALL B$SDAT

No return value.

11111 Notes

The string can be in one of two forms:

mm-dd-yy (you can use any delimiter instead of dashes)

CRESCENT SOFfWARE, INC. II 7 - 101

Assembly Toolbox, Programmer's Reference P.D.Q. Version 3.10

or

mm-dd-yyyy

The second format is the only way to set a date in the 21st century.

Example

Extrn B$SDAT:Proc

.DATA?
EVEN
Date dd 1 dup (?)

.CODE
MDV AX,Offset Date
PUSH AX
CALL B$SDAT

B$SENV

;Space for string descriptor

;Pass a pointer to the
; string descriptor
;System date is now set

\SOURCE\ENVIRON3.ASM

BASIC Equivalent: ENVIRON statement

1111 Use

Modifies or creates an entry in the environment list.

Ill Calling Convention

PUSH Offset of string descriptor of new variable and value
CALL B$SENV

No return value.

Ill Notes

You can choose what copy of the environment to work with by using
EnvOption. See The Environment in the main P.D.Q. manual for more
information about working with the environment.

Example

Assuming that A$ contains a valid string in the form of "variable=value,"
set that variable into the current environment:

Extrn B$SENV:Proc

.DATA?
EVEN
A$ dd 1 dup (?)

.CODE

1111 7 - 102

;Space for A$'s descriptor

CRESCENT SOFfWARE, INC.

P.D.Q. Version3.10

MDV AX,Offset A$
PUSH AX
CALL B$SENV

B$SERR

Assembly Toolbox, Programmer's Reference

;Get address of string

;Set it into the environment

\SOURCE\ERROR.ASM

BASIC Equivalent: ERROR

111 Use

Simulates a BASIC error.

11 Calling Convention

PUSH Error value
CALL B$SERR

No return value.

II Notes

The error value should be a value between 1 and 255. The high byte of
the value is ignored. Use Oto clear ERR.

This routine translates the error code it receives to an internal form, stores
the error in the public external data byte P$PDQErr, and then calls
P$DoError to handle possible ON ERROR calls. See the latter routine
for information about error handling.

Example

Perform ERROR 5 (illegal function call):

Extrn B$SERR:Proc

.CODE
MDV AX,5
PUSH AX
CALL B$SERR

B$SGN4
B$SGN8

BASIC Equivalent: SGN
11111 Use

;Get the error code
; and pass it on
;Force Error 5

\FPSOURCE\B$SGN.ASM.

Determines the sign of the real number at ST(0) on the floating point stack.

CRESCENT SOFrWARE, INC. 1111 7 - 103

Assembly Toolbox, Programmer's Reference

1111 Calling Convention

CALL B$SGN8

P.D.Q. Version 3.10

ST(0) is replaced by -1.0, 0.0, or 1.0 and the flags are set appropriately
for a conditional jump.

11 Notes

B$SGN4 and B$SGN8 are two names for the same routine. You may call
either one. Although the names suggest that there is a different way of
finding the sign for a single and double-precision number, once a number
is on the floating point stack, it has no set precision.

This routine uses floating point operations. You must initialize the floating
point emulator by calling P$HookFP before you call this procedure.

Example

Jump if ST(0) is zero:

Extrn B$SGN8

.CODE
CALL B$SGN8
JZ ItWasZero

;Make the comparison
; Go if it was O

B$SICT \SOURCE\IOCTL.ASM

BASIC Equivalent: IOCTL
111 Use

Send a control string to a device driver.

Ill Calling Convention

PUSH BASIC file number of the device
PUSH Offset of the control string descriptor
CALL B$SICT

No return value. May report an error by calling P$DoError.

111 Notes

This routine uses DOS service 44h, subfunction 3, to send the control
string to the device. The only difference between calling B$SICT and
sending the control string yourself is that this routine will translate the
BASIC file number into a DOS handle for you and fill the registers
correctly for the DOS service call.

11111 7- 104 CRESCENT SOFfWARE, INC.

P.D.Q. Version3.I0 Assembly Toolbox, Programmer's Reference

Example

Send Control$ to the device opened as file number 3:

Extrn B$SICT:Proc

.DATA?
EVEN
Control$ dd 1 dup (?) ;Control string descriptor

.CODE
MDV AX,3 ;Get BASIC file number
PUSH AX
MDV AX,Offset Control$;Get descriptor address
PUSH AX
CAtL B$SICT

B$SLEP \SOURCE\SlEEP.ASM

BASIC Equivalent: SLEEP

1111 Use

Suspend execution for a given number of seconds.

II Calling Convention

PUSH Any word value (a dummy word)
PUSH Number of seconds
CALL B$SLEP

No return value.

1111 Notes

If the number of seconds is given as zero then B$SLEP waits indefinitely
until a key is pressed.

The system time ticks 18.2 times per second. This routine multiplies the
number of seconds you specify by 18, so there will be a slight inaccuracy
for long pauses.

The user can exit prematurely from the pause by pressing any key. This
routine begins by clearing the keyboard buffer, so any keystrokes that are
waiting when B$SLEP is called are lost. The user's key is not retrieved
from the buffer. It will be the first key read with the next keyboard input.

Example

Wait for 1 minute:

CRESCENT SOFTWARE, INC. 1111 7 - 105

Assembly Toolbox, Programmer's Reference

Extrn B$SLEP:Proc

.CODE
MOV AX,60
PUSH AX
PUSH AX
CALL B$SLEP

;A 60-second sleep
;the dummy word
;The sleep length

P.D.Q. Version 3.10

B$SMID \SOURCE\M1D$$.ASM

BASIC Equivalent: Ml 0$ statement

111 Use

Replace a portion of a string with another string:

MID$(Destination$, StartPos, NumChars) = Source$

The destination may be either a fixed-length string or the descriptor of a
variable-length string.

1111 Calling Convention

PUSH Segment of destination string or descriptor
PUSH Offset of destination string or descriptor
PUSH Length of destination string (or 0)
PUSH Offset of descriptor of source string
PUSH Number of characters
PUSH Start position
CALL B$SMID

No return value.

II Notes

If the string is a conventional (not fixed-length) string use a length of zero.

This routine may create (and delete) a temporary string. It will also clip
the Length parameter to the length of the source string if necessary. If
you want to insert the entire source string into the destination string and
not worry about how long the source really is, simply specify a Length of
7FFFh. Of course, only as many characters as will fit are assigned.

B$SMID calls several other routines including B$FMID and B$LSET.

In many cases, you will find that it is easier to overwrite part of a string
directly in assembly-language rather than set up and call B$SMID.

Example

Perform MID$(B$, 5, 7) = A$:

Ill 7 - 106 CRESCENT SOFfWARE, INC.

P.D.Q. Version 3.10 Assembly Toolbox, Programmer's Reference

Extrn B$SMID:Proc

.DATA?
EVEN
A$ dd 1 dup (?)
B$ dd 1 dup (?)

.CODE
PUSH OS
MDV AX.Offset B$
PUSH AX
SUB AX,AX
PUSH AX
MDV AX.Offset A$
PUSH AX
MOV AX,7
PUSH AX
MOV AX,5
PUSH AX
CALL B$SMID

;Space for string descriptors

;Segment of destination descriptor
;Get offset of destination descriptor

;O means B$ is variable-length

;Get offset of source descriptor

;Get bytes to insert

;Get start position in B$

;Get the work done

8$S0ND \FPSOURCE\SOUND.ASM

BASIC Equivalent: SOUND
11111 Use

Makes a tone of a specified frequency and duration through the computer's
speaker.

11111 Calling Convention

PUSH Frequency of tone as an integer
PUSH Duration of tone as a single-precision number
CALL B$SOND

No return value.

1111 Notes

Unless you have a particular need to pass the duration as a single-precision
number, it is much faster to call PDQSound directly. This procedure
converts the duration to an integer and calls PDQSound for you.

This routine uses floating point operations. You must initialize the floating
point emulator by calling P$Hook.FP before you call this procedure.

Example

Perform SOUND 440, 20:

CRESCENT SOFTWARE, INC. II 7 - 107

Assembly Toolbox, Programmer's Reference

Extrn B$SOND:Proc

.DATA
Frequency dw 440
Duration dd 20.0

.CODE
PUSH [Frequency]
PUSH Word Ptr [Duration+ 2)
PUSH Word Ptr [Duration]
CALL B$SOND

;Frequency of tone
;And its duration

;Pass on the frequency
;And the duration

;Play the note

P.D.Q. Version 3.10

B$SPAC \SOURCE\SPACE$.ASM

BASIC Equivalent: SPACE$

111 Use

Create a string composed of a specific number of CHR$(32) space
characters.

1111 Calling Convention

PUSH Number of spaces
CALL B$SPAC

Returns the offset of a string descriptor in AX.

111 Notes

This routine merely translates the arguments into an appropriate B$STRI
call (BASIC's STRING$ function).

The returned string descriptor is in P.D.Q. 's temporary string pool. If you
want to work with the string further, use B$SASS to assign the results to
your own string descriptor.

Example

Perform A$ = SPACE$(20):

Extrn B$SPAC:Proc
Extrn B$SASS:Proc

.DATA?
EVEN
A$ dd 1 dup (?)

.CODE
MDV AX,20
PUSH AX
CALL B$SPAC

1111 7 - 108

;For string assignment

;Space for string descriptor

;Length of desired string

;Create the string

CRESCENT SOFfWARE, INC.

P.D.Q. Version3.10

PUSH AX
MOV AX,Offset A$
PUSH AX
CALL B$SASS

B$SPLY

BASIC Equivalent: PLAY

111 Use

Assembly Toolbox, Programmer's Reference

;Pass the result's address
;Now pass our string descriptor

;Assign result to A$

\SOURCE\PLAY.ASM

Play tones through the speaker based on a string of note values.

Ill Calling Convention

PUSH Offset of descriptor of string containing notes
CALL B$SPLY

No return value.

111 Notes

This is a full implementation of the BASIC PLAY statement. See your
BASIC or QuickBASIC manual for a description of how to code the tune
string.

Example

Play the notes in Tune$:

Extrn B$SPLY:Proc

.DATA?
EVEN
DefStr Tunes, "o3 18 edcdeee"

.CODE
MOV AX,Offset Tune$
PUSH AX
CALL B$SPLY

B$SSEK

BASIC Equivalent: SEEK statement

11111 Use

;Mary had a little lamb

;Get address of string
;Pass it on
;And let it play

\SOURCE\SEEK.ASM

Move the file pointer to a specific file location for the next read or write.

CRESCENT SOFTWARE, INC. 11!1 7 - 109

Assembly Toolbox, Programmer's Reference

1111 Calling Convention

PUSH BASIC file number
PUSH High word of desired location
PUSH Low word of desired location
CALL B$SSEK

P.D.Q. Version 3.10

No return value. May report an error by calling P$DoError.

1111 Notes

If the file has been opened for random access, this routine multiplies the
location you specify by the file's record length. For all other files, the
location you specify is interpreted as a byte position in the file. In both
cases, your location number is 1-based (as opposed to DOS's 0-based
system of numbering bytes and file locations).

This routine calls B$MUI4 to perform the multiplication.

Example

Move the pointer to record 5 of file #1, which was opened as a random
access file:

Extrn B$SSEK:Proc

.CODE
MDV AX,1
PUSH AX
MDV AX,5
CWD

;Get the file number

;Record location
; now in DX:AX
;Push the high word PUSH DX

PUSH AX
CALL B$SSEK

; and the low word
;Move the file pointer.

B$SSHL

BASIC Equivalent: SHELL

11111 Use

\SOURCE\SHELLASM

Runs COMMAND.COM (or any other command interpreter pointed to
by the environment variable COMSPEC) and has it execute a .COM,
.EXE, or .BAT program or DOS command.

11111 Calling Convention

PUSH Offset of descriptor of command string
CALL B$SSHL

No return value. May report an error by calling P$DoError.

1111 7- 110 CRESCENT SOFfWARE, INC.

P.D.Q. Version 3.10 Assembly Toolbox, Programmer's Reference

111111 Notes

If the command string has a length of zero, B$SSHL shells to COM
MAND.COM and waits until the user enters the DOS EXIT command.
Otherwise, COMMAND. COM is told to run your command and return
immediately.

If COMSPEC is not properly set, this command will fail and return
immediately.

Example

Redirect a directory listing to the file DIRFILE in the default directory:

Extrn B$SSHL:Proc

.DATA
DefStr Cmd$,"DIR > DIRFILE"

.CODE
MDV AX.Offset Cmd$
CALL B$SSHL

;Point to string descriptor
; and do it

B$STDL \SOURCE\STRDELET.ASM

Synonym: StringRelease

111 Use

Deletes a string.

1111 Calling Convention

PUSH Offset of string's descriptor
CALL B$STDL

No return value.

1111 Notes

You should call this routine to delete temporary strings that you no longer
need. It is also called automatically during string assignments to delete
the old contents of the string being assigned.

This routine works by setting the length of the descriptor to zero, and then
changing the string's back pointer to show that the data has been aban
doned.

Do not use B$STDL to erase a string constant that was defined using the
DefStr macro.

CRESCENT SOFrWARE, INC. Ill 7 - 111

Assembly Toolbox, Programmer's Reference P.D.Q. Version 3.10

Example

Delete A$ so that its data space can be reused in the string pool. This is
the equivalent of A$ = 1111 but with slightly less code since two arguments
are not passed:

Extrn B$STDL:Proc

.DATA?
EVEN
A$ dd 1 dup(?)

.CODE
MDV AX,Offset A$
PUSH AX
CALL B$STDL

B$STl2

;Room for a string descriptor

;Get pointer to descriptor

\SOURCE\STR$.ASM
\SOURCE_ STR$.ASM

BASIC Equivalent: STR$ (X%)

1111 Use

Converts an integer value into its ASCII string representation.

11111 Calling Convention

PUSH Integer word to convert
CALL B$STI2

Returns offset of result string descriptor in AX.

Ill Notes

This routine simply converts the integer value into a long integer and then
calls B$STI4 to do the conversion. You can save a few cycles by making
the conversion yourself and calling B$STI4.

The returned string is in P.D.Q. 's temporary string space. You must copy
it to your own string (using B$SASS, for example) if you want to work
with it further.

The version in _STR$.ASM is identical except it suppresses the leading
space that is normally added before a positive value.

Example

Perform A$ = STR$(B %) :

Extrn B$STI2:Proc
Extrn B$SASS:Proc

1111 7 - 112

;For string assignment

CRESCENT SOFfWARE, INC.

P.D.Q. Version 3.10 Assembly Toolbox, Programmer's Reference

.DATA?
EVEN
A$ dd 1 dup(?)
B dw 1 dup (?)

.CODE
MDV AX, [BJ
PUSH AX
CALL B$STI2
PUSH AX
MDV AX,Offset A$
PUSH AX
CALL B$SASS

;Space for string descriptor
;Space for integer value

;Get integer value
;Send it on
;Convert it to an ASCII string
;Pass on the result string
;Get pointer to our string
;Pass it on also
;Copy result to our string

B$STl4 \SOURCE\STR$.ASM
\SOURCE_ STR$.ASM

BASIC Equivalent: STR$ (X&)

■ Use

Converts a long integer value into its ASCII string representation.

11111 Calling Convention

PUSH High word of value to convert
PUSH Low word of value to convert
CALL B$STI4

Returns offset of the result string descriptor in AX.

1111 Notes

The returned string is in P.D.Q. 's temporary string space. You must copy
it to your own string (using B$SASS, for example) if you want to work
with it further.

The version in _STR$.ASM is identical except it suppresses the leading
space that is normally added before a positive value.

Example

Perform A$ = STR$(B&):
Extrn B$STI4:Proc
Extrn B$SASS:Proc

.DATA?
EVEN
A$ dd 1 dup (?)
B dd 1 dup (?)

CRESCENT SOFfWARE, INC.

;For string assignment

;Space for string descriptor
;Space for long integer value

11111 7 - 113

Assembly Toolbox, Programmer's Reference

.CODE
LES AX, [B]
PUSH ES
PUSH AX
CALL B$STI4
PUSH AX
MDV AX,Offset A$
PUSH AX
CALL B$SASS

;Get long integer value
;Pass the high word
; and then the low word
;Convert it to an ASCII string
;Pass on the result string
;Get pointer to our string
;Pass it on also
;Copy result to our string

P.D.Q. Version 3.10

B$STIM SOURCE\ TIME$$.ASM

BASIC Equivalent: TIME$ statement

1111 Use

Sets the system clock to a specified time.

11111 Calling Convention

PUSH Offset of descriptor for string holding the new time
CALL B$STIM

No return value.

1111 Notes

This routine does a minimal amount of error checking, so it is your
responsibility to make sure that the string contains a valid time, properly
formatted.

Example

Set the system time to 9:00 am:

Extrn 8$STIM

.DATA
DefStr Time$, "09:00:00" ;Time to set

.CODE
MDV AX.Offset Time$;Point to time descriptor
PUSH AX
CALL B$STIM ;Set the system time

111 7 - 114 CRESCENT SOFTWARE, INC.

P.D.Q. Version 3.10 Assembly Toolbox, Programmer's Reference

B$STR4 \FPSOURCE\B$STR4.ASM

BASIC Equivalent: STR$ (X!)

Ill Use

Converts a single-precision number into its ASCII representation.

Ill Calling Convention

PUSH High word of the number (bytes 2 and 3)
PUSH Low word of the number {bytes O and 1)
CALL B$STR4

Returns offset of a string descriptor in AX.

11111 Notes

The returned string is in P.D.Q. 's temporary string space. You should
copy it to your own string with B$SASS if you want to work with it further.

This routine uses floating point operations. You must initialize the floating
point emulator by calling P$HookFP before you call this procedure.

Example

Perform Work$ = STR$(X!):

Extrn B$STR4:Proc

.DATA?
EVEN
Work$
X

.CODE

dd 1 dup (?)
dd 1 dup (?)

PUSH Word Ptr [X + 2]
PUSH Word Ptr [X]
CALL B$STR4
PUSH AX
MDV AX,Offset Work$
PUSH AX
CALL B$SASS

CRESCENT SOFfWARE, INC.

;Room for Work$ descriptor
;Room for X!

;Pass on the value

;Convert to a string
;Pass on string pointer
;Get pointer to our descriptor
; Pass it on
;Store result in Work$

1111 7 - 115

Assembly Toolbox, Programmer's Reference P.D.Q, Version 3.10

B$STR8 \FPSOURCE\B$STR8.ASM

BASIC Equivalent: STR$ (X#)

1111 Use

Converts a double-precision number into its ASCII representation.

Ill Calling Convention

PUSH High word of the number (bytes 6 and 7)
PUSH Next most significant word (bytes 4 and 5)
PUSH Next most significant word (bytes 2 and 3)
PUSH Least significant word of the number (bytes O and 1)
CALL B$STR8

Returns offset of string descriptor in AX.

Ill Notes

The returned string is in P.D.Q.'s temporary string space. You should
copy it to your own string (with B$SASS) if you want to work with it
further.

This routine uses floating point operations. You must initialize the floating
point emulator by calling P$HookFP before you call this procedure.

Example

Perform Work$ = STR$(X#):

Extrn B$STR8:Proc

.DATA?
EVEN
Work$
X

.CODE

dd 1 dup (?)
dq 1 dup (?)

MDV BX.Offset X
PUSH Word Pt r [BX+6]
PUSH Word Ptr [BX+4]
PUSH Word Ptr [BX+2]
PUSH Word Ptr [BX]
CALL B$STR8
PUSH AX
MDV AX,Offset Work$
PUSH AX
CALL B$SASS

1111 7 - 116

;Room for Work$ descriptor
;Room for X#

;Get pointer to number
;Push in onto the stack

;Convert to a string
;Pass on string pointer
;Get pointer to our descriptor
;Pass it on
;Store result in Work$

CRESCENT SOFrWARE, INC.

P.D.Q. Version 3.10 Assembly Toolbox, Programmer's Reference

B$STRI \SOURCE\STRING$.ASM

BASIC Equivalent: STRING$ (X, Y)

111111 Use

Creates a string composed of n copies of a given ASCII value.

11111 Calling Convention

PUSH Number of characters in final string
PUSH ASCII value for repeated character
CALL B$STRI

Returns offset of string descriptor of result in AX.

111 Notes

Only the low byte of the character value is examined, and whatever is in
AH is ignored.

The returned string is in P.D.Q. 's temporary string pool. You should copy
it to your own string (using B$SASS) if you want to work with it further.

Example

Perform A$ = STRING$(80, 65):

Extrn B$STRI:Proc
Extrn B$SASS:Proc

.DATA?
EVEN
A$ dd 1 dup (?)

.CODE
MOV AX,8O
PUSH AX
MOV AL,"A"
PUSH AX
CALL B$STRI
PUSH AX
MOV AX,Offset A$
PUSH AX
CALL B$SASS

CRESCENT SOFfWARE, INC.

;For string assignment

;Room for string descriptor

;Length of final string

;Get ASCII value of character

;Create the string
;Pass on the temporary string
; and a pointer to result string

;Copy result to A$

11111 7 - 117

Assembly Toolbox, Programmer's Reference P.D.Q. Version 3.10

B$STRS \SOURCE\STRING$$.ASM

BASIC Equivalent: STRING$ (X, Y$)

111111 Use

Creates a string made up of n copies of the first letter of the specified
string argument.

11111 Calling Convention

PUSH Number of characters in final string
PUSH Offset of descriptor of string argument
CALL B$STRS

Returns the offset of the result string descriptor in AX.

II Notes

You can save a little time by calling B$STRI instead of this routine, which
simply translates the second argument into an integer and then calls
B$STRI to do the work.

Regardless of the string argument's length, only the first character is
considered. If the string argument is null the result is undefined.

The returned string is in P.D.Q. 's temporary string pool. You should copy
it to your own string (using B$SASS) if you want to work with it further.

Example

Perform A$ = STRING$(50, "*"):
Extrn B$STRS:Proc
Extrn B$SASS:Proc
Extrn P$MakeTemp:Proc

.DATA?
EVEN
A$ dd 1 dup (?)

CODE
MOV CX,1
CALL P$MakeTemp
MOV AL,"*"
STOSB
MOV AX,50
PUSH AX
PUSH BX
CALL B$STRS
PUSH AX
MOV AX,Offset A$

11111 7-118

;For string assignment
;To create temporary string

;Room for string descriptor

;Length of temp. string
;Make a temporary string
;That's the character to store
;Put it in the string
;Length of final string
;Pass it on
;Our temporary descriptor
;Create the new string
;Pass on the result
;Pointer to final descriptor

CRESCENT SOFTWARE, INC.

P.D.Q. Version 3.10 Assembly Toolbox, Programmer's Reference

PUSH AX
CALL B$SASS ;Result is now in A$

B$SWPN \SOURCE\SWAPTYPE.ASM

BASIC Equivalent: SWAP for fixed -
length strings and TYPE variables.

1111 Use

Swaps any two non-overlapping blocks of memory as long as they have
the same length and are 65,535 bytes long or less.

II Calling Convention

PUSH Segment of first memory block
PUSH Offset of first memory block
PUSH Length of first memory block
PUSH Segment of second memory block
PUSH Offset of second memory block
PUSH Length of second memory block

No return value.

Ill Notes

The two length values must be identical or B$SWPN will return without
taking any action.

Example

SWAP a text screen of 4000 bytes at 0B800:0h with a memory buffer.

Extrn B$SWPN:Proc

.DATA?
VidBufAddr dd 1 dup (?) ;Room for buffer address

.CODE
LES AX,VidBufAddr
PUSH ES
PUSH AX
MOV CX,4000
PUSH ex
MOV AX,0B800h
PUSH AX
SUB AX,AX
PUSH AX
PUSH ex
CALL B$SWPN

CRESCENT SOFTWARE, INC.

;Get video buffer address
;Pass the buffer segment
; and its offset
;Bytes to swap

;Segment of video screen

;AX= 0; offset of video screen

;Length of segment 2

1111 7 - 119

Assembly Toolbox, Programmer's Reference P.D.Q. Version 3.10

8$SWP2 \SOURCE\SWAPNUMS.ASM

B$SWP4
B$SWP8

BASIC Equivalent: SWAP X, Y

111111 Use

Swaps two 2-byte (B$SWP2), 4-byte (B$SWP4), or 8-byte (B$SWP8)
blocks anywhere in memory. Normally, the 2-byte version is used to swap
integers, the 4-byte version for long integers and single-precision num
bers, and the 8-byte version for double-precision numbers.

11111 Calling Convention

PUSH Segment of first memory block
PUSH Offset of first memory block
PUSH Segment of second memory block
PUSH Offset of second memory block
CALL B$SWP2, B$SWP4, or B$SWP8

No return value.

Iii Notes

These routines begin by placing a 2, 4, or 8 in AL (to show how many
bytes should be swapped) and then call P$SwapNums. The latter routine
rearranges the arguments on the stack and calls B$SWPN to do the real
work. You can save time by either performing the swap yourself using
Xchg or by calling either of the latter two routines directly.

Example

Perform SWAP A%, B % :

.DATA?
A% dw 1 dup (?)
B% dw 1 dup (?)

.CODE
PUSH OS
MDV AX,Offset A%
PUSH AX
PUSH OS
MDV AX,Offset B%
PUSH AX
CALL B$SWP2

Ill 7- 120

;Segment of first integer
;Offset of first integer

;Segment of second integer
;Offset of second integer

;Swap their values

CRESCENT SOFfWARE, INC.

P.D.Q. Version3.10 Assembly Toolbox, Programmer's Reference

B$SWSD \SOURCE\SWAP$.ASM

BASIC Equivalent: SWAP X$, Y$

11 Use

Exchanges the data associated with two string descriptors.

111111 Calling Convention

MDV SI.Offset of descriptor 1
MDV OI,Offset of descriptor 2
CALL 8$SWSO

No return value.

11111 Notes

This routine switches the descriptors themselves and also fixes the back
pointers in each data string. Note the unusual calling sequence whereby
the string descriptor addresses are passed in SI and DI instead of on the
stack.

Example

Perform SWAP A$, B$:

.DATA?
EVEN
A$ dd 1 dup (?)
8$ dd 1 dup (?)

.CODE
MDV SI,Offset A$
MDV DI.Offset 8$
CALL 8$SWSD

;Room for two string descriptors

;Get first pointer
; and second pointer
;Swap the strings

B$TIMR \FPSOURCE\ TIMER.ASM

BASIC Equivalent: TIMER function

Ill Use

Returns the number of seconds since midnight as a single-precision
number.

