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Introduction

Thanks!

Thank you for purchasing QuickPak Scientific from Crescent
Software!

We have put every effort into making this the most powerful
and useful collection of QuickBASIC numerical analysis
subroutines and functions available. We sincerely hope that
you find it both wuseful and informative. If you have a
comment, a complaint, or perhaps a suggestion for another
product you would like to see, please let us know. We want to
be your favorite software company.

Registration

Please take a few moments to fill out the enclosed
registration card. Doing this entitles you to free technical
support by phone, as well as insuring that you are notified of
possible upgrades and new products. Many upgrades are offered
at little or no cost, but we cannot tell you about them unless
we know who you are!

Also, please mark the product serial number on your disk
labels. License agreements and registration forms have an
irritating way of becoming lost. Writing the serial number on
the diskette will keep it handy.

You may also want to note the version number in a convenient
location, since it is stored directly on the distribution disk
in the volume label. If you ever have occasion to call us for
assistance, we will probably need to know the version number
you are using. To determine the version number for any
Crescent Software product simply display a directory of the
original disk. The first thing that appears is similar to:

Volume in drive A is QPSci V3.0

Page 1
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Upgrades

We are constantly improving all of our products, so you may want
to call us periodically and ask for the current version number.
Major upgrades are always announced, however minor fixes or
additions are generally not. If you are having any problems at
all-even if you are sure it is not with one of products—please call
us. We support all versions of QuickBASIC, and can often
provide better assistance than Microsoft.

Page 2
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What 1s QuickPak Scientific?

QuickPak Scientific is a comprehensive collection of
subroutines and functions which provide numerical analysis
computing capability for QuickBASIC programmers. Each routine
is a flexible and easy to use digital computer algorithm
designed to help you solve practical and challenging problems
in engineering, science, and other technical applications
involving one or more of the following types of numerical
calculations:

e Systems of Linear Equations

e Ordinary Differential Equations

e Partial Differential Equations

¢ Integration

e Differentiation

e Non-linear Equations

e Optimization

e Interpolation

e Curve Fit

e Fast Fourier Transforms

e Statistics

e Complex numbers

e Special Functions

e Trigonometry

e Vectors

e Matrices

e Utility programs

Page 3
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The QuickPak Scientific software package is a comprehensive
numerical analysis toolbox which consists of three key
components designed to make your technical programming effort
interesting and easier:

Structured Source Code

Complete source code is provided for both fundamental and
state—of—the—art QuickBASIC subroutines and functions. These
digital computer algorithms perform a variety of basic and
sophisticated number-crunching tasks which may be too
time—consuming or difficult to program and debug yourself.
Structured programming practice is followed throughout in
order to help you visualize each numerical process.

Complete Demonstration Programs

A considerable amount of time has gone into the effort to
supply you with user-friendly and interactive demonstration
programs. These programs illustrate the proper procedures for
working with each QuickPak Scientific routine. They provide
guidelines which you can follow when setting up, initializing,
and solving your own numerical applications. Many of these
programs also provide an example problem for solution, and
each program displays information about the algorithm results.
Several programs also provide the user with information about
how well the software performed.

Comprehensive User’s Manual

The QuickPak Scientific user’s manual is a comprehensive
document which describes the proper procedures for integrating
the QuickPak Scientific algorithms into your QuickBASIC
applications. Complete coding instructions are included for
user-defined support routines, along with many examples. This
documentation is a programmer’s guide to the art and science
of numerical analysis, and includes many programming hints,
tips, and technical advice. An extensive bibliography is also
included, along with an explanatory and applications appendix.

Page 4
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Every QuickPak Scientific algorithm includes a complete
description of the required input and resultant output. For
example, the following is the source code listing for the
QuickPak Scientific matrix multiplication subroutine.

DEFINT I-N
DEFDBL A-H, O-Z

SUB MATXMAT (A(Q, B(, C(, L, M, N) STATIC
> Matrix multiplication subroutine
[C1=[A1*[B]

’> Input

> L number of rows of matrix [ A ]

> M = number of columns of matrix [ A ]
= number of rows of matrix [ B ]

> N = number of columns of matrix [ B ]

> A(Q = matrix A ( L rows by M columns )

> B() = matrix B ( M rows by N columns )

> Output

> C( = matrix C ( L rows by N columns )

FORI=1TOL
FORJ=1TON
S = 0#
FORK=1TO M
S =8+ A, K) * BK, J)
NEXT K
CIL J) =S
NEXT J
NEXT I

END SUB

Page 5
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Many of the QuickPak Scientific demo programs include an
example problem for solution. The software will interactively
prompt you for the required inputs, and several programs will
also recommend typical values for these inputs. For example,
a typical user prompt might look like:

Please input the convergence criteria
( a value of 1D-8 is recommended )

Several interactive programs allow the QuickBASIC programmer
to assess the effects of such things as step size, number of
algorithm iterations, convergence criteria, and other factors
on the performance and behavior of a particular numerical
method. The following is a typical output from the QuickPak
Scientific adaptive Simpson integration program.

Program DEMOINTS

< Adaptive Integration of User-defined Functions >

Lower integration limit = 0
Upper integration limit = 1
Solution accuracy = .00000001
Integral value = .74682413

Estimated error 1.0925039D-10

For this example, the values for the lower and upper
integration limits, and the solution accuracy are inputs
provided by the user. The numbers shown for the integral
value and estimated error were computed and displayed by the
software. The estimated error informs the user about well the
software estimated the actual integral. From this information
he or she may decide to increase or decrease the accuracy.

Page 6
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The Files on Your Distribution Diskette

Your diskette contains more than 200 QuickBASIC source code
files for a variety of numerical analysis subroutines and
functions. The diskette also contains programs which
demonstrate how to use each and every subroutine and function.
The filenames for the demo programs all begin with the letters
DEMO. For example, the demo program for the first linear
equation subroutine is called DEMOLIN1. Each QuickPak
Scientific demo program, subroutine, and function is saved on
the disk in ASCII format and has a BAS filename extension.

There are also MAK files for each demo program. These short
files contain a list of the required driver software and
support subroutines and functions for a particular demo
program. For example, the following is a list of the files
contained in the DEMOMINI1.MAK file which are required in
order to run the demonstration program DEMOMINI:

DEMOMINI1.BAS
MINIMIA1.BAS
USERFUNS.BAS
KEYCHECK.BAS

MAK files are unique to QuickBASIC versions 4.0 and later,
and must be used with the Open Program command of the File
pulldown menu of QuickBASIC. Once you have started
QuickBASIC, a demo program is brought into the programming
environment with the Open Program command. This procedure
first clears out any other program and then loads the selected
file as the main program along with any required support
functions and subroutines.

Any demonstration program can be compiled into a stand-alone
executable program with the standard QuickBASIC Compile
command and its many options.

Page 7
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Several QuickPak Scientific algorithms require subroutines
which contain user—defined functions and other information.
Many of these subroutines are stored on the QuickPak
Scientific diskette in files which begin with the name
USERFUN. The three demonstration programs

DEMORK4, DEMORKF and DEMONYM4

also require subroutines which define example systems of
differential equations. These subroutines are stored in the
files DERIVAT1, DERIVAT2, and DERIVATS3.

The QuickPak Scientific double and triple integration
algorithms require two support subroutines called USERSUB1 and
USERSUB2 which define the user’s function and its integration
limit functions.  These files can also be found on the
QuickPak Scientific diskette.

All demo programs also require a short subroutine called
KEYCHECK which simply checks the user response to several
software prompts.

System Requirements

All QuickPak Scientific code requires version 4.0 or later of
the QuickBASIC software package. The amount of system RAM
required will depend upon your particular application. Any
version of DOS which is compatible with QuickBASIC will also
work with the QuickPak Scientific software.

Page 8
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Using QuickPak Scientific
in Your Programs

The individual QuickPak Scientific functions and subroutines
are designed to be flexible, powerful, and easy to use in your
own application programs. In order to use these algorithms
effectively and correctly, several programming conventions
have been adopted.

Many QuickPak Scientific routines are adaptations of FORTRAN
algorithms. All QuickPak Scientific functions and subroutine
names use the following default type declarations:

DEFINT I-N
DEFDBL A-H, O-Z

All QuickBASIC variable, constant, and array names also follow
this type convention. Please note also that double precision
computaions are used in all algorithms.

It is also important to note that all QuickPak Scientific
functions and subroutines, except the special functions GAMMA
and BESSEL, are non-recursive.

The default OPTION BASE 0 of QuickBASIC is active in all
QuickPak Scientific algorithms. However, the first index used
for most arrays is assumed to be 1.

The user should keep in mind that numerical analysis is both
an art and a science. Numerical computing involves such
things as convergence criteria, step sizes, iterations, and
initial conditions. When using QuickPak Scientific, be
creative and experiment! Do not constrain an algorithm. Try
different step sizes, convergence criteria, and initial
guesses. Begin with conservative numbers for items which
control an algorithm, and then tighten these values once the
software is successfully solving your problem.

Page 9
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Remember that numerical analysis only provides an approximate
answer to your problem.

The QuickPak Scientific toolbox should work with a variety of
problems encountered in many technical fields. However, there
will always be a few tough problems, such as stiff
differential equations and ill-conditioned matrices, which
will cause algorithms to fail. For several analysis areas,
two or more algorithms have been provided as part of the
QuickPak Scientific software package. If one fails, don’t be
afraid to use the others. You can also help a numerical
method by telling it everything you know about your problem.
You can gain valuable qualitative insight into many problems
by performing certain types of pre-processing. This includes
such things as graphing your functions in order to understand
their behavior, and isolating different aspects of your
technical problem (divide and conquer).

The user may also want to set up and solve a problem for which
he or she knows the answer. This helps to verify that a
subroutine or function is working properly and helps to make
you feel confident that you are using the software correctly.
You are also encouraged to use the demo programs as software
drivers for solving your particular problem. Many people
learn quickly by following an example. Examine the source
code and try to understand how both the driver program and
subroutine or function work. Change the source code if you
see a more efficient way to solve your problem.

Finally, many people feel comfortable using a certain type of
solution method. For this reason several classic algorithms,
such as the fourth-order Runge-Kutta and Lagrange’s
interpolation method, have been included in QuickPak
Scientific.  However, you are also encouraged to try the
other, more efficient algorithms. The state-of-the-art of
numerical analysis is improving all the time and our goal is
to bring you the best algorithms.

Page 10



mys v Vf QuickPak Scientific § Ax X 8x/sy

QuickPak Scientific
Demonstration Programs

This section is a brief discussion about each of the
interactive demonstration programs provided as part of the
QuickPak Scientific software package. These demo programs
illustrate the proper procedures for setting up, initializing,
and interacting with each subroutine and function. They can
also be used a simple stand—alone driver programs by adding
one or more QuickBASIC subroutines which define and support
your specific mathematical problem.

Many of the demonstration programs include an example problem
for solution. The software will interactively prompt you for
the required inputs necessary to solve a particular problem,
and several programs will also recommend typical values for
these inputs as part of the display message. The following
is a typical QuickPak Scientific user prompt:

Please input the convergence tolerance
(a value of 1D-8 is recommended)

The computer programs also check many user inputs for validity
with the DO LOOP construct of QuickBASIC. If an invalid
number is input, the software will redisplay the prompt as
many times as necessary until a valid response is provided by
the user.

Several programs provide information about how well a
particular algorithm has performed. This information includes
such things as the actual number of algorithm iterations, an
error estimate, and the number of function evaluations. From
this data, the user can assess the effects of such things as
step size, algorithm iterations, and other factors on the
performance and behavior of the different numerical methods.
This information can also provide valuable insight into your
technical problem which may need to be solved again with
different algorithm controls.

Page 11
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Informative error messages are also provided by several
QuickPak Scientific algorithms. These messages may occur for
a variety of reasons. You may encounter such things as
singular or ill-conditioned matrices during a solution
process, attempts to find the root of a function which is not
bracketed, and other types of implementation errors.

Problems may also occur because the user has improperly set up
the driver program or incorrectly coded a required QuickBASIC
support subroutine. These problems may involve such things as
incorrect dimensioning of arrays, invalid initialization, or
poor initial guesses. The user should be very careful to
account for and avoid any singularities which may occur in a
support subroutine or function. This includes such things as
division by zero, square roots of negative numbers, and very
small or large function values.

Several programs also display recommended actions which the
user can take to correct a problem. Other user options may be
obvious or intuitive. For example, if an iterative algorithm
fails to solve your problem in the allotted number of
iterations, simply increase the number of iterations allowed,
and restart the program.

Finally, there is always the possibility of errors trapped and
displayed by the QuickBASIC programming environment. Many
QuickPak Scientific subroutines check for a variety of errors
but cannot filter and trap all possible errors.

Page 12
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Linear Algebra

The QuickPak Scientific linear algebra routines will allow the
QuickBASIC programmer to solve systems of linear equations
using the methods of LU decomposition, Gauss—Jordan
elimination, and iterative improvement. An algorithm is also
included for solving tridiagonal systems of linear equations
using Gaussian elimination with partial pivoting.

DEMOLIN1

Demo program for the subroutine LINEAR1 which solves a system
of linear equations using the LU decomposition method.

DEMOLIN2

Demo program for the subroutine LINEAR?2 which solves a system
of linear equations using the Gauss—Jordan elimination method.
This program also provides the matrix inverse.

DEMOLIN3

Demo program for the subroutine LINEAR3 which solves a
tridiagonal system of linear equations using the method of
Gauss elimination with partial pivoting.

DEMOIMPR

Demo program for the subroutine IMPROVE which solves a system
of linear equations using iterative improvement. This routine
is useful for refining a linear algebra problem which may be
subject to noise or round-off errors.

Page 13
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Differential Equations

The QuickPak Scientific package includes a complete set of
algorithms for solving first and second order systems of
ordinary differential equations. These methods include the
classic fourth-order Runge-Kutta and Nystrom methods, three
adaptive Runge—Kutta—Fehlberg algorithms, and a variable order
Adams—Bashforth—-Moulton  predictor—corrector  subroutine.
Efficient QuickBASIC subroutines are also provided for solving
the Poisson, heat and wave partial differential equations.

DEMORK4
Demo program for the subroutine RK4 which solves a system of
first order vector differential equations using the classical
fourth-order Runge-Kutta method. This is a fixed step size
algorithm.
DEMORKF
Demo program for the three QuickBASIC subroutines

RKF45, RKF56 and RKF78
which solve a system of first order vector differential
equations using variable step size Runge—Kutta-Fehlberg
methods with truncation error control.
DEMONYM4
Demo program for the subroutine NYM4 which solves a system of

second order vector differential equations using a Nystrom
method of fourth—order. This is a fixed step size algorithm.

Page 14
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Differential Equations

(continued)

DEMOAPC

Demo program for the subroutine ADAMSPC which solves a
system of first order vector differential equations using a
Runge-Kutta—Fehlberg starting method and a variable order
Adams-Bashforth-Moulton predictor—corrector method.

DEMOPDEI!1

Demo program for the subroutine POISSON which solves the
two—dimensional elliptic partial differential Poisson equation
using the method of finite—differences.

DEMOPDE2

Demo program for the subroutine HEAT which solves the

one—dimensional parabolic partial differential heat equation
using the Crank—Nicolson method.

DEMOPDE3

Demo program for the subroutine WAVE which solves the
one—dimensional hyperbolic partial differential wave equation
using the method of finite—differences.

Page 15
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Integration

Tabular data can be integrated with both a Simpson or cubic
spline subroutine. Single definite integrals of analytic
user—defined functions can be quickly and accurately evaluated
with a Romberg algorithm. A Composite Simpson method is also
provided for integrating both double and triple definite
integrals of analytic functions defined by the user. An
adaptive integration method based on Simpson’s method
completes this series of algorithms.

DEMOINT1
Demo program for the two subroutines
SIMPSON and SPLINE
which integrate a scalar function of the form y = f(x) which
may be tabulated at unequal intervals.
DEMOINT?2

Demo program for the QuickBASIC subroutine ROMBERG which
numerically integrates a user—defined function using Romberg’s
method and a multiple application trapezoid rule.

DEMOINT?3

Demo program for the subroutine INTEGRA?2 which approximates
the value of a definite double integral using the Composite
Simpson method.

DEMOINT4

Demo program for the subroutine INTEGRA3 which approximates
the value of a definite triple integral. This program also
uses the Composite Simpson method of numerical integration.

DEMOINTS

Demo program for the subroutine ASIMPSON which integrates a
user—defined function using an adaptive Simpson method.

Page 16
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Differentiation

The derivatives of both user—defined analytic and tabulated
functions can be calculated with the QuickPak Scientific
differentiation subroutines. These three QuickBASIC routines
perform numerical differentiation by the classic methods of
finite—divided—differences, Lagrange’s method, and cubic
splines.

DEMODERI1

Demo program for the subroutine DERIV1 which numerically
estimates the first, second, third, and fourth derivatives of
a user—defined analytic function of the form y = f(x) using
the centered finite—divided-difference formulas.

DEMODER?2

Demo program for the QuickBASIC subroutine DERIV2 which
performs Lagrange numerical differentiation of tabulated x and
y data of the form y = f(x) input by the user.

DEMODER3

Demo program for the subroutine DERIV3 which performs
numerical differentiation of tabulated x and y data of the
form y = f(x) input by the user. This method uses a cubic
spline algorithm.

Page 17
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Non-linear Equations

QuickPak Scientific includes six flexible QuickBASIC
subroutines for solving non-linear equations. Algorithms are
provided which solve for the real roots of the general
quadratic, cubic and quartic equations. This series of
subroutines also includes a digital computer algorithm for
computing the real and complex roots of any polynomial up to
order 36. Two algorithms which solve single non-linear
equations, and two algorithms for solving systems of
non-linear equations, both with and without derivatives, are
also part of this QuickBASIC toolbox.

DEMOPOLY

Demonstration program for the subroutines
QUADRATC, CUBIC, and QUARTIC

which solve for the real roots of a quadratic, cubic, or
quartic equation respectively.

DEMOPNRT

Demo program for the subroutine POLYROOT which solves
for the real and complex roots of a polynomial of order less
than or equal to 36 using Newton’s method.

DEMONLE1

Demo program for the subroutine REALROOT which solves for a
real root of an unconstrained user—defined analytic function
of the form y = f(x) using Brent’s method. This algorithm
does not require derivatives.

Page 18
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Non-linear Equations
(continued)

DEMONLE2

Demo program for the subroutine NEWTON which solves for the
real root of an unconstrained non-linear analytic equation of
the form y = f(x) using a combination Newton/secant method.
The user must supply a QuickBASIC subroutine which evaluates
the non-linear equation and its first derivative.

DEMONLE3

Demo program for the subroutine NLINEAR which solves for the
real roots of an unconstrained system of non-linear equations
using Newton’s method. The user must provide a QuickBASIC
subroutine which evaluates the system of non-linear equations
and their first partial derivatives.