11111 Calling Convention

CALL 8$TIMR

CRESCENT SOFfWARE, INC. 1111 7 - 121

Assembly Toolbox, Programmer's Reference P.D.Q. Version 3.10

Returns with AX pointing to a single-precision result.

11 Notes

It is generally much faster to use PDQTimer instead of this routine, in
order to avoid the overhead of floating point operations.

This routine uses floating point operations. You must initialize the floating
point emulator by calling P$HookFP before you call this procedure.

Example

Perform Start! = TIMER:

Extrn B$TIMR:Proc

.DATA?
Start dd 1 dup (?)

.CODE
CALL B$TIMR
MDV BX.AX
LES AX, [BX]
MDV Word Ptr [Start] ,AX
MDV Word Ptr [Start+2] ,ES

B$UBND

BASIC Equivalent: UBOUND

1111 Use

;Place for single-precision result

;Get number of seconds
;For ease of addressing
;Get whole number at one time
;Copy the results to our space

\SOURCE\ UBOUND.ASM

Return the highest available subscript for a dimension of an array.

II Calling Convention

PUSH Offset of array descriptor
PUSH Dimension number
CALL B$UBND

Returns highest subscript in AX.

1111 Notes

It may be faster to calculate the UBOUND value directly from information
in the array descriptor. See Using Arrays in the preceding section for
more information about the format of the descriptor.

Example

Find UBOUND(Array, 2):

1111 7 - 122 CRESCENT SOFI'WARE, INC.

P.D.Q. Version 3.10 Assembly Toolbox, Programmer's Reference

Extrn B$UBND:Proc

.DATA?
Array db 20 dup (?) ;Room for descriptor for 2-dimensional array

.CODE
MOV AX.Offset Array
PUSH AX
MOV AX,2
PUSH AX
CALL B$UBND

;Get pointer to array descriptor

;Dimension we want UBOUND of

;Now the result is in AX

8$UCAS \SOURCE\ UCASE$.ASM

BASIC Equivalent: UCASE$ function

1111111 Use

Create a copy of a string with all alphabetic characters in upper case.

1111 Calling Convention

PUSH Offset of string descriptor
CALL B$UCAS

Returns with pointer to result string descriptor in AX.

1111 Notes

The result string descriptor is a P.D.Q. temporary string. If you want to
process the string further, you should copy it to your own string variable
by using B$SASS.

Example

Perform A$ = UCASE$(A$):

Extrn B$UCAS:Proc
Extrn B$SASS:Proc

.DATA?
EVEN
A$ dd 1 dup (?)

.CODE
MDV AX,Offset A$
CALL B$UCAS
PUSH AX
MOV AX,Offset A$
PUSH AX
CALL B$SASS

CRESCENT SOFfWARE, INC.

;For string assignment

;Space for string descriptor

;Get pointer to our string
;Convert it to upper case
;Pass along the result
; and our string

;Copy result to our string

Ill 7 - 123

Assembly Toolbox, Programmer's Reference P.D.Q. Version 3.10

B$WIDT \SOURCE\ WIDTH.ASM

BASIC Equivalent: WIDTH (screen).

■ Use

Sets the number of columns and rows on a current text screen.

Ill Calling Convention

PUSH Number of columns
PUSH Number of rows
CALL 8$WIDT

No return value. May repo1t an error by calling P$DoError.

■ Notes

B$WIDT supports text screen resolutions of 80x25, 40x25, 80x43, 40x43,
80x50, and 40x50 as long as the resolution is also supported by your
hardware. 43-row screens can be used on EGA or VGA systems; SO-row
screens on VGA systems.

Note that you must pass values for both the row and column. Use a value
of -1 if you want to preserve the current setting for either value.

Example

Perform WIDfH 40:

Extrn 8$WIDT:Proc

.CODE
MDV AX,40
PUSH AX
MDV AX,-1
PUSH AX
CALL 8$WIDT

BIOSlnkey

;Number of columns

;Use current setting for rows

\SOURCE\BIOSINKY.ASM

P.D.Q. Equivalent: BIOSlnkey

11111 Use

This procedure retrieves a keystroke by calling the BIOS keyboard services
directly. It does not support redirection, but it may be used in a TSR since
it doesn't use any DOS services.

1!111 7 - 124 CRESCENT SOFfWARE, INC.

P.D.Q. Version 3.10 Assembly Toolbox, Programmer's Reference

On return, AX = 0 if no key is waiting. If a keystroke is waiting, it is
retrieved (and removed) from the keystroke buffer. If AH = 0, then the
ASCII code of the keystroke is in AL. If AH = -1, then -Scan Code is
in AL.

Ill Calling Convention
CALL BIOSinkey

Returns the key value in AX if a key was waiting, or O in AX if no key
was waiting in the keyboard type-ahead buffer.

Ill Notes

To retrieve the keystroke, you can follow this algorithm:

OR AX,AX
JZ NO_KEY
OR AH,AH
JZ ASCI !_KEY
NEG AX
EXT _KEY: (code here)

;Test if any value
;Nothing was waiting for us
;Test type of keystroke
;Go if ASCII value is in AL
;Now scan code (F-key, etc.)
; is in AL

This routine calls Int 16H, services 1 and 0. It does not support Fll, F12,
and other special keys of the enhanced keyboard.

Example

Extrn BIOSinkey:Proc

.CODE
CALL BIOSinkey

BIOSlnput

P.D.Q. Equivalent: BIOSlnput

Ill Use

\SOURCE\BIOSINPT.ASM

BIOSinput is a simplified editing routine. It recognizes the left and right
arrow keys for movement through an edit string, but does not support the
Ins, Del, Home, or End keys. It gets its input from BIOSinkey, so it can
be used in TSR programs.

BIOSinput supports color editing. It receives a string with the default
response, and does not allow editing beyond the end of the string.

CRESCENT SOFfWARE, INC. 11111 7 - 125

Assembly Toolbox, Programmer's Reference

11111 Calling Convention

PUSH Offset of response string descriptor
PUSH Offset of edit color
CALL BIOSinput

No return value.

11111 Notes

P.D.Q. Version3.10

BIOSinput calls several other routines to find the current cursor location,
turn the cursor on, get keyboard input, and print the results.

Example

Implement CALL BIOSinput(Work$, EditColor):

Extrn BIOSinput:Proc

.DATA
EVEN
Work$ dd ? ;Work$ string descriptor
EditColor dw ? ;Storage for the editing color

.CODE
MDV AX,Offset Work$;Pass address of edit string
PUSH AX
MDV AX.Offset EditColor ;and address of the color
PUSH AX
CALL BIOSinput

BI OS In put2 \SOURCE\BIOSIN P2.ASM

P.D.Q. Equivalent: B10Slnput2

111 Use

BIOSinput2 is an enhanced version of BIOSinput that adds support for
the Home, End, Ins, and Del keys, and also returns the last key pressed
(Enter or Escape) in AX.

111111 Calling Convention

PUSH Offset of response string descriptor
PUSH Value of Row
PUSH Value of Column
PUSH Value of Edit color
CALL BIOSinput2

The ASCII value of the last key pressed is returned in AX.

1111 7 - 126 CRESCENT SOFfWARE, INC.

P.D.Q. Version 3.10 Assembly Toolbox, Programmer's Reference

11111 Notes
BIOSlnput2 calls several other routines to find the current cursor location,
turn the cursor on, get keyboard input, and print the results.

Because BIOSinput2 calls upon BIOSinkey to read the keyboard, the last
key pressed is coded using that routine's method. That is, if a regular key
was pressed, its ASCII value will be in AX. And if an extended key was
pressed and the modification described below is made, AX will hold a
negative version of the extended key code.

Comments in the assembler source code (at the label TryEnd:) show how
to modify BIOSinput2 to exit when an unrecognized extended key is
pressed. This would, for example, let you exit if the user presses Fl or
Alt-T. You could also change the code near line 208 to exit if a control
key is pressed instead of ignoring the key. This would be needed to
recognize the Tab and Ctrl-C keys.

Example

Implement CALL BIOSinput2(Work$, Row, Column, EditColor):

Extrn BIOSinput2:Proc

.DATA
EVEN
Work$ dd?
EditColor dw ?

.CODE
MOV AX,Offset Work$
PUSH AX
MOV AX, 1
PUSH AX
MOV AL, 10
PUSH AX
PUSH EditColor
CALL BIOSinput2

;Work$ string descriptor
;Storage for the editing color

;Pass address of edit string

;edit on row 1

;at column 10
; (AH is known zero)
;pass color by value

BreakHit \SOURCE\BREAK.ASM

P.D.Q. Equivalent: BreakHit

1111 Use
The P.D.Q. Break routines count the number of times Ctrl-Break or Ctrl-C
are pressed if Break handling has been enabled with a call to BreakOff.

CRESCENT SOFfWARE, INC. Ill 7 - 127

Assembly Toolbox, Programmer's Reference P.D.Q. Version 3.10

This routine returns the number of times Break has been hit since BreakOff
was installed or since BreakHit was last called.

1111111 Calling Convention

CALL BreakHit

Returns break count in AX.

11 Notes

See BreakOff and BreakOn for further information about Ctrl-Break and
Ctrl-C handling.

Example

Extrn BreakHit:Proc

.DATA?
BrkCount dw 1 dup (?) ;Room to hold count

.CODE
;Get the break count CALL BreakHit

MOV BrkCount,AX ;Save for future processing

BreakOff

P.D.Q. Equivalent: BreakOff

1111 Use

\SOURCE\BREAK.ASM

When you call BreakOff it intercepts the Ctrl-Break and Ctrl-C keys, and
keeps a count of how many times they were pressed. That count is
available by calling BreakHit. When BreakOff is first called, it installs
itself and resets the BreakHit count to O; if BreakOff is called when it is
already installed, it simply returns without taking any action.

111111 Calling Convention

CALL BreakOff

No return value.

111111 Notes

BreakOff works by intercepting Int lBh (called when the user presses
Ctrl-Break) to intercept Ctrl-Break and also Int 9 (the hardware keyboard
interrupt) to look for Ctrl-C keys. If you call BreakOff, you must call
BreakOn before your program ends, or these interrupts will be left pointing
to empty code and an eventual system crash is inevitable.

1111 7 - 128 CRESCENT SOFrWARE, INC.

P.D.Q. Version3.10 Assembly Toolbox, Programmer's Reference

Example

Extrn BreakOff:Proc

.CODE
Ca 11 BreakOff ;Let P.O.Q. trap all breaks

BreakOn

P.D.Q. Equivalent: BreakOn

111 Use

\SOURCE\BREAK.ASM

Reenables normal DOS and BIOS processing of Ctrl-Break and Ctrl-C
after a call to BreakOff.

Ill Calling Convention

CALL BreakDn

No return value.

1111 Notes

If you call BreakOff to disable Ctrl-Break and Ctrl-C, you must call
BreakOn before your program ends or you will cause a system crash.

Example

Extrn BreakOn:Proc

.CODE
Ca 11 BreakOn

Bufln

P.D.Q. Equivalent: Bufln

11111 Use

\SOURCE\BUFIN.ASM

Bufln performs very fast, buffered input from a sequential file. In
QuickBASIC, it could be used this way:

DECLARE FUNCTION Bufin$ (FileName$, Done%)
DO

This$= Bufin$(FileName$, Done%)
IF Done% THEN EXIT DO
PRINT This$

LOOP

CRESCENT SOFTWARE, INC. 1111 7 - 129

Assembly Toolbox, Programmer's Reference P.D.Q. Version 3.10

1111 Calling Convention

PUSH Offset of FileName$ descriptor
PUSH Offset of word to hold Termination Flag

Returns the offset of a string descriptor for result string. May report an
error by calling P$DoError.

111 Notes

Use a null string for the FileName$ parameter to tell Bufin to close the
file, free up the buffer memory it uses, and return.

Each time Bufln returns a line of text it calls B$SPAC to allocate string
pool memory. Therefore, you must delete the returned string before too
many calls to Bufln accumulate.

Also, you must read to the end of the file or explicitly tell Bufln to close
the file. Bufln maintains a flag that shows whether it is in the process of
reading a file, and the flag is only reset on a DOS error, when the end of
the file is reached, or if you have Bufln close the file explicitly.

Bufin claims a 4K buffer in DOS memory for file reads.

Example

Implements the BASIC loop shown above:

Extrn Bufln:Proc
Extrn B$PSED:Proc

.DATA?
FileName$ dd 1 dup (?)
Done dw 1 dup (?)

.CODE
@@:

MOV AX,Dffset FileName$
PUSH AX
MOV AX,Offset Done
PUSH AX
CALL Bufln
CMP Word ptr[Done] ,0
JNZ @F
PUSH AX
CALL B$PSED
JMP @B

@@:

1111 7 - 130

;Print-a-string routine

;FileName$ string descriptor
;Flag to show that file is done

;Head of the loop
;Get address of descriptor

;Get address of DONE flag

;Are we done reading?
;Yes--leave the loop
;Else pass result descriptor
;Print it
;And do it again
;Here at loop's end

CRESCENT SOFfWARE, INC.

P.D.Q. Version 3.10

CritErrOff

P.D.Q. Equivalent: CritErrOff

1111 Use

Assembly Toolbox, Programmer's Reference

\SOURCE\ CRITERR.ASM

Disables DOS critical error handling (the "Abort, Retry, Fail"message).
This is most useful in TSR programs to prevent crashing an underlying
program.

Ill Calling Convention

CALL CritErrOff

No return value.

111111 Notes

Make sure that you reenable critical error handling before your program
ends, or you will cause a system crash. If you call CritErrOff inside a
TSR when you pop up, you must call CritErrOn before you return control
to the foreground program.

Example
Extrn CritErrOff:Proc

.CODE
CALL CritErrOff ;Disable critical errors

CritErrOn

P.D.Q. Equivalent: CritErrOn

1111 Use

\SOURCE\ CRITERR.ASM

Turns system critical error handling back on after a call to CritErrOff.

11111 Calling Convention

CALL CritErrOn

No return value.

1111 Notes

If you call CritErrOff in a TSR, you must call this procedure before you
give control back to the foreground program, or you will cause a system
crash.

CRESCENT SOFfWARE, INC. 1111 7- 131

Assembly Toolbox, Programmer's Reference P.D.Q. Version 3.10

Example

Extrn CritErrOn:Proc

.CODE
CALL CritErrOn

CursorOff \SOURCE\ CURSOR.ASM

P.D.Q. Equivalent: CursorOff

BASIC Equivalent: LOCATE , , 0

■ Use

Hides the screen cursor, making it invisible.

1111 Calling Convention

CALL CursorOff

No return value.

1111 Notes

You can turn the cursor back on with CursorOn or with CursorSize.

Example

Extrn CursorOff:Proc

.CODE
CALL CursorOff

CursorOn

P.D.Q. Equivalent: CursorOn

BASIC Equivalent: LOCATE , , 1

11 Use

Makes the screen cursor visible.

11111 Calling Convention

CALL CursorOn

No return value.

1111 7 - 132

\SOURCE\ CURSOR.ASM

CRESCENT SOFTWARE, INC.

P.D.Q. Version 3.10 Assembly Toolbox, Programmer's Reference

lllill Notes

The cursor is displayed in the current cursor size. Use CursorSize to set
the size after the cursor is visible.

Example

Extrn CursorOn:Proc

.CODE
CALL CursorOn ;Turn cursor on

CursorRest \SOURCE\ CURSORSR.ASM

P.D.Q. Equivalent: CursorRest

1111 Use

Restore the cursor size and position determined by a previous call to
CursorSave.

II Calling Convention

PUSH Offset of saved cursor information
CALL CursorRest

No return value.

11111 Notes

Cursor Rest expects the saved cursor information to be a 4-byte long integer
in the format returned by CursorSave.

Example

Extrn CursorRest:Proc

.DATA?
Cursor dd 1 dup (?)

.CODE
MDV AX,Dffset Cursor
PUSH AX
CALL CursorRest

CRESCENT SOFrWARE, INC.

;Info from CursorSave

;Get pointer to data
; Pass it on
;And restore the cursor

II 7 - 133

Assembly Toolbox, Programmer's Reference P.D.Q. Version 3.10

CursorSave \SOURCE\ CURSORSR.ASM

P.D.Q. Equivalent: CursorSave

II Use

Returns the current cursor size and location packed into a 4-byte long
integer in one convenient call.

1111 Calling Convention

CALL CursorSave

Returns result in DX:AX.

II Notes

CursorSave simply collects data from Int 10h, Service 3. It returns the
cursor position in DX Gust as Int lOH does), and the cursor size in AH
and AL instead of CH and CL. You may want to save time by calling Int
lOH yourself.

Example

Extrn CursorSave:Proc

.DATA?
Cursor dd 1 dup (?)

.CODE
CALL CursorSave
MOV Word ptr [Cursor],AX
MOV Word ptr [Cursor+2],DX

CursorSize

P.D.Q Equivalent: CursorSize

;Storage for result

;Get cursor information
;Save values for later

\SOURCE\ CURSOR.ASM

BASIC Equivalent: LOCATE , , , Topline,
Bottomline

111 Use

Set the cursor size by specifying the top and bottom scan lines of the cursor
block.

II 7 - 134 CRESCENT SOFfWARE, INC.

P.D.Q. Version 3.10 Assembly Toolbox, Programmer's Reference

Ill Calling Convention

PUSH Offset of TopLine
PUSH Offset of BottomLine
CALL CursorSize

No return value.

■ Notes

The values of TopLine and BottomLine may range from O to the highest
legal value supported by the installed display adapter. CursorSize uses
only the low byte of both values, but does no other error checking.

Example

Perform equivalent of CALL CursorSize(l, 5):

Extrn CursorSize:Proc

.DATA
TopLine dw 1
BotLine dw 5

.CODE
MOV AX,Offset TopLine
PUSH AX
MOV AX,Offset BotLine
PUSH AX
CALL CursorSize

;Storage for top and
; bottom lines

;Get pointer to first argument
;Pass it by reference
;Get pointer to second argument
;Pass it by reference
;Set new cursor size

DeinstallTSR \SOURCE\DEINSTALASM

P.D.Q. Equivalent: DeinstallTSR

11111 Use

Removes a non-simplified P.D.Q. TSR program from memory.

1111 Calling Convention

PUSH Offset of DGROUP value
PUSH Offset of ID string descriptor
CALL DeinstallTSR

Returns failure (0) or success (-1) in AX.

11111 Notes

See the description for DeinstallTSR in the reference section of this manual
for information about using this routine.

CRESCENT SOFfWARE, INC. 1111 7 - 135

Assembly Toolbox, Programmer's Reference

Example:

Extrn DeinstallTSR:Proc

.DATA
SavedDGROUP dw ?
DefStr ID$

.CODE
MDV AX,Offset SavedDGROUP
PUSH AX
MDV AX,Offset ID$
PUSH AX
CALL DeinstallTSR
OR AX,AX
JZ Deinstall_Failed

Dollar

P.D.Q. Equivalent: Dollar$

Ill Use

P.D.Q. Version 3.10

;Saved DGROUP from TSR!nstalled
;Space for ID$ string descriptor

;Pass pointer to Data
; segment
;and pointer to
; string descriptor
;Remove the TSR
;Test for success
;Go tell user to reboot

\SOURCE\DOLLAR$.ASM

Formats a long integer into a string in dollars and cents format.

Ill Calling Convention

PUSH Offset of long integer to convert
CALL Dollar

Returns with AX = offset of string descriptor.

II Notes

This routine does not place a dollar sign in front of the result. The result
contains an optional minus sign, plus the value formatted with a decimal
point before the last two digits.

The result is held in a special temporary string and will not be overwritten
until the next call to Dollar. If you want, you can simply save the offset
returned in AX until you are ready to use the string; do not, however,
modify the returned string directly unless you copy it to your own string
space with B$SASS.

Example

Convert Cents& to dollars and cents format:

Extrn Dollar:Proc

.DATA?

II 7 - 136 CRESCENT SOFfWARE, INC.

P.D.Q. Version3.10

EVEN
Cents& dd 1 dup (?)
Result$ dd 1 dup (?)

.CODE
MDV AX,Offset Cents&
PUSH AX
CALL Dollar
PUSH AX
MDV AX,Offset Result$
PUSH AX
CALL 8$SASS

DOSBusy

1111 Use

Assembly Toolbox, Programmer's Reference

;Space for long integer
;String descriptor for result

;Get address of value
; and send it on
;Convert it
;Now assign string to us
;This is where we want it

;Keep result string.

\SOURCE\DOSBUSY.ASM

Lets a non-simplified P.D.Q. TSR program determine when it is safe to
use DOS interrupt services (Int 21h).

Ill Calling Convention

CALL DosBusy

Returns O in AX if DOS interrupts can be used, or -1 if a DOS call is
currently in progress.

1111 Notes

You must call this routine once (and ignore the result, if you wish) before
your TSR goes resident.

See the warnings about relying on the DOS Busy flag in the DOSBusy
routine description elsewhere in this manual.

Example

Extrn DosBusy:Proc

.CODE
CALL DosBusy
OR AX,AX
JZ Okay_to_call_DOS

;Can we interrupt?
;Check return value
;Yep -- we can do whatever we want

;nope -- add code here to exit and try again later.

CRESCENT SOFfWARE, INC. II 7 - 137

Assembly Toolbox, Programmer's Refer~nce P.D.Q. Version 3.10

EndTSR \SOURCE\ENDTSR.ASM

P.D.Q. Equivalent: EndTSR

■ Use

This routine is called by a TSR program when it has finished initializing
and is ready to go resident and return control to DOS.

Ill Calling Convention

PUSH Offset of unique JD string descriptor
CALL EndTSR

No return value.

11111 Notes

See the discussions of TSR processing elsewhere in the manual for notes
about using EndTSR and creating a unique ID string.

Example

Extrn EndTSR:Proc

.DATA?
EVEN
JD$ dd 1 dup (?)

.CODE
MDV AX,Offset ID$
PUSH AX
CALL EndTSR

EnvOption

;String descriptor space

;Get address of descriptor
;Pass it on

\SOURCE\ENVOPT.ASM

P.D.Q. Equivalent: EnvOption

11111 Use

Lets a program switch between accessing its own or its parent's environ
ment, and also determines how capitalization of environment strings is·
handled.

11111 Calling Convention

PUSH Offset of option word
CALL EnvOption

No return value.

1111 7 - 138 CRESCENT SOFfWARE, INC.

P.D.Q. Version 3.10 Assembly Toolbox, Programmer's Reference

1111 Notes

The option is stored in a data word and passed by reference. The option
word is a bit record:

Bit 0: 0
1

Access the current program's copy of the environment.
Access the current program's parent's environment.

Bit 1: 0
1

Capitalize variable names before adding or retrieving.
Don't capitalize variable names.

Bit 2: 0
1

Access the current program's copy of the environment.
Access the environment of the currently active process.

Bits 3-15 are reserved and should be set to zero.

Example

Extrn EnvOption:Proc

.DATA
Opt ion dw Ollb ;No capitalization, use parent's environment

.CODE
MDV AX.Offset Option
PUSH AX
CALL EnvOption

;Get pointer to options
;Pass it on
;Reset environment options

FUsing \SOURCE\FUSING.ASM

P.D.Q. Equivalent: FUsing
1111 Use

Creates a string representation of a value honoring most of the formatting
conventions of BASIC's PRINT USING.

11111 Calling Convention

CALL One of the STR$() routines with the value
PUSH Received pointer to a temporary string descriptor
PUSH Address of descriptor for format string
CALL FUsing$

Returns offset of the result string descriptor in AX.

11111 Notes

See the explanation of FU sing$ in the reference portion of this manual for
an explanation of the format string.

CRESCENT SOFfWARE, INC. Ill 7 - 139

Assembly Toolbox, Programmer's Reference P.D.Q. Version3.IO

You must use the normal STR$() functions to create the initial string, and
not the alternate STR$() function from the _STR$.ASM stub file. FUsing
depends on the leading space before positive values.

The string descriptor that FUsing returns and the result string are stored
in FUsing's own data space. They will be overwritten by the next call to
FUsing.

Example

Perform Result$ = FUsing$(Num&, Image$)

Extrn FUsing:Proc
Extrn B$STI4:Proc
Extrn B$SASS:Proc

.DATA?
EVEN
Result$
Image$
Num

.CODE

dd 1 dup (?)
dd 1 dup (?)
dd 1 dup (?)

LES AX, [Num]
PUSH ES
PUSH AX
CALL B$STI4
PUSH AX
MOV AX,Offset Image$
PUSH AX
CALL FUsing
PUSH AX
MOV AX,Offset Result$
PUSH AX
CALL B$SASS

Get1 Long

;STR$() of a long integer
;String assignment

;Room for string descriptors

;Room for long integer

;Get the value
;Pass it on

;Convert Num to a string
;Pass on the result
;Get pointer to the image

;Create a formatted string
;Pass on the result
;Final resting place

\SOURCE\ GET1 LONG.ASM

P.D.Q. Equivalent: Get1 Long

11111 Use

Reads a long integer (four bytes) from anywhere in memory, given a
segment and an element number.

11111 Calling Convention

PUSH Offset of the variable holding the segment value
PUSH Offset of the variable holding the element number
CALL GetlLong

1111 7 - 140 CRESCENT SOFfWARE, INC.

P.D.Q. Version 3.10 Assembly Toolbox, Programmer's Reference

Result is returned in DX:AX.

111 Notes

Element numbers are considered to start at one. There is no element zero.

The offset that this routine reads from is calculated as follows:

Offset= (Element - 1) * 4

You may be able to save some bytes and cycles by making the calculation
yourself and reading the memory directly.

Example

Get the fourth long integer from the segment stored in LSEG:

Extrn GetlLong:Proc

.DATA?
LSEG dw 1 dup (?)
ELEM dw 1 dup (?)

.CODE

;Space for the segment value
;Space for the element number

MDV AX,Offset LSEG ;Point to the segment
PUSH AX ; and push that
MDV ELEM,4 ;Save the element number
MDV AX,Offset ELEM ;Point to the element number
PUSH AX ;Pass it on
CALL GetlLong ;Read the memory
; Now DX:AX has the element's value

Get1Type \SOURCE\ GET1 TYPE.ASM

P.D.Q. Equivalent: Get1Type

111 Use

Reads a block of memory into a TYPE variable (or any other block of
bytes) in near memory.

Ill Calling Convention

PUSH Offset of the variable holding the segment value
PUSH Offset of the variable holding the element number
PUSH Offset of the variable holding the length of destination
PUSH Offset of destination

No return value.

1111 Notes

Element numbers are considered to start at one. There is no element zero.

CRESCENT SOFfWARE, INC. II 7 - 141

Assembly Toolbox, Programmer's Reference P.D.Q. Version 3.10

The offset that this routine reads from is calculated as follows:

Offset= (Element - 1) * Length

You may be able to save a few bytes and cycles by making the calculation
yourself and reading the memory directly.