DEMONLE4

Demo program for the subroutine MINIMIZ2 which is used as a
non-linear regression method to solve for the real roots of an
unconstrained system of non-linear equations. This program
uses an adaptive derivative subroutine and does not require
the user to define the derivatives of the non-linear system.

Page 19
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Optimization

Non-linear optimization is the most powerful numerical method
for technical applications. It is also the most difficult to
implement.  QuickPak Scientific provides five flexible and
powerful algorithms for this purpose. These subroutines can
be used to solve for a minimum or maximum of scalar functions
of one or more variables. A complete computer program is also
included for solving the constrained, non-linear optimization
problem. The source program for this algorithm contains over
2000 lines of QuickBASIC code.

DEMOMIN1

Demo program for the subroutine MINIMA1 which solves for a
minimum or maximum of a scalar function of the form y = f(x).
This algorithm does not require function derivatives.

DEMOMIN2

Demo program for the subroutine MINIMA2 which uses Brent’s
method to calculate a minimum or maximum of a scalar function
of the form y = f(x). This algorithm does not require
derivatives.

DEMOMNZ1

Demo program for the subroutine MINIMIZ1 which solves for a
minimum or maximum of an unconstrained scalar function of
several variables using an analytic gradient supplied by the
user. The user may choose either the Conjugate Gradient or
Quasi—-Newton method for solution.
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Optimization

(continued)

DEMOMNZ2

Demo program for the subroutine MINIMIZ2 which solves for a
minimum or maximum of an unconstrained scalar function of
several variables using an adaptive numerical gradient
computed by the software. Both the Conjugate Gradient and
Quasi—-Newton methods are available in this algorithm for
solving this type of problem.

DEMONLP

Demo program for the series of QuickBASIC subroutines which
solve the constrained non-linear optimization problem. This
algorithm attempts to find a minimum or maximum of a scalar
function of several variables subject to both equality and
inequality constraints. This algorithm uses the Method of
Multipliers and Quasi-Newton minimization. It solves the
problem defined by:

minimize y=f(x)
subject to h(x)=0
(x)=20
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Interpolation

Important technical information often exists in the form of
empirical or experimental data which must be carefully
interpreted. To address this need, QuickPak Scientific
includes several routines for interpolating tabulated data of
the form y = f(x) using both a natural and clamped cubic
spline technique. A QuickBASIC subroutine is also provided
which can linearly interpolate both two and three—dimensional
tabular data.

DEMOCSF1

Demo program for the subroutine CSFIT1 which performs a
natural cubic spline interpolation of tabulated data of the
form y = f(x) supplied by the user.

DEMOCSF2

Demo program for the subroutine CSFIT2 which performs a
clamped cubic spline interpolation of tabulated data of the
form y = f(x) supplied by the user.

DEMOLNT1

Demo program for the subroutine INTERP1 which performs a
linear interpolation of tabulated data of the form y = f(x)
input by the user.

DEMOLNT2

Demo program for the subroutine INTERP2 which performs a
bilinear interpolation of tabulated data of the form z =
f(x,y) input by the user.
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Curve Fit

Curve-fitting of experimental data is very important in
science, engineering and other fields. QuickPak Scientific
provides three flexible subroutines for this purpose. The
first algorithm can fit data to simple linear, log and
exponential functions. The second algorithm performs a least
squares fit to data of the form y = f(x), and the third
QuickBASIC subroutine calculates fitting coefficients to a
three—dimensional surface of the form z = f(x,y) using a
Maclaurin series.

DEMOFFIT

Demo program for the subroutine FFIT which fits user—supplied
tabular data of the form y = f(x) to simple functions. This
QuickBASIC subroutine can fit data to functions of the form

y=a+bx, y=a+blog x, and y = a e”*.

DEMOLSQF

Demo program for the subroutine LSQFIT which performs a least
squares curve fit of tabulated data of the form y = f(x) input
by the user. This subroutine uses the method of orthogonal
polynomials.

DEMOSFIT

Demo program for the subroutine SURFIT which calculates
fitting coefficients for three—dimensional surfaces of the
form z = f(x,y). The fitting function is a two-dimensional
Maclaurin series of order less than or equal to 10 specified
by the user.
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Fast Fourier

QuickPak Scientific includes two algorithms which compute the
forward and inverse Fast Fourier transforms of real or complex
data. These QuickBASIC subroutines transform both one and
two—dimensional data using the Danielson-Lanczos or bit
reversal method. These subroutines are QuickBASIC versions of
the FORTRAN algorithms described in the very popular book,
Numerical Recipes.

DEMOFFT1

Demo program for the subroutine FFT1 which performs a
one—dimensional Fast Fourier and inverse Fast Fourier
transform of real and complex data. A subroutine named
PRTFFT1 which performs a formatted print of the data generated
by FFT1 is also part of this program.

DEMOFFT2

Demo program for the subroutine FFI2 which performs a
two—dimensional Fast Fourier and inverse Fast Fourier
transform of real and complex data. A subroutine named
PRTFFT2 which performs a formatted print of the data generated
by FFT2 is also part of this program.
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Statistics

The QuickPak Scientific package includes routines for
computing characteristics of the Normal, Chi-squared, F
distribution and T distribution statistical functions. These
algorithms can determine a point x from the probability and
degrees of freedom defined by the wuser, or determine
probability for a point x input by the user for each type of
statistical distribution.
DEMOSTAT
Demo program for the following four statistics subroutines:

e CHI — Chi-squared distribution subroutine

e FDIST — F distribution subroutine

¢ NORMAL - normal distribution subroutine

e TDIST — T distribution subroutine
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Functions

Methods for evaluating four important special functions are
also included in QuickPak Scientific. Two of these numerical
methods take advantage of QuickBASIC’s ability to work with
recursive functions and subroutines.

DEMOFUNC

Demo program which illustrates how to compute values of the
following special functions:

e GAMMA - Recursive Gamma function
o BESSEL - Recursive Bessel functions of integer order
e ERF — Error function

e BETA  — Beta function
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Complex Numbers

QuickPak Scientific includes eight routines for performing
calculations with complex numbers. These subroutines can be
used to add, subtract, multiply and divide two complex
numbers, raise a complex number to a power, compute its Nth
and square root, and find the reciprocal of a complex number.

DEMOCMPX

Demo program for a series of QuickPak Scientific subroutines
which allow the programmer to manipulate complex numbers.

e CMPXADD - complex number addition
e CMPXDIV - complex number division

e CMPXMULT - complex number multiplication

CMPXPOWR - raising a complex number to a power

CMPXRECP - reciprocal of a complex number

CMPXROOT - root of a complex number

CMPXSQRT - square root of a complex number
e CMPXSUB - complex number subtraction
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Trigonometry

The built-in trigonometry functions of QuickBASIC are extended
with the QuickPak Scientific trigonometry functions. These
flexible functions provide easy to use inverse sine, cosine,
tangent and hyperbolic functions for the QuickBASIC
programmer.

DEMOTRIG

Demo program for the following QuickBASIC trigonometry
functions:

e ACOS - inverse cosine function

e ACOSH - inverse hyperbolic cosine function

e ASIN - inverse sine function
e ASINH - inverse hyperbolic sine function

o ATAN3 - four quadrant inverse tangent function

e ATANH - inverse hyperbolic tangent function
e COSH - hyperbolic cosine function
e SINH - hyperbolic sine function

e TANH - hyperbolic tangent function
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Matrices

The QuickPak Scientific matrix subprograms provide the
programmer with flexible algorithms for performing a variety
of calculations involving matrices. Included are subroutines
for computing the inverse and determinant of a square matrix,
eigenvalues and eigenvectors, rank of a matrix, and
fundamental matrix operations such as addition, subtraction,
and multiplication.

DEMOINVR

Demo program for the subroutine INVERSE which solves for the
inverse of a square matrix using the LU decomposition method.
DEMODETM

Demo program for the subroutine DETERMIN which uses LU
decomposition to calculate the determinant of a square matrix.
DEMOMATX

Demo program which provides the QuickBASIC programmer
with the capability to perform the following fundamental
matrix operations:

e EIGENI1 — real eigenvalues and eigenvectors

e EIGEN2 — real and complex eigenvalues

e IMATRIX - identity matrix subroutine

e MATADD - matrix addition subroutine

e MATSUB - matrix subtraction subroutine

e MATXMAT - matrix multiplication subroutine

e MATXVEC — matrix/vector multiplication subroutine

e RANK ~ rank of a matrix subroutine
e TRACE — trace of a square matrix subroutine
e TRANSPOS - matrix transpose subroutine
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Vectors

The QuickPak Scientific vector routines allow the QuickBASIC
programmer to easily perform numerical calculations involving
vectors. These calculations include the dot and cross product
of two vectors, fundamental operations such as vector
addition, subtraction, and multiplication, and the triple
scalar and vector products.

DEMOVECT

Demo program for the following eight vector manipulation
subroutines:

e UVECTOR - unit vector subroutine

e VCROSS - vector cross product subroutine

e VDOT — vector dot product subroutine

e VECADD - vector addition subroutine

e VECMAG - vector magnitude subroutine

e VECSTP - vector scalar triple product subroutine
e VECSUB -~ vector subtraction subroutine

e VECVTP - vector triple product subroutine
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Utility Programs

Two useful utility programs and subroutines are also part of
the QuickPak Scientific package. These QuickBASIC routines
can be used to perform calculations involving calendar dates,
and plot data generated by your applications.

DEMODATE

Demo program which illustrates how to use the QuickPak
Scientific CDATE and JULIAN subroutines to perform
calculations involving dates. These subroutines provide the
QuickBASIC programmer with the capability to determine the
following types of information involving dates:

e Calculate the Julian date from the calendar date

e Calculate the calendar date from the Julian date

e Calculate the number of days between two dates

e Calculate the day of the week from a calendar date

e Calculate of the day of the year from a calendar date

e Calculate of the calendar date from the day of the year

DEMOPLOT

Demo program for the subroutine XYPLOT which displays a
simple graphics plot of data of the form y = f(x) provided by
the user. The QuickBASIC programmer can provide the
subroutine with labels for the axes and a title for the graph.
The subroutine XYPLOT will sort and auto-scale X and Y arrays
of data and display a convenient graphics plot of this
information. This subroutine supports the monochrome CGA,
EGA, VGA, and Hercules graphics mode of the IBM-PC and true
compatible computers.

Page 31.



Inr v Vf QuickPak Scientific § Ax ¥ ax/ay

Applications

Three stand-alone computer programs are also provided which
illustrate how to apply QuickPak Scientific algorithms and
solve more sophisticated and practical problems.  These
particular problems are from the field of Celestial Mechanics.

The first program wuses one of the QuickPak Scientific
root-finding algorithms to calculate the best way to transfer
a space vehicle from one circular orbit to another. This is
an orbital mechanics problem which must be solved for just
about every space mission.

The second computer program graphically illustrates how the
Runge-Kutta-Fehlberg algorithms automatically adjust the step
size when solving differential equations. The problem solved
in this example is called the circular-restricted, three-body
problem. This classic astronomy problem has challenged lots
of famous people for many, many years.

The third and final program demonstrates how to use the
QuickPak Scientific bracketing and minimization algorithms to
find the time of apogee and perigee of the Moon. Apogee
occurs when the Moon is farthest from the Earth, and perigee
is when the Moon is closest to the Earth. Naturally, the
times of lunar apogee and perigee influence such things as the
tides and eclipses.

Each of these applications is described in Appendix B.
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QuickPak Scientific
Subroutines and Functions

This section describes the proper programming procedure for
interacting with each and every QuickPak Scientific subroutine
and function. The required input and output for all
algorithms is defined along with suggestions and examples to
help the QuickBASIC programmer use the software. Additional
information about the interaction between many QuickPak
Scientific subroutines and their companion demonstration
program can be found in this section.

Whenever possible, structured programming practice has been
exercised within each algorithm. With the powerful and
flexible constructs of QuickBASIC it is always possible to
write source code from scratch which does not include a single
GOTO statement. This technique makes the source code easier
to follow and understand. However, many of these algorithms
are adaptations of FORTRAN code, and in several cases the
QuickBASIC algorithms required a few GOTO statements in order
to avoid duplicating large portions of source code.

All QuickPak Scientific functions and subroutine names use the
following default type declarations:

DEFINT I-N
DEFDBL A-H, O-Z

All QuickBASIC variable, constant, and array names also follow
this type convention. Naturally, you can change the type of
any variable by appending #, !, and % to the name. In fact,
this is done in certain demo programs which need a real index
variable in a FOR-NEXT construct, for example.

It is also important to note that all QuickPak Scientific
functions and subroutines, except the special functions GAMMA
and BESSEL, are non-recursive.
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The default OPTION BASE 0 of QuickBASIC is active in all
QuickPak Scientific algorithms. However, the first index used
for most arrays is assumed to be 1.

Subroutines and functions are organized and grouped by major
analysis area. For several areas there may be more than one
subroutine which solves the same type of problem.

The QuickPak Scientific algorithm descriptions consist of the
subroutine or function name, its purpose, calling syntax,
parameter list definition, and comments. The comments section
includes important technical, mathematical, and implementation
information about each algorithm and its companion
demonstration program. Please read these sections carefully.

The required input and resultant output for each subroutine
and function is clearly defined within the parameter list
description of each algorithm. In some cases a subroutine or
function parameter is used as both input and output.

The correct type and dimensions of all QuickPak Scientific
arrays are clearly defined.  This description includes the
number of rows and columns of each and every array. The
dimensioning of working or temporary arrays used within a
subroutine is handled by the respective algorithm. The memory
used by these arrays is recovered with the ERASE command when
the subroutine has completed its task.
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Linear Algebra

Subroutine LINEAR]1
Purpose:

The subroutine LINEARI1 solves a system of linear equations
using the method of LU decomposition.

Syntax:

CALL LINEAR1 (N, AQ), B(), X(), IER)

Where:
N = number of equations [input]
AQ = matrix of coefficients [input]
(2 dimensional array; N rows by N columns)
B() = right hand column vector [input]
(1 dimensional array; N rows by 1 column)
X0 = solution vector [output]
(1 dimensional array; N rows by 1 column)
IER = error flag [output]
(0O = no error, 1 = singular matrix)
Comments:

The system of linear equations which are solved by the
subroutine LINEAR1 must be of the form:

This system must also be exactly determined. This means that
the number of equations must be exactly equal to the number of
unknowns. This implies that matrix [A] is square.
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This can also be expressed as

A A _ A, ...A X B
11 12 13 IN 1 1

ANl ANz AN3 ANN X B

and in the form

A X +A X +A X +...+A X =B
11 1 12 2 13 3 IN N 1

A X +A X +A X +...+A X =B
2171 2272 23773 2N N 2

A X +A X +A X +...+A X =B
N1l N2 2 N33 NN N N

where the matrix [A] is real and square, and N is the number
of equations in the system.

The subroutine LINEAR1 will check the matrix [A] for
singularity. If the matrix is singular or cannot be factored,
the error flag IER will be set to 1. Otherwise this flag is
returned with the value 0.

Please note that the original matrix of coefficients, [A], is
modified by the software. The user should make a copy of the
original matrix before calling this subroutine.

All QuickPak Scientific linear algebra demo programs will
request that the user input the elements of all matrices and
column vectors by rows.

This algorithm is a QuickBASIC adaptation of the FORTRAN code
described in Chapter 2 of Reference 1.
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Linear Algebra

Subroutine LINEAR2

Purpose:

The subroutine LINEAR2 solves a system of linear equations
using the method of Gauss—Jordan elimination. This subroutine

also computes the matrix inverse.

Syntax:

CALL LINEAR2 (N, AQ, B(), IER)

Where:
N = number of equations [input]
AQ = input as the matrix of coefficients and output
as the matrix inverse
(2 dimensional array; N rows by N columns)
B(O = mput as the right right hand column vector and
output as the solution vector
(1 dimensional array; N rows by 1 column)
IER = emor flag [output]
(0 = no error, 1 = singular matrix)
Comments:

The system of linear equations which is to be solved using
LINEAR?2 must be of the form:

where [A] is a real, square matrix of coefficients, B is the

right hand column vector, and X is the solution vector.
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The subroutine LINEAR2 will check the matrix [A] for
singularity. If the matrix is singular, the error flag IER
will be set to 1. Otherwise this flag is set to 0.

The demo program requests the user to input the elements of

matrix [A] and the column vector B by rows.

This algorithm is described in Reference 1, Chapter 2.

Please note that the original matrix of coefficients, [A], and

the right hand column vector B are modified by the software.
To preserve the elements of the original matrix and vector,
the user should store a copy of each before calling this
subroutine.

Matrix [A] returns as the inverse of the original matrix, and

vector B returns as the solution vector of the system of
linear equations.
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Linear Algebra

Subroutine LINEAR3

Purpose:

The subroutine LINEAR3 solves a system of tridiagonal linear
equations using the method of Gauss elimination with partial
pivoting.

Syntax:

CALL LINEAR3 (N, A(), B0, C0. FO, X(), IER)

Where:
N = number of equations [input]
A = vector of subdiagonal coefficients [input]
(1 dimensional array; N rows by 1 column)
B() = vector of diagonal coefficients [input]
(1 dimensional array; N rows by 1 column)
CO = vector of superdiagonal coefficients [input]
(1 dimensional array; N rows by 1 column)
FO = right hand side vector [input]
( 1 dimensional array; N rows by 1 column)
X0 = solution vector [output]
(1 dimensional array; N rows by 1 column)
IER = error flag [output]
(0 = no error, 1 = singular matrix)
Comments:

The system of linear equations which can be solved by the
subroutine LINEAR3 must be of tridiagonal form.
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A tridiagonal matrix is of the following form:
b ¢
1 1

2 2 2

The ¢ ’s are called the superdiagonal elements, the b ’s are
1 1
called the diagonal elements, and the ai’s are the subdiagonal
elements of this type of matrix. All the other elements of a

tridiagonal matrix are equal to zero.

This system must also be exactly determined. This means that
the number of equations is exactly equal to the number of
unknowns.

The subroutine LINEAR3 will check the tridiagonal matrix for
singularity. If the matrix is singular, the error flag IER
will be set to 1. Otherwise this flag is set to 0.

Like the other linear algebra algorithms, the system of linear
equations solved by LINEAR3 is of the form:

[ A ] X =B
where [A] is a real, square matrix of coefficients, B is the
right hand column vector, and X is the solution vector.

The demo program for subroutine LINEAR3 will prompt the user
for the tridiagonal elements of the matrix [A] by the actual
row and column. It will also request the elements of the

vector B by rows.
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Linear Algebra

Subroutine IMPROVE
Purpose:

The subroutine IMPROVE solves a system of linear equations
using a method of iterative improvement.

Syntax:
CALL IMPROVE (NITER, N, A(), B(), X(), IER)
Where:

NITER = number of iterations [input]

N = number of equations [input]
AQ = matrix of coefficients [input]

(2 dimensional array; N rows by N columns)
B() = right hand column vector [input]

(1 dimensional array; N rows by 1 column)
X0 = input as the initial solution vector and

output as the improved solution vector

(1 dimensional array; N rows by 1 column)
IER = error flag [output]

(0 = no error, 1 = singular matrix)

Comments:

The subroutine IMPROVE is useful for solving a system of
linear equations when only an estimate for the solution vector
is known or when the solution vector is noisy, or may be
subject to round—off error.

This linear algebra algorithm is described in Chapter 2 of
Reference 1.
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The system of linear equations is of the form:
BESE

The algorithm assumes that matrix [A] of this linear system is
square. This means that the number of unknowns is exactly
equal to the number of equations.

The vector X is input as an initial estimate for the solution
of the system of linear equations. It returns from the
subroutine IMPROVE improved and changed by the actual number
of iterations, NITER.

The subroutine IMPROVE requires the subroutines SUB LUD and
SUB SOLVE. The main subroutine provides all communication
with these two subroutines. The subroutines SUB LUD and SUB
SOLVE are part of the IMPROVE file on the QuickPak Scientific
diskette.

This algorithm improves an initial estimate for the solution

vector X by solving the following equation iteratively:
[a]oX=[a][x+5X)-B
where:

$X = error in the solution vector X

The subroutine IMPROVE will check the matrix [A] for
singularity. If the matrix is singular or cannot be factored,
the error flag IER will be set to 1. Otherwise this flag is
returned with a value of 0.

The QuickPak Scientific demo program requests the user to

input the elements of the matrix [A] and the column vector B
by rows.

Please note that matrix [A] is modified by the software.
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Differential Equations

Subroutine RK4

Purpose:

The subroutine RK4 solves a system' of first order vector
differential equations using the classic Runge-Kutta fourth

order method.

Syntax:

CALL RK4 (NEQ, TIME, DT, Y())

Where:
NEQ = number of differential equations [input]
TIME = simulation time [input]
DT = integration step size [input]
Y() = input as the integration vector at initial
time = TIME and output as the integration vector
at time = TIME + DT
(1 dimensional array, NEQ rows by 1 column)
Comments:

This subroutine can be used to solve systems of first
order vector differential equations of the form:

F=t(31)

using the classic fourth-order Runge—Kutta method.
This algorithm is useful for solving systems of first order

differential equations where the equations of motion may be a
function of position and time.
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The subroutine RK4 requires a second subroutine called
DERIVATIVE which evaluates a system of first order vector
differential equations defined by the user. This subroutine
must be coded as:

SUB DERIVATIVE (T, Y(), Z()) STATIC

In the parameter list, T is the current integration time or
independent variable, Y() is the vector of dependent
variables, and Z() is the vector of differential equations.
The main subroutine provides the proper interface to this
subroutine which is stored on the QuickPak Scientific diskette
in the file DERIVATI.

Please note that this subroutine evaluates the differential
equations for one step size each time it is called. The demo
program illustrates a simple driver which keeps track of the
current integration time and cycles the integration subroutine
for an integration period input by the user.

The demo program DEMORK4 solves a system of three first order
vector differential equations defined by:

dy
1
— Y,y Y.0=y, —y, +1
dt 1 2 3 2 3
dy7
—2 (V) ¥,y ¥y D =30
dt 1 2 3
dy

3 _ -t
1 (y,, ¥, ¥ D=y, te

The user must provide a vector of initial conditions in Y(),
and an integration period and step size. The time units used
for the integration period and step size must be consistent.
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For the initial conditions at t = O given by

yO=YD)=1 y0=Y2)=1 vy, (0=Y3=-1

this first order system has the exact solution

y, (0 = -0.05t° + 0.25t" + t + 2 - et

y,0) = £+ 1

y3(t) =025 +t—et

The QuickPak Scientific demo program computes and displays the
error between the computed solution and the exact solution.

For this example, the derivative subroutine is:

SUB DERIVATIVE (T, Y(), YDOT()) STATIC
> System of differential equations subroutine

Yl =Y2-Y3+T
Y2 = 3TA2

Y3 = Y2 + eN-T)

> Input

T integration time

> Y() = vector of integration variables ( 3 rows )
> Qutput
> YDOT() = vector of differential equations ( 3 rows )
YDOT(1) = Y2)-Y3) + T
YDOTR2) =3# *T A2
YDOT(@3) = Y(2) + EXP(-T)
END SUB
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Differential Equations

Subroutines RKF45, RK56 and RKF78
Purpose:

These subroutines can be used to solve systems of first order
vector differential equations using three Runge-Kutta—Fehlberg
methods with step size control.

Syntax:

CALL RKF45 (NEQ, TOL, TIME, DT, Y())
CALL RKF56 (NEQ, TOL, TIME, DT, Y())
CALL RKF78 (NEQ, TOL, TIME, DT, Y())

Where:
NEQ = number of differential equations [input]
TIME = simulation time [input]
TOL = truncation error tolerance [input]
DT = integration step size [input]
Y() = input as the integration vector at initial

time = TIME and output as the integration vector
at time = TIME + DT
(1 dimensional array; NEQ rows by 1 column)

Comments:

These three subroutines can be used to solve systems of first
order vector differential equations of the form:

T =f(7.1)

using variable step size Runge-Kutta—Fehlberg methods.
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These algorithms are useful for solving systems of first order
differential equations where the equations of motion may be a
function of position and time.

Each integration subroutine requires a second subroutine
called DERIVATIVE which evaluates a system of first order
vector differential equations defined by the user.  This
subroutine should be coded as:

SUB DERIVATIVE (T, Y(), Z()) STATIC

In the parameter list, T is the current integration time or
independent variable, Y() is the vector of dependent
variables, and Z() is the vector of differential equations.
Each subroutine provides the proper interface to this
subroutine which is stored on the QuickPak Scientific diskette
in the file DERIVATI.

Please note that each subroutine evaluates the differential
equations for one step size each time it is called. The demo
program illustrates a simple driver which keeps track of the
current integration time and step size, and cycles the
integration subroutine for an integration period input by the
user.

The demo program DEMORKEF solves a system of three first order
vector differential equations defined by:

dy1
" VY Y=y, -y, +t

dy?. 2
J (yl’ y27 y3’ t) = 3t

—dy3< ) t
yvy’y’t:y+e
dt 1 2 3 2
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The user must provide a vector of initial conditions in Y(),
and an integration period and step size. The time units used
for the integration period and step size must be consistent.

For the initial conditions at t = 0 given by

YD) =yO®=1 Y2=y,0=1 Y03 =y, (0)=-1
this first order system has the exact solution
_ 5 4 -t
y, () = 0.05t" + 0.25t" + 1+ 2 —e
3
yz(t) =t +1
y, (0 =025 + t — e

The QuickPak Scientific demo program for these subroutines
computes and displays the error between the computed solution
and the exact solution. This allows the user to assess the
effects of such things as step size, initial conditions, and
error tolerance on the performance of the each of the
Runge-Kutta—Fehlberg integration algorithms.

The subroutine RKF45 is a fourth order method with fifth order
truncation error control. The subroutine RKF56 is a fifth
order method with sixth order truncation error control, and
the subroutine RK78 is a seventh order method with eight—order
error control.

Please note that these algorithms will use a step size which
may change at each integration step, but will never be larger
than the initial step size input by you. To force these three
subroutines to use a constant step size, pass each subroutine
a large value like 1D+99 for the truncation error tolerance.

These algorithms are discussed in Chapter 10 of Reference 4.
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Differential Equations

Subroutine NYM4
Purpose:

The subroutine NYM4 solves a system of second—order vector
differential equations using a fourth-order Nystrom method.

Syntax:

CALL NYM4 (N, TP, DT, X1(), XDOT1())

Where:
N = number of differential equations [input]
TP = simulation time [input]
DT = integration step size [input]
X10 = input as X-vector at initia] time = TP and

output as X—vector at time = TP + DT
(1 dimensional array; N rows by 1 column)

XDOT1() = input as the integration vector at initial
the time = TP and output as the integration
vector at the time = TP + DT
(1 dimensional array; N rows by 1 column)

Comments:

This subroutine solves a system of second-order vector
differential equations of the form:

-2 —_
TR = (W)
dt dt

which may be a function of position X, velocity v, and time t.
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The subroutine NYM4 requires a subroutine called DERIVATIVE

which evaluates a system of vector differential equations
defined by the user. This subroutine is coded as:

SUB DERIVATIVE(T, X(), XDOT(), XDDOT()) STATIC

In the parameter list, T is the current integration time, X()
is the vector of independent variables, XDOT() is the vector
of first—order derivatives (velocity), and XDDOT() is the
vector of second-order derivatives (acceleration). The
subroutine NYM4 provides the proper interface to this
subroutine which is stored on the QuickPak Scientific diskette
in the file DERIVAT2.

Please note that the subroutine NYM4 evaluates the
differential equations for one step size each time it is
called. The demo program illustrates a simple driver which
calls the subroutine NYM4 for an integration period specified
by the user. This driver simply checks to see if the time
remaining is less than the step size input by the user. If
this is true, it sets the final step size to this value. The
QuickBASIC source code for this is as follows:

WHILE (ABS(TF - TI) > .00000001#)
A=TF -TI
IF (ABS(A) < DT) THEN DT = A * SGN(A)
CALL NYM4(NEQ, TI, DT, R(), V()
TI = TI + DT
WEND
The demo program solves the system of three vector
differential equations which describe the unperturbed motion
of an Earth-orbiting spacecraft. The program DEMONYM4
requests an initial time, integration period, and step size
from the user. A step size between 10 and 60 seconds is

recommended. The initial time and integration period must
also be specified in the units of seconds.
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Initial conditions for the position and velocity of the
spacecraft are input by the user. The position vector should
be input in units of feet and the velocity vector input in
feet per second. The demo program will print the results of
the numerical integration in the same units.

The system of three second-order vector differential equations
solved by the companion demo program are as follows:

dle - ;.LRx dzxo - uRy dzx3 - uRz
a2 RY 2 R® > R?
where:

R, Ry, Rz = position vector of the spacecraft
X

R = position magnitude = \/ Ri + Rj + Ri

W = gravitational constant of the earth

These three differential equations are also called the
equations of motion of the spacecraft.

Typical position (feet) and velocity vectors (feet per second)
for the Space Shuttle are as follows:

R = -19472500.3 Ry = 6587457.02 RZ = 7367882.5

X

A%

X

1l

-4687.10293 Vy = —23436.308 V. = 8566.3774

The orbital period is the time required for the Space Shuttle
to complete one orbit around the Earth. For this case, the
period is 5404.124635 seconds. With these initial conditions,
the demo program can be used to assess the effect of different
step sizes on how well the orbit closes by integrating the
equations for exactly one orbital period.

Page 51



I r v Vf QuickPak Scientific § Ax Y a8x/dy

Differential Equations

Subroutine ADAMSPC

Purpose:

The subroutine ADAMSPC solves systems of first order vector
differential equations using an Adams/Bashforth/Moulton
predictor—corrector method.

Syntax:

CALL ADAMSPC (NEQ, NORD, TIME, DT, Y())

Where:
NEQ = number of equations in system [input]
NORD = order of integration [input]
TIME = input as the initial simulation time = TIME
and output as the time = TIME + DT
DT = integration step size [input]
YO = input as the integration vector at TIME and
output as the integration vector at TIME + DT
(1 dimensional array; NEQ rows by 1 column)
Comments:

The subroutine ADAMSPC uses a Runge-Kutta—Fehlberg 5(6)
starter, an Adams/Bashforth predictor, and an Adams/Moulton
corrector method to solve systems of first order vector
differential equations of the form:

Y of(71)

The computer code for this algorithm is described in Chapter
10 of Reference 4.

Page 52



nys v Vvf QuickPak Scientific § Ax Y ax/ay

The integration subroutine ADAMSPC requires a support
subroutine called DERIVATIVE which evaluates a system of first
order vector differential equations defined by the user. This
subroutine is coded as:

SUB DERIVATIVE (T, Y(), YDOT()) STATIC

In the parameter list, T is the current integration time or
independent variable, Y() is the vector of dependent
variables, and YDOT() is the vector of differential equations.
The subroutine ADAMSPC provides the proper interface to this
subroutine which is stored on the QuickPak Scientific diskette
in the file DERIVAT3.

The demo program attempts to solve the system of first order
differential equations given by:

dy
—1 (yl, Y, t) = -4y1 - 2y2 + cost + 4sin t
t

dy2 .
o ¥y ) =3y, +y, - 3sint
t

For the initial conditions given by

YD) =y, 0 =0, Y2 =y,0=-I

this first order system has the exact solution

t

yl(t) =2et_2e 4 sint

y, () =3¢t + 2¢77

The QuickPak Scientific demo program computes and displays the
error between the computed solution and the exact solution.
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Differential Equations

Subroutine POISSON
Purpose:

The subroutine POISSON solves the two—dimensional elliptic
partial differential equation defined by Poisson’s equation
using the method of finite-differences.

Syntax:

CALL POISSON (A, B, C, D, NX, NY, TOL, NITER,
X0, YO, WO)

Where:
A = X initial endpoint [input]
B = x final endpoint [input]
C = y initial endpoint [input]
D = y final endpoint [input]
NX = number of x grid lines [input]
NY = number of y grid lines [input]
TOL = convergence tolerance [input]
NITER = input as maximum number of iterations allowed
output as actual number of iterations required
X0 = vector of x mesh values [output]
(1 dimensional array; NX — 1 rows by 1 column)
Y0 = vector of y mesh values [output]
(1 dimensional array; NY — 1 rows by 1 column)
WO = array of solution values [output] (2 dimensional

array; NX — 1 rows by NY - 1 columns)
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Comments:

The subroutine POISSON attempts to solve the two—dimensional
elliptic partial differential equation given by:

IN
54

IN
o

8%u 8%u a
- Y+ — &y =1xy)
ax~ ay”~ c<y<d

subject to the boundary conditions

u(x, y) = g(x, y) ifx=aorx=bandc<y<d
u(x, y) = g(x, y) ify=cory=dand a<x<b

This subroutine requires two support subroutines called FFUN
and GFUN which define the forcing function f(x, y) and
boundary conditions function g(x, y), respectively. These
QuickBASIC subroutines must be coded as follows:

SUB FFUN(X, Y, FVAL) STATIC
SUN GFUN(X, Y, GVAL) STATIC

The first subroutine returns the function value and the second
returns the boundary condition for any X and Y value. The
main subroutine provides all communications with these support
subroutines.

The companion demo program attempts to solve the following
form of Poisson’s equation:
2 2 O0<x<2
P8 ko) + 28 (x y) = e
ax ay O<y<l1

with boundary conditions given by

u(, y) = 0 u2 ,y) = 2¢’ 0<y<1
and
u(x, 0) = x u(x, 1) = ex 0<x<2.
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For this particular example, the source code for the forcing
and boundary conditions functions is:

SUB FFUN (X, Y, FVAL) STATIC

> "Forcing" function subroutine
>z = f(xy)

> Input

> X = x value in forcing function
> Y = y value in forcing function

> Output
> FVAL = forcing function value at X, Y
FVAL = X * EXP(Y)

END SUB

SUB GFUN (X, Y, GVAL) STATIC

’ Boundary conditions subroutine
Tz = (%)

> Input

> X = x boundary value
> Y = y boundary value

?

Output
> GVAL = boundary condition at X, Y

IF (X = 0#) THEN
GVAL = O#

ELSEIF (X = 2#) THEN
GVAL = 2# * EXP(Y)

ELSEIF (Y = 0#) THEN

GVAL = X
ELSE
GVAL = EXP(1#) * X
END IF
END SUB
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The demo program will prompt the user for the number of X and
Y grid lines, initial and final X and Y endpoints, a
convergence tolerance, and the maximum number of iterations
permitted. A tolerance of 1D-10 should be adequate and 200 is
a good value for the number of iterations.

The demo program will display the solution to Poisson’s
equation as a two-dimensional array. The following is a
typical display generated by this software. For this example,
five X and four Y grid lines were used. The X initial and
final endpoints were O and 2, respectively, and the Y initial
and final endpoints were O and 1, respectively.

J =1 2 3 4

4.072646D-01

4.974832D-01

6.075961D-01

7.420071D-01

I1=2 8.145237D-01 9.949576D-01 1.215183D+00 1.484009D+00
I =3 1.221766D+00 1.492405D+00 1.822743D+00 2.225993D+00
I1=4 1.628964D+00 1.989778D+00 2.430227D+00 2.967928D+00
I=5 2.036042D+00 2.486958D+00 3.037506D+00 3.709724D+00

The corresponding X and Y spatial coordinates for any array
location are X =1 * DX and Y =J * DY where

Xf - X Yf - Y,
DX =———" and DY = —
NX NY

and NX and NY are the number of user—specified X and Y grid
lines, respectively.

The convergence tolerance for this problem was 1D-10. The
demo program will also display the actual number of iterations
required for the solution, which in this case was 52.

The finite—difference method implemented in subroutine POISSON
is described in Chapter 12 of Reference 2.
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Differential Equations

Subroutine HEAT
Purpose:
The subroutine HEAT solves the one—dimensional parabolic
partial differential heat equation using the Crank—Nicolson
solution method.
Syntax:
CALL HEAT (ALPHA, NX, NT, XL, T, S())
Where:

ALPHA = equation constant [input]

NX = number of spatial increments [input]
NT = number of time increments [input]
XL = final spatial value [input]

T = final time value [input]

SO = solution array [output]

(2 dimensional array; NX rows by NT columns)

Comments:

The subroutine HEAT attempts to solve the one—dimensional
parabolic partial differential equation given by:

2 0<x<L
—a-p—(x,t)—ocza—g(x,t)=0
at ax 0<t<T

subject to the boundary conditions

u@O, ) =ul,t) =0 for O0<t<T
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and the initial conditions
ux, 0) = f(x) for 0<x <L

This subroutine requires a support subroutine called FFUN
which defines the forcing function f(x). This QuickBASIC
subroutine must be coded as follows:

SUB FFUN(X, FVAL) STATIC

The subroutine returns the forcing function value for any
spatial X value. The main subroutine provides all required
communications with this support subroutine.

The companion demo program solves the following form of the
heat equation:

su 5%u O0<x<l1
- (Xa t) - —2 (X’ t) = 0
ot ax t>0

subject to the conditions

u0, ) =u(l, ) =0 for t>0
and
u(x, 0) = sin(mx) for 0<x<1.

Note that the equation constant & for this case is equal to 1
and the forcing function is f(x) = sin(mx).

The demo program will prompt the user for this constant, the
number of spatial and time increments to use, and the spatial
endpoint and maximum time.

The companion demo program will display the solution as a
two—dimensional array. The format of this array is discussed
within the software description for subroutine POISSON. For
this example, the I index corresponds to spatial coordinates
and the J index is the time coordinate.
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Differential Equations

Subroutine WAVE

Purpose:

The subroutine WAVE solves the one—dimensional hyperbolic
partial differential wave equation using a finite—difference

solution method.