Example

Get the fifth block of 20 bytes from the segment stored in TSEG:

Extrn GetlType:Proc

.DATA
Result db 20 dup (?) ;Place for the data
TSeg dw ? ;Place for segment address
Elem dw ? ;Place for element number
Length dw TSeg - Result ;Length to read

.CODE
MOV AX.Offset TSeg
PUSH AX
MOV AX.Offset Elem
PUSH AX
MDV AX.Offset Length
PUSH AX
MOV AX,Offset Result
PUSH AX
CALL GetlType

GetCPU

;Pass pointer to segment

;and pointer to element

;and pointer to length

;and pointer to destination

;Transfer the data

\SOURCE\ GETCPU.ASM

P.D.Q. Equivalent: GetCPU

1111111 Use
Returns the CPU type in AX.

1111 Calling Convention

CALL GetCPU

The value returned in AX is 86, 286, or 386.

1111 Notes
If you want to see how it's done, take a look at the source code. The
algorithm is based on the hardware wiring of the flags register inside the
CPU.

1111 7 - 142 CRESCENT SOFfWARE, INC.

P.D.Q. Version 3.10 Assembly Toolbox, Programmer's Reference

Example

Extrn GetCPU:Proc

.CODE
CALL GetCPU ;Ask for the CPU type
;the result is now in AX

GotoOldlnt \SOURCE\ GOTOINT.ASM

P.D.Q. Equivalent: GotoOldlnt

11111 Use

Jumps to the previous interrupt handler.

11111 Calling Convention

PUSH Offset of Registers TYPE variable
CALL GotoOldint

Although this routine is called, it does not return control to your program.

1111 Notes

The use of the Registers TYPE variable gives this routine flexibility but
also adds some overhead. You may want to jump to the original interrupt
service routine directly from many TSR and other interrupt handlers unless
you have some reason to change the received register values via the
Registers TYPE variable.

Example

Extrn GotoOldint:Proc

.DATA?
Reg db 36 dup (?)

.CODE
MOV AX,Offset Reg
PUSH AX

;Register TYPE variable

;Get near pointer to variable

CALL GotoOldint ;And off we go
; Control never returns to this line

CRESCENT SOFfWARE, INC. Ill 7 - 143

Assembly Toolbox, Programmer's Reference P.D.Q. Version 3.10

HercMode \SOURCE\HERCMODE.ASM

P.D.Q. Equivalent: HercMode
11111 Use

Enables SCREEN O and SCREEN 3 on a Hercules monochrome card.

Ill Calling Convention

PUSH Offset of Mode word
CALL HercMode

No return value.

II Notes

If the Mode value is non-zero the Hercules card is switched into graphics
mode. A value of zero then returns it to text mode.

By using this routine, you can switch between text and graphics on a
Hercules monochrome card (or compatible) without having to load
Microsoft's MSHERC. COM driver.

This routine does not check to see if a Hercules card is actually installed.
If you call it on a system that doesn't have a Hercules card, the results will
be, as they say, undefined. You can use the PDQMonitor function to
determine the type of display adapter that is connected.

Example

Switch into Hercules graphics mode:

Extrn HercMode:Proc

.DATA
Mode dw 1

.CODE
MDV AX.Offset Mode
PUSH AX
CALL HercMode

1111 7 - 144

;Set for graphics mode

;Point to the mode
; and send the pointer
;Switch to graphics.

CRESCENT SOFfWARE, INC.

P.D.Q. Version3.l0 Assembly Toolbox, Programmer's Reference

HooklntO \SOURCE\HOOKINT0.ASM

P.D.Q. Equivalent: Hooklnt0

11 Use

Captures any Interrupt 0 (Division by 0) calls and turns them into BASIC
error 11 ("Division by zero").

II Calling Convention

PUSH Offset of Mode variable
CALL HooklntO

No return value.

11111 Notes

If Mode = 0, then UnHookintO will be added to the B OnExit chain for
automatic execution at the end of the program (assuming that you exit
through B$CEND). If Mode < > 0 then you must call UnHooklntO
before your program exits, or you are certain to cause a system crash the
next time a division by 0 error occurs.

If you happen to call Hookint0 when the P.D.Q. Int 0 interrupt is already
trapped, this routine simply returns without doing anything.

If an Interrupt 0 occurs while Hooklnt0 is in effect, P$DoError will be
called to report the error.

Example

Extrn HooklntO:Proc

.DATA
Mode dw 1

.CODE
MOV AX,Offset Mode
PUSH AX
CALL HooklntO

CRESCENT SOFTWARE, INC.

;We'll unhook it ourselves

;Point to the mode
; and pass the pointer

1111 7 - 145

Assembly Toolbox, Programmer's Reference P.D.Q. Version 3.10

MidChar \SOURCE\MIDCHAR.ASM

P.D.Q. Equivalent: MidChar function

111 Use

Returns the ASCII value of one character within a string.

II Calling Convention

PUSH Offset of the string's descriptor
PUSH Offset of word variable holding the position vaue
CALL MidChar

AX contains the ASCII value of the target character, or -1 if the specified
position is past the end of the string.

1111 Notes

Notice that the position is passed by reference, not by value. You must
therefore create an integer variable to hold the position count.

If AH = 0 on return, then AL contains a valid ASCII value.

Example

Find MidChar(A$, 5):

Extrn MidChar:Proc

.DATA?
EVEN
A$ dd 1 dup (?)
Posn dw 1 dup (?)

.CODE
MDV [Posn] , 5
MDV AX.Offset A$
PUSH AX
MDV AX.Offset Posn
PUSH AX

;Space for string descriptor
;Space for position

;Set position value
;Point to descriptor

;Point to position variable

CALL MidChar ;Get one character
OR AH,AH ;Is return valid?
JNZ BadPosition ;No -- take care of error
; Now AL has ASCII value of character.

1111 7 - 146 CRESCENT SOFfWARE, INC.

P.D.Q. Version3.10 Assembly Toolbox, Programmer's Reference

MidCharS \SOURCE\MIDCHARS.ASM

P.D.Q. Equivalent: MidCharS
1111 Use

Replaces a character in a string with another character specified by ASCII
value.

II Calling Convention

PUSH Offset of string descriptor
PUSH Position of character to change
PUSH ASCII value of new character

No return value.

Ill Notes

If the position of the character to change is past the end of the string, the
original string will not be changed and MidCharS will simply return.

The high byte of the new character value is ignored.

Example

Perform MidCharS(Work$, 10, 32) to assign a CHR$(32) space at the
tenth character position in Work$:

Extrn MidCharS:Proc

.DATA?
EVEN
Work$ dd 1 dup (?)

.CODE
MOV AX,Offset Work$
PUSH AX
MOV AX,1O
PUSH AX
MOV AL,' '
PUSH AX
CALL MidCharS

CRESCENT SOFfWARE, INC.

;Space for a string descriptor

;Get string descriptor address

;Position to change

;Space character
;(AH will be ignored)

1111 7 - 147

Assembly Toolbox, Programmer's Reference P.D.Q. Version 3.10

NoSnow \SOURCE\NOSNOW.ASM

P.D.Q. Equivalent: NoSnow

11111 Use

Enable or disable CGA snow suppression.

11111 Calling Convention

PUSH Offset of SnowFlag variable
CALL NoSnow

No return value.

11111 Notes

Setting Snowflag = 0 disables snow suppression; any other value enables
snow suppression.

On some CGA systems, snow suppression may be necessary, but many
newer CGA adapters take care of snow suppression internally and allow
much faster video output if snow suppression is turned off. P.D.Q. will
never turn on snow suppression automatically unless a CGA adapter is
being used.

This routine calls P$MonSetup.

Example

Turn off snow suppression:

Extrn NoSnow:Proc

.Data
SnowFlag dw 0 ;We want to turn it off

.CODE
MDV AX,Offset SnowFlag ;Point to the action flag
PUSH AX
CALL NoSnow ;Snow suppression is turned off

P$Compact \SOURCE\COMPACT.ASM

11111 Use

Compacts the string pool, deleting unused strings and moving strings that
are in use so that the pool contains the largest block of contiguous string

1111 7 - 148 CRESCENT SOFrWARE, INC.

P.D.Q. Version 3.10 Assembly Toolbox, Programmer's Reference

space possible (garbage collection). Note that this routine does not delete
temporary strings.

11111 Calling Convention

CALL P$Compact

No return value.

111111 Notes

The process of compacting the string pool is often called garbage
collection. It is performed whenever space for a new string is not
available, and whenever B$FRSD (FRE(X$)) is called. It is not usually
necessary to compact the string pool manually, since this is done automat
ically as part of the P.D.Q. string management process.

P.D.Q. keeps track of the status of the string pool. If compaction is
unnecessary, this routine returns very quickly.

Example
Extrn P$Compact:Proc

.CODE
CALL P$Compact

P$DelAIITemps

11111 Use

Deletes all temporary strings.

11111 Calling Convention

CALL P$0elA11Temps

No return value.

11111 Notes

\SOURCE\DELTEMPS.ASM

This routine goes through the temporary string list (which has room for
20 temporary string descriptors) and deletes each one that is in use.

Functions which return a pointer to a string descriptor normally point to
a temporary string. You can delete such strings individually, or wait until
the end of a section of code and then delete all temporary strings at once
with this routine. Remember, however, that many of the string manipula
tion routines need temporary strings for their intermediate steps and will
fail if no temporary string space is available.

CRESCENT SOFfWARE, INC. Ill 7 - 149

Assembly Toolbox, Programmer's Reference P.D.Q. Version 3.10

Example

Extrn P$DelAllTemps:Proc

.CDDE
CALL P$DelAllTemps ;Delete all temporary strings

P$DELAY \SOURCE\P$DELAY.ASM

Ill Use

Delay a specified number of milliseconds.

Ill Calling Convention

PUSH Number of milliseconds to delay
CALL P$DELAY

No return value.

111 Notes

This routine accepts a signed integer for the number of milliseconds. If
you pass it a number greater than 32,767 (7FFFh), it will see the value as
a negative number, take its absolute value, and use that value for the
millisecond count.

Example

Delay for 1000 milliseconds (1 second):

.CODE
MOV AX, 1000
PUSH AX
CALL P$DELAY

;Delay count

P$FreeTemp \SOURCE\FREETEMP.ASM

1111 Use

Frees a temporary string.

llfl Calling Convention

PUSH Offset of string's descriptor
CALL P$FreeTemp

No return value.

1111 7 - 150 CRESCENT SOFrWARE, INC.

P.D.Q. Version 3.10 Assembly Toolbox, Programmer's Reference

111111 Notes

This routine checks to make sure that the string descriptor points to a
temporary string. If so, the string is deleted and its space is returned to
the string pool. Otherwise the request is ignored.

P.D.Q. has room for 20 temporary string descriptors. Functions which
return a pointer to a string descriptor almost always use one of those 20,
and will fail if all 20 are in use. Be sure you free temporary strings as
soon as possible after they are returned to you.

Every P.D. Q. library function which accepts a pointer to a string descriptor
as an argument passes the pointer to this routine in an attempt to release
temporary string space.

Example

Extrn P$FreeTemp:Proc

.CODE
MOV AX,StringPointer
PUSH AX
CALL P$FreeTemp

P$GetTemp

111 Use

;Get descriptor address
; Pass it on
;Erase it if it is temporary

\SOURCE\ GETTEMP.ASM

Finds the next available temporary string descriptor and returns a pointer
to it.

■ Calling Convention

CALL P$GetTemp

Returns offset of descriptor in BX (not in AX).

11111 Notes

You will probably never need to call this routine directly-it is called for
you by P$MakeTemp and B$SCAT. However, there are three lines of the
source code file that have been commented out. You may want to reinstate
those lines, recompile the source file, and put it in the P.D. Q. library. The
three lines force P$GetTemp to check whether there are any temporary
string descriptors available.

P.D.Q. has allocated room for 20 temporary string descriptors (80 bytes).
Code created by the BC compiler will never require more than those 20
temporary strings. But if you forget to release temporary strings in your
code, you could easily use up all 20 slots and overwrite active strings.

CRESCENT SOFrWARE, INC. 111 7 - 151

Assembly Toolbox, Programmer's Reference P.D.Q. Version 3.10

The three error-checking lines mentioned above can help you pinpoint
bugs in your own code.

Example

Extrn P$GetTemp:Proc

.CODE
CALL P$GetTemp ;Now BX has offset of a temporary string descriptor

P$HookFP \F PSOURCE\P$HOOKFP.ASM

11 Use

Determines the presence of a math coprocessor at runtime, and installs
the necessary interrupt vector table to use an 80x87 or the emulator library.

1111 Calling Convention

CALL P$HookFP

No return value.

11111 Notes

You must call this procedure before your program uses any floating point
operations or calls any library routines that use floating point operations.

Example

Set up to use floating point:
Extrn P$HookFP:Proc

.CODE
CALL P$HookFP ;That's all we have to do.

P$MakeTemp \SOURCE\MAKETEMP.ASM

111 Use

Creates a new, temporary variable-length string.

11111 Calling Convention

MOV CX,Number of string bytes needed
CALL P$MakeTemp

Returns with:
CPU direction flag cleared
BX= Offset of temporary string descriptor
DI= Offset of first byte of new string

1111 7 - 152 CRESCENT SOFfWARE, INC.

P.D.Q. Version 3.10 Assembly Toolbox, Programmer's Reference

ES= DS = string segment
CX = Length of string allocated

Returns CX = 0 if insufficient string space for any string.

11 Notes

Neither this routine nor the routines it calls make any attempt to insure
that there is an unused temporary string descriptor available (but see the
note in P$GetTemp). The 20 temporary descriptors allocated for P.D.Q.
programs are sufficient for all programs generated by the BC compiler; it
is your responsibility to be ensure that they are sufficient for your
programs.

Note that you may not get as much string space as you requested. Be
careful not to write past the end of the allocated string space; you will
likely overwrite the back pointer of another string and corrupt the integrity
of all variable-length strings in your program. Because P$MakeTemp
adjusts CX downward if insufficient string memory was available, you
should always use that value for subsequent Rep string operations.

Example

Create a temporary string of 10 digits from 0 to 9, then copy it to a
permanent string location:

Extrn P$MakeTemp:Proc

.DATA?
EVEN
A$ dd 1 dup (?)

.CODE
MOV ex, 10
CALL P$MakeTemp
JCXZ NoRoom
MOV AL, 'O'

@@: STOSB
INC AL
LOOP @B

;Room for our string descriptor

;Desired string length
;Create the string
;Go if no string space
;Put the first character in AL
;Put one character in the string
;Next character in AL
;Do the whole string

; Now string
PUSH BX

is filled and BX points to its descriptor

MOV AX,Offset A$
PUSH AX
CALL B$SASS

CRESCENT SOFfWARE, INC.

;Pass address of temp. string
; and address of permanent home

;String is now assigned to A$

II 7 - 153

Assembly Toolbox, Programmer's Reference P.D.Q. Version3.10

P$MonSetup \SOURCE\MONSETUP.ASM

1111 Use

Determines the correct segment for video output and sets a "snow" flag
if a CGA system is in use.

II Calling Convention

CALL P$MonSetup

No return value.

II Notes

This routine initializes two public data words:

P$MonSeg holds the current {text) video segment
P$CGAPort, if non-zero, is the CGA snow flag

If P$MonSeg is non-zero, this routine assumes that it already holds the
correct value and immediately exits. If you want to force it to check again,
set P$MonSeg to 0.

P$CGAPort holds a value of either zero or the CGA adapter port address
of 3DAh.

Example

Determine whether a color system is being used:

Extrn P$MonSetup:Proc

.DATA
Extrn P$MonSeg:Word

.CODE
CALL P$MonSetup ;Let it do its thing
CMP P$MonSeg,OB800h ;ls it color?
JNE NoColor ;Nope -- it must be mono
; If we get here, we have to use the color segment

P$Num2Handle \SOURCE\NUM2HNDLASM

1111 Use

Returns the DOS file handle for a BASIC file number of an opened file.

11111 Calling Convention

MDV BX, the BASIC file number
CALL P$Num2Handle

1111 7 - 154 CRESCENT SOFfWARE, INC.

P.D.Q. Version 3.10 Assembly Toolbox, Programmer's Reference

Returns the DOS file handle in BX, or -1 if the BASIC file handle was
invalid (greater than 15 or not opened).

11111 Notes

Note that STDERR has a BASIC file number of 255 (and returns a DOS
file handle of 2).

Only files that have been opened with a call to B$OPEN or B$OOPN have
BASIC file numbers. P.D.Q. maintains a table of those files and looks up
the appropriate DOS handle number when P$Num2Handle is called.

Example

Find the DOS handle for BASIC File #2:

.CODE
MOV BX,2 ;Put the BASIC File number in BX
CALL P$Num2Handle
OR BH,BH ;BH should always be 0
JNZ BadFileNum ;It wasn't -- take care of the error
; Now BX has the corresponding DOS file handle.

P$SkipEOF \SHELL \SKIPEOF.ASM

111111 Use

Moves a file pointer to the last position in the file. This routine is used
by B$OPEN to position the file pointer when a file is opened for APPEND
mode.

Ill Calling Convention

MOV DOS file handle to BX
MOV Oto CX and DX
MOV 4202h to AX
INT 21h
CALL P$SkipEOF

No return value.

II Notes

;DOS: seek to end of file

This routine moves the file pointer backward over any trailing CHR$(26)
EOF characters at the end of the file, so that those characters will be
overwritten by new data appended to the file. Notice that this routine
requires a DOS file handle, not a BASIC file number.

Example

Prepare to append to file:

CRESCENT SOFfWARE, INC. Ill 7 - 155

Assembly Toolbox, Programmer's Reference P.D.Q. Version3.10

Extrn P$SkipEOF:Proc
.DATA
Handle dw 1 (dup) ?

.CODE
MDV BX, [Handle]
SUB ex.ex
MDV ox.ex
MDV AX,4202h
INT 21h
CALL P$SkipEOF

P$SOUND

111 Use

;Get DOS file handle
;CX = 0
;CX:DX = 0
;Seek from end of file
;Let DOS do the seeking
;Move backwards over EOFs

\SOURCE\P$SOUND.ASM

Generate a tone of a desired frequency and duration through the computer's
speaker.

Ill Calling Convention

PUSH Frequency in Hz.
PUSH Duration in milliseconds
CALL P$SOUND

No return value.

1111 Notes

You must call P$Speaker once before calling this routine, to initialize
channel 2 of the timer chip.

If you specify a frequency of less than 37 Hz, this routine will simply delay
for the specified number of milliseconds (by calling P$Delay) instead of
producing a tone.

Use the PDQSound routine to avoid having to initialize the speaker with
a separate call to P$Speaker.

Example

Generate a tone of 440 Hz (concert A) for 100 milliseconds:

Extrn P$SOUND:Proc

.CODE
MDV AX,440
PUSH AX
MDV AX, 100
PUSH AX
CALL P$SOUND

1111 7 - 156

; Get frequency

;and duration

CRESCENT SOFfWARE, INC.

P.D.Q. Version3.10 Assembly Toolbox, Programmer's Reference

P$Speaker \SOURCE\SPEAKER.ASM

111\11 Use

Initializes the speaker for further use.

11111 Calling Convention

CALL P$Speaker

No return value.

Ill Notes

The speaker only has to be initialized once for any program. If it has
already been initialized, this routine returns without doing anything. You
must initialize the speaker before calling P$SPKR _ ON or P$SPKR_ OFF
yourself.

Example

Initialize the speaker:

Extrn P$Speaker:Proc

.CODE
CALL P$Speaker

P$SPKR OFF

1111 Use

Turn off the speaker.

11111 Calling Convention

CALL P$SPKR_OFF

No return value.

1111 Notes

;Initialize the speaker

\SOURCE\SPEAKER.ASM

Use the PDQSound routine to avoid having to manually turn the speaker
on and off.

Use this routine only if you have called P$SPKR_ON to turn on the
speaker. Do not call this routine unless you have initialized the speaker
with a call to P$Speaker.

Example

Turn off the speaker:

CRESCENT SOFrWARE, INC. 1111 7 - 157

Assembly Toolbox, Programmer's Reference P.D.Q. Version 3.10

Extrn P$SPKR_OFF:Proc

.CODE
CALL P$SPKR_OFF

P$SPKR ON

1111 Use

Turn on the speaker.

111111 Calling Convention

CALL P$SPKR_ON

No return value.

1111 Notes

;Turn off the speaker

\SOURCE\SPEAKER.ASM

Like P$Speaker and P$SPKR _ OFF, this is a low-level internal routine that
is really meant to be called by B$SPLY.

If you use this routine, it is up to you to call P$SPRK _ OFF at the
appropriate time to turn the speaker off again. How long you leave the
speaker turned on determines the duration of the tone produced.

Do not call this routine unless you have initialized the speaker with a call
to P$Speaker.

Example

Turn on the speaker:

Extrn P$SPKR_ON:Proc

.CODE
CALL P$SPKR_ON ;Turn on the speaker

P$UnHookFP \f PSOURCE\UNHOOKf P.ASM

1111 Use

Restores the floating point interrupt vectors in a program that has used
floating point instructions.

1111 Calling Convention

CALL P$UnHookFP

No return value.

II 7 - 158 CRESCENT SOFTWARE, INC.

P.D.Q. Version 3.10 Assembly Toolbox, Programmer's Reference

Ill Notes

To use floating point instructions you must call P$HookFP to take over
the floating point interrupts, and also assemble the program with the le
switch. If you exit the program without resetting the floating point
interrupts, you may cause a system crash some time in the future.
Therefore, you must call P$UnHookFP before your program ends, to reset
the floating point interrupts to their original values.

Example

Prepare to end a program assembled with /e:

Extrn P$UnHookFP:Proc

.CODE
CALL P$UnHookFP ;Let P.D.Q. reset the interrupts

P$ZeroFile \SOURCE\ZEROFILE.ASM

11 Use

Copies a string to a buff er and adds a trailing null character.

■ Calling Convention

MOV AX, Offset of descriptor for string
MOV DX, Offset of buffer
CALL P$ZeroFi le

Returns with CX = 0 and ASCIIZ string in the buffer. DX is unchanged.

11111 Notes

This routine is used primarily for converting a BASIC string to an ASCIIZ
string suitable for use as an argument to DOS.

The buffer must be long enough to hold the entire string, plus one more
to hold the added CHR$(0) null byte.

This routine calls P$FreeTemp to delete the original string if its descriptor
is in P.D.Q. 's temporary string space.

This routine is used internally by many P.D.Q. routines to prepare file and
subdirectory names for calls to DOS services.

Example

Convert A$ to an ASCIIZ string on the stack. Assume that A$ is less
than 80 bytes long:

CRESCENT SOFTWARE, INC. II 7 - 159

Assembly Toolbox, Programmer's Reference

Extrn P$ZeroFile:Proc

.DATA?
EVEN
A$ dd 1 dup (?)

.CODE
PUSH BP
MOV BP,SP
SUB SP,80
MOV DX,SP
MOV AX,Offset A$
CALL P$ZeroFile

MOV SP,BP

;Room for string descriptor

;Create room on stack
;Save the stack pointer
;Make room for the buffer
;DX==> buffer area
;Offset of string
;Create ASCIIZ string
;use the ASCIIZ string
;Discard the buffer

P.D.Q. Version 3.10

Pause \SOURCE\PAUSE.ASM

P.D.Q. Equivalent: Pause

111 Use

Pauses the computer for the specified number of timer ticks.

II Calling Convention

PUSH Offset of number of timer ticks
CALL Pause

No return value.

11 Notes

This routine is accurate to within +0 and -.056 seconds.

Example

Pause for 1 second (18 timer ticks):

Extrn Pause:Proc

.DATA
Ticks dw 18

.CODE
MOV AX,Offset Ticks
PUSH AX
CALL Pause

1111 7 - 160

;Storage for delay count

;Address of Ticks

CRESCENT SOFrWARE, INC.

P.D.Q. Version 3.10 Assembly Toolbox, Programmer's Referern:e

PDQCompare \SOURCE\PDQCOMP.ASM

■ Use

Compares two regions of memory of equal length.

1111 Calling Convention

PUSH Segment of region 1
PUSH Offset of region 1
PUSH Segment of region 2
PUSH Offset of region 2
PUSH Number of bytes to compare

Returns -1 in AX if the bytes match in both regions, or O if they are
different.

II Notes

The return value in AX from this routine is either True or False to show
whether the byte strings are the same or not. However, the flags are
undisturbed from the Repe Cmpsb instruction, so you can use them to
determine which byte string is greater.

Example

Compare two 20-byte regions of near memory:

Extrn PDQCompare:Proc

.DATA?
Regionl db 20 dup (?)
Region2 db 20 dup (?)

.CODE
PUSH DS
MDV AX,Offset Regionl
PUSH AX
PUSH DS
MDV AX,Offset Region2
PUSH AX
MDV AX,20
PUSH AX
CALL PDQCompare
OR AX,AX
JNZ TheSame

CRESCENT SOFTWARE, INC.

;Two memory areas to compare

;Segment of region 1
;Get offset of first region

;Segment of region 2
;Get offset of second region

;Get length to compare

;Were they the same?
;Yes -- Go

1111 7 - 161

Assembly Toolbox, Programmer's Reference P.D.Q. Version 3.10

PDQCPrint \SOURCE\PDQCPRNT.ASM

P.D.Q. Equivalent: PDQCPrint
11111 Use

Prints a string at a given row and column location quickly by bypassing
DOS and the BIOS.

111 Calling Convention

PUSH Offset of string descriptor of text to print
PUSH Offset of video row for first character
PUSH Offset of video column for first character
CALL PDQCPrint

No return value.

11111 Notes

This routine uses the current color value for the characters that it prints.
The color value is stored in the external byte P$Color.

Both the row and column values are I-based.

This routine does not check the validity of the row and column number
you provide. That is your responsibility.

You can direct the text to any segment (not just the video display) by setting
the segment value in the external word P$MonSeg. You must either set
that segment manually, or call P$MonSetup once before calling this routine
to make sure the video segment value is correctly set.

Example

Print the string Work$ at Row 5, Column 1:

Extrn PDQCprint:Proc

.DATA?
EVEN
Work$ dd 1 dup (?)
Row dw 1 dup (?)
Column dw 1 dup (?)

.CODE
MOV [Row], 5
MOV [Column] , 1
MOV AX.Offset Work$
PUSH AX
MOV AX.Offset Row

Ill 7 - 162

;Space for a string descriptor
;Space for the row
;Space for the column

;Set the row value
; and the column value
;Get address of descriptor

;Get video row for output

CRESCENT SOFfWARE, INC.