Syntax:

CALL WAVE (ALPHA, NX, NT, XL, T, S())

Where:

ALPHA = equation constant [input]

NX = number of spatial increments [input]

NT = number of time increments [input]

XL = final spatial value [input]

T = final time value [input]

WO = solution array [output]

(2 dimensional array; NX rows by NT columns)

Comments:

The subroutine WAVE attempts to solve the one—dimensional
hyperbolic partial differential equation given by:

0<x<L

2 2
0 2 08
—‘:‘(x,t)—oc7 lzl(x,y)=0

at” 8X 0<t<T

subject to the boundary conditions

u@, ) =ul, t) =0 for 0<t<T
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and the initial conditions

u(x, 0) = f(x) for 0<x<L
U (%, 0) = g(®) for 0<x<L

This subroutine requires two support subroutines called FFUN
and GFUN which define the initial condition functions f(x) and
g(x), respectively. These QuickBASIC subroutines must be
coded as follows:

SUB FFUN(X, FVAL) STATIC

SUN GFUN(X, FVAL) STATIC
Each subroutine returns the initial condition function value
any X value. The main subroutine provides all communications

with these support subroutines.

The companion demo program for this subroutine solves the
following form of the wave equation:

2 O<x<1

8’u 8%u
—2 (X, t) — 4 —2 (X, y) == 0
ot dx 0<t<T
with the boundary conditions
u©0, t) =u(l,t) =0 for t>0

and the initial conditions

u(x, 0) = sin(mx) for 0<x<1

g%(x,O)—_-o for 0<x<1
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Note that the equation constant o for this case is equal to 2
and the two initial condition functions are f(x) = sin(nx) and
g(x) = 0. For this example, they are coded as follows:

SUB FFUN (X, FVAL) STATIC

> Initial conditions function subroutine

Yy = f(x)

> Input

X = x value

> Output

> FVAL = forcing function value at X, Y
PI = 3.141592653589793#

FVAL = SIN(PI * X)

END SUB

*

SUB GFUN (X, FVAL) STATIC

> Initial conditions derivative subroutine
>y = du/dt(x,0)

> Input

> X = x value in derivative function

> Qutput

> FVAL = derivative value at X
FVAL = O#

END SUB

The demo program will prompt the user for the equation
constant, the number of spatial and time increments to use,
the spatial endpoint and maximum time.

The companion demo program will display the solution as a
two—dimensional array. The format of this array is discussed
within the software description for subroutine POISSON. For
this example, the I index corresponds to spatial coordinates
and the J index is the time coordinate.

The finjte—difference algorithm implemented in subroutine WAVE
is described in Chapter 12 of Reference 2.
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Integration

Subroutine SIMPSON
Purpose:

The subroutine SIMPSON numerically integrates a table of X and
Y data of the form y = f(x) input by the user.

Syntax:

CALL SIMPSON (N, X(), Y(), SUM)

Where:
N = number of X and Y data points [input]
X0 = array of X data points [input]
(1 dimensional array; N rows by 1 column)
YO = array of Y data points [input]

(1 dimensional array; N rows by 1 column)
SUM = integral from X(1) to X(N) [output]

Comments:

In this algorithm the Y() array is the dependent data and the
X() array is the independent data;

Y =fX), i=12...,N

The number of X and Y data points must be odd and should be
input by the user in ascending order in the array X(). The
demo program checks for an odd number of data points but does
not check for ascending order.

The data may be tabulated at unequal X intervals.

Reference 10 describes this algorithm.
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Integration

Subroutine SPLINE

Purpose:

The subroutine SPLINE numerically integrates a table of X and
Y data of the form y = f(x) input by the user using the method

of cubic splines.

Syntax:

CALL SPLINE (N, X0, Y(), SUM)

Where:
N = number of X and Y data points [input]
X0 = array of X data points [input]
(1 dimensional array; N rows by 1 column)
Y() = array of Y data points [input]

(1 dimensional array; N rows by 1 column)
SUM = integral from X(1) to X(N) [output]

Comments:

In this algorithm the Y() array is the dependent data and the
X() array is the independent data;

Yi=f(X), i=1,2,...,N

A minimum of two X and Y data points must be provided and
should be input by the user in ascending order in the array
X(). The demo program checks for a minimum number of data
points but does not check for ascending order.

The data may be tabulated at unequal X intervals.
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Integration

Subroutine ROMBERG
Purpose:

The subroutine ROMBERG numerically integrates a user—defined
analytic function of the form y = f(x) using Romberg’s method.

Syntax:

CALL ROMBERG (A, B, MAXITER, EPS, NITER, S)

Where:
A = Jower integration limit [input]
B = upper integration limit [input]
MAXITER = maximum number of iterations [input]
EPS = convergence criteria [input]
NITER = actual number of iterations [output]
S = integral from A to B [output]
Comments:

This subroutine numerically integrates a user—defined function
as follows:

S(x) = fB f(x) dx

A
over the limits A and B specified by the user.
This algorithm uses combination of Romberg’s method and

multiple-application trapezoidal rule. Additional information
can be found in Chapter 16 of Reference 3.
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The function must be defined by the user in a subroutine
called USERFUNC which is coded as:

SUB USERFUNC(X, FVAL) STATIC

In the parameter list, X is the function argument and FVAL is
the function value at X.

The subroutine ROMBERG also requires a subroutine called
TRAPEZOID which is a QuickBASIC implementation of a
multiple—application trapezoidal rule. All communication with
this subroutine is provided by the subroutine ROMBERG. The
subroutine TRAPEZOID is included as part of the file ROMBERG
on the QuickPak Scientific diskette.

Values between five and ten are recommended for the maximum
number of iterations, and a convergence criteria of 1D-8 is
reasonable for most functions.

The demo program numerically integrates the function
2

=f(x) = e
over a lower and upper integration limit specified by the
user. A subroutine defining this function is stored on the
QuickPak Scientific diskette in the file USERFUNI which is
coded as follows:
SUB USERFUNC (X, FVAL) STATIC
> User function subroutine
> f(x) = eN-x"2)
> Input
> X = function argument
> Output
> FVAL = function value = f(X)
FVAL = EXP(-X * X)
END SUB
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Integration

Subroutine INTEGRA2

Purpose:

The subroutine INTEGRA2 can be used to numerically estimate
the value of a definite double integral of a user—defined
function of the form z = {(x, y) using a Composite Simpson
solution method.

Syntax:

CALL INTEGRA2 (XA, XB, M, N, XJ)

Where:
XA = lower X end point [input]
XB = upper X end point [input]
M = number of Y subdivisions [input]
N = number of X subdivisions [input]
XJ = value of double integral [output]
Comments:

This subroutine uses a Composite Simpson method to numerically
estimate the value of a definite double integral of the form:

b d(x)

S(x,y) = J J f(x, y) dy dx

a c(x)

over the x and y limits shown. This integration method is
described in Reference 2, Chapter 4. ‘
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The subroutine INTEGRAZ2 requires three other subroutines which
define both the integration limit functions and the
user—defined integration function.

The lower integration limit function is coded as
SUB FCX (X, F) STATIC

and defines the y = c(x) limit function. = The upper
integration limit function is coded as

SUB FDX (X, F) STATIC

and defines the y = d(x) limit function. Both of these
subroutines return a function value F for any input argument

X.
The user—defined integration function is coded as
SUB FXY (X, Y, F) STATIC

and returns the function value F for any combination of the
two arguments X and Y.

These three subroutines are on the QuickPak Scientific disk in
the file USERSUBI.

The demo program integrates the following definite double
integral

2
0.5 X

S(x,y) = J' J e'/* dy dx
3

0.1 X

over lower and upper x integration limits specified by the
user. The user may also specify the number of x and y
subdivisions. Note that the integral will be more accurate as
the number of subdivisions increases.
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The user should be careful when coding the required support
subroutines to make sure any function singularities are
handled properly. It may be necessary to divide an
integration function into two or more functions and integrate
each individually.
The following is the QuickBASIC source code for the two limit
functions and the integration function contained in USERSUBI.
Lower integration limit function
SUB FCX (X, F) STATIC
>y = fe(x) subroutine
F=XA"3
END SUB
Upper integration limit function
SUB FDX (X, F) STATIC
>y = fd(x) subroutine
F=Xn2
END SUB
Integration function
SUB FXY (X, Y, F) STATIC
> f(x,y) subroutine
F = EXP(Y / X)
END SUB
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Integration

Subroutine INTEGRA3

Purpose:

The subroutine INTEGRA3 can be used to numerically estimate
the value of a definite triple integral of a user—defined
function of the form w = f(x, y, z) using a Composite Simpson
integration method.

Syntax:
CALL INTEGRA3 (XA, XB, L, M, N, XJ)

Where:
XA = lower X end point [input]
XB = ypper X end point [input]
L = number of Z subdivisions [input]
M = number of Y subdivisions [input]
N = number of X subdivisions [input]
XJ = value of triple integral [output]
Comments:

This subroutine uses a Composite Simpson method (Chapter 4,
Reference 2) to numerically estimate the value of a definite
triple integral of the form:

b dx) b(x,y)

S(x,y,2) = J [ J f(x, vy, z) dz dy dx

a c(x) a(x,y)

over the x, y and z limits shown.
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The subroutine INTEGRAS3 requires five other subroutines which
define both the integration limit functions and the
user—defined integration function.

The lower and upper y integration limit functions are coded as

SUB FCX (X, F) STATIC =y = c¢(x)
SUB FDX (X, F) STATIC = y = d(x)

These subroutines return a function value F for any input
argument X.

The lower and upper z integration limit functions are coded as

SUB FAXY (X, Y, F) STATIC = z = fa(x, y)
SUB FBXY (X, Y, F) STATIC = z=1b(x,y)

These subroutines return a function value F for any input
arguments X and Y.

The user—defined integration function is coded as
SUB FXYZ (X, Y, Z, F) STATIC

and returns a function value F for any three arguments X, Y
and Z.

These three subroutines are on the QuickPak Scientific disk in
the file USERSUB?2.

The demo program integrates the following definite triple
integral:

V4.x? 2
S(x,y,z) = J J J zV x>+ y2 dz dy dx

Va.x? \/x2+ yz‘

S

)
[
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Integration

Subroutine ASIMPSON
Purpose:
The subroutine ASIMPSON numerically integrates a user—defined

analytic function of the form y = f(x) using an adaptive
Simpson solution method.

Syntax:
CALL ASIMPSON (A, B, ACC, SUM, ESTERR, IFLAG)

Where:
A = lower integration limit [input]
B = upper integration limit [input]
ACC = solution accuracy [input]
SUM = integral form A to B [output]
ESTERR = relative error [output]
IFLAG = error flag [output]
1 = no error
2 = more than 30 levels
3 = subinterval too small
4 = more than 2000 function evaluations
Comments:

The demo program numerically integrates the function
2
y=1f(x)=e"

over a lower and upper integration limit specified by the
user. A subroutine defining this function is stored on the
QuickPak Scientific diskette in the file USERFUNI.
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Differentiation

Subroutine DERIV1

Purpose:

The subroutine DERIV1 numerically estimates the first, second,
third and fourth derivatives of an analytic function of the
form y = f(x) defined by the user.

Syntax:

CALL DERIV1 (X, H, FP1, FP2, FP3, FP4)

Where:
X = X value of interest [input]
H = step size [input]
FP1 = first derivative [output]
FP2 = second derivative [output]
FP3 = third derivative [output]
FP4 = fourth derivative [output]
Comments:

This subroutine numerically estimates the first four
derivatives of an analytic function of the form

y =1 (x)
defined by the user.
The first, second, third, and fourth derivatives are estimated

for the user—defined function using the method of central
divided differences.
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The subroutine DERIV1 requires a subroutine which evaluates a
function defined by the user. This function is specified in a
subroutine called USERFUNC which is coded as:

SUB USERFUNC (X, FVAL) STATIC

In the parameter list, X is the function argument and FVAL is
the function evaluated at X.

A step size between .01 and .0001 is recommended. The "best"
value for the step size will depend on the behavior of the
function in the vicinity of the point of interest.  Smaller
step sizes should be used whenever the slope of the function
is changing dramatically.

The demo program estimates the derivatives of

y = f(x) = V sin(x) + 2.5 "
for a value of x input by the user.

The subroutine for this function is stored on the QuickPak
Scientific diskette in the file USERFUN2 and is coded as:

SUB USERFUNC (X, FX) STATIC
* User—defined function subroutine
» f(x) = sqri(sin(x) + 2.5 exp(x))
> Input

s

X = function argument

3

Output
> FX = function value at X
FX = SQR(SIN(X) + 2.5# * EXP(X))

END SUB

This method of numerical differentiation is described in
Chapter 17 of Reference 3.
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Differentiation

Subroutine DERIV?2

Purpose:

The subroutine DERIV2 estimates the first derivative of
user—supplied tabulated data of the form y = f(x) using
Lagrange’s method.

Syntax:
CALL DERIV2 (NPTS, NDEG, X(), Y(), XVAL, YVAL)

Where:
NPTS = number of X and Y data points [input]
NDEG = degree of interpolation [input]
X0 = array of X data points [input]
(1 dimensional array; NPTS rows by 1 column)
Y0 = array of Y data points [input]

(1 dimensional array; NPTS rows by 1 column)
XVAL = X argument [input]
YVAL = derivative value [output]

Comments:

In this algorithm the Y() array is the dependent data and the
X() array is the independent data;

Yi=f(X), i=1,2,...,NPTS.

A minimum of four X and Y data points must be provided and
should be input by the user in ascending order in the array
X(). The demo program checks for a minimum of four data
points but does not check for ascending order.
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The degree of interpolation will be a number between 1 and 9
and depends on the total number of data points.

The highest degree of interpolation is equal to the smaller of
(NPTS - 2) or 9. The demo program will compute the highest
degree of interpolation possible and include this number as
part of the user prompt. '

The valid range for an X value for evaluation is also a
function of the number of data points and the degree of
interpolation. This range will also be computed by the demo
program, and the user will only be allowed to input a number
in this range. The range of valid X values is:

X(1) £ X £ X(NPTS -~ NDEG)

This numerical method for calculating derivatives is based on
Lagrange’s method. It is described in Chapter 5 of Reference
7. Numerical derivatives can be calculated by differentiating
the following form of Lagrange’s interpolation formula of
order N:

x-x)x-%x)...(x-x)
g(x) = 1 2 N )
(xo- xl)(xo- xz) ... (xo— xN)
+(x- xo)(x- x2) e (x- xN)
(X X)X %)« (% x)
JERE ) G x)
(XN- xo)(xN- xl) ... (XN— XN_I)
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Differentiation

Subroutine DERIV3

Purpose:

The subroutine DERIV3 estimates the first derivative of
user—supplied tabulated data of the form y = f(x) using the
method of cubic splines.

Syntax:

CALL DERIV3 (N, X(), Y(), XVAL, DVAL)

Where:
N = number of X and Y data points [input]
X0 = array of X data points [input]
(1 dimensional array; N rows by 1 column)
YO = array of Y data points [input]

(1 dimensional array; N rows by 1 column)
XVAL = X argument [input]
DVAL = derivative value [output]

Comments:

In this algorithm the Y() array is the dependent data and the
X() array is the independent data;

Yi=f(X), i=1,2,...,NPTS.

A minimum of rwo X and Y data points must be provided and
should be input by the user in ascending order in the array
X(). The demo program checks for a minimum of two data points
but does not check for ascending order.
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Non-linear Equations

Subroutines QUADRATC, CUBIC and QUARTIC
Purpose:
The subroutines QUADRATIC, CUBIC, and QUARTIC solve
for the real roots of a quadratic, cubic or quartic equation,
respectively.
Syntax:
CALL QUADRATIC (C1, C2, C3, X1, X2, NROOT)
CALL CUBIC (B1, B2, B3, B4, X1, X2, X3, NROOT)

CALL QUARTIC (Al, A2, A3, A4, AS,
Q1, Q2, Q3, Q4, NROOT)

Where:

Cl1, C2, C3 = quadratic equation coefficients [input]
B1, B2, B3, B4 = cubic equation coefficients [input]

Al, A2, A3, A4, A5 = coefficients of the quartic
equation [input]

X1, X2, X3, Q1, Q2, Q3, Q4 = real roots [output]
NROOT = number of real roots [output]

Comments:
The form of the quadratic equation is
Cx*+Cx+C_ =0
1 2 3

and the solution is prbvided by the subroutine QUADRATIC.
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The form of the cubic equation is
Bx>+Bx*+Bx+B =0
1 2 3 4
which can be solved with the subroutine CUBIC.
The quartic equation is given by
A"+ AX + A +Ax+A =0
1 2 3 4 5
which is solved using the subroutine QUARTIC.

The subroutine QUADRATIC is a stand-alone subroutine.
However, the subroutine CUBIC requires the subroutine
QUADRATIC, and the subroutine QUARTIC requires both the
subroutines CUBIC and QUADRATIC.

The demo program will ask the user which of the three
polynomial equations he or she would like to solve. The demo
program DEMOPOLY will also check to make sure the first
coefficient for a cubic or quartic equation input by the user
is non-zero. This prevents a divide by zero error in the
subroutines CUBIC and QUARTIC.

The wuser must be careful not to call either of these
subroutines with a value of zero for the coefficient of the
highest order term in x or the software will malfunction.

The quadratic equation subroutine is in the file QUADRATC on
the QuickPak Scientific diskette. The cubic equation
subroutine is in the file CUBIC, and the quartic equation
subroutine can be found in the file QUARTIC.
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Non-linear Equations - :

Subroutine POLYROOT

Purpose:

The subroutine POLYROOT solves for the real and complex roots
of a polynomial using Newton’s method.

Syntax:

CALL POLYROOT (COEF(), NPOLY, ROOTR(),
ROOTI(), NFLG)

Where:
COEF() = polynomial coefficients [input] (1 dimensional
array; NPOLY + 1 rows by 1 column)
NPOLY = order of the polynomial [input]
ROOTR() = real parts of roots [output] (1 dimensional

array; NPOLY + 1 rows by 1 column)

ROOTI() = imaginary parts of roots [output]
(1 dimensional array; NPOLY + 1 rows
by 1 column)

NFLG = error flag [output]
(0 = no error, 1 = iterations > 500)

Comments:
The polynomial is assumed to be of the form:

fo) = AV &+ AN KT AN TR e A

The order of the polynomial must be less than or equal to 36.

1

Please note that the leading coefficient AN cannot be zero.
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Non-linear Equations

Subroutine REALROOT
Purpose:

The subroutine REALROOT solves for the real root of a
user-defined function of the form y = f(x) using Brent’s
method. This algorithm does not require the user to supply
function derivatives.

Syntax:

CALL REALROOT (XL, XU, TOL, MAXITER, NITER,
XROOT, FROOT)

Where:
XL = lower bound of search interval. [input]
XU = upper bound of search interval [input]
TOL = convergence criteria [input]
MAXITER = maximum number of iterations [input]
NITER = number of actual iterations [output]
XROOT = real root of y = f(x) = 0 [output]
FROOT = function value [output]

Comments:

This algorithm will calculate a single real root of a
user—defined function of the form y = f(x). The user must
specify a search interval which is known to contain a single
real root of the defined function. The bounds of the search
interval are passed to the subroutine through the two
variables XI. and XU.
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The subroutine REALROOT requires a subroutine which evaluates
a function defined by the user. This function is specified in
a subroutine called USERFUNC which is coded as:

SUB USERFUNC (X, FVAL) STATIC

In the parameter list, X is the function argument and FVAL is
the function evaluated at X. The subroutine REALROOQOT handles
all interaction with this subroutine.

A convergence tolerance of 1D-8 is recommended. The number of
iterations permitted and required depends on the size of the
search interval. A value between 10 and 20 is recommended.

The demo program attempts to find the real root of
y=1f(x) =xe*" - 10

within an interval specified by the user.

Note that x = 1.745528 is a root of this equation.

A subroutine defining this function is stored on the QuickPak
Scientific diskette in the file USERFUN3. The algorithm is
described in Reference 5. For this example USERFUNC is coded
as follows:
SUB USERFUNC (X, FVAL) STATIC
> User—defined function subroutine
PF(X) = X ¥ erX - 10
> Input
X = function argument
> Qutput
> FVAL = function value at X
FVAL = X * EXP(X) — 10#
END SUB
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The demo program also illustrates a simple method for
bracketing the root of any user-defined function. The
software will prompt the user for a value of X for initiating
the search, a step size, a step size multiplier, and a

rectification interval. If the step size is positive or
negative, the algorithm will search to the right or left of
the initial point, respectively. The step size multiplier

geometrically accelerates the search and must not be too large
or it may "step" over a bracket. The rectification interval
is the maximum distance the algorithm will search before
"resetting” the search parameters. This prevents the method
from using very large step sizes during its search.

The bracketing algorithm will also request a maximum number of
bracketing iterations. A value of 50 is recommended.

The bracketing subroutine is stored on the QuickPak Scientific
disk under the filename BROOT. The proper syntax for calling
this algorithm is as follows:

CALL BROOT (XI, DX, XMULT, DXMAX, NROOT,
XB1, XB2, IER)

Where:
XI = initial X search value [input]
DX = initial X step size [input]
XMULT = X step size multiplier [input] (XMULT > 0)
DXMAX = bracketing rectification interval [input]
NROOT = maximum number of iterations [input]
XB1 = first X bracket value [output]
XB2 = second X bracket value [output]

IER = error flag [output]
(0O = no error, 1 = iterations > NROOT)

If the algorithm is successful, the root will be bracketed
between XB1 and XB2, and the error flag IER will return with
the value 0. If the algorithm attempts more than NROOT
searches, this flag will be set to the number 1.
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Non-linear Equations

Subroutine NEWTON

Purpose:

The subroutine NEWTON solves for a single real root of a
user—defined non-linear equation using a combination
Newton—Raphson and bisection method. The first derivative of
the user—defined function is also required.

Syntax:
CALL NEWTON (X1, X2, TOL, MAXITER, ROOT, NITER)

Where:
X1 = initial X value of search interval [input]
X2 = final X value of search interval [input]
TOL = convergence tolerance [input]
MAXITER = maximum number of iterations [input]
ROOT = root of non-linear equation [output]
NITER = number of actual iterations [output]

Comments:

A real root must be bracketed by the values of X1 and X2 in
order for this subroutine to work properly.

This subroutine requires a user—supplied support subroutine
called USERFUNC which returns values for the function and its
first derivative for any X value.

This QuickBASIC subroutine must be coded as follows:

SUB USERFUNC (X, FX, FPX) STATIC
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In the parameter list, X is the argument, FX is the function
value, and FPX is the derivative value at X.

The QuickPak Scientific demo program searches for a single
real root of the following non-linear equation:
1

y=fx)=x-¢&"

The first derivative of this function is

A subroutine which calculates this function and its derivative
is stored on the QuickPak Scientific diskette in the file
USERFUNG.

For this algorithm, a convergence criteria of 1D-10 is
recommended. A number between 50 and 100 should work for the
maximum number of iterations.

Please note that the demo program will check the values of X1
and X2 to make sure that a single real root is bracketed. If
a root is not bracketed, the program will display the message

Root must be bracketed!!

and request new values for X1 and X2. The function defined
here has a root at X = 1.7632228.

The demo program will display the root and function values,
and the actual number of algorithm iterations.

Chapter 9 of Reference 1 contains a discussion and FORTRAN
listing of this Newton—Raphson/bisection algorithm.
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Non-linear Equations

Subroutine NLINEAR
Purpose:

The subroutine NLINEAR can be used to solve for the real roots
of an unconstrained system of non-linear equations using
Newton’s method and analytic partial derivatives which must be
supplied by the user.

Syntax:
CALL NLINEAR (N, MAXITER, XTOL, FTOL, NITER,
X(), IER)
Where:
‘N = number of equations in the system [input]

MAXITER = maximum number of iterations [input]
XTOL

X convergence criteria [input]

FTOL = function convergence criteria [input]
NITER = number of actual iterations [output]
X0 = solution vector [output]

(1 dimensional array; N rows by 1 column)

IER = error flag [output]
(0 = no error, 1 = singular matrix)

Comments:

This subroutine requires the subroutine LINEAR and a
subroutine called USERFUNC which returns the negative function
values and partial derivatives of a user—defined system of
non-linear equations. The subroutine NLINEAR handles all
communications with these two support subroutines.
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The subroutine U§ERFUNC is coded as:
SUB USERFUNC (X(), FX(), DFDX()) STATIC

In the parameter list, X() is the function argument vector,
FX() is the vector of negative function values evaluated at
X(), and DFDX() holds the partial derivatives of the function,
also evaluated at X().

The two-dimensional matrix of partial derivatives, DFDX(), is
called the Jacobian and must be coded in the form:

Vf = DFDX(, j)=afi(§)/6xj
fori=1toNandj=1toN.

The subroutine NLINEAR iteratively solves the following matrix
equation:

N af.
Z_.l §x = _f i=1,2...,N

ax J !
=1 %%

The correction to an old guess x°'¢ is
1

X"V = x°1d | §x i=1,2, ..., NITER

i i i

The demo program attempts to solve the non-linear system of
equations given by:

fl(xl, X, X, x4) = - xf - xz - XZ +x, 0= 0
fz(xl, X, Xy x4) = x? + xz + xi + xi -1 =0
f3(x1, X X, x4) = X, -X, = 0
f4(X1’ X, Xg x4) = X, =X, = 0
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The first few terms of the Jacobian for this non-linear system
are as follows:

af af
DFDX(1, 1) = —% = —2x DFDX(1, 2) = —% = 22x_
ax ! dx -
1 2
af af
DFDX(1, 3) = —% = _2x DFDX(1, 4) = — =1
6x3 3 6x4

The user must input an initial guess for the solution vector

X. The software will check for either an X value or function
value convergence. A convergence criteria of 1D-6 is
recommended for both the X value and function value
convergence criteria. The maximum number of iterations
allowed should range from 5 to 10.

A solution to this non-linear system 1is

X, = 4538847, X,= 4538847,
X,= 4538847, X,= .61803398.

A subroutine defining this system of equations and its
gradient is stored on the QuickPak Scientific diskette in the
file USERFUN4.

If a singular matrix or other problem is encountered during
the solution process, the error flag IER will be set to 1.
Otherwise it will be set to 0. If an error does occur, the
user should first try a new initial guess. Another source of
errors may be incorrect coding of the gradient or function.

This QuickPak Scientific subroutine is a QuickBASIC
implementation of the algorithm described in Chapter 9 of
Reference 1.
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Non-linear Equations

Subroutine MINIMIZ?2

Purpose:

The non-linear optimization subroutine MINIMIZ2 can also be
used as a non-linear regression method to solve for the real
roots of an unconstrained system of non-linear equations.

Syntax:

The proper procedure for using the subroutine MINIMIZ2 is
described on pages 100-101 of this manual.

Comments:

A general system of N non-linear equations can be expressed in
the form:

fl(xl, Xpo o o XN) =0
fz(x1’ Xpo o xN) =0
fN(xl, Xyo oo xN) =0

We define a minimizing function as follows:

2
f(xlv XZ"',XN)_fl (xl’ x?.’.',XN)
+ £ (
, (X x2,..,xN)
+f2(x X X )
N 1T T2 TN
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If X, X -, X are roots of the non-linear system, then

P
the minimum function value should be equal to zero (within a
small tolerance). We can use the subroutine MINIMIZ2 to find
the minimum of the function f. However, this approach is
valid if and only if the function value for f = 0. It may

happen that the converged values of Xpo Xpo oo oy X which

minimize f are not roots of the non-linear system.

The demo program attempts to solve the system of three
non-linear equations defined by:

= 1
fl(Xl’ X, x3) = 3x1 cos(xzxs) -3

f (x

(X X, X)) = xf - 8l(x, + 0.1)* + sin x, + 1.06

1
10 - 3

"X X
f(xl,xz, xa)—e 12+20x3+ ;

3

The format of the user—coded subroutine USERFUNC which
calculates the value of the minimizing function is described
on page 100. The gradient of this system is computed with the
adaptive numerical method described in Reference 8.

A subroutine which computes the function values of this system
of non-linear equations is stored on the QuickPak Scientific
disk in the file USERFUNO.

This non-linear system of equations has a solution at
X = 0.5, X,= 0, and X,= —-0.52359877.

If the minimum function value printed by the demo program is
not equal to zero (within a small tolerance), the x values are
not roots of the non-linear system. The user should try
different initial conditions and repeat this process.
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Optimization

Subroutine MINIMA1
Purpose:
The subroutine MINIMA1 solves for a minimum or maximum

of an unconstrained scalar function of one variable. This
numerical method does not require derivatives.

Syntax:
CALL MINIMAL (X1, DX, XMULT, XTOL, NITER,
XMIN, FMIN)
Where:
X1 = initial guess for solution [input]
DX = search step size for X [input]
XMULT = step size multiplier for X [input]
XTOL = convergence criteria [input]
NITER = number of iterations [input]
XMIN = minimum or maximum X value [output]
FMIN = minimized function value [output]
Comments:

This algorithm is useful when an interval containing a
function minimum or maximum is not known. The software will
simply search to the right or left of an initial guess
supplied by the user in the direction of the closest function
minimum or maximum (downhill or uphill, respectively). This
numerical method does not require the calculation of function
derivatives.
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The search for a minimum or maximum is accelerated by the step
size multiplier XMULT. Do not make this value too large or
the algorithm may step over the minimum or maximum.

The user must supply an analytic function for which a minimum
or maximum 1is desired. This function is defined in a
subroutine called USERFUNC which is coded as:

SUB USERFUNC (X, FVAL) STATIC

In the parameter list, X is the function argument and FVAL is
the negative or positive value of the function evaluated at X.
The negative function value should be returned if the
algorithm is used to find a minimum, and the positive function
value returned when searching for a function maximum. The
main subroutine provides all interaction with this subroutine.

A value of 1.25 is recommended for the step size multiplier
and a convergence criteria of 1D-6 is reasonable for most
functions. The '"best" value for the step size multiplier
depends on the behavior of the function in the vicinity of a
minimum or maximum. A graphics plot of this function would
provide valuable insight about the characteristics of any
user—defined function.

The demo program DEMOMINI attempts to find a minimum
of the function defined by

fx) =x' — 12 X + 15 x* + 56 x — 60
given an initial guess for x.
A minimum of this function is located at x = —.870173.

A subroutine defining this function is stored on the QuickPak
Scientific diskette in the file USERFUNS.
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Optimization

Subroutine MINIMA2
Purpose:
The subroutine MINIMA?2 solves for a minimum or maximum

of an unconstrained scalar function of one variable using
Brent’s method which does not require derivatives.

Syntax:
CALL MINIMA2 (A, B, EPS, MAXITER NITER,
XMIN, FMIN)
Where:
A = initial X search value [input]
B = final X search value [input]
EPS = convergence criteria [input]

MAXITER = maximum number of iterations [input]

NITER = actual number of iterations [output]

XMIN = minimum or maximum X value [output]

FMIN = minimized function value [output]
Comments:

This algorithm is useful when an interval containing the
function minimum or maximum is known. The search interval is
specified to the subroutine through the values of A and B.
This method is based on Brent’s technique and no derivative
calculations are required. It is very important to pass this
subroutine an interval which contains a function minimum or
maximum. Otherwise the software may malfunction.
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The user must supply an analytic function for which the
minimum or maximum is desired. This function is defined in a
subroutine called USERFUNC which has the following syntax:

SUB USERFUNC (X, FVAL) STATIC

In the parameter list, X is the function argument and FVAL is
the negative or positive value of the function evaluated at X.
The positive function value should be returned if the
algorithm is used to find a minimum, and the negative function
value returned when searching for a function maximum. The
main subroutine provides all interaction with this subroutine.

An integer value of 100 is recommended for the maximum number
of iterations, and a convergence criteria of 1D-8 is
reasonable for most functions.

Both an ALGOL and FORTRAN version of Brent’s algorithm are
described in Reference 5. Chapter 10 of Reference 1 also
discusses a slightly modified version of this algorithm.

The companion demo program for this algorithm attempts to find
a single minimum of the function defined by

3
vV x+ 2

within a search interval specified by the user.

y = f(x) =

A minimum of this function is located at x = .57934785.

A subroutine defining this function is stored on the QuickPak
Scientific diskette in the file USERFUN6. = ;

For this example, the source code of the USERFUN subroutine is
as follows;
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SUB USERFUNC (X, FX) STATIC
* Objective function subroutine
THEX) = XM+ 5/ SQR(X + 2)
> Input

X = function argument
> Output
> FX = value of objective function at X
FX = (X "3 + 5#) / SQR(X + 2#)
END SUB

The demo program also illustrates a simple routine which
brackets the minimum of this function. This subroutine
requires several inputs in order to operate correctly. These
inputs include such things as an initial search value, a
search step size, a step size multiplier, and a maximum number
of bracketing iterations.

The correct syntax for using this subroutine is as follows:

CALL BMINIMA (XI, DX, XMULT, NBRAC,
XB1, XB2, IER)

where
XI = initial X search value [input]
DX = X step size [input]
+ = search forward
— = search backward
XMULT = X step size multiplier [input]
NBRAC = maximum number of iterations [input]
XB1 = first X bracket value [output]
XB2 = second X bracket value [output]

IER = error flag [output]
0 = no error
1 = iterations required exceeds NBRAC
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Optimization

Subroutine MINIMIZ1
Purpose:

The subroutine MINIMIZ! solves for a minimum or maximum
of an unconstrained scalar function of several variables using
analytic partial derivatives supplied by the user.

Syntax:

CALL MINIMIZ1 (METHOD, N, EPS, MAXITER, IFLAG,
NITER, F, X())

Where:

METHOD = method of solution [input]

1 = conjugate gradient
2 = quasi-newton)

N = number of variables [input]
EPS

convergence criteria [input]

MAXITER = maximum number of iterations [input]
IFLAG = diagnostic flag [output]
0 = converged solution
1 = maximum number of function evaluations
2 = linear search failure
3 = search vector failure
NITER = actual number of iterations [output]
F = minimized function value [output]
X0 = input as an initial guess for the solution

vector and output as the final solution vector
(1 dimensional array; N rows by 1 column)
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Comments:

This algorithm provides two methods for solving multi—variable
minimum and maximum problems. These are the conjugate
gradient and the quasi-newton methods.

One method may be superior to the other for different
multi-variable functions and initial solution guesses. It is
best to try both methods and experiment with the convergence
criteria and initial guesses.

The user must supply an analytic function for which the
minimum or maximum is desired. This function is coded in a
subroutine called USERFUNC as:

SUB USERFUNC (X(), F, GRADIENT()) STATIC

In the parameter list, X() is the function argument vector, F
is the negative or positive value of the function evaluated at
X(), and GRADIENTY() is the function gradient evaluated at X().
The positive function value should be returned if the
algorithm is used to find a minimum and the negative function
value returned when searching for a function maximum. The
main subroutine handles all interaction with this subroutine.

The elements of the gradient array are coded as:

Vf = GRADIENT() = af/axi 1=1,2,...,N
where N is the number of variables.
The demo program DEMOMNZI1 attempts to find a minimum
of Wood’s function which is a popular test for optimization
algorithms. This function is stored on your QuickPak

Scientific disk in the file USERFUNT.

A value of 100 to 300 is recommended for the maximum number of
iterations and a convergence criteria of 1D-8 is reasonable
for most functions.
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Wood’s function is a scalar function of four variables and is
given by the following expression:

£ (x5 X, X, x,) = 100(x, ~ xf)2 + (1 - xl)2
+ 90(x, + x§)2 + (1 - x3)2
¥ 10.1[(){7 S (x, - 1)2]

+ 19.9(){2 - D, - D

The gradient or partial derivatives of Wood’s function can be
determined from

GRADIENT() = 2L = _400x (x, - %) - 2(1 — x))
1

GRADIENT(2) = 2L = 200x - x%) + 202(x, - 1)
2

+ 19.8(x, - 1)

GRADIENT(3) = 95 = _360x (x, - x2) - 2(1 - x.)
3

GRADIENT() = 95 = 180(x, - x2) + 20.1(x, - 1

+ 19.8(){2 -1

Note that this function has a minimum at X,= X=X, = X,= 1.

You might want to try initial guesses which are both near and
far from these values.
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For this example, the USERFUNC subroutine is coded as:

SUB USERFUNC (X(), F, GRADIENT()) STATIC
> User—defined function and gradient subroutine

 F(x) = 100(x2 — x1A2)A2 + (1 — x1)A2 + 90(x4 — x3/2)A2
: + (1 — x3"2)72 + 10.1((x2 — D2 + (x4 — D)A2)
’ + 19.9(x2 — 1)(x4 - 1)

> Input

> X() = function argument vector

> Output

> F = scalar value of objective function at X()

> GRADIENT() = function gradient vector evaluated at X()

A = X(2) - X(1) * X(1)
B = X(4) — X(3) * X(3)

b

calculate function value

F=100#*A* A+ (I#-X(1)) "2+ 90# *B * B
+ (1# - X(3)) A 2

F=F+ 10.1# * (XQ2) = 1#) 2 + (X(@) - 1#) 7 2)

F=F+ 10.8% * (X(2) — 1#) * (X(4) — 1%

b

calculate elements of gradient

GRADIENT(1) = —2# * (200# * X(1) * A + 1# — X(1))
GRADIENT(2) = 2# * (100# * A + 10.1# * (X(2) — 1%)
+ 9.94 * (X(4) — 1¥)

GRADIENT(3) = —2# * (180# * X(3) * B + 1# — X(3))
GRADIENT(4) = 2# * (90# * B + 10.1# * (X(4) — 1%
+ 9.0# * (X(2) — 1#)

END SUB

MINIMIZ1 is a QuickBASIC implementation of ACM Algorithm
# 500.
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Optimization

Subroutine MINIMIZ2
Purpose:

The subroutine MINIMIZ2 solves for a minimum or maximum
of a scalar function of several variables using an adaptive
numerical gradient computed by the software.