P.D.Q. Version 3.10 Assembly Toolbox, Programmer's Reference

PUSH AX
MDV AX,Offset Column
PUSH AX
CALL PDQCPrint

;Get video column

PDQExist \SOURCE\PDQEXIST.ASM

P.D.Q. Equivalent: PDQExist
111 Use

Determines whether a specified file exists.

11111 Calling Convention

PUSH Offset of string descriptor for the filespec
CALL PDQExist

Returns AX = -1 if file exists or O if it doesn't exist.

111111 Notes

This routine resets the DTA to its own space on the stack.

This routine always clears the error word P$PDQErr.

If this routine finds a file, it may have any or all of the following attributes
set: read-only, hidden, system, and archive. This routine will not find
subdirectory names or volume names.

Example

Determine whether the file exists whose name is stored in FileName$:

Extrn PDQExist:Proc

.DATA?
EVEN
FileName$ dd 1 dup (?) ;Room for the string descriptor

.CODE
MDV AX,Offset FileName$
PUSH AX
CALL PDQExist
OR AX,AX
JNZ Fi leExists

CRESCENT SOFTWARE, INC.

;Get offset of string

;Does the file exist?
;Test the result
;Go if it does exist.

11111 7 - 163

Assembly Toolbox, Programmer's Reference P.D.Q. Version 3.10

PDQlnkey \SOURCE\PDQINKEY.ASM

P.D.Q. Equivalent: PDQlnkey

11 Use

This routine returns the value of the next keystroke, or O if no keystroke
is pending.

Ill Calling Convention

CALL PDQinkey

AX contains O if no key was waiting, a positive value for a regular ASCII
character, or a negative value for an extended key.

Ill Notes

This routine uses DOS Service 6 to see if a keystroke is pending, so it
supports redirection of input.

Example

Loop until a keystroke is ready and then test whether it is an ASCII key
or extended key.

Extrn PDQinkey:Proc

.CODE
@@:

CALL PDQinkey ;Get the next key
OR AX,AX ;Was one waiting?
JZ @B ;Loop until one is ready
JS ExtKey ;Go if it was an extended key
;Stay here for an ASCII key

PDQlnput \SOURCE\PDQINPUT.ASM

P.D.Q. Equivalent: PDQlnput

Ill Use

Get a line of input using the DOS Line Input routine.

Ill Calling Convention

PUSH Offset of result string descriptor
CALL PDQinput

No return value (result returned in passed string).

II 7 - 164 CRESCENT SOFfWARE, INC.

P.D.Q. Version 3.10 Assembly Toolbox, Programmer's Reference

11'11 Notes

Maximum input line length is 127 characters.

This routine uses DOS service OAh, so it supports redirection. However,
you should never call this routine from a TSR program (use BIOSlnput or
BIOSinput2 instead).

Example

Get a line of input from user and store it in Work$:

Extrn PDQinput:Proc

.DATA?
EVEN
Work$ dd 1 dup(?)

.CODE
MDV AX,Offset Work$
PUSH AX
CALL PDQinput

;Space for string descriptor

;Get descriptor address

PDQ Message \SOURCE\PDQMSG.ASM

P.D.Q. Equivalent: PDQMessage

11111 Use

Copy a BASIC error message into a string.

11 Calling Convention

PUSH Offset address of error number
CALL PDQMessage

Returns offset of descriptor of string holding the message.

111 Notes

The returned string and descriptor are in PDQMessage's own data area.
The messages are actually stored in the code segment to avoid impacting
DGROUP. Only enough DGROUP memory (25 bytes) is reserved to hold
a copy of the longest string. Copy the string to your own string space if
you need to do further work with it. The previous message will be
overwritten with new calls to PDQMessage.

You can add error messages to the list by editing and recompiling the
PDQMSG.ASM source code file.

CRESCENT SOFfWARE, INC. 1111 7 - 165

Assembly Toolbox, Programmer's Reference

Example

Display error 14, "File not found":

.DATA?
MyErrNum dw 1 dup (?)

.CODE
MOV [MyErrNum] ,14
MDV AX,Offset MyErrNum
PUSH AX
CALL PDQMessage
PUSH AX
CALL P$PESD

;Store error number
;Get address of error number

;Get descriptor address in AX
;Pass descriptor address
;And print it out

P.D.Q. Version 3.10

PDQMonitor \SOURCE\MONITOR.ASM

P.D.Q. Equivalent: PDQMonitor

11111 Use

Determines and reports the type of monitor that is installed. If two
adapters and monitors are being used, PDQMonitor reports the one that
was currently active the first time it was called.

Ill Calling Convention

CALL PDQMonitor

Returns monitor type in AX.

11111 Notes

Currently, PDQMonitor can report 11 different types of monitors. See
the table describing the return value under PDQMonitor in the reference
portion of this manual.

Example

Determine whether a color monitor is being used:

Extrn PDQMonitor:Proc

.CODE
CALL
CMP
JLE
CMP
JAE
TEST
JZ

Color:

PDQMonitor
AX,2
NoColor
AX, 10
Color
AX,1
NoColor

;Get monitor type
;Monochrome or here?
;Yep -- it's not color
;EGA w/ CGA or 8514/A?
;Yep -- we've got color
;Else check color bit
;It wasn't color at all

; If we get here, they're using a color monitor

1111 7 - 166 CRESCENT SOFTWARE, INC.

P.D.Q. Version 3.10 Assembly Toolbox, Programmer's Reference

PDQMonSetup \SOURCE\MONSETUP.ASM

111 Use

Sets P$MonSeg and P$CGAPort, two internal variables that are used by
other routines to specify the video segment and the CGA snow flag.

II Calling Convention

CALL PDQMonSetup

No return value.

II Notes

Once P$MonSeg has a non-zero value, this routine exits without doing
anything. If you want print output to go to a different segment, you can
change P$MonSeg directly. If you want to force PDQMonSetup to reset
P$MonSeg (for example, after switching between a color and
monochrome adapter), you can set P$MonSeg to O and then call this
routine.

Example

Get the video segment for the current video adapter in AX:

Extrn PDQMonSetup:Proc

.DATA
Extrn P$MonSeg

.CODE
CALL PDQMonSetup
MDV AX,[P$MonSeg]

;Make sure P$MonSeg is current
;Get value in AX

PDQParse \SOURCE\PDQPARSE.ASM

Ill Use

Divide a string into substrings by searching for a specified string delimiter
character.

11111 Calling Convention

PUSH Offset of descriptor of string to parse
CALL PDQParse

Returns AX = Offset of descriptor for next substring.

1111 Notes

See the description of PDQ Parse in the reference portion of this manual.

CRESCENT SOFfWARE, INC. II 7 - 167

Assembly Toolbox, Programmer's Reference P.D.Q. Version 3.10

The returned string descriptor is in this routine's data space and will be
overwritten by successive calls to PDQParse. Copy the string to your own
string descriptor with B$SASS if you want to process it further.

Set the external word P$NextChar to zero to perform the function of
PDQRestore. Set the external byte P$DelimitChar to the delimiter that
you want PDQParse to use.

Example

Print the first entry of the DOS Path statement (also ensure that the default
delimiter of";" is in place):

Extrn PDQParse:Proc
Extrn B$FEVS:Proc

.DATA
EVEN
DefStr Path$, "PATH"
Extrn P$NextChar:Word
Extrn P$DelimitChar:Byte

.CODE
MOV P$NextChar,0
MDV P$DelimitChar,';'
MDV AX.Offset Path$
PUSH AX
CALL B$FEVS
MOV SI ,AX
CMP WordPtr [SI] ,O
JE NoPathFound
PUSH AX
CALL PDQParse
PUSH AX
CALL P$PESD

PDQPrint

;Gets an environment string

;Set to Oto start new parse
;Set to the delimiter

;Restore the parser for new string
;Set the delimiting character
;Get address of string descriptor

;Get the path string
;Copy offset
;Did we find the path?
;Go on error
;Pass the string descriptor
;Get the first directory
;Push descriptor for printing
;And print it out

\SOURCE\PDQPRINT.ASM

P.D.Q. Equivalent: PDQPrint

11111 Use

Prints a string directly to the screen using the specified color attributes.

1111 Calling Convention

PUSH Offset of string descriptor
PUSH Offset of row value
PUSH Offset of column value
PUSH Offset of color value

1111 7 - 168 CRESCENT SOFrWARE, INC.

P.D.Q. Version 3.10 Assembly Toolbox, Programmer's Reference

No return value.

1111 Notes

This is faster than a standard PRINT operation (using, for example,
P$PESD) because it writes directly to screen memory instead of using
DOS or the BIOS. On the other hand, the output from PDQPrint cannot
be redirected.

This routine calls P$MonSetUp to set the video segment if it hasn't been
set previously. It also requires an explicit color setting for the string that
it prints.

Example

Print Work$ at Row 5, Column 1, in bright white on blue:

Extrn PDQPrint:Proc

.DATA?
EVEN
Work$ dd 1 dup (?)
Row dw 1 dup (?)
Column dw 1 dup (?)
Color dw 1 dup (?)

.CODE
MDV [Row],5
MDV [Column], 1
MDV [Color], lFh
MDV AX,Offset Work$
PUSH AX
MDV AX,Offset Row
PUSH AX
MDV AX,Offset Column
PUSH AX
MDV AX,Offset Color
PUSH AX
CALL PDQPrint

;Space for string descriptor
;Space for other parameters

;Set row value
; and column
;Set color value
;Get offset of string

;Get video row offset

;and video column

;Get color last

PDQRand \SOURCE\PDQRAND.ASM

1111 Use

Returns a random integer between O and a specified limit.

1111 Calling Convention

PUSH Offset of limit value
CALL PDQRand

Returns AX = random integer.

CRESCENT SOFrWARE, INC. 1111 7 - 169

Assembly Toolbox, Programmer's Reference P.D.Q. Version3.I0

1111 Notes

The limit and the return value in AX are signed integers with values
between O and 32,767. See PDQRandomize to set the random number
seed if you want to repeat a sequence of random integers.

Example

Get a random number between 1 and 6:

Extrn PDQRand:Proc

DATA?
Limit dw 1 dup (?)

.CODE
MDV [Limit], 5
MDV AX.Offset Limit
PUSH AX
CALL PDQRand
INC AX

PDQ Randomize

11111 Use

;Space for the limit

;Store the limit value
;Get address of Limit

;1 <=AX<= 6

\SOURCE\PDQRAND.ASM

Set the random number seed used by PDQRand.

1111 Calling Convention

PUSH Offset of seed value
CALL PDQRandomize

No return value.

11111 Notes

The seed value should be a positive integer in the range of 1 to 32,767.
PDQRand uses a seed value of 7 ,397 by default.

Example

Set the seed value to 100:

Extrn PDQRandomize:Proc

.DATA?
Seed dw 1 dup (?)

.CODE
MDV [Seed] , 100
MDV AX,Offset Seed
PUSH AX
CALL PDQRandomize

1111 7 - 170

;Space for the seed value

;Set new seed value
;Get its address

CRESCENT SOFfWARE, INC.

P.D.Q. Version 3.10 Assembly Toolbox, Programmer's Reference

PDQSound \SOURCE\PDQSOUND.ASM

P.D.Q. Equivalent: PDQSound

11 Use

Play a note of a specified duration through the computer's speaker.

111111 Calling Convention

PUSH Offset of frequency in Hz.
PUSH Offset of duration in timer ticks (1/18 second)
CALL POQSound

No return value.

11111 Notes

See the description for PDQSound in the reference portion of this manual
for the use of negative duration values. If you use a frequency of 37 Hz.
or less, this routine will return immediately and not produce any sound
(nor turn off the speaker).

Example

Produce a tone of 440 Hz (concert A) for one second:

Extrn PDQSound:Proc

.DATA?
Frequency dw 1 dup (?) ;Data space for parameters
Duration dw 1 dup (?)

.CODE
MDV [Frequency] ,440 ;Set frequency value
MDV [Duration],18 ;A full second
MDV AX,Offset Frequency ;Get frequency value
PUSH AX
MDV AX.Offset Duration ;and duration value
PUSH AX
CALL PDQSound

CRESCENT SOFTWARE, INC. Ill 7 - 171

Assembly Toolbox, Programmer's Reference P.D.Q. Version 3.10

PDQValL \SOURCE\PDQVALASM
\SOURCE_ PDQVALASM

Synonym: PDQVall

P.D.Q. Equivalent: PDQVall and PDQValL
1111 Use

Return the value of a number stored in a string. This routine can be used
both for integers and long integers.

1111 Calling Convention

PUSH Offset of descriptor for string containing number
CALL PDQVALL

Value returned in DX:AX.

1111 Notes

P.D.Q. uses the same routine for PDQVall and PDQValL. It is up to you
to be sure that the string contains a value that can be represented as an
integer or a long integer; it does not check for overflow.

If you are certain that the returned value will be less than 65,536 you can
ignore DX and use AX only.

See the description of PDQVall and PDQValL in the reference section of
this manual.

The versions of these routines in the stub file, _PDQVAL.ASM, do not
accept values in &H hexadecimal format nor will they accept positive
values with a leading plus sign. Otherwise, they are identical to the regular
routines.

Example

Find the long integer value of Work$:

Extrn PDQVALL:Proc

.DATA?
EVEN
Work$ dd 1 dup (?)

.CODE
MOV AX.Offset Work$
PUSH AX
CALL PDQVALL

llil 7-172

;Space for a string descriptor

;Get address of string

;Get value in DX:AX

CRESCENT SOFrWARE, INC.

P.D.Q. Version 3.10 Assembly Toolbox, Programmer's Reference

PoolOkay \SOURCE\POOLOKAY.ASM

P.D.Q. Equivalent: PoolOkay

111 Use

Check the integrity of the string pool.

1111 Calling Convention

CALL Pao lOkay

Returns AX = -1 if the string pool is okay, or O if it has been corrupted.

111111 Notes

This routine works by walking through the active portion of the string
pool. It makes sure that each string's back pointer points to a valid string
descriptor that in turn points back to the string data. You may find this
routine most valuable during debugging.

Example

Check the integrity of the string pool:

Extrn PoolOkay:Proc

.CODE
CALL PoolOkay
OR AX,AX
JZ StringError

;Check the string pool
; Is it okay?
;No -- go take care of it

PopDeinstall \SOURCE\POPDEINS.ASM

P.D.Q. Equivalent: PopDeinstall

111111 Use

Removes a TSR from memory (after a PopDown if TSR is popped up).

11111 Calling Convention

PUSH Offset of DGROUP variable
PUSH Offset of ID$ string descriptor
CALL PopDeinstall

Returns AX = 0 if deinstallation failed, or AX = -1 if deinstallation
succeeded.

CRESCENT SOFTWARE, INC. 1111 7 - 173

Assembly Toolbox, Programmer's Reference P.D.Q. Version 3.10

1111111 Notes

The "DGROUP" variable is the value returned from a previous call to
TSRinstalled. The ID$ string must be the same string as was used for
identification when the TSR was installed in memory.

Example

Remove the currently-running TSR from memory:

Extrn PopDeinstall:Proc

.DATA
DGRP dw ? ;Space for DGROUP variable
DefStr ID$, "My ID string: version 1.0"

.CODE
MOV AX,Offset DRGP
PUSH AX
MOV AX,Offset ID$
PUSH AX

;Get DGROUP variable

;And ID string

CALL PopDeinstall ;Try to remove from memory
OR AX,AX ;Test the return
JNZ Okay ;Okay -- go ahead
; We get here if deinstall failed

PopDown \SOURCE\POPUP.ASM

P.D.Q. Equivalent: PopDown

1111 Use

Return to underlying application (or DOS prompt) from a TSR.

II Calling Convention

CALL PopDown

No return.

1111 Notes

This routine does not return to your code. Call this routine to end a TSR
session that was begun by P.D.Q. code.

Example

End a popup session in a TSR:

Extrn PopDown:Proc

.CODE

1111 7 - 174 CRESCENT SOFfWARE, INC.

P.D.Q. Version 3.10 Assembly Toolbox, Programmer's Reference

CALL PopDown ;Give back control
; We'll never get here

Pop Request \SOURCE\POPREQST.ASM

P.D.Q. Equivalent: PopRequest

111 Use

Requests that the current TSR pop up.

11111 Calling Convention

PUSH Offset of Flag word
PUSH Offset of Timerticks word
CALL PopRequest

Returns AX = 0 if request failed (if another request was pending), or AX
= -1 if the request has been registered.

11111 Notes

The Flag is a word that is set to O (False) by PopRequest. When (it) the
TSR eventually pops up, the Flag will be set to a non-zero value to show
that this request caused the popup.

TimerTicks is an unsigned word which designates how long this request
should stay in effect. Each tick is approximately 1118th of second. If you
specify the largest possible value (65,535) the request will stay in effect
for about an hour.

PopRequest is normally called from an interrupt handler that has detected
a situation that necessitates that the program pop up. A keyboard popup
request is the only thing that takes precedence over a request registered
with this procedure.

Example

Ask that the program pop up in the next 5 seconds:

Extrn PopRequest:Proc

.DATA
PopupFlag dw ? ; Value is unimportant
TimerTicks dw 18 * 5 ;Time to wait

.CODE
MDV AX.Offset PopupFlag ;Get address of flag
PUSH AX
MDV AX,Offset TimerTicks ;And address of tick count

CRESCENT SOFfWARE, INC. 1111 7 - 175

Assembly Toolbox, Programmer's Reference P.D.Q. Version 3.10

PUSH AX
CALL PopRequest
OR AX ;Was request acknowledged?
JZ PopReqFailed ;No--go
; Popup request was accepted

PopUpHere \SOURCE\POPUP.ASM

P.D.Q. Equivalent: PopUpHere

11 Use

Sets the popup address and does a bunch of housekeeping for a P.D.Q.
simplified TSR program.

11111 Calling Convention

PUSH Offset of HotKey and Shiftmask word
PUSH Offset of ID$ string descriptor
CALL PopUpHere
JMP somewhere in this code segment (see below)

No return value.

1111 Notes

Store the hot key and shift mask as ShiftMask * 256 + scan code. See
the information about PopUpHere in the reference portion of this manual
for more information.

The Jmp instruction should be followed by a full word address. That is,
it must be a NEAR (not a SHORT or FAR) jump to the rest of your
initialization code. PopUpHere depends on the length of the jump to set
the correct popup address. See SCRNCAP.ASM for an example of using
a Nop to guarantee that at least three bytes are reserved.

Example

Set up a simplified TSR (also see the example programs on the distribution
disk) to pop up on Alt-S:

Extrn PopUpHere:Proc

.DATA?
HotKey dw 1 dup (?) ;Place for Hotkey definition

.DATA
DefStr ID$, "My ID string: version 1.0"

.CODE
MOV [HotKey] ,81Fh ;Shiftmask = 8: Alt key

II 7 - 176 CRESCENT SOFTWARE, INC.

P.D.Q. Version3.10 Assembly Toolbox, Programmer's Reference

MDV AX,Offset HotKey
PUSH AX
MDV AX,Offset IO$
PUSH AX

;Scan code= lFh: "S"

;Get address of JD$

CALL PopUpHere ;Set Popup address
JMP Continue_Install
; this begins the popup code

Power \SOURCE\POWER.ASM

■ Use

Raise an integer (the mantissa) to an integer power (the exponent).

■ Calling Convention

PUSH Offset of mantissa
PUSH Offset of exponent
CALL Power

Returns result in DX:AX.

111 Notes

This routine returns 0:0 in DX:AX in case of an overflow error.

Example

Calculate 12 A 5:

Extrn Power:Proc

.DATA?
Mantissa dw 1 dup (?) ;Room for the arguments
Exponent dw 1 dup (?)

.CODE
MDV [Mantissa),12 ;Set values in place
MDV [Exponent],5
MDV AX,Offset Mantissa ;Get the first argument
PUSH AX
MDV AX,Offset Exponent ;and the second
PUSH AX
CALL Power ;Result (248832) in DX:AX

Power2 \SOURCE\POWER2.ASM

11 Use

Calculates 2 A n for n values between 0 and 31.

CRESCENT SOFfWARE, INC. 11111 7 - 177

Assembly Toolbox, Programmer's Reference P.D.Q. Version 3.10

Ill Calling Convention

PUSH Offset of n
CALL Power2

Returns result in DX:AX.

■ Notes

2 A 31 will return with the high bit of DX set. Technically, this is a negative
number (if DX:AX is taken as a signed long integer). But if you interpret
it as an unsigned integer, the result is correct.

Example

Calculate 2 A 12:

Sort

Extrn Power2:Proc

.DATA?
n dw 1 dup (?)

.CODE
MOV [n], 12
MOV AX,Offset n
PUSH AX
CALL Power2

P.D.Q. Equivalent: Sort
11111 Use

;Room for the argument

;Set the argument value
;Get argument address

;The result (4096) is in DX:AX

\SOURCE\SORT.ASM
\SOURCE_ SORT.ASM

Sorts a string array in ascending or descending order.

11111 Calling Convention

PUSH Offset of first array element descriptor to include in sort
PUSH Offset of number of elements to sort
PUSH Offset of sort direction word
CALL Sort

No return value.

11111 Notes

Use zero as the sort direction for an ascending sort, or any other value for
a descending sort.

Note that the number of elements and the sort direction are passed by
reference, not by value.

1111 7 - 178 CRESCENT SOFfWARE, INC.

P.D.Q. Version 3.10 Assembly Toolbox, Programmer's Reference

In a string array, the descriptors are in an array table. The text of each
string is in the string pool. If you are sorting the entire array, pass the
address of the first item. You can find the address of the first item at offset
OAh in the array descriptor.

The version in_ SORT.ASM is identical except that it is slower in exchange
for less code. It uses B$SCMP to compare strings, and B$SCMP has the
overhead of checking every string to see if it is temporary and deleting it
if so. Of course, no string descriptors in your array will be temporary, so
the check is simply wasted time during the sort.

Example

Sort the first 10 elements of the single-dimension string array Array$ into
ascending order:

Extrn Sort:Proc

.DATA?
Array$

.DATA

db 16 dup (?)

Size dw 10
Direction dw 0

.CODE

;Room for array descriptor

;Elements to sort
;O = ascending

MDV AX.Word ptr [Array$+ 10] ;Get offset of first
; string descriptor

PUSH AX
MDV AX.Offset Size
PUSH AX
MOV AX.Offset Direction
PUSH AX
CALL Sort

;Point to size to sort

;Point to sort direction

; Sort it all

StuffBuf \SOURCE\STUFFBUF.ASM

P.D.Q. Equivalent: StuffBuf

11111 Use

Places up to 15 key strokes in the computer's type-ahead buffer as if they
had been typed from the keyboard.

11111 Calling Convention

PUSH Offset of string descriptor
CALL StuffBuf

No return value.

CRESCENT SOFfWARE, INC. 1111 7 - 179

Assembly Toolbox, Programmer's Reference P.D.Q. Version3.10

1111 Notes

The string may contain no more than 15 key strokes. Extended keys are
represented by a CHR$(0) followed by the key's scan code.

Example

Place "Testing", an up arrow key, and "123" into the buffer:

.DATA
DefStr StufChar$, <"Testing", 0, 72, "123">

.CODE
MDV AX,Offset StufChar$;Pointer to descriptor
PUSH AX
CALL StuffBuf ;Characters in keyboard buffer

Swap2Disk \SOURCE\SWAP2DSK.ASM

P.D.Q. Equivalent: Swap2Disk
11111 Use

When invoked before calling EndTSR, tells the popup handler to swap the
program's code and data to a disk file while inactive.

Ill Calling Convention

PUSH Offset of string descriptor for swap file name
PUSH Offset of integer program ID
CALL Swap2Disk

Returns success or failure (-1 or 0) in AX. Also sets P$PDQErr to a
BASIC error number, or clears it to zero if no error occurred.

■ Notes

The only reason Swap2Disk will return O is if it is unable to locate sufficient
hard disk space to hold the program, or if the file name is invalid.

II Example

.DATA
EVEN
ProgramID DW O
DefStr SwapFile, <"PROGRAM.SWP">
DefStr ErrorMsg, <"Unable to swap to disk.">

.CODE
MDV AX,Offset SwapFile
PUSH AX
MDV AX,Offset ProgramID
PUSH AX

1111 7 - 180

;pass the name of the swap file

;and the address of the ID

CRESCENT SOFfWARE, INC.

P.D.Q. Version 3.10 Assembly Toolbox, Programmer's Reference

CALL Swap2Disk
OR AX,AX
JNZ Success
MDV AX.Offset ErrorMsg
PUSH AX
CALL B$PESD

;try to enable disk swapping
;did it work?
;yes, continue
;no, print the error message

Swap2EMS \SOURCE\SWAP2EMS.ASM

P.D.Q. Equivalent: Swap2EMS
11111 Use

When invoked before calling EndTSR, tells the popup handler to swap the
program's code and data to expanded memory while inactive.

111 Calling Convention

PUSH Offset of integer program ID
CALL Swap2EMS

Returns success or failure (-1 or O) in AX.

11111 Notes

Swap2EMS will return O if there is insufficient expanded memory
available, or no expanded memory at all.

111111 Example

.DATA
EVEN
ProgramID OW 0
DefStr ErrorMsg, <"Unable to swap to EMS.">

.CODE
MDV AX.Offset ProgramID
PUSH AX
CALL Swap2EMS
OR AX,AX
JNZ Success
MDV AX,Offset ErrorMsg
PUSH AX
CALL B$PESD

CRESCENT SOFTWARE, INC.

;pass along the program ID

;try to enable swapping to EMS
;did it work?
;yes, continue
;no, print the error message

1111 7 - 181

Assembly Toolbox, Programmer's Reference P.D.Q. Version 3.10

SwapCode \SOURCE\SWAPCODE.ASM

P.D.Q. Equivalent: SwapCode
11 Use

Retrieves the optional code passed in BX if CALL INTERRUPT was used
to invoke the swapping TSR program.

111 Calling Convention

CALL SwapCode

AX holds the code number.

1111 Notes

See the section TSR Programs That Swap To Disk Or EMS for information
on passing additional information to a swapping TSR.

Example

Retrieve the code passed in BX by a calling program:

Extrn SwapCode: Proc

.Code
CALL SwapCode
OR AX, AX ;Did the caller pass a code?
JZ NoCode ;No

TestH otKey \SOURCE\ TESTKEY.ASM

P.D.Q. Equivalent: TestHotKey
Ill Use

Tests whether the last key pressed matches a given scan code and shift
mask.

111111 Calling Convention

PUSH Offset of Argument
CALL TestHotKey

If AX = -1, then the key matches; if AX = 0, then no match.

1111 Notes

The Argument value is Shif'tmask * 256 + Scancode. Notice that the
address of Argument is passed to TestHotKey, not the value itself.

11111 7 - 182 CRESCENT SOFfWARE, INC.

P.D.Q. Version3.10 Assembly Toolbox, Programmer's Reference

Example

Test whether Alt-S was the last key pressed:
Extrn TestHotKey:Proc

.DATA
Arg dw 8 * 256 + lFh ;Alt mask is 8, S has scan code

; of lFh
.CODE
MDV AX.Offset Arg
PUSH AX
CALL TestHotKey
OR AX,AX
JNZ AltSPressed

;Get address of argument

;Was it pressed?
;Test the result
;Yes it was pressed -- go

TSRFileOff \SOURCE\ TSRFILE.ASM

P.D.Q. Equivalent: TSRFileOff

II Use

Restores the foreground application's PSP and DfA after a call to
TSRFileOn.

11111 Calling Convention

CALL TSRFi leOff

No return value.

11111 Notes

TSRFileOff and TSRFileOn are not needed in a P.D.Q. simplified TSR
program.

This routine assumes that it is safe to use DOS services 2Fh, 50h, and
51h-that is, it assumes it is safe to call DOS.

Example

Return to the original PSP and Df A after using file services in a TSR
program:

Extrn TSRFileOff:Proc

.CODE
CALL TSRFi leOff ;Make the switch

CRESCENT SOFfWARE, INC. Ill 7 - 183

Assembly Toolbox, Programmer's Reference

TSRFileOn

P.D.Q. Equivalent: TSRFileOn

111111 Use

P.D.Q. Version 3.10

\SOURCE\ TSRFILE.ASM

This routine is used in a non-simplified TSR to switch to the local PSP
and DTA before performing DOS file services. This guarantees that the
TSR can open and access files without interfering with the foreground
application.

II Calling Convention

CALL TSRFileOn

No return value.

11 Notes

Use TSRFileOff to restore the original PSP and DTA before returning to
the foreground application. If you don't, you may destroy files or even a
directory structure.

This routine assumes that it is safe to use DOS services 2Fh, 50h, and
Slh-that is, it assumes it can safely call DOS.

Example

Prepare to use file or device 1/0 in a TSR:

Extrn TSRFileOn:Proc

.CODE
CALL TSRFileOn ;Switch to local file structures

TSRlnstalled

P.D.Q. Equivalent: TSRlnstalled

11111 Use

\SOURCE\ TSRINST.ASM

Find an installed (resident) copy of a TSR program in memory.

1111 Calling Convention

PUSH Offset of ID$ descriptor
CALL TSR!nstalled

11111 7 - 184 CRESCENT SOFfWARE, INC.

P.D.Q. Version3.10 Assembly Toolbox, Programmer's Reference

Returns AX = DGROUP (data segment of installed copy of the program),
or AX = 0 if the program has not been previously installed.

Ill Notes

The DGROUP value is needed to call DeinstallTSR and PopDeinstall later
to remove a TSR program from memory.

You should call TSRinstalled before going resident (before calling
EndTSR) if you don't want more than one copy of the TSR to be installed
in memory at one time. If the return value is not 0, you can avoid calling
EndTSR and display a warning message instead.

See the SCRNCAP.ASM demonstration program for a complete example
of detecting prior installation.

Example

Check whether the current TSR program is already resident in memory:

Extrn TSRinstalled:Proc

.DATA
DefStr ID$, "MyTSR Version 9.75"

.CODE
MDV AX,Offset ID$;Point to string descriptor
CALL TSRinstalled ;Is another copy resident?
OR AX,AX ;O means no
JNZ Alreadyinstalled ;Oops -- go
; If we get here, another copy of this program is not
; already in memory.

UnhooklntO \SOURCE\HOOKINT0.ASM

11111 Use

Releases the Interrupt 0 trap established by a call to Hooklnt0, and lets
DOS handle any subsequent division by zero errors.

1111 Calling Convention

CALL UnhookintD

No return value.

1111 Notes

If you happen to call UnhooklntO when the P.D.Q. Interrupt 0 trap is not
active, this routine simply returns without doing anything.

CRESCENT SOFTWARE, INC. 1111 7 - 185

Assembly Toolbox, Programmer's Reference P.D.Q. Version 3.10

Example

Extrn UnhooklntO:Proc

.CODE
CALL UnhooklntO ;That was easy, wasn't it?

FLUSH

P. D.Q. Equivalent: Flush

Ill Use

\SOURCE\FlUSH.ASM
\SOURCE_ FLUSH.ASM

Flushes all open BASIC files; that is, it makes sure that all pending changes
are written to disk and the directory entries are updated without having to
close and then reopen the files.

11111 Calling Convention

PUSH Each of the file numbers to flush
CALL FLUSH
ADD SP,(number of files passed)* 2

No return value. May report an error by calling P$DoError.

Ill Notes

To flush all open files do not pass any arguments, and also do not include
an Add SP,n instruction after the call.

_FLUSH is written as a C-style routine to accept a variable number of
arguments. It determines the number of arguments that it receives by
looking for the instruction Add SP,n at the return address. If that
instruction is present, _FLUSH divides then value by 2 and assumes that
it has received that number of arguments. If that instruction is not present,
_FLUSH flushes all open file buffers. _FLUSH will work correctly only
if you include or omit the Add SP,n instruction to tell it how many
arguments it has received.

_FLUSH works by calling two DOS services. It uses Int 21h, Service 45h
to create a duplicate file handle for an open file. Then it calls Int 21h,
Service 3Eh to close the duplicate handle. For this method to work, there
must be at least one file handle available.

The version of this routine in the file _FLUSH.ASM flushes all open files.
To reduce code size it does not accept any arguments.

1111 7 - 186 CRESCENT SOFfWARE, INC.

P.D.Q. Version3.10

Example

FLUSH BASIC file #3:

Extrn _FLUSH:Proc

.CODE
MDV AX,3
PUSH AX
CALL FLUSH
ADD SP,2

Assembly Toolbox, Programmer's Reference

;Get file number
; and send it on
;Flush that file
;Remove file number from stack

Undocumented Procedures

The following procedures from the P.D. Q. library are not fully documented
in this chapter. We're not trying to hide anything from you; rather, we
simply believe that these routines are less important for assembly language
programmers than the preceding group which we have documented fully.

Many of these procedures perform actions which your programs can do
more easily and quickly without the help of a library routine. There is
little reason, for example, to call a special routine to place a 2-byte value
into memory somewhere.

If you do want to call one of these procedures, or if you just want to study
our code, read the associated source code files. Most of the source files
are fully commented and you should have little trouble understanding how
to call these procedures or how to emulate their activities yourself.

A few procedures which are entirely internal to P.D.Q., and which
probably have no usefulness in an assembly-language program, are not
listed here at all. Routines that handle the BASIC 7 Currency data type
are also omitted.

PROCEDURE NAME P.D.Q./QB EQUIVALENT SOURCE FILE

Absolute Call Absolute \SOURCE\ABSOLUTE.ASM

Assembly language routines can call each other directly. There is no
reason to use this mechanism.

Allocmem Allocmem \SOURCE\ALLOCMEM.ASM

P.D.Q. uses this procedure to request a block of far memory from DOS.
You can make the call to DOS service 48H of Int 21H yourself more
quickly.

CRESCENT SOFfWARE, INC. 111 7 - 187

Assembly Toolbox, Programmer's Reference P.D.Q. Version 3.10

PROCEDURE NAME P.D.Q./QB EQUIVALENT SOURCE FILE

\SOURCE\BEEP.ASM B$BEEP Beep

This procedure sends a beep to the speaker by calling the video BIOS (Int
10h, service 0Eh, with 7 in the AL register).

B$CENC END() (BASIC7) \SOURCE\ENDBC7.ASM
B$STP1 STOP() (BASIC7) \SOURCE\ENDBC7.ASM
EndLevel EndLevel (P.D.Q.) \SOURCE\ENDLEVEL.ASM

These three routines store the errorlevel value they receive into the data
byte called P$TermCode and then call B$CEND to clean up and end the
program.

B$CHDR CHDRIVE (BASIC 7) \SOURCE\CHDRIVE.ASM

This procedure implements BASIC 7's CHDRIVE statement to select a
new default drive. You will probably want to call Int 21h, service 0Eh
directly instead of waiting for this procedure to extract the drive number
from a letter in a BASIC string and then make the same call.

B$CHOU PRINT#n, \SOURCE\PRNHANDL.ASM

This routine puts the DOS handle number of the device to receive output
from PRINT into the external word P$PrintHandle. ·

B$CPI4 (386 version) \SOURCE\COMPAR43.ASM

This is a long integer comparison routine for 386 and 486 CPUs. If you
are writing your program with 386 instructions enabled, you can perform
this task directly without the call. If not, you can't use this routine.
However, see the normal B$CPI4 in the reference section for an 8088 and
80286 long integer comparison.

B$DIV4 (386 version) \SOURCE\DIVLONG3.ASM

This divides a 4-byte long integer by another long integer using the
extended registers of the 386 processor. If you are programming on and
for a 386, you can do the operation yourself much more quickly than
setting up for and calling this routine.

B$DSEG DEFSEG \SOURCE\DEFSEG.ASM

All DEF SEG does is set a segment address in an external word-sized
variable called B$SEG. You will save time by setting the variable yourself.
If you want to return to the default data segment-equivalent to DEF SEG
without an argument-simply use Mov B$Seg,DS.

1111 7 - 188 CRESCENT SOFrWARE, INC,

P.D.Q. Version 3.10 Assembly Toolbox, Programmer's Reference

PROCEDURE NAME P.D.Q./QB EQUIVALENT SOURCE FILE

B$DWID WIDI'H (device) \SOURCE\WIDI'H2.ASM
B$FWID WIDI'H (file number)

Neither of these routines do anything except return because the P.D.Q.
print routines do not automatically add a carriage return/line feed every
80 characters like BASIC does.

B$ENFA
B$EXFA

\SOURCE\DEFFN.ASM

These routines are called on entry to and exit from a DEF FN function.
Their purpose in BASIC is to check for sufficient stack space for the
function. B$ENFA also calls B$LINA for debugging purposes.

B$ENRA \SOURCE\SUBRECUR.ASM

This routine is called upon entry to a recursive SUB or FUNCTION to
create an appropriate stack frame.

B$ENSA \SOURCE\SUBSTAT.ASM

This routine is called upon entry to a STATIC SUB or FUNCTION to
create the necessary stack frame.

B$EXSA EXIT SUB/FUNCTION \SOURCE\EXITSUB.ASM

This routine does the cleanup necessary to exit from a subprogram or
function early. It should never be necessary in an assembly-language
program.

B$EXTS EXIT Function \SOURCE\EXITFUNC.ASM

This routine performs a RET and nothing else. It is used in P.D. Q. to exit
a BASIC 7 function when ON ERROR is used.

B$FCVD
B$FCVS

\FPSOURCE\CVS.ASM

These two routines convert the field buffer form of a single-precision or
double-precision number into numeric form. They return a pointer to the
number in AX. What they really do is read the address from a string
descriptor into AX and return that address as the pointer to the number.

B$FIL2 \FPSOURCE\B$FILD.ASM

Converts a 2-byte integer in AX into a 4-byte integer in DX:AX with a
single CWD instruction and then falls into B$FILD.

B$FILD \FPSOURCE\B$FILD.ASM

Pushes a 4-byte integer in DX:AX onto the floating point stack.

CRESCENT SOFTWARE, INC. 1111 7 - 189

Assembly Toolbox, Programmer's Reference P.D.Q. Version 3.10

PROCEDURE NAME P.D.Q./QB EQUIVALENT SOURCE FILE

B$FIS2 \FPSOURCE\B$FIST.ASM

Converts the floating point value in ST(0) into a 2-byte integer, and returns
the integer in AX.

B$FIST \FPSOURCE\B$FIST.ASM

Converts the floating point value in ST(0) into a 4-byte integer, and returns
the integer in DX:AX.

B$FIX4
B$FIX8
B$INT4
B$INT8

FIX()
FIX()
INT()
INT()

\FPSOURCE\B$FIXINT.ASM

Truncates (B$FIXn) or rounds (B$INTn) the floating point value in ST(0).
The value is left in ST(0) for further use.

B$FLEN LEN \SOURCE\LEN.ASM

The first word of a string descriptor holds the length of the string. Just
read the length directly.

B$FPOS POS(0) \SOURCE\POS0.ASM

This routine uses BIOS routines to find the current cursor position.

B$LINA \SOURCE\DEBUG.ASM

This routine supports the BC compiler's Id switch to make a program
perform additional runtime error checking for debugging purposes.

B$LPRT LPRINT \SOURCE\LPRINT.ASM

To send text to the printer, BASIC calls B$LPRT to set up printer output
and then one of the PRINT routines to actually do the output. The output
is directed by an external data word called P$PrintHandle. You can store
a value of 4 in that word and then call a PRINT routine yourself instead
of calling B$LPRT.

B$OEGA ON ERROR GOTO \SOURCE\ONERROR.ASM
B$RESA RESUME address \SOURCE\RESUME.ASM

You can use ON ERROR without any problems in an assembly language
program. However, RESUME to an address assumes that BASIC's system
of SUBs and FUNCTIONS is being used, and won't work properly in a
normal assembly language program.

11111 7 - 190 CRESCENT SOFfWARE, INC.

P.D.Q. Version 3.10 Assembly Toolbox, Programmer's Reference

PROCEDURE NAME P.D.Q./QB EQUIVALENT SOURCE FJLE

B$RSTA RESTORE \SOURCE\RESTORE.ASM
B$RSTB RESTORE \SOURCE\RESTORE.ASM

Moves the READ/DATA pointer to the beginning of the data list or to a
new location in the data list. See the comment about READ and DATA
below under R$READDATA.

B$SADD SADD \SOURCE\SADD.ASM
STRINGADDRESS

Gets the address of a string by looking in the second word of its string
descriptor and returning DS:address in DX:AX. You can do the same
thing without the overhead of a call.

B$SETM SETMEM \SOURCE\SETMEM.ASM

Returns without doing anything. This is a dummy routine that is included
in P.D.Q. for compatibility purposes.

B$SSEG SSEG (BASIC 7) \SOURCE\SSEG.ASM

This routine simply copies DS into .AX and then returns.

Block Copy \SOURCE\BLOCKOPY.ASM

This procedure copies a block of memory from one location to another.
You can save time and code by setting up DS:SI, ES:DI, and CX yourself
and using MOVS.

B OnExit \SOURCE\B' ONEXIT.ASM

P.D.Q. uses this routine to register up to 10 routines for clean-up
processing as a program is ending. Since you have complete control over
program termination in an assembly language program (and since you may
not be calling B$CEND to terminate your program), you probably won't
find this routine useful. Full calling instructions are in the source code
file if you need them.

CallOldlnt CallOldlnt \SOURCE\CALLINT.ASM

This procedure is used to give BASIC programs access to interrupts. It
requires setting up a user TYPE with the necessary register values, and
reading those values back out of the TYPE when the call returns. It is
much easier to make direct calls to the computer's interrupts yourself from
assembly language.

CRESCENT SOFfWARE, INC. 11 7 - 191

Assembly Toolbox, Programmer's Reference P.D.Q. Version3.10

PROCEDURE NAME P.D.Q./QB EQUIVALENT SOURCE FILE

ColorSave
ColorRest

COLORSAVE
COLORREST

\SOURCE\COLORSR.ASM

These two routines retrieve and store the current color value used by CLS
and PDQCPrint. The color value is stored in an external data byte called
P$Color. You can more quickly read or set P$Color yourself (see the
B$COLR procedure for information about P$Color).

DOSVer DOSVer \SOURCE\DOSVER.ASM

P.D.Q. reads the DOS version number during program initialization and
stores it in an external data word called P$DOSVer. You can read that
value directly.

GetlByte GetlByte (P.D.Q.) \SOURCE\GETlBYTE.ASM

This routine reads a single byte from a specific memory location, given
the segment and offset + 1 (the element number).

GetlWord GetlWord (P.D.Q.) \SOURCE\GETlWORD.ASM

This routine reads a word from a specific memory location into AX, given
the segment and (offset/ 2) + 1 (the element number).

GetSeg GetSeg (P.D.Q.) \SOURCE\GETSEG.ASM

This routine returns the current segment set by DEF SEG. That value is
stored in an external data word called B$Seg, which you can read (and
write) directly.

Interrupt
InterruptX

Interrupt (P.D.Q.) \SOURCE\INTRPI'.ASM
InterruptX (P.D.Q.) \SOURCE\INTRPI'X.ASM

It is much easier in an assembly language program (and much faster) to
call interrupts directly instead of through these routines.

P$DoError \SOURCE\DOERROR.ASM

This routine is called when an error occurs in another library routine to
save the error number and jump to the correct location if ON ERROR is
in effect. You would need to call this routine only if you were adding
library routines that could report an error.

P$TempStr \SOURCE\TEMPSTR.ASM

This routine finds free space in the string pool to match the requested
space for a new string. If necessary, it calls the pool compaction routine.
It does not create a back pointer or a string descriptor.

PDQPeek2 PDQPeek2 \SOURCE\PDQPEEK2.ASM

Returns a 2-byte value from the DEF SEG segment.

1111 7 - 192 CRESCENT SOFfWARE, INC.

P.D.Q. Version 3.10 Assembly Toolbox, Programmer's Reference

PROCEDURE NAME P.D.Q./QB EQUIVALENT SOURCE FILE

PDQPoke2 PDQPoke2 \SOURCE\PDQPOKE2.ASM

Pokes a 2-byte value into the DEF SEG segment. You can do the same
more easily by addressing memory directly.

PDQ Restore PDQ Restore \SOURCE\PDQREST.ASM

See the description of PDQParse to set the restore word directly.

PDQSetMonSeg PDQSetMonSeg \SOURCE\PDQSETMS.ASM

Sets the value you pass to it in the external word P$MonSeg.

PDQ Set Width \SOURCE\PDQSETWD.ASM

Sets a value equal to twice the screen width in the external word
P$PrintWidth for use by PDQPrint and PDQCPrint.

PDQShl \SOURCE\PDQSHL.ASM

Shifts a word value left by a specified number of bytes.

PDQShr \SOURCE\PDQSHR.ASM

Shifts a word value right by a specified number of bytes.

PDQTimer PDQTimer (P.D.Q.) \SOURCE\PDQTIMER.ASM

Reads the number of timer ticks stored in the BIOS data area in the double
word at 0:46Ch.

PointlntHere
Hooklnt

PointlntHere
Unhooklnt

\SOURCE\POINTINT.ASM
\SOURCE\UNHOOK.ASM

These routines are necessary in a P.D.Q. BASIC TSR program to get and
set the address of an interrupt handler in your program. It is much easier
to set and restore the addresses yourself in assembly language, because
you can find the segment and offset of a routine directly.

R$READDATA READ \SOURCE\READ.ASM

When you use DATA and READ statements in a BASIC program, each
value is stored twice: once in ASCII form in the DATA statement, and
once in a normal variable. Assembly language DB, DW, etc. statements
let you avoid this duplication and wasted program space.

ReleaseMem ReleaseMem (P.D.Q.) \SOURCE\RELMEM.ASM

Releases memory allocated with ALLOCMEM. Just call DOS Int 21h,
service 49h yourself to save some time.

ResetKeyboard \SOURCE\RESETKBD.ASM

Resets the keyboard and 8259 PIC chip.

CRESCENT SOFTWARE, INC. Ill 7 - 193

Assembly Toolbox, Programmer's Reference P.D.Q. Version 3.10

PROCEDURE NAME P.D.Q./QB EQUIVALENT SOURCE FILE

SeekLoc SeekLoc (P.D.Q.) \SOURCE\SEEKLOC.ASM

SeekLoc simply calculates ((RecNumber - 1) * RecLength) + 1.

Set1Byte SetlByte (P.D.Q.) \SOURCE\SETlBYTE.ASM
SetlLong SetlLong (P.D.Q.) \SOURCE\SETlLONG.ASM
SetlType SetlType (P.D.Q.) \SOURCE\SET1TYPE.ASM
SetlWord SetlWord (P.D.Q.) \SOURCE\SET1WORD.ASM

All four routines simply set bytes in memory, given the appropriate
segment, offset, and value. You already have this capability in assembly
language, and will only slow your programs down if you call these routines.

SetDelimitChar SetDelimitChar \SOURCE\SETDELIM.ASM

Sets the character you specify in the byte variable called P$DelimitChar.

StringShort StringShort (P.D.Q.) \SOURCE\STRSHORT.ASM

This routine simply returns the contents of the word variable P$BytesShort.

StringUsed StringUsed (P.D.Q.) \SOURCE\STRUSED.ASM

This routine simply returns the contents of the variable P$BytesUsed.

Ill 7 - 194 CRESCENT SOFrWARE, INC.

Appendices
11111 1111 II

P.D.Q. Version3.10 APPENDIX A

Appendix A: How We Did It
You may be wondering how we are able to achieve such impressive size
and performance improvements. Or perhaps even more important, why
Microsoft has not seen fit to optimize their BASIC this way. In order to
appreciate these improvements and how they are possible-especially
within the context of an add-on library-we must first understand how a
compiler operates. The discussion that follows requires only an under
standing of BASIC programming concepts such as simple math operations,
Garo, and CALL.

Compiler Fundamentals

No matter what language a program is written in, at some point it must
be translated into the binary codes that the PC's processor can understand.
Even programmers that write in assembly language are shielded to some
extent from the low-level details of CPU instruction bytes and memory
addresses. Like BASIC, an assembly language program can refer to
memory variables using names the programmer makes up, and the
assembler itself will keep track of which memory locations they are
assigned to.

High level languages such as QuickBASIC add an extra layer of insulation
between the programmer and the microprocessor. With BASIC, the
BC.EXE compiler reads your BASIC source file, and ·translates the
instructions into the equivalent assembly language statements. For simple
operations such as X = X + 1, the compiler can create a direct
translation-in this case INC WORD PTR [X]. The INC instruction tells
the PC's processor to increment (add 1 to) the word-sized memory location
named "X". Other simple operations such as subtraction, multiplication,
division, and integer assignments are likewise translated directly.

Statements such as PRINT, INPUT, and STRING$ that perform more
complicated actions are instead converted into calls to the BASIC runtime
language library. Even though these could be translated directly to
assembly language statements, that would be very inefficient. Suppose,
for the sake of argument, that the code to print an integer variable
comprises 300 bytes. Generating that code in-line would add the same
300 bytes repeatedly to your program every time you printed a number.
Clearly, using subroutines is a better method. And this is where P.D.Q.
comes in, because P.D.Q. is a rewrite of the BASIC libraries. When you
use BASIC commands that call library routines, your program is really
calling the P.D.Q. versions instead of Microsoft's.

CRESCENT SOFI'WARE, INC. Ill A-1

APPENDIX A P.D.Q. Version 3.10

It is important to point out the use of subroutines-even in assembly
language programs-in this discussion. Many people mistakenly believe
that BASIC programs (or those written in any high-level language for that
matter) are large and slow simply because they are compiled, and then
linked to a library of subroutines. Nothing could be further from the truth.
Indeed, Microsoft BASIC is an outstanding compiler, and in many cases
the code it generates is as good as a human hand-coding in assembly
language. The real problem with BASIC is the enormous amount of code
that is added to the start of each program, and additional code to protect
you from runtime errors. With that in mind, let's consider some of the
problems facing users of traditional high-level languages, and how P.D. Q.
can overcome them.

Traditional Programming Languages

The overwhelming problem with most high-level languages is the sheer
size of the resultant code. For example, a QuickBASIC 4.5 program that
consists solely of an END statement produces a final .EXE file size of
nearly lOK. Once you begin adding statements, the program size rises
considerably.

There are several contributors to excessive program size with regular
BASIC. One is the mandatory code that is called at the beginning of every
program, to query the installed hardware and current display mode.
Additional code is provided to support linking with C language sub
routines. Another factor is the manner in which the language library is
implemented. Many different assembly language subroutines are required
to support BASIC's language statements. But rather than place each
routine into its own object file, Microsoft has chosen to group like routines
within the same file. These routines are thus forever joined together.

This joining is called granularity, and it causes routines that you may not
need to be added to your program. A QuickBASIC 4 program that uses
CLS will also receive the code for COLOR, CSRLIN, POS(0), LOCATE,
and the function form of SCREEN. Further, many of these routines add
more capability than most programs need. For example, the display
commands can work in both text and graphics mode.

Yet another problem is the inordinate amount of hand-holding that is
present in Microsoft BASIC. Where a simple statement to locate the cursor
could be translated into only a few machine instructions, additional code
is added to check the monitor type and current video mode, to ensure that
the LOCATE parameters are within a legal range.

1111 A-2 CRESCENT SOFfWARE, INC.

P.D.Q. Version3.I0 APPENDIX A

The P.D.Q. library solves the granularity problem elegantly, by placing
each language statement subroutine into its own source file. Further, there
is almost no error trapping in any of the P.D.Q. subroutines. That is, if
you try to locate the cursor to, say, row 300 and column -75, the P.D.Q.
LOCATE routine will happily oblige and pass the values on to the BIOS.
Fortunately, the BIOS simply ignores your request and leaves the cursor
where it is.

CRESCENT SOFfWARE, INC. Ill A-3

P.D.Q. Version 3.10

Appendix B: Graphics Programming
With P.D.Q.

APPENDIXB

Although we have decided not to add graphics capabilities to P.D.Q. by
supporting LINE, CIRCLE, and so forth, we have included some simple
routines that work in the EGA and VGA screen modes only. P.D.Q. does
support the SCREEN statement to switch video modes, so you can use
that to enter graphics and then return to text mode later. Of course, for
serious graphics work we recommend our Graphics Workshop library.
This product includes many assembly language routines for incorporating
high-performance graphics into BASIC programs including those linked
with P.D.Q.

All of the positioning parameters for these routines are expressed as pixels,
and the maximum range depends on the video mode you are using. For
SCREEN 9 the valid pixel values range from O to 639 horizontally, and 0
to 349 vertically. VGA SCREEN 12 allows more pixels vertically, and
the legal range is between O and 4 79. The color parameter may be any
value from O through 15 inclusive.

Each routine is provided as a separate BASIC source file having the same
name as the subprogram it contains. The files are kept separate so you
can add only those capabilities that your program actually needs. These
routines are described briefly below, and you should also look at
DEMOEGA.BAS for an example of using them.