Syntax:

CALL MINIMIZ2 (METHOD, N, EPS, MAXITER, IFLAG,
NITER, F, X())

Where:
METHOD = method of solution [input]

1 = conjugate gradient
= quasi-newton)

N = number of variables [input]
EPS

i

convergence criteria [input]

MAXITER = maximum number of iterations [input]
IFLAG = diagnostic flag [output]
0 = converged solution
1 = maximum number of function evaluations
2 = linear search failure
3 = search vector failure
NITER = actual number of iterations [output]
F = minimized function value [output]
X0 = input as an initial guess for solution

vector and output as the final solution vector
(1 dimensional array; N rows by 1 column)
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Comments:

This algorithm is similar to subroutine MINIMIZ1 except that a
numerical approximation of the function gradient is used.

This approach is useful when the gradient is difficult to
derive analytically. The function gradient is computed with
an adaptive numerical method. This method is described in
Reference 8.

The user must supply an analytic function for which the
minimum or maximum is desired. This function is defined in a
subroutine called USERFUNC which is coded as:

SUB USERFUNC (X(), F) STATIC

In the parameter list, X() is the function argument vector,
and F is the negative or positive value of the function
evaluated at X(). The positive value should be returned if
the algorithm is used to find a minimum and the negative
function value returned when searching for a function maximum.
The subroutine MINIMIZ2 handles all interaction with this
subroutine.

A value of 100 to 300 is recommended for the maximum number of
iterations, and a convergence criteria of .01 is reasonable
for most functions.

The demo program for this subroutine also attempts to find a
minimum of Wood’s function. This mathematical form of this
function is described on page 98.

One solution to this problem is X =X, =X =X = 1.

This function is stored on the QuickPak Scientific diskette in
the file USERFUNS. '

This algorithm is a QuickBASIC implementation of the FORTRAN
version of ACM Algorithm #500.
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Optimization

Program DEMONLP
Purpose:

This computer program solves the multi-variable, constrained,
non-linear optimization problem using the Method of
Multipliers and Quasi—-Newton minimization.

Syntax:

The non-linear optimization algorithm is a very large program
which is designed to be used as a stand-alone program. The
user simply provides a QuickBASIC subroutine which defines the
objective  function, and any equality and inequality
constraints. The software interactively prompts the user for
such things as initial guesses, the type of derivative
computation desired, and the maximum number of iterations.

Comments:

The numerical problem which can be solved by this digital
computer program is stated as follows:

Minimize y=f(x)
Subject to h(x)=0
g(x)=20

where

f (X ) is a vector system of non-linear equations
h ( X ) is a vector of equality constraints
g ( x ) is a vector of inequality constraints
The scalar y is called the objective function and the elements

of the vector X are called the control variables.
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A support subroutine named USRFUN contains the source code
which defines both the objective function and constraints.
This subroutine must be coded as follows:

SUB USRFUN (X(), F(), G(), H())) STATIC

In this parameter list, the array X() is the vector of control
variables, F() is returned as the objective function vector,
G() is the vector of inequality constraints, and the H() array
contains the vector of equality constraints. Please note that
the array defined by F() contains only one element which
represents the scalar objective function evaluated at the
current values of the control variables X().

Extreme care should be used when coding this subroutine for
your particular problem. It is important to avoid any
singularities in both the objective function and constraints.

The DEMONLP program attempts to minimize the multi—variable
objective function defined by
X X X X X

f(x x,x3,x,x)—-e12345

subject to the three equality constraints given by
x + x> +x3+x +x -10=0

XX —5xx =0
273 475
L +xX+1=0
1 2

and the single inequality constraint defined by
h(1)=x4—x520

This problem has one solution at
x =-1.7171 X, = 1.5957 X, = 1.8272

1

x = -T7636 X, = -.7636

4
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For this example, the USRFUN source code is as follows:

SUB USRFUN (X(), F(), G0, H()) STATIC
> Objective function and constraints subroutine
> F(X) = eNX1*¥X2*¥X3*%X4*X5)
> Input

b

X() = array of control variables (5 rows)

b

Output

k4

F() = objective function vector (1 element)
G() = vector of inequality constraint functions (3 rows)
H() = vector of equality constraint functions (1 row)

?

b

> objective function
ARG = X(1) * X(2) * X(3) * X(4) * X(5)

b

check for large arguments

IF (ARG > 200#) THEN ARG = 200#

F(1) = EXP(ARG)

> define equality constraints

H1) =X(1) "2 + X2) "2 + X(B) "2 + X(4) 2
+ X(5) 2 — 10#

H(2) = X(2) * X(3) - 5# * X(4) * X(5)
HB) =X(1) "3 + X(2) * 3 + 1#

> define inequality constraint
G(1) = X(4) - X(5)
END SUB

To avoid problems when evaluating the QuickBASIC
EXP function for very large function arguments, this
subroutine defaults to a value of ARG = 200# whenever the
function argument is larger than 200..
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The software will interactively prompt you for such things as
an initial guess for each element of the control variable
vector, the type of derivative computations desired, and the
maximum number of non-linear iterations.

The control variable prompt will ask you to input each element
of the vector by rows. There are two types of numerical
derivative calculations available; one-sided finite difference
and symmetric finite difference. The symmetric algorithm is
usually more accurate but requires twice as many function
evaluations and more CPU time to execute. A value of 20 is
usually adequate for the number of iterations.

The driver program will also ask if you would like to display
the intermediate results of iterations. If you select y for
yes, the program will print important information about how
the algorithm is proceeding as it searches for a solution.

Initializing the NLP Software

There are three important variables you must edit in order for
the software to work properly. These QuickBASIC variables are
at the beginning of the main program and involve the problem
definition. The first is called NX and defines the number of
control variables. The second is NG and it defines the number
of inequality constraints in your problem. The last is named
NH and it specifies the number of equality constraints.
Simply change these within the QuickBASIC environment.

The rest of the software initialization is performed in a
support subroutine called NLPINZ. This subroutine hardwires
such things as convergence tolerances and other values, and
allocates array space. It also checks for errors in your
problem definition and displays appropriate error messages.

For the majority of non-linear problems, the constants  defined
in subroutine NLPINZ will work fine. However, the purpose of
each is clearly commented so that you may experiment with
other values.
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Interpolation

Subroutine CSFIT1

Purpose:

The subroutine CSFIT1 calculates a natural cubic spline
interpolation of tabulated x and y data of the form y = f(x)
provided by the user.

Syntax:

CALL CSFIT1 (N, X(), Y(), XVAL, FVAL)

Where:
N = number of X and Y data points [input]
X0 = array of X data points [input]
(1 dimensional array; N rows by 1 column)
Y() = array of Y data points [input]
(1 dimensional array; N rows by 1 column)
XVAL = X argument for interpolation [input]
FVAL = interpolated function value [output]
Comments:

This subroutine uses the method of cubic splines and iterative
successive over-relaxation (SOR) to interpolate tabulated
information of the form y = f(x).

The general form of a cubic polynomial is

Sx)=a +bx-x)+cx-x)+d(x-x)
J ) J J J J J J

fory=0,1,2, .., N-1
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For a free or natural boundary cubic spline
S (xo) =8"(x) =0

This condition implies that the second derivative of the cubic
spline is zero at the two endpoints of the interval of
discrete data points.

This algorithm provides an interpolated function value for any
X data point within the valid range defined by

X(1) £ X < X(N).
A minimum of two X and Y data points must be provided and
should be input by the user in ascending order in the array
X(). The demo program checks for a minimum of two data points
but does not check for ascending order.
Ascending order implies that

X(1) < X(2) < X(3) < . . . < X(N)

where N is the total number of X and Y data points.
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Interpolation

Subroutine CSFIT2

Purpose:

The subroutine CSFIT2 calculates a clamped cubic spline
interpolation of tabulated x and y data of the form y = f(x)
input by the user.

Syntax:

CALL CSFIT2 (N, X(), YO, YP1, YPN, X, Y)

Where:
N = number of X and Y data points [input]
X() = array of X data points [input] ‘
(1 dimensional array; N rows by 1 column)
YO = array of Y data points [input]
(1 dimensional array; N rows by 1 column)
YP1 = first derivative at data point 1 [input]
YPN = first derivative at data point N [input]
X = X data point for interpolation [input]
Y = interpolated Y data point [output]
Comments:

The general form of a cubic polynomial is

Sx)=a +b(x-x)+c(x- x,)2 +d (x - x‘)3
j i j i j i i i

forj=0,1,2,..,N-1.
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For a clamped boundary cubic spline
Sx) =f'(x)  and  S(x)=f(x)

This condition implies that the slope or first derivative of
the cubic spline matches that of the original function f on
the boundaries of the interval.

This algorithm provides an interpolated Y value for an X value
input by the user within the valid range determined by the
data points.

The range of valid X data is X(1) < X < X(N).

A minimum of two X and Y data points must be provided and
should be input by the user in ascending order in the array
X(). The demo program checks for a minimum of two data points
but does not check for ascending order.

Ascending order implies that

X() <X2)<X3B)<...<X(N)

where N is the total number of X and Y data points.

The user should consider using one of the QuickPak Scientific
numerical differentiation routines which work with tabulated
data to calculate the two derivative values required by this
subroutine.

This algorithm is described in Chapter 3 of Reference 1.
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Interpolation

Subroutine INTERP1
Purpose:

The subroutine INTERP1 performs a linear interpolation of
tabulated x and y data of the form y = f(x) input by the user.

Syntax:

CALL INTERP1 (N, X(), Y(), XVAL, FVAL)

Where:
N = number of X and Y data points [input]
X0 = array of X data points [input]
(1 dimensional array; N rows by 1 column)
YO = array of Y data points [input]

(1 dimensional array; N rows by 1 column)
XVAL = X argument for interpolation [input]
FVAL = interpolated function value [output]

Comments:

A minimum of two X and Y data points must be provided and
should be input by the user in ascending order in the array
X(). The demo program checks for a minimum of two data points
but does not check for ascending order.

Ascending order implies that
X(H)<X2)<XB)<...<XN)

The range of valid X data which can be interpolated is
X(1) £ X < X(N).
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Interpolation

Subroutine INTERP2
Purpose:
The subroutine INTERP2 performs a bilinear interpolation of

tabulated x, y and z data of the form z = f(x,y) input by the
user.

Syntax:
CALL INTERP2 (NX, NY, X(), Y(), Z(), XVAL,
YVAL, ZVAL)
Where:
NX = number of X data points [input] (NX = 2)
NY = number of Y data points [input] (NY = 2)
X() = array of X data points [input]
(1 dimensional array; NX rows by 1 column)
Y() = array of Y data points [input]
(1 dimensional array; NY rows by 1 column)
Z() = array of function values [input]

(2 dimensional array; NX rows by NY columns)
XVAL = X value for interpolation [input]
YVAL =Y value for interpolation [input]
ZVAL

interpolated function value [output]
Comments:
A minimum of fwo data points for X, Y and Z must be provided

and should be input by the user in ascending order in the
arrays X() and Y().
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Ascending order implies that

X(H<X2)<XB3) <...<XN
and
YD <Y2)<YB)<...<YN)

The number of X and Y data points do not need to be the same,
but the function values at coordinate intersections must be
consistent.

The demo program for this subroutine illustrates how to use
INTERP2 to interpolate data for the function defined by:

z = f(x,y) = SIN(x + y)

The following QuickBASIC code generates a set of X, Y and Z
data points for this function.

FOR I =1 TO NX
X(I) =1 * DX
FOR J = 1 TO NY
Y(J) = J * DY
Z(L J) = SINCXD) + Y(I))
NEXT J
NEXT I

where NX and NY are the number of X and Y data points
specified by the user, respectively. DX and DY are increments
in each direction and are also input by you.

Since we know the function value for any set of x and y
coordinates (because z 1s an analytic function), the demo
program also provides an interpolation error estimate.

The two domains of valid X and Y data points which can be
interpolated are

X1 <X<X(N) and Y(1) <Y < Y(N).
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Curve Fit

Subroutine FFIT
Purpose:

The subroutine FFIT performs a curve fit to simple equations
of tabulated data of the form y = f(x) supplied by the user.

Syntax:

CALL FFIT (N, X(), Y(), ITYPE, A, B)

Where:
N = number of X and Y data points [input]
X0 = array of X data points [input]
(1 dimensional array; N rows by 1 column)
YO = array of Y data points [input]

(1 dimensional array; N rows by 1 column)
ITYPE = type of function fit [input]
1 = linear Y=A+B*X

2 = logarithmic Y = A + B * LOG(X)
3 = exponential Y = A * EXP(B * X)
A = first function fit coefficient [output]
B = second function fit coefficient [output]

Comments:

A minimum of three X and Y data points must be provided and
should be input by the user in ascending order in the
independent variable X. The demo program checks for a minimum
number of data points but does not check for ascending order.
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Curve Fit

Subroutine LSQFIT
Purpose:

The subroutine LSQFIT performs a least squares curve fit of
tabulated x and y data of the form y = f(x) input by the user.

Syntax:

CALL LSQFIT (NPTS, X(), Y(), MDEG, SDEV, COEF())

Where:
NPTS = number of X and Y data points [input]
X0 = array of X data points [input]
(1 dimensional array; NPTS rows by 1 column)
YO = array of Y data points [input]
(1 dimensional array; NPTS rows by 1 column)
MDEG = degree of curve fit [input]
SDEV = standard deviation of fit [output]
COEF() = curve fit coefficients [output]
(1 dimensional array; MDEG rows by 1 column)
Comments:

The form of the least squares curve fit is:
- — 2 3 N
y—f(x)—C1+C2x+C3x +C4x +....+CNx

In this algorithm the Y() array is the dependent data and the
X() array is the independent data;

Yi-—-f(X), i=1,2, ..., NPTS.
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A minimum of three X and Y data points must be input by the
user in ascending order in the array X(). The demo program
checks for a minimum of three data points but does not check
for ascending order.

Ascending order implies that
X1) <X2)<XB)<...<XMN)

The degree of the curve fit must be less than or equal to
(NPTS - 2).

The demo program will ask the user if he or she would like to
fit an X data point with the curve fit coefficients generated
by the program. The range of valid X values which can be fit
is as follows:

X(1) £ X < X(NPTS).

The X data point is fit with the foilowing equation:

MDEG
y = f(x) = } COEFi[ . ]

1=1

where the array of fitting coefficients is contained in the
QuickBASIC COEF() array.

This numerical method for curve fitting is based on the method
of orthogonal polynomials, and is discussed in Chapter 1 of
Reference 7.
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Curve Fit

Subroutine SURFIT

Purpose:

The subroutine SURFIT performs a 2—dimensional curve fit of x,
y and z tabulated data of the form z = f(x,y) input by the
user.

Syntax:

CALL SURFIT (NDEG, NDATA, XDATA(), YDATAJ(),
ZDATA(), COEF())

Where:
NDEG = degree of surface fit [input]
NDATA = number of x, y and z data points [input]

XDATA() = array of X data values [input] (1 dimensional
array; NDATA rows by 1 column)

YDATA() = array of Y data values [input] (1 dimensional
array; NDATA rows by 1 columns)

ZDATA() = array of Z data values [input] (1 dimensional
array; NDATA rows by 1 column)

COEF() = array of surface fit coefficients [output]
(2 dimensional array; 11 rows by 11 columns)

Comments:

This algorithm calculates fitting coefficients for surfaces of
the form z = f(x,y) based on a 2—dimensional Maclaurin series.
Subroutine SURFIT is a QuickBASIC implementation of the
FORTRAN program described in Reference 9.
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The fitting polynomial can be expressed as:

N N
z=fy)=) ) A XY

k=0 j=0

where N is the degree of the polynomial, Ajk are the

polynomial coefficients, and x and y are the independent
variables.

Please note that the polynomial degree must be < 10.

The fitting coefficients calculated by SURFIT are printed out
in the following order:

00

Alox’ A01y

2 2
A20x R Allxy, Aozy and so forth.

The x, y, and xy elements in a particular row are in the form:

N _N-1 N-2 2 N
X, X Y, X AT

The demo DEMOSFIT program calculates fitting coefficients for
the following user—defined function:

z = f(x,y) = - cos[ 3nx ] cos[ Ty ]
10 10

The demo program first generates arrays of x, y and z data
points for the range of x and y values given by:

-5<x<5 and -5<y<5
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This is done with the following QuickBASIC code:

NDATA = 0

FOR I# = —5# TO 5# STEP 1#
FOR J# = —5# TO 5# STEP 1#
NDATA = NDATA + 1

X =I#
XDATA(NDATA) = I#
Y = J#

YDATA(NDATA) = J#
Z =-COSG# * PI * X/ 10#) * COS(PI * Y / 10#)
ZDATA(NDATA) = Z :
NEXT J#
NEXT I#

The following figure illustrates the shape of this function
over the range —10 < X < +10 and -10 £ Y < +10.
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The demo program will also fit an x and y data point input by
the user. This is accomplished in the following subroutine:

SUB SFUNCTION (NDEG, COEF(), X, Y, Z) STATIC

where X, and Y are the data points to fit, and Z is the
calculated function value. The other variables are as defined
for subroutine SURFIT.

The demo program will also calculate and print the percentage
of fit. This is an indication of how well the surface has
been fitted by the algorithm. The calculated percentage of
fit is based on r.m.s. (root-mean-square) values as follows:

zZ
r.m.s.

Fit = x 100

where

z = / Z z? / M = z data r.m.s. value
r.m.s. 1

and the residual r.m.s. is defined to be

Rr.m.s.= ‘/z [Z?_ f(Xi, yi)]Z/ M‘

In these two equations, M is the polynomial degree.

The actual percentage of fit will depend upon the order of the
algorithm, the number of x, y and z data points, and the form
of the function being fitted.

Although this algorithm is intended to fit polynomial
surfaces, it works well with other types of functions.
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Fast Fourier

Subroutine FFT1
Purpose:

The subroutine FFT1 performs the forward and inverse Fast
Fourier transform of one—dimensional real and complex data.

Syntax:

CALL FFT1 (NN, X(), ISIGN)

Where:
NN = number of data points [input]
X0 = input as the array of data points and

output as the FFT transform
(1 dimensional array; 2 * NN rows by 1 column)

ISIGN = type of FFT transform [input]
+ 1 = forward FFT transform
— 1 = inverse FFT transform

Comments:

This subroutine computes the forward and inverse Fast Fourier
Transform (FFT) of one—dimensional real or complex data using
the Danielson-Lanczos or bit reversal method. This algorithm
is described in Chapter 12 of Reference 1.

The companion demo program illustrates how to use subroutine
FFT1 to calculate both the forward and inverse FFT of Runge’s
function which is defined by the equation

S S
1 + 25x°

for an initial and final time input by the user.

f (x) =
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Please note that the number of data points must be an integer
power of two (2, 4, 8, 16, 32, 64, etc.) in order for this
subroutine to work correctly. The demo program will check the
user input to make sure that this condition is satisfied.

Because QuickBASIC does not directly support complex variables
and arrays, both the input and output data are stored in real,
one—dimensional arrays of length 2 * NN. Each of these arrays
can visualized as consisting of sets of two elements where the
first array element is the real part and the second element is
the imaginary component of the data. For example, the input
data is stored as follows:

X(1) = element 1 = real part of first data point, fo
X(2) = element 2 = imaginary part of first data point

X(2N — 1) = element 1 = real part of last data point, fN_1
X(2N) = element 2 = imaginary part of last data point

where N is the total number of data samples. For real input
data only, the second array element of each data point is
identically zero.

The output data array contains the Fourier transform at N
values of frequency in what is called wraparound order. Like
the input array, this array also contains real and imaginary
parts of the transform which alternate. The output array
starts with zero frequency and works up to the most positive
frequency in the data. These elements are followed by the
negative frequency components, from the second—most negative
up to the frequency which is just below zero. For example,
the order in terms of frequencies is as follows:
N
1 7 !
f=0, f=—, ..., f= , =t —, et
NA NA 2A

where A is the sampling interval.
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Fast Fourier

Subroutine PRTFFT1
Purpose:

The subroutine PRTFFT1 provides a formatted screen display of
the data generated by the subroutine FFT1.

Syntax:

CALL PRTFFT1 (NN, X(), XSAVED(), ISIGN)

Where:
NN = number of data points [input]
X0 = array of data points [input] (1 dimensional
array; 2 * NN rows by 1 column)
XSAVED() = array of saved data points [input]

(1 dimensional array; 2 * NN rows by 1 column)
ISIGN = type of FFT transform [input]

+ 1 = forward FFT transform
— 1 = inverse FFT transform

Comments:

This subroutine will display the results computed by the
subroutine FFT1 for both the forward and inverse Fast Fourier
transform. This information will be displayed in wraparound
order which is described on page 121.

When ISIGN = 1 the XSAVED array contains the original data
points, and when ISIGN = - 1, this array contains the
transformed data points. For each type of transform, this
data will be displayed by columns, with both real and
imaginary components.
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Fast Fourier

Subroutine FF12
Purpose:

The subroutine FFT2 performs the forward and inverse Fast
Fourier transform of two-dimensional real and complex data.

Syntax:

CALL FFT2 (NN(Q), X(), ISIGN)

Where:
NN(1) = number of X data points [input]
NN(2) = number of Y data points [input]
X0 = input as the array of data points and output

as the FFT transform (1 dimensional array;
2 * NN(1) * NN(2) rows by 1 column)

ISIGN = type of FFT transform [input]

+ 1 = forward FFT transform
~ 1 = inverse FFT transform

Comments:

This subroutine computes the forward and inverse Fast Fourier
Transform (FFT) of two—dimensional real or complex data using
the Danielson-Lanczos or bit reversal method.

This algorithm is a QuickBASIC implementation of the
N-dimensional method described in Chapter 12 of Reference 1.
A discussion about the one-dimensional form of this algorithm
can be found under the description for the subroutine FFT1 and
provides additional information which may be helpful.
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The companion demo program illustrates how to use subroutine
FFT2 to calculate both the forward and inverse FFT of the
two—dimensional function defined by the equation

f(x;. y) = 4 - 02(0x = 7.9 + @7, - 7.57]

forj=1,.... M and k=1,...,N
where M and N must be integer powers of 2.

Because QuickBASIC does not directly support complex variables
and arrays, both the input and output data are stored in real,
one—dimensional arrays of length 2 * NX * NY, where NX and NY
are the number of X and Y data points, respectively. Each of
these arrays can visualized as rows of data which consist of
sets of two elements where the first array element is the real
part and the second element is the imaginary component of the
data. Each row consists of 2 * NY real numbers.

For example, the input data is stored as follows:

X(1) = real part of first data point, f0
X(2) = imaginary part of first data point

X(2NX*NY - 1)
X(2NX*NY)

1l

real part of last data point, fN_1
imaginary part of last data point

Il

where NX and NY are the number of X and Y data points,
respectively.  For real input data only, the second array
element of each data point is identically zero.

This type of data storage is called wraparound order. Please
see the description for subroutine FFT1 for a discussion about
wraparound order and the frequency and time domain
characteristics of the input and output data.
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Fast Fourier

Subroutine PRTFFT2
Purpose:

The subroutine PRTFFT2 provides a formatted display of the
data generated by subroutine FFT2.

Syntax:

CALL PRTFFT2 (NN(), X(), XSAVED(), ISIGN)

Where:
NN(1) = number of X data points [input]
NN(2) = number of Y data points [input]
X0 = array of data points [input] (1 dimensional
array; 2 * NN(1) * NN(2) rows by 1 column)
XSAVED() = array of saved data points [input]

(1 dimensional array;
2 * NN(1) * NN(2) rows by 1 column)

ISIGN = type of FFT transform [input]

+ 1 = forward FFT transform
— 1 = inverse FFT transform

Comments:

This subroutine will display the results computed by the
subroutine FFT2 for both the forward and inverse Fast Fourier
transform. This information will be displayed in wraparound
order which is described on page 121.

When ISIGN = 1 the XSAVED array contains the original data
points, and when ISIGN = - 1, this array contains the
transformed data points.
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This subroutine will display both the input and output data by

individual rows and their corresponding columns.

For the example problem for subroutine FFT2, the following is
a typical screen display for the first row of the input data
and its columns, and the eight columns of the first row of the

transformed real and imaginary data, respectively.

Input Data
X=1

]
o0 1 N WD =

Transformed Data
Row = 1

Column

f (real)
2.310000D+00
2.550000D+00
2.750000D+00
2.910000D+00
3.030000D+00
3.110000D+00
3.150000D+00
3.150000D+00

f (imag)
0.000000D+00
0.000000D+00
0.000000D+00
0.000000D+00
0.000000D+00
0.000000D+00
0.000000D+00
0.000000D+00

1 2.195200D+02 + 0.000000D+001

00 3 O i AW

—~7.570193D+00 — 7.725483D+00i
—4.480000D+00 — 3.200000D+00i
—~3.949807D+00 - 1.325483D+00i
-3.840000D+00 + 0.000000D+00i
-3.949807D+00 + 1.325483D+00i
—4.480000D+00 + 3.200000D+00i
—7.570193D+00 + 7.725483D+00i
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Statistics

Subroutine CHI
Purpose:

The subroutine CHI provides information about the Chi-squared
distribution of statistical data.

Syntax:
CALL CHI (IFLAG, N, X, PROB)
Where:

IFLAG = type of computation [input]

1 = given X, compute probability
2 = given probability, compute x

N = number of degrees of freedom [input] (N >= 1)

X = x value [input or output] (X >= 0)

PROB = probability [input or output] (0 < PROB <= 1)
Comments:

The subroutine CHI calculates either point x from a

user—defined degree of freedom n of x2 distribution and a
given probability to the right of x or the probability p to
the right of point x from a given degree of freedom n and a
given point x.

The type of computation performed by this subroutine is
defined by the value of IFLAG.

This subroutine also requires the QuickBASIC normal
distribution subroutine NORMAL which is described on page 129
of this manual.
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Statistics

Subroutine FDIST
Purpose:

The subroutine FDIST calculates information about the F
distribution of statistical data.

Syntax:
CALL FDIST (IFLAG, N1, N2, X, PROB)
Where:

IFLAG = type of computation [input]

1 = given x, compute probability
2 = given probability, compute x

N1 = number of degrees of freedom [input] (N1 >= 1)

N2 = number of degrees of freedom [input] (N2 >= 1)

X = x value [input or output] (X >= 0)

PROB = probability [input or output] (0 < PROB <= 1)
Comments:

The subroutine FDIST calculates either point x from
user—defined degrees of freedom n and n, of F distribution

and a given probability to the right of x, or the probability
p to the right of point x from given degrees of freedom n and

n, and a given point x. The type of computation performed by
this subroutine is defined by the value of IFLAG.

This subroutine also requires the normal distribution
subroutine which is described on page 129.
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Statistics

Subroutine NORMAL
Purpose:

The subroutine NORMAL provides information about the normal
distribution of statistical data.

Syntax:
CALL NORMAL (IFLAG, X, PROB)
Where:

IFLAG = type of computation [input]

1 = given x, compute probability
2 = given probability, compute x

X = x value [input or output]
PROB probability [input or output] (0 < PROB < 1)

Comments:

The subroutine NORMAL calculates either point x of normal
distribution and a given probability to the right of x, or the
probability p to the right of point x from a given point x.

The type of computation performed by this subroutine is
defined by the value of IFLAG.

Please note that probability must be specified in the range
0<p<l1

The result computed by all QuickPak Scientific statistics
algorithms is accurate to four significant digits.
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Statistics

Subroutine TDIST
Purpose:

The subroutine TDIST provides information about T distribution
of statistical data.

Syntax:
CALL TDIST (IFLAG, N, X, PROB)
Where:

IFLAG = type of computation [input]

1 = given x, compute probability
2 = given probability, compute x

N = number of degrees of freedom [input] (N >= 1)

X = x value [input or output]

PROB = probability [input or output] (0 < PROB < 1)
Comments:

The subroutine TDIST calculates either point x from a
user—defined degree of freedom n of T distribution and a given
probability to the right of x or the probability p to the
right of point x from a given degree of freedom n and a given
point x.

The type of computation performed by this subroutine is
defined by the value of IFLAG.

This subroutine also requires the normal and F distribution
subroutines. The main subroutine handles all communications
with the other support subroutines.
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Functions

Function GAMMA
Purpose:

The function GAMMA recursively computes the characteristics of
the Gamma function.

Syntax:

Y = GAMMA (X)

Where:
X = function argument [input]
Y = function value [output]
Comments:

The Gamma function is defined by the following integral:

OO

T (2) =J et dr

0

This subroutine calculates the value of the Gamma function for
any function argument.
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Functions

Function BESSEL
Purpose:

The function BESSEL recursively calculates the Bessel
functions of integer order, Jn(x).

Syntax:

Y = BESSEL (NORD, X)

Where:

X = function argument [input]

NORD = integer order [input]

Y = value of Bessel function J n(x) [output]
Comments:

This function computes the Bessel functions of integer order
for values of x >= -3.

This function is recursive and also requires six other support
functions called ABESSEL, BBESSEL, FBESSEL, GBESSEL,
TBESSEL and UBESSEL. These functions are included as part of
the BESSEL file on the QuickPak Scientific disk. Function
BESSEL handles all communication with these other functions.
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Functions

Function ERF
Purpose:
The function ERF calculates values of the error function.
Syntax:

Y = ERF (X)
Where:

X = function argument [input]

Y = function value [output]
Comments:

The Gaussian error function, erf, is defined by the following
integral equation:

2
erf (2) =__.2_J et dr
T 0

This subroutine provides a infinite series expansion for
function values of this integral.

The convergence tolerance for this series is hardwired within
the ERF function to a value of .00000001. It has the
QuickBASIC name TOL and can be changed to another value if
desired.
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Functions

Function BETA
Purpose:
The function BETA calculates values of the Beta function.

Syntax:

Y = BETA (Z, W)

Where:
Z, W = function arguments [input]
Y = function value [output]
Comments:

The Beta function is defined as:

I'(z) T'(w)
I'iz + w)

B (zw) =

where I represents the Gamma function.

This subroutine also requires the QuickPak Scientific Gamma
function. All communications with the Gamma function is
performed by the Beta function.

Page 134



nmnys v ' Vf QuickPak Scientific § Ax X 08x/dy

Complex Numbers

For all QuickPak Scientific complex number subroutines, each
complex number is represented by a one dimensional array
consisting of two elements. The first element of this array
holds the real part of the complex number, and the imaginary
part is in the second array element. For example, the complex
number A() is represented by A(1) + A(2) 1.

Subroutine CMPXADD

Purpose:

The subroutine CMPXADD returns the result of adding two
complex numbers.

Syntax:

CALL CMPXADD (A(), B(), C0)

Where:
AQ = first complex number [input]
B() = second complex number [input]
CO = AQ + BQ [output]

Comments:

As implemented in QuickPak Scientific, complex addition and
other complex number operations are much like:

C(1) = A1) + B(1)
C2) = A2) + B(2)

where C(1) is the real part of the addition and C(2) is the
imaginary part of this calculation.
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Complex Numbers

Subroutine CMPXDIV
Purpose:

The subroutine CMPXDIV returns the result produced by dividing
two complex numbers.

Syntax:

CALL CMPXDIV (A(), B(), CO)

Where:
AQ = first complex number [input]
B0 = second complex number [input]
CO = AQ / B [output]

Subroutine CMPXMULT
Purpose:

The subroutine CMPXMULT returns the result of multiplying two
complex numbers together.

Syntax:
CALL CMPXMULT (AQ), B(), CO)

Where:
A( = first complex number [input]
B() = second complex number [input]
CO = A0 * BO [output]
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Complex Numbers

Subroutine CMPXRECP
Purpose:

The subroutine CMPXRECP calculates the reciprocal of a complex
number.

Syntax:

CALL CMPXRECP (A(), B()

Where:
A() = complex number [input]
B0 =1/ A [output]

Subroutine CMPXPOWR
Purpose:

The subroutine CMPXPOWR returns the result of raising a
complex number to an integer power.

Syntax:

CALL CMPXPOWR (N, A(Q), B())

Where:
N = power [input]
AQ) = complex number [input]
BO) = A" [output]
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Complex Numbers

Subroutine CMPXROOT
Purpose:

The subroutine CMPXROOT calculates the Nth root of a complex
number. :

Syntax:

CALL CMPXROOT (N, AQ), BO)

Where:
N = desired root [input]
AQ = complex number [input]
N
B() = v A [output]

Subroutine CMPXSQRT
Purpose:

The subroutine CMPXSQRT calculates the square root of a
complex number.

Syntax:

CALL CMPXSQRT (A(Q), B()

Where:
AQ = complex number [input]
B() =v A [output]
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Complex Numbers

Subroutine CMPXSUB
Purpose:

The subroutine CMPXSUB returns the result of subtracting two
complex numbers.

Syntax:

CALL CMPXSUB (A(Q, B0, C0)

Where:
AQ = first complex number [input]
B0 = second complex number [input]
CO = A0 - BO [output]

Comments:

As implemented in QuickPak Scientific, complex subtraction and
other complex number operations are much like:

C() = A1) - B(1)
C(2) = A(2) — B(2)

where C(1) represents the real part of the subtraction and
C(2) is the imaginary part of this calculation.
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Trigonometry
Function ACOS
Purpose:

The function ACOS computes the inverse cosine.

Syntax:
Y = ACOS (X)
Where:
X ‘= function argument [input]
Y = function value [output]
Comments:

This function calculates the inverse cosine of an angle in
radians. The equation used is as follows:

ACOS (X) = L - sin™ (%)

Function ACOSH
Purpose:

The function ACOSH computes the inverse hyperbolic cosine.

Syntax:

Y = ACOSH(X) = loge[ x+v %%~ 1 ]
Where:

X = function argument [input]

Y = function value [output]
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Trigonometry
Function ASIN
Purpose:

The function ASIN computes the inverse sine.

Syntax:
Y = ASIN (X)
Where:
X = function argument [input]
Y = function value [output]
Comments:

This function calculates the inverse sine of an angle in
radians. The equation used is as follows:

ASIN (X) = tan‘l{ _x_]
v 1- x2

Function ASINH
Purpose:

The function ASINH computes the inverse hyperbolic sine.

Syntax:

Y=ASINH(X)=Zoge[x+\/x2 + 1]
Where:

X = function argument [input]

Y = function value [output]
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Trigonometry
Function ATAN3
Purpose:
The function ATAN3 computes the four—quadrant inverse tangent.

Syntax:

Y = ATAN3 (A, B)

Where:
A = sine of angle 6 [input]
B = cosine of angle 6 [input]
Y = function value [output]
Comments:

This is a four quadrant inverse tangent function. It examines
the sign of the sine and cosine of an angle and returns the
value of the angle (in radians) such that 0 < 6 < 2m.

The pseudocode for this algorithm is as follows:

IF (sin 6 < €) THEN

ATAN3 = (1 — sign(sin 9)) * T
ELSE IF (cos 6 < €) THEN

ATAN3 = (2 — sign(sin 0)) *
ELSE

ATAN3 = (2 — sign(sin 8)) * T + sign(sin 0)

2

23

T

2

* sign(cos B) * ttan_l(sin 8/ cos 6)| —

where € = .00000001 and © = 3.14159265.
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Trigonometry

Function ATANH
Purpose:
The function ATANH computes the inverse hyperbolic tangent.

Syntax:

Y = ATANH (X)=%logc[l+ X]

1 —x
Where:
X = function argument [input]
Y = function value [output]

Function COSH
Purpose:

The function COSH computes the hyperbolic cosine.

Syntax:
Y = COSH (X) = 1 [e"+e"‘]
Where:
X = function argument [input]
Y = function value [output]
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Trigonometry

Function SINH
Purpose:
The function SINH computes the hyperbolic sine.

Syntax:

Y=SINH(X)=%[e"—-e"‘]

Where:
X = function argument [input]
Y = function value [output]

Function TANH
Purpose:
The function TANH computes the hyperbolic tangent.

Syntax:
1 -2x
Y = TANH (X) = —5
1+ e
Where:
X = function argument [input]
Y = function value [output]
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Matrices

Subroutine INVERSE
Purpose:

The subroutine INVERSE solves for the inverse of an N by N
square real matrix.

Syntax:

CALL INVERSE (N, A(), AINV(), IER)

Where:
N = number of equations [input]
AQ = matrix of coefficients [input]

(2 dimensional array; N rows by N columns)

AINV() = inverse of the matrix [A] [output]
(2 dimensional array; N rows by N columns)

IER = error flag [output]
(0 = no error, 1 = singular matrix)

Comments:

The demo program asks the user to input the elements of the N
by N matrix [A] by rows.

The subroutine INVERSE will check the matrix [A] for
singularity. If the matrix is singular or cannot be factored,
the error flag IER will be set to 1. Otherwise this flag is
set to the number O.

Please note that the original matrix of coeff1c1ents [A], is
modified by the software.

This algorithm is described in Reference 1, Chapter 2.
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Matrices

Subroutine DETERMIN
Purpose:

The subroutine DETERMIN solves for the determinant of an
N by N square matrix.

Syntax:

CALL DETERMIN (N, A(), DM, IER)

Where:
N = number of equations [input]
AQ = matrix of coefficients [input]
(2 dimensional array; N rows by N columns)
DM = determinant of matrix [A] [input]
IER = error flag [output]
(0 = no error, 1 = singular matrix)
Comments:

The demo program requests the user to input the elements of
matrix [A] by rows.