EGABox draws a single-line or double-line box, and is called as follows:

CALL EGABox(ULRow%, ULCol%, LRRow%, LRCol%, Colr%, Style%)

Where ULRow%, ULCol%, LRRow%, and LRCol% define the box
borders in pixels, Colr% is the box color, and Style% is either 1 for a
single-line box, or 2 for a double-line box.

EGADot plots a single point, and is called like this:

CALL EGADot(X%, Y%, Colr%)

Where X% and Y% indicate the plot position in pixels, and Colr% is the
dot color ranging from O to 15.

EGAEllipse draws ellipses and circles, using the following syntax:

CALL EGAEllipse(X%, Y%, RadiusWide%, RadiusHigh%, Colr%)

CRESCENT SOFfWARE, INC. 11111 B- 1

APPENDIXB P.D.Q. Version 3.10

Where X% and Y% describe the center of the ellipse in pixels, Radius
Wide% and RadiusHigh% are the width and height in pixels, and Colr%
is the color ranging from Oto 15.

EGALine draws a single line, as follows:

CALL EGALine(XO%, YO%, Xl%, Y1%, Colr%)

Where XO% and YO% indicate the line's starting point, Xl % and Yl %
are the line's ending point, and Colr% is the line color.

EGAPrint is a graphics-mode print routine, and it begins printing at the
current cursor location (use LOCATE to position the text). The syntax
is:

CALL EGAPrint(Work$, Colr%)

Where Work$ is the text to print, and Colr% is the text color.

1111 B-2 CRESCENT SOFfWARE, INC.

P.D.Q. Version3.10 APPENDIX C

Appendix C: Debugging P.D.Q. Programs
Because P.D.Q. performs little or no runtime error checking, it is possible
to create a program that locks up or reboots your PC without any indication
as to what went wrong. Other times a program may not crash, but it also
won't work as expected. Even if a program works perfectly when linked
with the regular BASIC libraries, it may not work at first when linked with
PDQ.LIB.

As a first step, carefully review the section Differences Between P.D. Q.
And Microsoft BASIC. There are a number of subtle differences that you
must be aware of, and it is difficult to remember them all! At the time
you are having a problem, go back and reread that section to see if any of
these differences might be affecting your program. Also, be sure that your
program does in fact run correctly when linked with the regular BASIC
libraries, before assuming the problem is related to P.D.Q. Finally, if you
are using BASIC 7 PDS you must link with the BASIC? .LIB file as
described in the section Compiling and Linking.

Using /0
The single most effective way to track down errant behavior in a P.D.Q.
program is to compile it using the /d (Debug) compiler switch. This tells
BASIC to add a call to a special error detection routine just before each
BASIC statement. That is, if you have code like this:

Work$= "Testing 1, 2, 3"
PRINT Work$
PRINT LEN(Work$)

BASIC creates code similar to this:

CALL CheckForError
Work$= "Testing 1, 2, 3"
CALL CheckForError
PRINT Work$
CALL CheckForError
PRINT LEN(Work$)

Using /d tells BASIC to test all array accesses, to ensure that the specified
element numbers are legal. Without /d, reading from or writing to an
element that doesn't exist is not trapped, and memory is accessed that
shouldn't be. When reading an invalid array element, you simply get
whatever random nonsense happens to be in memory. But when writing
past the end of an array you will likely overwrite data incorrectly, or worse,
destroy code that will crash when later executed.

CRESCENT SOFfWARE, INC. 11111 C-1

APPENDIXC P.D.Q. Version3.10

Another condition using /d will assist is running out of stack space. The
stack in a P.D.Q. program is located after the string pool, at the top of
DGROUP. As new items are added to the stack they are placed at ever
lower addresses. Thus, overflowing the stack overwrites the string pool
causing a "String space corrupt" error. To save memory, the default stack
size in a P.D.Q. program is smaller than that of regular BASIC. This is
one reason a program that runs correctly in the QuickBASIC editor may
fail when linked with P.D.Q.

Although a BASIC programmer cannot access the stack directly, stack
memory is claimed when procedures are called. Also, non-static proce
dures require more stack memory than static procedures, and recursive
procedures require even more. If a program crashes for no apparent
reason, try compiling using the /d switch. If an "Out of stack space" error
is reported, you can then link with the /stack option.

Please see the section Other Link Options in Chapter 2, Compiling And
Linking, for information on controlling the stack size in a P.D.Q. program.
Also see the section The Stack in Appendix H, Miscellaneous Considera
tions for advice on selecting a suitable stack size.

Debugging TSR Programs
Unfortunately, Id may not be used in a TSR program. Therefore, a
different strategy must be used. In truth, there is no good way to debug
a P.D.Q. TSR program short of using a hardware-assisted debugger such
as Periscope, or a protected-mode software debugger like Soft-ICE.
Without heavy-duty debugging products like these your only recourse is
to add calls to PDQPrint to display variable values, or show which part of
a program is currently executing.

Simplified pop-up TSR programs can be tested in the QuickBASIC editor,
as long as they do not also intercept system interrupts. To do this you will
first load PDQSUBS.BAS as a module, and then comment-out the Garo
that follows the call to PopUpHere. Then when the program is run, it will
execute the pop-up handling code once.

11111 C-2 CRESCENT SOFfWARE, INC.

P.D.Q. Version 3.10 APPENDIXD

Appendix D: String Memory Considerations
This section describes how strings and other data items are stored in a
P.D.Q. program. It is not necessary to understand the material presented
here to use P.D.Q. successfully. However, by understanding how near
memory is organized you can avoid "Out of string space" errors, and also
control the amount of memory taken by P.D.Q. TSR programs.

The P.D.Q. String Pool

Every P.D. Q. program contains a block of memory we call the string pool.
By default, this memory holds up to 32K of data; however, you can change
this by linking with an alternate string pool in the form of a stub file.
Three different types of data are stored in the P.D.Q. string pool:

1. The current contents of each string variable. The amount of
memory taken is equal to the length of the string.

2. A table of string descriptors for each conventional (not fixed
length) dynamic string array. Four bytes per element are needed
for each descriptor, so the number of bytes taken is determined
by the total number of elements in all arrays.

3. A back pointer for each active string. A back pointer occupies
two bytes of storage, and is present only when a string contains
data. Memory is not taken for a back pointer before a string
has been assigned, or after it is cleared using a statement such
as Work$ = '"'.

The string pool lies within the same 64K near data segment known as
DGROUP. Several other items also compete for memory in DGROUP;
these include your program's static data (variables and static numeric and
TYPE arrays), variables used by P.D.Q. internally as it works (currently
open file numbers, the current COLOR setting, and so forth), and the
P.D.Q. stack. Non-array strings and static string arrays also use a string
descriptor and that descriptor is in DGROUP. However, those string
descriptors are not located in the P.D.Q. string pool.

Figure 1 shows a memory map of the various code and data segments that
comprise a P.D.Q. program.

CRESCENT SOFfWARE, INC. 1111 D-1

APPENDIXD

64K
Max

P.D.Q. Version3.10

t ---- Higher memory addresse~

--- Dynamic numeric arrays

----The P.D.Q. stack

---- The P.D.Q. string pool

---- Internal P.D.Q. data

---- Your static variables

---- Your compiled code

Figure 1: Memory Map Of A P.D.Q. Program

Although a program's code can grow beyond 64K in size by linking one
or more compiled modules together, all near data-even when multiple
modules are used-is combined into a single segment that cannot exceed
64K. Please understand that this 64K limitation is due to the design of
the Intel 80x86 series of microprocessors, and has nothing to do with
BASIC or P.D.Q.

Determining A Suitable
String Pool Size

In many programs the size of the string pool does not matter. As long as
the 32K default is large enough, there is no harm in having more memory
than is actually needed. But there are two exceptions:

1111 D-2

1. When a program operates as a TSR, all of the program's code
and data remain in memory. Thus, less remains for other
programs that are subsequently run.

CRESCENT SOFfWARE, INC.

P.D.Q. Version 3.10 APPENDIXD

2. When using a task switching program like Windows,
DESQview, or Software Carousel, you can control how much
memory is provided to each partition to preserve system resour
ces. That is, you can tell Windows, "The program I plan to run
in this partition requires only xxxK to run, so set aside only that
much and leave the rest for my other programs. "

If you have only a few variables that occupy, say, 3K of DGROUP memory,
then you could conceivably have a string pool as large as 64K - 3K =
61K. Conversely, if you have a 10,000-element static long integer array
(40K taken), then the string pool cannot be larger than 64K- 40K = 24K.
Understand that this merely defines how big the string pool can be, and
not what is ideal.

Regardless of how small an .EXE file size is, the amount of memory taken
at run time will always be somewhat larger. For example, a short program
with the single statement X$ = "Hi mom" may compile and link to only
lK or so. But at run time the entire string pool is expanded by DOS, and
occupies that much memory in the PC. Thus, it is useful to link with a
smaller string pool stub file when memory is at a premium.

The important point, therefore, is how to determine the amount of string
pool memory your program actually requires. This may be determined
using PRE(""), and also with the P.D.Q. StringUsed and StringShort
functions. If you add the statement PRINT FRE("") after all of a
program's strings have been assigned, you will know how much is
available.

Likewise, StringUsed reports how many bytes were actually used-that
is, 32K- FRE(""). StringShort tells if your program ever asked for more
than was available, and if so how much more. StringUsed is the most
direct way to determine a program's string memory requirements. But if
StringUsed reports that you used all 32K, then you should also query
StringShort to see if you actually needed more than that at some point.

The MAKESTR Utility

P.D.Q. includes several alternate string pool stub files which you can link
with a program to obtain a variety of fixed pool sizes. You can also control
exactly the amount of string memory using the MAKESTR utility pro
gram. When compiled and run, MAKESTR.BAS creates a custom string
pool object file holding any size between 10 and 63,000 bytes.

CRESCENT SOFfWARE, INC. 1111 D-3

APPENDIXD P.D.Q. Version3.10

Other Memory Considerations

Because the stack is stored in DGROUP, increasing its size with the LINK
/stack: option switch may require also reducing the size of the string pool.
The /stack: option is described in the section Other Link Options in Section
I, Chapter 2, Compiling And Linking.

When a program is designed as a TSR, all dynamic far memory allocations
must be made before the call to EndTSR. Dynamic far memory is
allocated either manually with the AllocMem routine, or automatically
using REDIM with a numeric, TYPE, or fixed-length string array. DIM
also allocates memory dynamically when a '$DYNAMIC metacommand
is in effect, or when a variable is used to specify the array size. This issue
is described further in the section entitled Memory Allocation And Dynamic
Arrays.

1111 D-4 CRESCENT SOFfWARE, INC.

P.D.Q. Version 3.10 APPENDIX E

Appendix E: Using CALL Interrupt
Of all the language features that have been added to BASIC in recent years,
one of the most powerful is CALL Interrupt. By being able to tap into
system interrupts directly, BASIC programs can access virtually all of the
available DOS and BIOS services. Even though BASIC has more com
mands than any other high-level language, it is unable to communicate
directly with the operating system. Such an intimate interaction is
obviously quite useful-for example, to determine the current drive or
directory, or to count the number of files whose names match a given
specification. Therefore, modern versions of BASIC include a callable
subroutine which provides access to all of the PC's system interrupts.

This section presents a general overview showing how to invoke interrupts
from within a P.D.Q. BASIC program. Of course, we can't cover all of
the DOS and BIOS services your programs may need to call in this brief
tutorial. However, several important DOS and BIOS functions will be
discussed. Also, many of the demonstration programs that are included
with P.D.Q. use CALL Interrupt, and these provide further examples.

Before we get to the specific services, it is important to point out that the
Interrupt statement is really an external called routine. With Microsoft
QuickBASIC 4.0 and later it is provided in the QB.LIB and QB.QLB
library files. BASIC 7 PDS uses the library names QBX.QLB and
QBX.LIB. A similar version is included with P.D.Q. in the PDQ.LIB
library file.

IMPORTANT:

Note that P.D.Q. differs slightly in its implementation of the Interrupt
routine. The version that comes with Microsoft BASIC expects three
parameters: an interrupt number, and two TYPE variables. The P.D.Q.
Interrupt routine uses only one TYPE variable to hold both the incoming
and outgoing registers.

What Is An Interrupt?

The IBM PC/XT/AT and compatibles support two types of interrupts:
hardware and software. A hardware interrupt is invoked by an external
device or event, such as pressing a key on the keyboard. When this
happens, a signal is sent from the keyboard hardware to the PC's
microprocessor telling it to stop what it's currently doing, and instead call
one of the PC's built-in BIOS routines.

CRESCENT SOFfWARE, INC. 1111 E- 1

APPENDIXE P.D.Q. Version 3.10

For example, while your PC is currently copying a group of files you may
type DIR simultaneously, to display the results when the copying has
finished. Even though DOS is reading and writing the files, you interrupt
those operations for a few microseconds each time a key is pressed. The
BIOS routine that handles the keyboard interrupt is responsible for placing
the keystrokes into the PC's 15-character keyboard buffer. Then when
DOS has finished copying your files, the DIR command will already be
there. Because there is a direct physical connection between the keyboard
and the PC's microprocessor, the keyboard is able to interrupt whatever
else is happening at the time.

A software interrupt, on the other hand, doesn't really interrupt anything.
Rather, it is a specialized type of CALL command that an assembly
language program may issue. Just like the CALL command in BASIC
that transfers control to a subroutine, a software interrupt is used in an
assembly language program to access DOS and BIOS services. Even
though assembly language programs may use the Call statement to invoke
a subroutine, the Int (Interrupt) instruction is needed to access the
operating system. Let's see why.

When a program issues a subroutine CALL, the address of that subroutine
must be known so the processor will be able to jump to the code there.
With most programs, subroutine addresses are determined and assigned
by LINK when it combines the various portions of your program into a
single .EXE file. But this method can't be used with the DOS and BIOS
routines, because their addresses are not known ahead of time. For
example, if you compile a BASIC program on an IBM PC, it must still be
able to be run on, say, a Tandy 1000 using a different version of DOS. Of
course, it is impossible for LINK to know where the DOS and BIOS
routines will be located on the Tandy computer.

Interrupts, therefore, rely upon a table of addresses stored in a known
place in low memory called the interrupt vector table. The very first 1,024
bytes in every PC contains a table of addresses for all 256 possible
interrupts. Each table entry contains two words (four bytes)-one word
holds the routine's segment, and the other holds its address within that
segment. Some of the interrupt vect9r entries are assigned by the BIOS
when you turn on your PC; others are assigned by DOS during bootup.

Whenever an assembly language program issues an Int instruction, the
PC's microprocessor automatically fetches the correct segment and ad
dress stored in this table and then calls that address. Thus, any program
may access any interrupt, without having to know where in memory the
interrupt routine actually resides.

1111 E- 2 CRESCENT SOFfWARE, INC.

P.D.Q. Version 3.10 APPENDIXE

Registers

Every microprocessor contains a set of built-in integer variables called
registers. Each register holds a single word (two bytes), which cor
responds nicely to the size of a BASIC integer variable. Because these
registers are contained within the microprocessor itself, they are accessed
very quickly-much faster than variables that are stored in memory. The
80x86 family of microprocessors contains fourteen different registers.
Some of these are intended for a specific use, while others may serve as
general purpose variables.

For example, the CS and DS registers contain the current code and data
segments respectively, while the CX register is often used as a counter in
an assembler FOR/NEXT loop. We're not going to pursue a lengthy
discussion of microprocessor theory here, however, because it's not really
necessary if you simply want to access a few system interrupts.

Most DOS and BIOS services are specified by an interrupt number, as
well as a service number. Nearly all of the DOS services are accessed
through Interrupt 21h (Hex, or &H21), with the desired service specified
in the AH register. In many cases, information is also returned in these
registers. For example, the DOS service that obtains the currently selected
disk drive is specified by placing the value 19h in the AH register. When
the interrupt has finished, the current drive number is returned in the AL
register.

The DOS services that accept or return a string (such as a file or directory
name) also expect an address in another register to tell where that string
is located. The DOS service that changes the current directory is called
with AH set to 3Bh, and DX holding the address of the string that contains
the name of the directory to change to. Likewise, to obtain the current
directory you load AH with the value 47h, and SI with the address of a
string that is to receive the current directory's name. It is essential that
this string already be initialized to a sufficient length before calling DOS.
Otherwise, the returned directory name will likely overwrite other existing
data.

When a string is sent as a parameter to a DOS routine, it must be terminated
with a CHR$(0) zero byte so DOS will know where it ends. Likewise,
when DOS returns a string to your program (such as the current directory),
it indicates the end with a CHR$(0). Therefore, it is up to your program
to manually append a CHR$(0) to any file or directory names you pass to
DOS. And when receiving a string from DOS you must use INSTR to
locate the CHR$(0) that marks the end, and keep only what precedes that
byte.

CRESCENT SOFTWARE, INC. 1111 E-3

APPENDIXE P.D.Q. Version3.10

It is impossible to describe every DOS and BIOS service you may want to
access here. Indeed, a complete discussion would fill several books. 1\vo
excellent books are Peter Norton's Programmer's Guide to the IBM PC
and Advanced MS-DOS by Ray Duncan. Both of these are published by
Microsoft Press, and are available in most book stores. An excellent book
that specifically addresses calling interrupts from BASIC programs is
(ahem) PC Magazine's BASIC Techniques And Utilities by Ethan Winer
(Ziff-Davis Press).

To get you started, this section presents a few short examples. The first
obtains the current drive, the second returns the current directory, and the
third clears a rectangular portion of the display screen using one the PC's
video BIOS services.

Accessing DOS

The short program example below returns the current drive, and it is
designed as a DEF FN-style function. This was done both to create a
smaller function, and because using a function is a sensible and natural
way to design a routine that returns information. It is important that the
statement '$INCLUDE: 'PDQDECL.BAS' be present at the beginning
of the program source file. PDQDECL.BAS contains declarations for all
of the external P.D.Q. routines including Interrupt, as well as the TYPE
definition needed to access the processor's registers. But it is up to your
program to DIM the Registers TYPE variable before using it.

'$INCLUDE: 'PDQDECL. BAS'
DIM Registers AS RegType 'create the TYPE variable

DEF FNGetDrive% 'define the function
Registers.AX= &H1900 'put &H19 into AH
CALL Interrupt{&H21, Registers) 'call Interrupt &H21
'return just the low (AL) part of AX and convert to ASCII
FNGetDrive% = (Registers.AX AND &HFF) + 65

END DEF

PRINT "The current drive is "CHR$(FNGetDrive%)

As you can see, this function is very simple to implement; now let's see
how it works. First the AX register is loaded with the value &H1900,
which specifies the DOS "get current disk" service. Internally, the AX
register is comprised of two separate "half-registers" called AL and AH.
The "L" in AL stands for Low, and the "H" in AH means High.
Therefore, AX is comprised of both a low- and high-byte portion, as shown
in the following BASIC formula:

AX= AL+ (256 * AH)

Ill E-4 CRESCENT SOFrWARE, INC.

P.D.Q. Version 3.10 APPENDIXE

In an assembly language program it is simple to access each register half
separately. However, BASIC does not offer a byte-sized numeric variable
type to use within a TYPE declaration. Therefore, a bit of math is required
to get at each half separately. Using Hexadecimal notation simplifies this
somewhat, as the function example above shows. That is, assigning AX
to &Hl900 is the same as placing &Hl9 into AH, and zero into AL. In
this case we don't care what is assigned to AL so using a zero is acceptable.

Next, the Interrupt routine is called specifying Interrupt &H21 and the
Registers TYPE variable is passed to it. This TYPE variable is used to
load the processor's registers with the appropriate values before the
interrupt is called, as well as to examine those values when the interrupt
has finished. Here, &H19 is passed to Interrupt &H21, and the value that
is returned in AL indicates the current drive. For this service DOS uses
0 to mean drive A, 1 for drive B, and so forth. Therefore, you must use
AND with the value &HFF to extract just the low portion in AX, and then
add 65 to adjust that to the equivalent ASCII character value.

Obtaining the current directory is only a little more difficult than getting
the current drive, as you can see in the example below.

DEFINT A-Z
'$INCLUDE: 'PDQDECL.BAS'
DIM Registers AS RegType

DEF FNGetDirectory$(Drive)

'create the TYPE variable

STATIC Dir$, Zero 'these are local variables
Dir$= SPACE$(65) 'the longest possible name
Registers.AX= &H4700 'put 47h into AH, 0 into AL
Registers.DX= Drive 'specify the drive number in DL
Registers.SI = SADD(Dir$) 'the string address goes in SI
CALL Interrupt(&H21, Registers) 'call Interrupt &H21
Zero= INSTR(Dir$, CHR$(0)) - 1 'find terminating zero byte
FNGetDirectory$ = LEFT$(Dir$, Zero)'return directory name

END DEF
'display the name for drive C

PRINT "The current directory is C:\";
PRINT FNGetDirectory$(3) 'l = A, 2 = B, 3 = C, etc.

Regardless of whether you are using regular BASIC or P.D.Q. to create
this function, the string that receives the directory name must be initialized
to a length of at least 65 characters. This is the longest path name that
DOS can return.

Only three registers are needed to tell DOS to return the current directory.
The first is AH, which specifies DOS service 47h. The second is DL,
and it tells DOS the drive to examine. For this service drive A is indicated
with a 1, drive B with a 2, and so forth. You may also use a value of 0
in DL to mean the current default drive. The last register is SI which tells

CRESCENT SOFfWARE, INC. 11111 E-5

APPENDIXE P.D.Q. Version 3.10

DOS where to place the directory name. Therefore you will use the SADD
(String Address) function when assigning SI.

The next step is to call the Interrupt routine specifying Interrupt &H21,
while passing the Registers variable to it for the remaining information.
INSTR then locates the zero byte that DOS uses to mark the end of the
string. Finally, the function output is assigned from the correct number
of leading characters using LEFT$.

Although this simple example doesn't attempt to detect DOS errors, that
would be simple to add. For example, if you ask for the current directory
in a drive that doesn't exist, you '11 probably want to know that. For most
of its services, DOS uses the processor's Carry flag to indicate the success
or failure of an operation. This flag is the first of several bits that are
located in the Flags register. Therefore, you could add this statement to
the FNGetDirectory$ function, immediately after calling the Interrupt
routine:

IF Registers.Flags AND 1 THEN ... an error occurred

Accessing The BIOS

This last example calls upon a BIOS video service to clear just a portion
of the display screen. Similar to the way DOS interrupts are invoked, the
BIOS video routines are accessed through Interrupt &Hl0, with a service
number specified in the AH register.

DEFINT A-Z
'$INCLUDE: 'PDQDECL. BAS'
DIM Registers as RegType

CLS
PRINT STRING${1920, "A"); 'fi 11 the first 24 lines
CALL ClearScreen(5, 10, 20, 70) 'call the routine

SUB ClearScreen(ULRow, ULCol, LRRow, LRCol)
Registers.AX= &H600 'service 6, scroll screen
Registers.BX= &H700 'clear to white on black
'the corner parameters go into CX and DX below
Registers.ex= (ULCol - 1) + (256 * (ULRow - 1))
Registers.DX= (LRCol - 1) + 256 * (LRRow - 1)
CALL Interrupt(&HlD, Registers) 'call the BIOS to do it

END SUB

The first statement specifies service 6 in AH, which tells the BIOS to scroll
the screen. The number of rows to scroll is then placed into the AL
register, which we've set to zero. This particular service recognizes zero
as a special flag, which tells the BIOS to clear the screen rather than scroll
it. Service 6 also expects the color to clear to in the BH register, and in

II E- 6 CRESCENT SOFTWARE, INC.

P.D.Q. Version3.10 APPENDIXE

this case 7 is used for normal white on black. Of course, you may use
any color you like, or even pass the color as an additional parameter to
the subprogram.

The next two instructions take the upper left and lower right comer
arguments, and place them into the appropriate registers. Even though
BASIC considers screen rows and columns to be numbered beginning at
1, the BIOS routines assume these to be zero-based. Therefore, 1 is
subtracted from the parameters before they are placed into the Registers
TYPE variable.

Finally, the Interrupt routine is called specifying BIOS video Interrupt
&HlO. There are two important benefits to having the BIOS do the work.
One is of course the reduced amount of code that is needed, compared to
manually looping through video memory using POKE to clear each
character position. The second is that the BIOS is responsible for
determining which type of monitor is installed, and selecting the correct
video segment.

Summing Up

As you have seen, accessing DOS and BIOS services is not at all difficult.
Armed with a good reference book that describes the various services, you
can quickly and easily write programs in BASIC that tap the full power of
the operating system. As implemented in the P.D.Q. library, CALL
Interrupt provides performance and code size that is competitive with pure
assembly language.

CRESCENT SOFrWARE, INC. Ill E-7

P.D.Q. Version 3.10 APPENDIXF

Appendix F: Accessing The Environment
Every program has an environment, which is an area of memory main
tained by DOS that holds a collection of string variables. One important
use for the environment is to allow programs to pass information to other
programs that they SHELL to. DOS also uses the environment for
remembering your current PATH and PROMPT settings. Further, LINK
and BC can also use the environment. Those programs let you specify
where to look for libraries or Include files that aren't in the current
directory.

Environment variables are assigned using the DOS SET command, or, in
BASIC, with the ENVIRON statement. All of the active environment
variables may be viewed from the DOS command line by entering SET
with no arguments. Environment variables may be retrieved individually
in a BASIC program with the ENVIRON$ function.

The environment is often overlooked by BASIC and other programmers
due to several serious limitations in the way that it has been implemented.
The first is that a program can alter only its own environment. Therefore,
it is impossible using normal means for a program to pass return
information to a program that shelled to it. When DOS executes a
program, it provides a copy of the current environment to the program
being executed, which is then abandoned when that program terminates.
Further, the copy which is created is only as large as necessary to hold
the current set of variables. It is usually not possible for a program to add
new variables, or extend appreciably the length of existing variables.
Finally, DOS and BASIC always capitalize variables before they are added
to the environment, which further limits its usefulness.

P.D.Q. overcomes these limitations by providing several important enhan
cements to BASIC's ENVIRON and ENVIRON$ statements. These
enhancements are accessed with the EnvOption routine, prior to using
ENVIRON and ENVIRON$. EnvOption lets you access the current
program's environment, the environment of the parent (usually, but not
always DOS), or the environment of the underlying application from a
TSR program. Another option lets you tell ENVIRON and ENVIRON$
to honor or ignore capitalization. EnvOption is described fully in the
reference portion of this manual, so we won't belabor those options here.
However, it is important to point out a few minor differences between the
way regular BASIC and P.D.Q. implement the environment commands.

Please understand that these differences were established to be more fully
compatible with the way DOS and COMMAND.COM work. For ex-

CRESCENT SOFTWARE, INC. 11111 F-1

APPENDIXF P.D.Q. Version 3.10

ample, regular BASIC removes leading and trailing blanks from environ
ment variables. This prevents your programs from accessing what are
otherwise perfectly legal environment variable names. Regular BASIC
also accepts illegal assignments, contrary to the way DOS works internally.

Where Microsoft BASIC generates an "Illegal function call" error if you
attempt to assign a variable with leading or trailing blanks, P.D.Q. is
perfectly happy to assign such variables into the environment. Further,
regular BASIC always capitalizes variable names and their contents, which
prevents lower-case characters from being used. Finally, regular BASIC
accepts an assignment string that is missing the equals sign (=), where
P.D.Q. does not. The examples in Table F-1 illustrate some of the
differences between regular BASIC and P.D.Q.

TABLE F-1
Differences Between BASIC and P.D.Q.

REGULAR BASIC ALLOWS
ENVIRON("PATH=;")

ENVIRON("PATH \WP")

ILLEGAL IN MS BASIC
ENVIRON(" X=Y")

ENVIRON("hi=there")

P.D.Q. REQUIRES
ENVIRON("PATH=")

ACTION
Clear the
current PATH

ENVIRON("PATH=\WP") Set PATH=\WP

P.D.Q. ACCEPTS
ENVIRON(" X=Y")

ENVIRON("hi=there")

ACTION
Set" X=Y"

Set "hi=there"

Five error codes are used by the P.D.Q. environment routines to indicate
the success or failure of an operation. All of the possible error codes are
listed in Table F-2 with some typical causes, and these errors may be
retrieved by examining BASIC's ERR function.

lllll F-2 CRESCENT SOFfWARE, INC.

P.D.Q. Version 3.10 APPENDIXF

TABLE F-2
P.D.Q. Environment-Related Errors

ERROR NUMBER
101 COMSPEC not found

102 Environment not found

103 ENVIRON string invalid

104 Out of string memory

105 Out of environment space

CRESCENT SOFrWARE, INC.

POSSIBLE CAUSE
Someone erased the COM SPEC= vari
able from the environment being ac
cessed.

The program being accessed has
released its own environment.

The equal sign (=) was omitted when
assigning a variable with ENVIRON.

There was insufficient string pool
memory for ENVIRON or ENVIRON$
to do their work.

There was insufficient environment
memory to add the specified variable.

Ill F-3

P.D.Q. Version 3.10 APPENDIX G

Appendix G: Performance Optimizations
This section presents a variety of hints and suggestions for improving the
performance of your P.D.Q. programs. Notice that many of these tips are
relevant for regular BASIC as well. Please understand that these few
techniques are by no means the last word on the subject. The only way to
really determine which program statements are the most efficient is to
compile a program, and then examine the resultant machine code using
Code View. This is the method we used when researching the information
presented here.

String Versus Integer Operations

In general, string operations and comparisons are slower and require more
code to implement than integer operations. Therefore the first example
below is slightly more efficient than the second:

WHILE LEN(INKEY$) = 0: WEND 'this creates less code
WHILE INKEY$ = "": WEND 'this creates more code

Likewise, when a character is being compared with IF /ELSEIF or
SELECT CASE, you should obtain its ASCII value once if possible, and
use that for subsequent comparisons. The first example that follows
generates more code and is much slower than the second.

SELECT CASE X$ 'this works, but generates more code
CASE "Y"

CASE "N"

CASE "Q"

END SELECT

SELECT CASE ASC(X$)
CASE 89

CASE 78

CASE 81

END SELECT

'obtain the ASCII value once
'these integer comparisons create
' very little code

When integers are compared, BASIC generates in-line assembler code to
directly compare the two values. This is extremely efficient, as shown
following.

IF X = 65 THEN GOTO 100
Cmp Word Ptr [X] ,41
Jne Labe 11

CRESCENT SOFTWARE, INC.

'here's the BASIC statement
'and the code that BC generates
'(41 is the Hex equivalent of 65)

11111 G-1

APPENDIX G P.D.Q. Version 3.10

Jmp 100
Labe 11:

IF X$ = "A" THEN GOTO 100 'here's a similar BASIC statement
Mov AX,X$ ' which creates much more code
Push AX
Mov AX,Offset "A"
Push AX
Call B$SCMP 'B$SCMP is BASIC's string compare
Jnz Label2 ' routine
Jmp _100

Label2:

100 END
100:

Constants Versus Variables

Contrary to Microsoft's BASIC documentation, using constants (literal
numbers) often makes your programs larger than when variables are used.
This is true regardless of whether you are using actual numbers or named
constants. For example, in the program fragment below many calls are
made to PDQPrint to display a box. The first example uses numbers for
the color and column parameters, while the second uses variables.

1. CALL PDQPrint(" " 1, 1, 7)
'

CALL PDQPrint(" " ' 2' 1 ' 7)
CALL PDQPrint(" " ' 3, 1, 7)
CALL PDQPrint(" " ' 4, 1, 7)
CALL PDQPrint(" " ' 5, 1, 7)

2. Colr = 7: Column= 1
CALL PDQPrint(" ", 1, Column, Colr)

CALL PDQPciot("[J ", 2, Column, Colr)
CALL PDQPrint(" ", 3, Column, Colr)
CALL PDQPrint(" ", 4, Column, Colr)
CALL PDQPrint(" ", 5, Column, Colr)

Each time the numbers 7 and 1 are encountered BASIC generates code to
assign those values to new locations in memory, and then passes the
addresses of those locations to PDQ Print. If you instead assign variables
for the 7 and the 1 once ahead of time as is done in the second example,
the resultant code is much smaller.

In this case, the actual saving is only 12 bytes of code per call to PDQPrint.
But you can see how this could quickly add up in a large program. Further,
because each instance of the same constant is always placed into a new
area of memory, this seriously impinges on available string space. Of

1111 G-2 CRESCENT SOFfWARE, INC.

P.D.Q. Version 3.10 APPENDIXG

course, a variable is stored only once. So in addition to the 12 bytes of
code, another 4 bytes of string space is also saved per call. The first
example therefore comprises 305 bytes of code and uses 30 bytes of string
memory, while the second requires only 257 bytes of code, and 14 bytes
of string space. (The two variable assignments occupy 6 bytes each.)

One important exception, though, is when comparing and assigning
variables. Using a constant as in IF X >3 THEN is always preferable to
using a variable such as IF X >Three THEN, because the extra step of
loading the variable Three is avoided. That is, the 8088 can directly
compare a variable with a constant, where it cannot directly compare two
variables. Assignments are usually better from constants as well, with
one notable exception. If the same value is assigned more than twice in
a single block of code, using a variable is preferred. That is, the first
example below generates more compiled code than the second.

A= 1 'each of these statements is 6 bytes
B = 1
C = 1
D = 1
E = 1

A= 1 'this is 6 bytes
B = A 'and so is this
C = A 'but the rest are only 3 bytes each
D = A
E = A

Internally, BC remembers what values are in which registers as it compiles
your program. Of course, the best way to know for sure is to try it both
ways and see which results in a smaller .EXE program. Or you could use
Code View to view the generated code.

Finally, each use of CALL (especially with parameters) creates a fair
amount of code. Therefore, when many of the parameters do not change
between calls it can be advantageous to use GOSUB to branch to a central
subroutine that in turn performs the call:

X = 12: GOSUB Calllt
X = 13: GOSUB Calllt
X = 14: GOSUB Calllt

Call It:
CALL Something(X, Y, Z, A, B, C)

CRESCENT SOFfWARE, INC. lill G-3

APPENDIXG P.D.Q. Version 3.10

Short Circuit Techniques

Another useful and important optimization is called short circuit expres
sion evaluation. When multiple conditions are tested using AND and OR,
QuickBASIC evaluates all of them before acting on the result. The
example below tests if a string is not null and if the row and column
coordinates are within a legal range, before attempting to locate the cursor
and print the string:

IF Work$<>"" AND Row<= 25 AND Column<= 80 THEN
LOCATE Row, Column
PRINT Work$

END IF,

If the most likely case is that Work$ is null a better approach is to first
test Work$, and then use a separate test for Row and Column:

IF LEN(Work$) THEN
IF Row<= 25 AND Column<= 80 THEN

LOCATE Row, Column
PRINT Work$

END IF
END IF,

This way, if Work$ is empty your program can quickly skip the remaining
tests, and go on to the rest of the program. While this technique does not
reduce code size (code to implement each comparison is still generated),
it greatly increases the program's speed.

Note that BASIC 7 PDS performs this optimization automatically, and
creating separate IF tests is not necessary or desirable with that compiler.

String Concatenation

Yet another important program optimization is to avoid unnecessary string
concatenation. Whenever you join two or more strings with the plus sign
(+) BASIC generates code to find each string in memory, then combine
them, and finally copy the resultant characters to a new location. But
when strings are merely being printed as in the example below using a
semicolon as a separator avoids this concatenation, thus reducing the size
of your .EXE program. Not only does this let the compiler generate less
code, but you also avoid adding the concatenation library routine to your
program.

PRINT X$ + Y$ + 2$
PRINT X$; Y$; 2$

'not recommended
'preferred

Even more important than the reduction in code size is the tremendous
improvement in speed realized by avoiding unnecessary concatenation.

Ill G-4 CRESCENT SOFTWARE, INC.

P.D.Q. Version3.10 APPENDIXG

Although P.D.Q. is much faster at combining strings than regular BASIC,
why add unnecessary code when it is not needed?

When a string is assigned from a concatenated list, the overhead is even
worse. The short examples below assign the codes to enable enhanced
printing on Epson/IBM type printers. The first generates a whopping 55
bytes of code, while the second does the same thing in only 13. The
QuickBASIC editor lets you enter control characters directly into a quoted
string by first pressing Ctrl-P, and then typing the ASCII code on the
numeric key pad while pressing Alt. Note, however, that CHR$(27) must
be entered by pressing Ctrl-P and then Ctrl-[. The Escape key may not
be used for this purpose in the QuickBASIC editor.

PrintCode$ = CHR$(27) + "E" + CHR$(27) + "G"

PrintCode$ = "+--E-E-G"

Speeding Up File Processing

One of the most important areas where program optimization is helpful is
file processing. In many cases, a program's speed will be limited by the
amount of time it takes DOS to physically read or write information on
the disk. But again, by applying some simple tricks file access speed can
often be dramatically improved.

Perhaps the biggest I/0 bottleneck is created when numeric variables are
read and written. Whenever a statement such as PRINT #1, X% is
encountered in a BASIC program, the two-byte integer value must be
converted to an equivalent string of ASCII digits. Besides adding the code
overhead and time required to perform the conversion, additional disk
space is taken. Although an integer variable is stored in memory using
only two bytes, as many as eight are required for the equivalent digits in
the file (including a possible minus sign and terminating carriage
return/line feed). Of course, the added length further increases the amount
of time needed to read or write each variable.

Similarly, when you use INPUT #1, X% in a BASIC program, each
character must be read from disk, and examined to see if it is either a
comma or carriage return that marks the end of the value, or a CHR$(26)
that marks the end of the file. Further, once the digits have been read into
memory, they must then be evaluated and converted into two bytes before
being placed into the integer variable. Obviously, this takes much longer
than simply reading two bytes without regard to their meaning.

Therefore, a better method for storing numeric values is to use the
BINARY file commands PUT and GET:

CRESCENT SOFfWARE, INC. 11111 G-5

APPENDIX G P.D.Q. Version 3.10

OPEN Fi leName$ FOR BINARY AS #1 'open the file
PUT #1, , X% 'write three integers
PUT #1, , Y%
PUT #1, , Z%
CLOSE #1 'close the file

Likewise, to read those values again later you would use:

OPEN FileName$ FOR BINARY AS #1 'open the file
GET #1, , X% 'read three integers
GET #1, , Y%
GET #1, , Z%
CLOSE #1 'close the file

Like their sequential access counterparts, PUT and GET step through the
file, incrementing the current file SEEK position as they work. However,
they are much faster because the numbers do not need to be converted to
ASCII digits, and because a fixed number of bytes is always used
regardless of the value being read or written. In a test that wrote and then
read 1000 integer variables using both methods, the binary access took
2.74 seconds and created a file 2000 bytes in length. Contrast that with
the 4.56 seconds needed to write and read a sequential file which occupied
6893 bytes of disk space.

Perhaps the ultimate speedup trick is to read or write more than one
variable at a time, when an entire array is being processed. Each time a
call is made to the DOS routines that handle file operations, some amount
of time is required by DOS just to handle the request. Even though normal
BASIC commands do not allow this, you may easily call BASIC's internal
routines directly to process any number of bytes (up to 65,535). This is
a very important speedup technique which is demonstrated in the BIG
PUT.BAS example program.

One final point to be aware of is that EOF in P.D.Q. is fairly slow, and
should be avoided whenever possible. Each time EOF is queried it calls
DOS to attempt to read a single character from the specified file. If no
character was read, then EOF knows it's at the end of the file. Otherwise,
it has to call DOS again to seek one byte backward, to compensate for the
byte just read. But precisely because of the way errors are handled by
P.D.Q. you can instead use the ERR function to trap for an end-of-file
condition. This is shown below, though it will not work if you are using
ON ERROR.

11111 G-6

OPEN "XYZ" FOR INPUT AS #1
DO

LINE INPUT #1, Work$
PRINT Work$

'open the file

'get a line of text
'print it just for fun

CRESCENT SOFfWARE, INC.

P.D.Q. Version 3.10

LOOP UNTIL ERR
CLOSE #1

Compiling With /S

APPENDIXG

'continue until an error occurs
'all done

The /s switch has been around since the very first BASCOM 1 compiler,
and it is probably the least understood of the BC.EXE options. Since
Microsoft has failed to clearly describe it in their manuals, we'll spend a
few moments here and explain it for them.

The /s switch does two things: First, it tells the BC compiler not to
combine identical strings that are longer than four characters. By default,
BC looks for repeated occurrences of string constants, and assigns them
only once in the resulting .OBJ file. For example, if you use

PRINT "Press any key to continue"

five times in a program, the actual quoted text is stored only once in the
.EXE file. Each time PRINT is used with that message the same string
is passed to it, which of course helps preserve string space. But for very
large programs that have many quoted strings, BC must remember all of
them until it is ready to create the object file. At some point BC will run
out of memory, since it has a lot of other information it needs to keep track
of as well.

To avoid this problem in large programs you should use the /s switch. In
that case BC simply writes each string to the object file as it is encountered,
rather than saving it until the end in its work space. Although it might
appear that not combining like strings will make programs that use /s
larger, often that is not the case. Now let's see why.

The second thing /s does is tell BC to add two short assembler subroutines
(eight bytes each) at the beginning of your program (or at the beginning
of each module in a multi-module program). Two of the most common
string operations in a program are assignments and concatenations.
Normally, a call to the string assignment or concatenation routines
generates thirteen bytes of code, including the statements needed to pass
the source and destination parameters. However, a call to these subroutine
"wrappers" takes between three and nine bytes each. BC therefore uses
these subroutines to offset the increased size that results from multiple
copies of the string constants. This approach is much like the "GOSUB
to a CALL" shown earlier in this section.

CRESCENT SOFfWARE, INC. Ill G-7

APPENDIXG P.D.Q. Version 3.10

In many cases-especially if there are few or no duplicated strings-using
/s reduces the size of your programs. Indeed, it would be wonderful if
the subroutine option of Is were available independently, perhaps by adding
another compiler switch.

Ill G-8 CRESCENT SOFfWARE, INC.

P.D.Q. Version 3.10 APPENDIXH

Appendix H: Miscellaneous Considerations
This section serves as a "catch all" of miscellaneous information relating
to P.D.Q. Several differences between P.D.Q. and regular BASIC
programs are described, and additional information is also provided for
programmers who are familiar with assembly language.

Functions In P.D.Q.

BASIC's SUB and FUNCTION constructs are fully supported in P.D.Q.
It is important to point out, however, that employing GOSUB routines or
DEF FN functions when practical results in smaller and faster programs.
Using GOSUB or invoking a DEF FN function (with no parameters)
generates only three bytes of code. Compare that with five bytes for a
SUB or FUNCTION, plus an additional four for each parameter being
passed. In addition, two library routines are also added to programs that
use conventional SUB or FUNCTION definitions further increasing a
program's size.

True/False Functions

When a numeric function returns only a true or false result, it is most
sensible to use the values -1 and O respectively. This has two distinct
advantages, which are shown using the PDQExist function as an example.
First, the caller can use the simplified form of IF, to test for a true
condition:

IF PDQExist%(FileName$) THEN 'the file exists

In this case any non-zero value is considered true, and an explicit
comparison to a value of zero is not required. The second, and more
important, advantage is that BASIC's Nor operator may be used to test if
the result was not true, yielding a more readable program:

IF NOT PDQExist%(FileName$) THEN 'the file was not there

The NOT' operator simply reverses all of the bits in an integer variable or
function result, which effectively alternates between the values O and -1.
That is, the value O is represented internally like this:

0000 0000 0000 0000

And the value -1 looks like this when viewed in Binary:
1111 1111 1111 1111

Thus, Nor reverses the bits toggling the value between -1 and O each time
it is used.

CRESCENT SOFTWARE, INC. 1111 H-1

APPENDIXH P.D.Q. Version 3.10

Fixed-Length And TYPE Variables

Although P.D.Q. fully supports BASIC's fixed-length strings, we recom
mend that you avoid using them for general string handling except in
special situations. Each time a fixed-length string is accessed or printed,
BASIC generates a substantial amount of code to copy it into a conventional
string. Even worse, whenever a fixed-length string is used as an argument
to a called subroutine, additional code is generated to copy the string back
again in case the subroutine changed it.

You can avoid having BASIC create a copy of the fixed-length string, but
only by using VARPTR to pass its address. Of course, the routine being
called must be designed to expect this address, rather than the address of
a string descriptor.

Fixed-length and TYPE variables may be read and written to disk using
GET and PUT, and their numeric components may be freely assigned and
compared using normal BASIC statements. Using these variables this way
does not impose any penalties on code size or speed. As with fixed-length
strings, the string portion of a TYPE variable is converted to a conventional
string whenever it is accessed.

Integer Values Greater Than 32K

Some of the P.D. Q. extensions such as AllocMem use an integer parameter
to specify a value between O and 65,535. Since integers in a BASIC
program range from -32, 768 to 32,767, you can use an equivalent negative
number to specify values between 32,768 and 65,535. This is shown in
the following short code example.

IF NumBytes& > 32767 THEN
NumBytes& = NumBytes& - 65536

END IF
PassedArg% = NumBytes&
Segment%= AllocMem%(PassedArg%)

Similarly, you can convert a negative number to an equivalent positive
value like this:

Ill H-2

IF Value%< 0 THEN
Answer&= Value%+ 65536

ELSE
Answer&= Value%

END IF

CRESCENT SOFTWARE, INC.

P.D.Q. Version3.l0 APPENDIXH

Initialized Versus Uninitialized Data

Quoted string constants are referred to as initialized data, because the
actual data is placed into the program's object file. Even if the quoted
string is merely a series of blank spaces, those spaces must end up
somewhere within the final program. However, P.D.Q. programs also
support what is called uninitialized data, whereby header information in
the .EXE file contains instructions to DOS to allocate DGROUP memory
when the program is loaded and run.

The advantage of using uninitialized data is that the necessary bytes are
not present in the .EXE program file. One disadvantage is that the data
area contains whatever random bytes happen to be in memory at the time
the program loads. However, all of the P.D.Q. routines that access
uninitialized data assign or clear that memory before using it.

Using P.D.Q. With QuickPak
Professional

If you have our QuickPak Professional product, do not use the alternate
BASIC string functions such as QPMid$, QPLTrim$, and so forth.
Although they will work, BASIC adds a lot of extra and unnecessary code
to process external string functions. The MID$, LTRIM$, and other string
functions in the P.D.Q. library use the same tight, error-free techniques
as QPMid$, but they are meant to be integrated directly with BASIC.

This limitation also extends to the QuickPak Professional Trim$ function,
which is less efficient and generates more code than simply using
LTRIM$(RTRIM$(Work$)). Again, it is not the string functions them
selves that are inefficient. Rather it is the extra setup that BASIC performs
to invoke them, and then copy the function's output to another temporary
string. External numeric functions also suffer from this added overhead,
but to a much lesser degree.

String Arrays

When string arrays are passed to an external assembler routine such as the
Sort routine provided with P.D.Q., an extra step is required to obtain the
correct address of the first element. This is done using a combination of
BYVAL and VARPTR as follows:

CALL SomeRoutine(BYVAL VARPTR(Array$(FirstElement)))

CRESCENT SOFTWARE, INC. 111111 H-3

APPENDIXH P.D.Q. Version 3.10

Please understand that the generated code is no larger than when the
element is specified directly. That is, BYVAL VARPTR only looks like it
requires more code to implement.

Assembly Language Considerations

Unlike virtually every other company in the BASIC support business, we
are unique in our attitude and willingness to share all of our source code.
A wealth of useful information is contained in the assembly source files
that accompany P.D.Q., and you are invited to study them and learn from
them if you are so inclined. Indeed, beyond just learning how P.D.Q.
works, you can also use our source code as a starting point for routines
and language extensions of your own. Please note, though, that all of the
P.D.Q. library routines are meant to be assembled using Microsoft MASM
5.1 or later. If you have MASM 6.0 do not use the ML.EXE assembler
program. Instead use the MASM.EXE interface provided with that
product.

Another reason for investigating the source code is to create your own
custom stub files (see the section entitled Linking With Stub Files). The
routines that are listed following contain useful header comments that
describe the internal workings of P.D.Q. in detail.

ASSIGN$.ASM describes string descriptors and back pointers, and how
they are implemented in P.D.Q. It also discusses string heap compaction
(sometimes called garbage collection), as well as temporary strings and
string assignments in general.

B _ ONEXIT.ASM shows how to tie your own assembly language routines
into BASIC's exit procedure, to cause a particular routine to be executed
when the program ends. This is useful to ensure that hooked interrupt
vectors are released.

COLOR.ASM describes the unusual method BC.EXE uses to pass a
varying number of parameters to some of its internal routines-in this case
COLOR.

COLORDAT.ASM shows how the foreground and background colors are
combined into a single byte in display memory.

COMPACT.ASM contains additional comments about string compaction
and temporary strings, and discusses some of the techniques we used in
P.D.Q. to make these as fast as possible.

11111 H-4 CRESCENT SOFfWARE, INC.

P.D.Q. Version 3.10 APPENDIXH

DIM.ASM presents a thorough discussion of dynamic arrays, and how
they are dimensioned and erased. These routines are quite complex,
especially when dynamic string arrays are involved, and the comments
contained therein go a long way toward explaining what is really going on. ·

DOERROR.ASM shows how ON ERROR is handled in a P.D.Q.
program.

ERRDATA.ASM describes the method P.D.Q. uses to handle the various
error codes that the ERR function reports.

FHANDLES.ASM describes the interaction between BASIC file numbers
and DOS file handles, and discusses how record lengths and the current
TAB position are maintained by P.D.Q.

FLOATS.ASM discusses floating point issues related to using P.D.Q. as
a toolbox with assembly language.

FLUSH.ASM provides an example of a routine that accepts a varying
number of parameters, and then determines how many parameters were
passed. When an external routine is declared using CDECL, BASIC adds
the instruction Add SP,n after the call. Thus, the routine can read the
value for "n" from the caller's code segment, to know how many
parameters there are.

GETTEMP.ASM describes how temporary string descriptors are allo
cated by P.D.Q.

HOOKINT0.ASM explains the particularly messy details of writing an
Interrupt O handler.

PDQ.ASM contains the main startup code for P.D.Q. Although it does
not contain descriptive comments, it is a fairly simple procedure to follow.
In particular, it shows BASIC's segment ordering, and provides some
insight into how a high-level language is designed.

PDQDATA.ASM contains many useful data items that can be accessed
by routines you design. For example, the current version of DOS and the
program's PSP segment are stored there, and you can access these directly.

TEMPSTR.ASM is used by many of the P.D.Q. internal string routines,
and the short discussion in the header comments shows how it may be
called by any routine that needs to allocate string memory. Also see
MAKETEMP.ASM which provides a ~imilar service but at a higher level.

CRESCENT SOFTWARE, INC. 1111 H-5

APPENDIXH P.D.Q. Version3.10

TIMER.ASM shows how to add floating point math to a BASIC program,
and tie into BASIC's 8087 emulator. The beauty of this method is that
either the 8087 or emulator is used automatically, based on whether an
8087 is detected at startup. Note that this technique works with regular
BASIC as well as P.D.Q.

UBOUND.ASM contains information on array descriptors, and also
provides a table detailing each entry in the descriptor.

II H-6 CRESCENT SOFTWARE, INC.

P.D.Q. Version 3.10 APPENDIX I

Appendix I: Link Errors

Fixup Overflow Errors

Most error messages you will receive from LINK are "Unresolved
external", which means that you used a BASIC statement or function that
is not supported by P.D.Q. We'll discuss those in a moment, but there is
another possible error condition you should be aware of.

Each time you use a variable in a BASIC program, the BC.EXE compiler
sets asides space in the .EXE file to hold it. For each integer variable two
bytes are reserved, and for strings and long integers four bytes are used.
The actual string data is created at run time when those variables are
assigned, so it is not present in the file.

If the combination of your program's variables and the 32K string pool
memory exceed the CPU's 64K limit, LINK displays either a "Fixup
overflow" or "Stack plus data exceeds 64K" error message. When this
happens, you must explicitly link with one of the smaller
STR#####.OBJ files to reduce the size of the string pool. This is
described in the sections Linking With Stub Files and String Memory
Considerations.

Unresolved External Errors

If you attempt to use one of the BASIC commands that P.D.Q. doesn't
support, in most cases you will receive an "Unresolved external" error
message from LINK. This happens because BASIC has made a call to
one of its library routines, but LINK was not able to find that routine in
the PDQ.LIB library file.

Unfortunately, LINK reports only the name of the routine that it couldn't
find, which in some cases bears little resemblance to the name of its
associated BASIC command. Fortunately, many internal routine names
are in fact similar to their corresponding statement names. For example,
using the unsupported CLEAR statement tells LINK to access a routine
named B$SCLR. The table that follows indicates some of the unsupported
commands, and lists the external names with their corresponding BASIC
statements.

Almost all of the BASIC language routines begin with the characters "B$",
and the following character is often an "S" (for Statement) or "F" (for
Function). However, there are exceptions to this naming convention.

CRESCENT SOFTWARE, INC. 1111 I - 1

APPENDIX I P.D.Q. Version 3.10

You may want to create a listing file of all of the routines and data items
in the BCOM library that comes with BASIC. This would help you to
identify other routines that are not listed here. To do this, enter the
following command, specifying the library name appropriate for your
version of QuickBASIC:

lib bcomxx. lib , filename.ext ;

If you are using BASIC 7 PDS specify the BCL 7 lENR library instead:

lib bcl71enr. lib , filename.ext ;

This tells LIB.EXE (supplied with BASIC) to generate a fully cross-ref
erenced listing of each item in the library and name it FILENAME.EXT.
Two lists are created in this file-the first shows each routine name and
data item, followed by the name of the object module that holds it. The
second list shows each object module, and all of the routines and data
items contained therein. Thus, a routine that does not have a self-ex
planatory name can often be identified by the name of the object module
it is in, or by the names of other routines in the same object module.

If you elect to create a list file, we recommend using a file browsing utility
that has a search facility such as Vernon Buerg's excellent LIST program
(shareware, available on CompuServe). The first occurrence of the routine
name shows the object module it is in, and the second search shows all of
the other related routines in that module.

Table I-1 is by no means complete, but it does list many of the common
unsupported routines that P.D.Q. programmers might attempt to use.

11111 I- 2 CRESCENT SOFrWARE, INC.

P.D.Q. Version 3.10 APPENDIX I

TABLE 1-1
P.D.Q. Unresolved Externals Often Reported

ROUTINE NAME

B$?EVT
B$ERDS
B$ERDV
B$ETK0
B$EVCK

B$FERL
B$KFUN
B$LPOS
B$ONKA
B$ONLA
B$ONTA
B$POW4

B$RDMP
B$RUNL
B$SCHN
B$SCLR
B$SCPF
B$SRUN
B$USNG
B$VWPT
B$WRIT

POSSIBLE CAUSE

using KEY ON, ON KEY, ON TIMER, or ON PLAY
using the ERDEV$ function
using the ERDEV function
using KEY (n) ON
using ON KEY, ON TIMER, ON PLAY,
(or ON DASHER, ON PRANCER ...)
using the ERL function
using KEY ON
using the LPOS function
using ON KEY (n) GOSUB
using ON PLAY (n) GOSUB
using ON TIMER (n) GOSUB
raising a single precision variable to a power
(such as X! A 2)
using BASIC PDS 's REDIM PRESERVE
using RUN to restart the program
using the CHAIN statement
using the CLEAR statement
omitting STATIC from a string function definition
using RUN "filename"
using PRINT USING
using VIEW PRINT
using WRITE

CRESCENT SOFfWARE, INC. Ill I - 3

INDEX
II Ill 1111

P.D.Q. Version3.10 INDEX

&H and &O prefixes, 5-64
8087, See Floating point math

Interrupt handling, See the
PDQBLANK.ASMfile

8259 Programmable Interrupt Controller
(PIC), 4-16

_87ONLY.OBJ stub file, 2-8, 4-20

A

Memory models, 6-4
Multiplication, long integer, 7-67
Music (PLAY statement), 7-109
Numeric comparisons, 7-12, 7-23
Printing, See the B$Pxxx routines,

I A compiler switch, 2-1, 2-9
ABS, 1-24
ACCESS, 1-24, 2-19
Action parameter, in interrupt handlers,

4-14
I Ah compiler switch, 2-1
AllocMem function, 5-8
Alternate libraries, 2-2
APPEND, restrictions with

SMALLDOS.LIB, 2-17
APPOINT.BAS file, 1-33
Arrays

PDQPrint, and_ CPR/NT. OBJ
Procedures, 6-5
Programmer's reference, 7-1
Segments, 6-6, 6-7
Source files, informative, H-4
Stack, 6-9, 6-10
String

Assignments, 7-6
Overview, 6-16 through 6-19
Pool, H-6

Time, PC system, 7-46, 7-113
Toolbox routines, 6-1
Uninitialized data, 6-8, 6-9
Variable references, 6-10 P.D.Q. differences, 1-11, 1-12

More than 64K elements, 1-25, 2-9,
2-10

In a TSR, 4-2

Varying number of parameters, H-5
See also the table of contents for

String, passing, H-3,
See also RedimAbsolute

ASC, 1-12

specific routines

8
ASK.BAS file, 1-33 B_ONEXIT, H-4, See also the
Assembly language B_ONEXIT.ASMfile

Arrays, 6-19 through 6-22, 7-15, See "Bad file mode" error, 1-25, 3-4
also the DIM.ASM file "Bad file number" error, 3-5

BASIC equivalent keyword table, 6-13 BASIC 7 PDS advanced features, 1-12
Calling conventions, 6-12 BASIC7.LIB file, 2-2
Choice of assembler, 6-3, H-4 BIGPUT.BAS file, 1-34
Data, See the PDQJ)A'E4.ASM file Binary file operation, G-6
Date, PC system, 7-26, 7-100 BIOSinkey function, 5-10
DGROUP, 6-6, 6-7 BIOSinput subroutine, 5-10
DIM, 7-15 BIOSinput2 subroutine, 5-11
Division, long integer, 7-17 BLOAD, 1-13
Environment, 7-30, 7-32, 7-102 BlockCopy subroutine, 5-13
Error handling, 6-22 through 6-24 BreakHit function, 5-13, 5-14
Floating point math, 6-24, See also the BreakOff subroutine, 5-14

FLOATS.ASM file BreakOn subroutine, 5-15
Initialized data, 6-7 "Buffer too small" error, 2-18
Input, See BIOSinput, Bl0Slnput2, Buffers, DOS file, 5-30

and PDQinput Bufln function, 5-15

CRESCENT SOFfWARE, INC. 11111 1

INDEX

C
CALL Interrupt, 1-13, Appendix E
CallOldint subroutine, 4-15, 5-17
CCUR, 1-24
CDBL, 1-24
CDIR.BAS file, 1-34
CHDRIVE, 1-13
Changes in P.D.Q. Version 3.0, 1-24
CHR$, 1-14
CINT, 1-24
CLNG, 1-24
CLOCK.BAS file, 1-34
CLOSE, restrictions with

SMALLDOS.LIB, 2-17
/Co linker switch, 2-1
COLOR, 1-14
Color printing, 2-8, See also

COLORS.BAS
COLOR.ASM file, H-4
COLORDAT.ASM file, H-4
ColorRest subroutine, 5-17
COLORS.BAS file, 1-34
ColorSave function, 5-18
COMMAND$, 1-14
Communications, 1-9
COMPILE.BAT file, 1-33
Compiler list file, 2-9
Compiler operation, A-1, ·G-2
Compiling and linking, 2-1
Concatenation, string, G-4
Constants

String, G-5
Versus variables, G-2

Control-C and Control-Break, 1-10, 2-8
Coprocessor, See Floating point math
_ CPRINT. OBJ, 2-8
CPU registers, E-3
CritErrOff subroutine, 5-18
CritErrOn subroutine, 5-19
CSNG, 1-24
CURDIR$, 1-14
Currency data, 1-24
CursorOff subroutine, 5-20
CursorOn subroutine, 5-20
CursorRest subroutine, 5-21
CursorSave function, 5-21
CursorSize subroutine, 5-21
eve, 1-24

11111 2

CVD, 1-24
CVS, 1-24

D

P.D.Q. Version 3.10

ID compiler switch, 2-1, C-1
Data, initialized versus uninitialized,

6-7, H-3
DATA, restrictions with

SMALLDOS.LIB, 2-17
_DEBUG.OBJ stub file, 2-8
Debugging P.D.Q. programs, C-1
DEFFN.BAS file, 1-34
DeinstallTSR function, 4-16, 5-22
DEMOEGA.BAS file, 1-44
Devices, DOS, 3-5
DGROUP, 4-12, 4-21, See also

DeinstallTSR, PopDeinstall,
Unhooklnt, and TSRinstalled

DIALTSR.BAS file, 1-35
Differences between P.D.Q. and BASIC,

1-8
_DIM.OBJ stub file, 2-9
DIR$, 1-14
DisableFP subroutine, 4-19, 5-23
DISKUSED.BAS file, 1-35
"Divide by zero"" interrupt, 5-38, 5-39
Dollar$ function, 5-24
DOS

Critical errors, 5-18
Devices, 3-4, 3-5
File buffers, 5-30
Interrupts, E-4
Redirection, 1-37

DOSBusy function, 4-16, 5-24
DOSVer function, 5-24
DOSWATCH.BAS file, 1-35, 4-29

through 4-31

E
IE compiler switch, 2-1
EGA, 1-25
EGABox subroutine, B-1
EGADot subroutine, B-1
EGAEllipse subroutine, B-1
EGALine subroutine, B-2
EGAPrint subroutine, B-2
_EMONLY.OBJ stub file, 2-10, 4-21

CRESCENT SOFTWARE, INC.

P.D.Q. Version 3.10

Embedded applications, See the
EMBEDDED.DOC file

EMS, See TSR programs, swapping
EnableFP subroutine, 4-19, 5-26
EndLevel subroutine, 5-27
EndTSR subroutine, 5-27
ENVEDIT.BAS file, 1-35
ENVELOPE.BAS file, 1-35, 1-36, 4-
21, 4-22
ENVIRON and ENVIRON$, 1-15
"Environment not found" error, 5-65
Environment, DOS, Appendix F
EnvOption subroutine, 5-28
EOF, G-7, See also _SKIPEOF.OBJ
ERR, 1-15, 3-4, 4-5
ERROR, 1-15, 1-16
Errors

Code numbers, 1-17
Critical DOS, 5-18
Differences, 1-9
File-related, 3-1, 3-2, 3-4
Linker, Appendix I
Table of file-related, 3-3
See also specific messages and

PDQMessage
/Ex linker switch, 2-2
EXE2COM.BAS file, 1-38
Extensions

Overview, 5-1
DOS, 5-1
Dynamic memory, 5-2
Input and keyboard, 5-2
Miscellaneous, 5-3
PDQSUBS.BAS, table, 5-8
String, 5-4
TSR and interrupt, 5-5
Video, 5-6
See also specific extensions

EXTRACT.RSP file, 2-4
Extrn directive, 6-5

F
Factorial, See recursion
False, function return value, H-1
/Far linker switch, 2-4
File handling

Error handling, 3-1, 3-2
Flushing, 2-10

CRESCENT SOFTWARE, INC.

INDEX

Legal operations, 3-4
Seeking, 5-73
Speeding up, G-5 through G-7
TSR precautions, 5-81, 5-82

"File not found" error, 3-1
File numbers, 1-19, 3-4
File-like devices, 3-5
FILEATTR, 1-16
Files on the P.D.Q. disk, 1-31
Files, speeding up processing, G-5
FILTER.BAS file, 1-37
FINDTEXT.BAS file, 1-37
Fixed-length strings, avoiding, H-2
"Fixup overflow" error, 1-1
Floating point math

Avoiding, 2-9, 2-10, 2-12
Emulator only, 2-10
Stub files, See _DEBUGFP.OBJ,

and NOVAL.OBJ
Supported statements, 1-8
Technical details, 4-18

"Floating point required" message, 2-9
Flush subroutine, 5-30
_FLUSH.OBJ stub file, 2-10
FRE(-2), 1-16
FREEFILE, 1-17
FREEINTS.BAS file, 1-37, 4-23
Functions, H-1
FUsing function, 5-31

G
/G2 compiler switch, 2-1
GET (binary file version)

Differences in P.D.Q., 1-17, 1-18
Restrictions with SMALLDOS.LIB,

2-19
See also SeekLoc

GetlByte function, 5-32
_ GETlBYT. OBJ stub file, 2-11
GetlLong function, 5-33
GetlType subroutine, 5-34
GetlWord function, 5-34
GetCPU function, 5-35
GetSeg function, 5-36
GotoOldint subroutine, 4-15, 5-36
Granularity, library, A-2
Graphics, 1-9, 1-26, B-1, See also

DEMOEGA.BAS

111 3

INDEX

H
HercMode subroutine, 5-37
Hex notation (&H), 5-65
HIGUY.BAS file, 1-37, 1-38
HISTORY.DOC file, 1-31
HookFP subroutine, 4-19, 5-37
HooklntO subroutine, 5-39
Hot key, for a popup TSR, 4-11

ID$ in a TSR program, 4-8, 5-83
IF, simplified form, H-1
Initialized data, 6-8, H-3

INK.BY$. OBJ stub file, 2-10
INKEY$, 1-18, See also BIOSinkey,

PDQinkey and _INKEY$.OBJ
INPUT and INPUT #, restrictions

with SMALLDOS.LIB, 2-18
INPUT$, 1-18
Installation, 1-2
Integers, values greater than 32K, H-2
IntEntryl and IntEntry2 subroutines,

4-14, 5-39
Interrupt subroutine, 5-42, E-1 through

E-7
Interrupts

BIOS, E-6, E-7
DOS, E-4, E-5
Free, See FREEINTS.BAS
Handling, 4-14 through 4-17, 5-17,

5-36, 5-39, 5-40, 5-64, 5-72
Hardware, E-1, See also

ONMOUSE.BAS
Multiple intercepted, See TRAP3.BAS
PopUpHere uses, 5-68
Printer, See LPT2FILE.BAS and

SETUP.BAS
Programmable Interrupt Controller

(PIC), 4-16
Registers, E-3
Software, E-2
Vector table, E-2

InterruptX subroutine, 5-44, See also
Interrupt

Ill 4

P.D.Q. Version 3.10

K
KEY2FILE.BAS file, 1-38
Keyboard

Buffer, See PDQKEY.BAS and
StuffBuf

Macros, See MACRO.BAS and
PDQ KEY.BAS

Repeat rate, See SPEEDUP.BAS
Resetting, 5-72

Keywords, BASIC
Supported, 1-7
Unsupported, 1-8

_KILL.OBJ stub file, 2-11

L
LIB, list file, 1-2
Licensing and registration, 1-1
LINE INPUT, restrictions with

SMALLDOS.LIB, 2-18
LINE INPUT #, restrictions with

SMALLDOS.LIB, 2-18
Linking and compiling, 2-1
_LOCATE.OBJ stub file, 2-11
LOCATE,. See CursorOff, CursorOn,

CursorSize, and _LOCATE.OBJ
LOCK, 1-24, 2-19
LPRINT, 1-18
LPT2FILE.BAS file, 1-38
LTRIM$, 1-18, 1-19

M
MACRO.BAS file, 1-38
MAKEPDQ.BAS file, 1-38, 1-39,

See also PDQMAKE.BAS
MAKESTR.BAS file, 1-39
.MAP files, linker, 2-1
MAP.BAS file, 1-39
"Math coprocessor required"

message, 2-8
Memory

Memory models, 6-4
Stack, 1-16, 2-3
String, D-1 through D-3
See also AllocMem and

ST:Rxxxu. OBJ
MENU.BAT file, 1-34
MidChar function, 5-45

CRESCENT SOFfWARE, INC.

P.D.Q. Version3.10

MidCharS statement, 5-46
MKC$, 1-24
MKD$, 1-24, 1-26
MK.I$, 1-26
MKL$, 1-26
MKS$, 1-24, 1-26
MULTPAGE.BAS file, 1-39

N
NAME, 1-19
Network file operations, 1-24
New routines and features, 1-27
NOBEEP.BAS file, 1-39
NOBOITT.BAS file, 1-39, See also

REBOITT.BAS
/Nod linker switch, 2-1
/Noe linker switch, 2-1, 2-2
_NOERROR.OBJ stub file, 2-11
_NONET.OBJ stub file, 2-12
_NOREAD.OBJ stub file, 2-12
NoSnow subroutine, 5-47
Nar, with true/false functions, H-1
_NOVAL.OBJ stub file, 2-12, 4-22
NUL, DOS device, 2-1
NUMOFF.BAS file, 1-39

0
/0 compiler switch, 2-1
Octal notation (&O), 5-63
ON ERROR, See NOERROR.OBJ
ON Garo and ON GOSUB, 2-4
ON KEY, See ONKEY.BAS
ONKEY.BAS file, 1-40
ONMOUSE.BAS file, 1-40
ON TIMER, See ONTIMER.BAS
ONTIMER.BAS file, 1-40
OPEN

Restrictions, 1-19
SMALLDOS.LIB issues, 2-15, 2-16,

2-17
See also NONET.OBJ and

_ SKIPEOF. OBJ
Optimizing programs, Appendix G
/Qt compiler switch, 2-1
"Out of stack space" error, C-2
"Out of string space" error, D-1
Overlays, 1-12
Overview, 1-4

CRESCENT SOFfWARE, INC.

INDEX

p
/Packc linker switch, 2-4
Pages, video, See MULTPAGE.BAS
"Path file access" error, 3-4
Pause subroutine, 5-47
PDQ.LIB file, 2-1
PDQ.QLB file, 1-32
PDQ386.LIB file, 2-2
PDQBLANK.BAS and

PDQBLNK2.BAS files, 1-40,
4-21

PDQCALC.BAS file, 1-40, 1-41
PDQCAP.BAS file, 1-40, See also

SCRNCAP.BAS
PDQCompare function, 5-48
PDQCOPY.BAS file, 1-41
PDQCPrint subroutine, 5-49
PDQDECL.BAS file, 1-33
PDQExist function, 5-50
PDQinkey function, 5-50
PDQinput subroutine, 5-51
PDQKEY.BAS file, 1-41
PDQMAKE.BAS file, 1-41
PDQMessage function, 5-52
PDQMonitor function, 5-53
PDQParse function, 5-54
PDQPeek2 function, 5-55
PDQPoke2 subroutine, 5-56
PDQPrint subroutine, 5-57
PDQRand function, 5-58
PDQRandornize subroutine, 5-58
PDQRestore subroutine, 5-59
PDQSetMonSeg subroutine, 5-59
PDQSetWidth subroutine, 5-60
PDQShl and PDQShr functions, 5-61
PDQSound subroutine, 5-61
PDQSUBS.BAS file, 1-5, 1-33, 5-8
PDQTimer function, 5-62
PDQValI and PDQValL functions, 5-63
PDQZIP.BAS file, 1-42
PLAY, 1-19
PLAY.BAS file, 1-42
PointlntHere subroutine, 4-14, 5-64
PoolOkay function, 5-65
PopDeinstall function, 5-66
PopRequest function, 4-23 through 4-28,

5-67
POPSWAP. OBJ file, 1-45

II 5

INDEX

POPUPFP.BAS file, 1-42, 4-21
PopUpHere subroutine, 5-68
Power and Power2 functions, 5-69
PRINT

Differences, 1-19, 1-20
Changes from previous P.D.Q.

versions, 1-24
Restrictions with SMALLDOS.LIB
See also PDQPrint, _ CPRINT.OBJ,

and STR$.OBJ
PRINT #255, 1-20, 3-5
PRINT USING, 1-20, See Also FUsing
Printer Interrupt, See LPT2FILE.BAS

and SETUP.BAS
Programmable Interrupt Controller

(PIC), 4-16
PUT (binary file version), See Seek:Loc

Q
Quick Libraries, 1-5, 2-4
QUICKLIB.BAT and QUICKLIB.RSP

files, 2-4
QuickPak Professional

R

Using with P.D.Q., 2-2, 2-3, H-3
Combining libraries, 2-6

Random numbers, See PDQRand and
PDQ Randomize

RANDOM.BAS file, 1-42
RANDOMIZE, 1-20, 1-24
READ See NOREAD.OBJ and DATA ' -
READFILE.BAS file, 1-42
README file, 1-31
Rebooting, See NOBOOf.BAS and

REBOOf.BAS
Recursion, See Factorial
Redirection, DOS, 1-37, See also

INKEY$.OBJ
RedimAbsolute subroutine, 5-70
Reentrance, 4-22, See also TRAP3.BAS
Registers, CPU, E-3
Registers TYPE variable, 4-17,

5-42 through 5-43
Registration and licensing, 1-1
ReleaseMem function, 5-71
ResetKeyboard subroutine, 4-15, 5-74
Response files, 2-4

1111 6

P.D.Q. Version 3.10

RESUME NEXT, 1-26
ReturnFromint subroutine, 4-16, 5-72
RND, 1-20, 1-24
ROM applications, See the

EMBEDDED.DOC file
.RSP files, 2-4, 2-5
RTRIM$, 1-21
RUN, 1-21, See also StuffBuf

s
/S compiler switch, 2-1, G-7
Scan code, 4-lO(figure), 4-11, 5-80
SCREEN statement, 1-21, See also

MULTPAGE.BAS
Screen

Blanker, See PDQBLANK.BAS
Capture, See PDQCAP.BAS and

SCRNCAP.BAS
Colors, 2-8
Scrolling, E-6

SCRNCAP.BAS file, 1-42, 1-43,
See also PDQCAP.BAS

SCRNSHOW.BAS file, 1-43
Seek:Loc function, 5-73
/Seg linker switch, 2-3
Serial number, 1-1
SET, DOS command, F-1, See also

EnvOption
SetlByte subroutine, 5-73
SetlLong subroutine, 5-74
SetlType subroutine, 5-74
SetlWord subroutine, 5-75
SetDelimitChar subroutine, 5-76
SETUP.BAS file, 1-43
SETUPTSR.BAS file, 1-43
SGN, 1-24
SHARED, 1-24, 2-19
SHELL.BAS file, 1-43
Shift mask, for a popup TSR hot key,

4-9, 5-81
Short circuit techniques, G-4

SKIPEOF.OBJ stub file, 2-13
SLEEP, 1-21
SMALLDOS.BAS file, 1-43
SMALLDOS.LIB file

Described, 2-15
Table of keywords affected, 2-16

CRESCENT SOFrWARE, INC.

P.D.Q. Version3.10

See also _NOREAD.OBJ, SeekLoc,
and SMALLDOS.BAS

Sort subroutine, 5-76
_SORT.OBJ stub file, 2-13
SOUND, 1-21, 1-22, 1-25, See also

PDQSound
SPEEDUP.BAS file, 1-43
SSEG, 1-22
Stack, 1-16, 2-3
/Stack linker switch, 2-3
"Stack plus data exceeds 64K" error, I-1
STDERR, 1-20, 3-5
STOP, 1-22
_STR$.OBJ stub file, 2-13
_STR$FP.OBJ stub file, 2-14
STR$, 1-25, 1-26
STR.xxxxx.OBJ files, 1-45, 2-o See also

MAKESTR.BAS
"String space corrupt" error, C-2, See

also PoolOkay
STRING$, 1-22
Strings

Arrays passed to procedures, H-3
Concatenation, G-4
Constants, G-5
Fixed-length, avoiding, H-2
Heap management, See the

ASSIGN$.ASM and COMPACT.ASM
files

Memory considerations, Appendix D
G-7 '

Performance compared to
integers, G-1

See also MAKESTR.BAS
StringShort function, 5-77
StringUsed function, 5-77
Stub files

Defined, 2-5
String pool, 2-6, See also

MAKESTR.BAS
Table of, 2-14, 2-15
Using, 2-7
See also specific stub files

StuffBuf subroutine, 5-78
Support, 1-1
SWAP, 1-22
Swap2Disk function, 4-3, 4-4, 5-79
Swap2EMS function, 4-3, 4-4, 5-79
SwapCode function, 4-7, 5-80

CRESCENT SOFI'WARE, INC.

INDEX

Swapping TSR programs, See TSR
programs, swapping

Switches, compiler and linker, 2-1, See
also specific switches

SYSINFO.BAS file, 1-43

T
TAB, restrictions with SMALLDOS.LIB

2-20 '
Technical support, 1-1
TEMPLATE.BAS file, 1-43, 4-12
TestHotKey function, 4-16, 5-80
_TIME$.OBJ stub file, 2-15
TIMER, 1-22, 1-25, See also

PDQTimer and TIMER.BAS
TIMER.BAS file, 1-43
TRAP3.BAS file, 1-44, 4-23
True, function return value, H-1
TSR programs

Accessing data from another program,
4-21

Critical errors, 4-3
Deinstalling, 4-11, See also

DeinstallTSR, PopDeinstall,
and Unhooklnt

Detecting prior installation, 4-12
Floating point math, 4-18, 4-19

through 4-21
Hot key, specifying, 4-9
ID string, 4-9
Installing, See EndTSR, PointlntHere

and PopUpHere '
Memory allocation, 4-3
Overview, 4-1
Restrictions, 4-2, 4-3
Simplified popup, 4-1 See also

TEMPLATE.BAS
String memory in, 2-7
Swapping

Activating with CALL
INTERRUPT, 4-7

Communicating with other programs
4-7 '

ERR codes returned by Swap2Disk
4-o '

Deinstallation, 4-o
Interrupt handling, 4-o
Memory allocation and arrays, 4-6

1111 7

INDEX

Naming the swap file, 4-5
Overview, 4-3

See also TSR Programming with
P.D.Q.

TSRFileOff subroutine, 5-81
TSRFileOn subroutine, 5-81
TSRinstalled function, 4-16, 5-82

u
UnhookFP subroutine, 4-19, 5-84
Unhooklnt subroutine, 4-19, 5-84
Unhooklnt0 subroutine, 5-85
Uninitialized data, 6-8, 6-9, H-3
Unique ID string, 4-8, 4-9
"Unresolved external" error, I-1, I-2
UNLOCK, 1-24

V
VAL, 1-23, See also PDQVall,

PDQValL, _PDQVAL.OBJ, and
NOVAL.OBJ

Version number, 1-1
VGA, 1-25
Video

Display pages, See MULTPAGE.BAS
Interrupts, E-6
Screen blanker, See PDQBLANK.BAS
Screen capture, See PDQCAP.BAS

and SCRNCAP.BAS

w
WAITTIL.BAS file, 1-44
WHEREIS.BAS file, 1-44
WIDTH, 1-23
WMTELL.BAS file, 1-44
WRITE#, 1-23

X
XREF.KEY file, 1-33

z
/Zi compiler switch, 2-1
Zip files, See PDQZIP.BAS

11111 8

P.D.Q. Version 3.10

CRESCENT SOFrWARE, INC.

Chapter 1 - Introduction

Chapter 2 - Compiling and Linking

Chapter 3 - File and Error Handling

Chapter 4 - TSR Programming

Chapter 5 - P.D.O. Extensions

Chapter 6 - Using P.D.O. with Assembler

Chapter 7 - Programmer's Reference

Appendices

Index a
11 BAILEY AVENUE, RIDGEFIELD. CO NNECTICUT 06877 CRESCENT

PHONE: (203) 438-5300- SALES 1-800-35-BASIC SOFTWARE . IN C

--

	pdq-front-cover
	pdq-front-page
	pdq-1
	pdq-2
	pdq-3
	pdq-back-cover