The subroutine DETERMIN will check the matrix [A] for
singularity. If matrix A() is singular or cannot be factored,
the error flag IER will be set to 1. Otherwise this flag is
set to the number 0.

Please note that the original matrix of coefficients, [A], is
modified by the software.

Please consult Chapter 2 of Reference 1 for a description of
this algorithm.
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Matrices

Subroutine EIGEN1

Purpose:

The subroutine EIGEN1 computes the real eigenvalues and
eigenvectors of a real square matrix using the power method of
solution.

Syntax:

CALL EIGEN1 (A0, N, VZERO(), MMAX, MFREQ, EPS,
XLAMBDA(), U(), IFLAG)

Where:

AQ = matrix [input]

(2 dimensional array; N rows by N columns)
N = number of rows and columns [input]
VZERO() = vector of initial eigenvalues [input]

(1 dimensional array; N rows by 1 column)
MMAX = maximum number of iterations [input]
MFREQ = iterations between updates [input]
EPS = convergence tolerance [input]

XLAMBDA() = vector of eigenvalues [output]
(1 dimensional array; N rows by 1 column)

U0 = matrix of eigenvectors [output]
(2 dimensional array; N rows by N columns)
IFLAG = error flag [output]

0 = no error

+ = convergence error)
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Comments:

An eigenvector is the nonzero vector X which satisfies the
following matrix/vector/scalar relationship:

[A]X:ki

The scalar quantity A in this equation is called the
eigenvalue (proper or characteristic value). The eigenvectors
are also called proper or characteristic vectors.

The companion demo program for this subroutine will prompt the
user for the matrix by rows. It will also ask for a vector of
initial guesses for the eigenvalues. All but one of these
guesses could be input as O although a value of 1 is
recommended by the software. The program will also ask you
for the maximum number of iterations; a value of 50 is
recommended. The number of iterations between updates and a
convergence criteria are also requested. The update value
should be 1 or larger, and a criteria of 1D-8 is advised.

The eigenvalues will be displayed as a column vector and the
companion eigenvectors will be displayed in a two—dimensional
array. Each column of this array represents the eigenvector
which corresponds to the same numbered row of the eigenvalue
vector.

If this algorithm is successful, the error flag IFLAG will be
returned with the value 0. However, if there is a convergence
problem, this flag will be set to the actual number of
iterations performed. This algorithm works best with real
symmetric matrices, which always have real eigenvalues and
eigenvectors.

The power method for calculating the real eigenvalues and
eigenvectors of a real matrix is described in Chapter 4 of
Reference 13.
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Matrices
Subroutine EIGEN2
Purpose:
The subroutine EIGEN2 computes the real and complex
eigenvalues of a real square matrix using the QR iterative

method of solution.

Syntax:
CALL EIGEN2 (N, A(), ITMAX, XREAL(), XIMAG(), IER)

Where:
N = size of matrix A() [input]
AQ = matrix [input] (2 dimensional array;
N + 1 rows by N + 1 columns)
ITMAX = maximum number of iterations [input]
XREAL() = real components of eigenvalues [output]
(1 dimensional array; N rows by 1 column)
XIMAG() = imaginary components of eigenvalues [output]
(1 dimensional array; N rows by 1 column)
IER = error flag [output]
(0 = no error, 1 = convergence error)
Comments:

This subroutine uses the QR iteration method to compute the
real and complex eigenvalues of a real, square matrix.

Although matrix [A] is of size N, it must be dimensioned N +
I, N + 1 in the program which calls this subroutine.

A value of 50 for the maximum number of iterations should be
adequate for most problems.
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Matrices

Subroutine IMATRIX
Purpose:

Subroutine IMATRIX calculates an identity matrix whose size is
specified by the user.

Syntax:

CALL IMATRIX(N, AQ)

Where:
N = dimension of matrix [input]
AQ = identity matrix [output]
(2 dimensional array; N rows by N columns)
Comments:

This subroutine returns an identity matrix [A] with N rows
and N columns. This is a square matrix with all diagonal
elements equal to 1, and all other elements equal to O.

For example, if N = 3 we have:

[A]-[35¢]
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Matrices

Subroutine MATADD

Purpose:

The subroutine MATADD performs matrix addition.
Syntax:

CALL MATADD (A(), B(), C(), N, M)

Where:
AQ = first matrix [input]
(2 dimensional array; N rows by M columns)
B() = second matrix [input]
(2 dimensional array; N rows by M columns)
CO = matrix addition of A() and B() [output]
(2 dimensional array: N rows by M columns)
N = number of rows of each matrix [input]
M = number of columns of each matrix [input]
Comments:

Matrix addition consists of the following calculations:

FORI=1TON
FORJ=1TO M
CI J)=Ad, J) + B, J)
NEXT J

NEXT I
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Matrices

Subroutine MATSUB
Purpose:
The subroutine MATSUB performs matrix subtraction.

Syntax:

CALL MATSUB (A(Q. B, C(), N, M)

Where:
N = number of rows in each matrix [input]
M = number of columns in each matrix [input]
AQ = matrix [A] [input]
(2 dimensional array; N rows by M columns)
B(O = matrix [B] [input]
(2 dimensional array; N rows by M columns)
C(O = matrix [C] = [A] + [B] [output]
(2 dimensional array; N rows by M columns)
Comments:

Matrix subtraction consists of the following calculations:

FORI=1TON
FORJ=1TOM
CL J))=ALJ)-B{L )
NEXT J

NEXT I
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Matrices

Subroutine MATXMAT
Purpose:
The subroutine MATXMAT performs matrix multiplication.

Syntax:

CALL MATXMAT (A(Q), BO, C0O, L, M, N)

Where:
AQ = matrix [A] [input]
(2 dimensional array; L rows by M columns)
BO = matrix [B] [input]
(2 dimensional array; M rows by N columns)
CO = matrix [C] = [A] * [B] [output]
(2 dimensional array; L. rows by N columns)
Comments:

This subroutine performs a matrix multiplication such that:

Lel=12]1"]

This can also be written as
L N

M
c. = Z } A B
ij D ik kj
k=1

i=1 j=1

This algorithm assumes that the number of columns of the
matrix [A] is equal to the number of rows of matrix [B]. The
result is a matrix with L rows and N columns.
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Matrices

Subroutine MATXVEC
Purpose:

The subroutine MATXVEC multiplies a column vector by a
real matrix.

Syntax:

CALL MATXVEC (A(Q, B, C(), L, M)

Where:
AQ = matrix [A] [input]
(2 dimensional array; L. rows by M columns)
B() = vector {B} [input]
(1 dimensional array; M rows by 1 column)
CO = vector {C} = [A] * {B} [output]
(1 dimensional array; L rows by 1 column)
Comments:

This subroutine performs a matrix and column vector
multiplication such that:

c-|a]B
This can also be written as the following nested summation:
L M
C= Z } A B
i . 1) )
i=1 j=1
This operation is valid only if the number of columns of

matrix [A] is equal to the number of rows of vector B.
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Matrices

Subroutine RANK
Purpose:
The subroutine RANK computes the rank of a real matrix.

Syntax:

CALL RANK (AQ), N, M, K)

Where:
AQ = matrix [input]
(2 dimensional array; N rows by M columns)
N = number of rows of matrix [A] [input]
M = number of columns of matrix [A] [input]
K = rank of matrix [A] [output]
Comments:

The rank of any matrix is the order of the highest order
non-vanishing determinant within the matrix.

The rank of a matrix is a positive integer number.

Furthermore, the rank of any matrix is unchanged if any
multiple of the matrix elements of one row or column is added
to the corresponding elements of another row or column,
respectively.
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Matrices

Subroutine TRACE
Purpose:

The subroutine TRACE calculates the trace of a square, real
matrix.

Syntax:

CALL TRACE (N, A(), T)

Where:
N = dimension of matrix [input]
A = matrix [A] [input]
(2 dimensional array; N rows by N columns)
T = trace of matrix [A] [output]
Comments:

This subroutine calculates the trace of an N by N square
matrix. The trace of a matrix is given by:

N
TRACE = Z A,
i=1
The trace of an N by N matrix is equal to the sum of all its

diagonal elements. For an N by N matrix, this can be written
as

NN

TRACE[A] A A FA - A
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Matrices

Subroutine TRANSPOSE
Purpose:

The subroutine TRANSPOSE calculates the transpose of a real
matrix.

Syntax:

CALL TRANSPOSE (A(), B(), M, N)

Where:
M = number of rows in matrix [A] [input]
N = number of columns in matrix [A] [input]
A( = matrix [A] [input]
(2 dimensional array; M rows by N columns)
B() = transpose of matrix [A] [output]
(2 dimensional array; N rows by M columns)
Comments:

This subroutine calculates the transpose of a matrix which has
M rows and N columns. The transpose is given by:

[2]-[+] = [=] - [2]

j ji

When computing the matrix transpose, the rows of matrix [B]
take on the values of the columns of matrix [A].
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Vectors

Subroutine UVECTOR
Purpose:

Subroutine UVECTOR calculates the unit vector of 3—component,
real column vector.

Syntax:

CALL UVECTOR (A(Q), B()

Where:
AQ = column vector [input]
(1 dimensional array; 3 rows by 1 column)
B(O = unit vector [output]
(1 dimensional array; 3 rows by 1 column)
Comments:

This subroutine returns the unit vector of a 3 by 1 column
vector. The result is also a 3 rows by 1 column vector with
scalar magnitude equal to 1.

A unit vector can be computed from the following expression:

_ A /A
A A 1
B= — ={ A /A
2
Al 1A /A
3

where Al, A _, and A3 are the three components of the original

vector A and A = \/ Af + Af + Aj is the vector magnitude.
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Vectors

Subroutine VCROSS
Purpose:

The subroutine VCROSS determines the cross product of two
vectors.

Syntax:

CALL VCROSS (A(), B(, CO)

Where:
AQ = column vector [input]
(1 dimensional array; 3 rows by 1 column)
B() = column vector [input]
(1 dimensional array; 3 rows by 1 column)
CO = column vector [output]
(1 dimensional array; 3 rows by 1 column)
Comments:

This subroutine calculates the cross product of two 3 rows by
1 column vectors such that:

AB -AB
- - — 273 32
C=AxXxB=¢{AB -AB
31 173
AB -AB
12 21

where Al, A, A3, Bl, B , and B3 are the components of the A
and B vectors, respectively.

The result is also a column vector with 3 rows and 1 column.
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Vectors

Subroutine VDOT

Purpose:

The subroutine VCROSS determines the dot product of two
vectors.

Syntax:
CALL VDOT (N, A(), B(, O

Where:
N = number of rows in vectors {A} and {B} [input]
AQ = column vector {A} [input]
(1 dimensional array; N rows by 1 column)
B() = column vector {B} [input]
(1 dimensional array; N rows by 1 column)
C = dot product of {A} and {B} [output]
Comments:

This subroutine calculates the vector dot product of two N by
1 column vectors such that:

C=AeB
The vector dot product can also be written as
,C=A1B1+A2B2+...+ANBN
where A, A,...,A,and B, B, ..., B arethe N
1) N 1’ T2 N

components of the A and B vectors, respectively. The result
of the dot product is a scalar.
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Vectors

Subroutine VECADD

Purpose:

The subroutine VECADD performs vector addition.
Syntax:

CALL VECADD (A(Q), B(), C(), N)

Where:
N = number of columns in each vector [input]
AQ = first vector {A} [input]
(1 dimensional array; N rows by 1 column)
B() = second vector {B} [input]
(1 dimensional array; N rows by 1 column)
CO = vector sum of {A} and (B} [output]
Comments:

Vector addition consists of the following straight—forward
operation:

C=A+B
which on an element by element basis can also be expressed as

Ci=Ai+Bi i=1,2,...,N

where N is the number of rows in each vector.
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Vectors

Subroutine VECMAG
Purpose:

The subroutine VECMAG calculates the scalar magnitude of a
real three—component vector.

Syntax:

CALL VECMAG (A(Q), A)

Where:
AQ = column vector {A} [input]
(1 dimensional array; 3 rows by 1 column)
A = magnitude of A [output]
Comments:

This subroutine calculates the scalar magnitude of a 3 rows by
1 column vector such that:

A=]|A|

The scalar magnitude of a vector can also be written as

A=/A2+A2+A2
1 2 3

where Al, A2, and A3 are the three components of the original
A vector.

The magnitude of a vector is a positive scalar number.
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Vectors

Subroutine VECSTP
Purpose:
The subroutine VECSTP calculates the scalar triple product.

Syntax:

CALL VECSTP (A(Q), B(), C(, VSTP)

Where:
AQ = first column vector {A} [input]
(1 dimensional array; 3 rows by 1 column)
B() = second column vector {B} [input]
(1 dimensional array; 3 rows by 1 column)
CO = third column vector {C} [input]
(1 dimensional array; 3 rows by 1 column)
VSTP = scalar triple product [output]
Comments:

The scalar triple product of any three, 3—element column
vectors is defined by the following combination dot and cross
product calculation:

VmP:K-[ExE]

The result of the scalar triple product operation is a scalar
number.
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Vectors

Subroutine VECSUB
Purpose:
The subroutine VECSUB performs vector subtraction.
Syntax:
CALL VECSUB (A(Q), B0, CO, N)

Where:
N = number of columns in each vector [input]
A = first column vector (A} [input]
(1 dimensional array; N rows by 1 column)
B0 = second column vector {B} [input]
(1 dimensional array; N rows by 1 column)
CO = vector equal to (A} — (B} [output]
Comments:

Vector subtraction consists of the following straight—forward
operation:

C=A-B
which on an element by element basis can also be expressed as

C,=Ai—Bi i=1,2,...,N

1

where N is the number of rows in each vector.
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Vectors

Subroutine VECVTP

Purpose:

The subroutine VECVTP calculates the vector triple product.
Syntax:

CALL VECVTP (A(Q, B, C(, DO)

Where:
AQ = first column vector (A} [input]
(1 dimensional array; 3 rows by 1 column)
B() = second column vector {B} [input]
(1 dimensional array; 3 rows by 1 column)
CO = third column vector {C} [input]
(1 dimensional array; 3 rows by 1 column)
DO = vector triple product [output]
(1 dimensional array; 3 rows by 1 column)
Comments:

The vector triple product of any three, 3—element column
vectors is defined by the following cross product
calculations:

ﬁ:Ax[ﬁxa]

The result of the vector triple product calculation is also a
column vector with 3 rows and 1 column.
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Utility

Subroutine CDATE
Purpose:

The subroutine CDATE calculates the calendar date from the
Julian date.

Syntax:
CALL CDATE (XJDATE, XMONTH, DAY, YEAR)
Where:

XIJDATE = Julian date [input]
XMONTH = calendar month [output] (1<= XMONTH <=12)

DAY = calendar day [output] (1 <= DAY <= 31)
YEAR = calendar year [output]
Comments:

This subroutine will compute the calendar or Gregorian date
for any valid Julian date. The Julian date must be a positive
number. Please note that B.C. years are negative and A.D.
years are positive. For example, 1 B.C. is the year 0, year
-1 = 2 B.C. and so forth.

The Gregorian calendar was introduced by Pope Gregory XII in
the year 1582 to replace the Julian calendar. In this system,
every year that is evenly divisible by the number four is a
leap year with the exception of centurial years. Centurial
years are leap years only if they are evenly divisible by 400.

Depending on the actual Julian date, the calendar day may also
have a fractional part.
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Utility

Subroutine JULIAN
Purpose:

The subroutine JULIAN computes the Julian date for any valid
calendar date.

Syntax:

CALL JULIAN (XMONTH, DAY, YEAR, XJD, VDATES$)

Where:
XMONTH = calendar month [input] (1<= XMONTH <=12)
DAY = calendar day [input] (1 <= DAY <= 31)
YEAR = calendar year [input]
XJD = Julian date [output]

VDATES$

valid date flag [output] (Y = yes, N = no)

Comments:

The Julian date is a continuous count of days and fractions
thereof since Greenwich noon on 1 January 4713 B.C. Note that
the Julian date begins at noon, so at O hour civil time, the
fractional part of the Julian date is .5.

It is important to pass this subroutine all the digits of the
calendar year. For example, the calendar year 1991 must be
passed as /99] and not 9I. Note also that B.C. years are
negative and A.D. years are positive. For example, 1 B.C. is
the year O, year —1 = 2 B.C. and so forth.
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The JULIAN subroutine will check the calendar dates for
validity and return VDATE$ = N for any invalid date. In the
Gregorian calendar reform, the day following October 4, 1582
is October 15, 1582.  Therefore, calendar dates between
October 5 and 14, 1582 are invalid. If an invalid date is
encountered, the demo program DEMODATE will display the
following message:

This date does not exist !!
and the user will be asked to input another date.

The companion demo program for these subroutines also
illustrates how to use the QuickPak Scientific date algorithms
to compute other types of date information. These options are
as follows:

e the number of days between two dates

o the day of the week from a calendar date

e the day of the year from a calendar date

e the calendar date from the day of the year
For example, the number of days between any two calendar dates
is simply the difference between their Julian dates. Other
date calculations are variations of the basic CDATE and JULIAN

algorithms. For example, the day of the week, DOW, can be
found with the following calculation:

DOW = FIX(7 * (XJD / 7# - FIX(XJD / T#)) + .5#)
where

XJD = XJDO + 1
and

XJDO is the Julian date at O hours Universal Time.
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Utility

Subroutine XYPLOT

Purpose:

The subroutine XYPLOT displays a simple X~Y plot of data input
by the user. This subroutine supports the CGA, EGA, VGA, and
Hercules graphics mode of the IBM-PC and true compatible
computers.

Syntax:

CALL XYPLOT (MODE, NPTS, X(), Y(), XAXISS,
YAXIS$, TITLES$)

Where:

MODE = graphics mode [input]
(1 = CGA, 2 = EGA, 3 = VGA, 4 = Hercules)

NPTS = number of X and Y data points [input]
X0 = array of X data points [input]

(1 dimensional array; NPTS rows by 1 column)
YO = array of Y data points [input]

(1 dimensional array; NPTS rows by 1 column)
XAXIS$ = X-axis title [input]
YAXIS$ = Y-axis title [input]

TITLE$ = plot title [input]

Comments:

This subroutine automatically sorts, scales, and plots a
simple graph of X and Y data passed to it in one—dimensional
QuickBASIC arrays.
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The software is hardwired to use 20 subdivisions along the
horizontal X axis and 10 subdivisions along the vertical Y
axis. If the Y data array bounds zero, the software also
plots a horizontal dashed line at Y = 0. The subroutine
provides the user with the capability to pass ASCII names for
both axes, and a title for the graphics plot.

The following is a typical graphics display generated by
subroutine XYPLOT and its demo program. It illustrates a plot

of the simple function y = sin x>,

QUICKPAR SCIENTIFIC GRAPHICS

_1 /.\ N

Y

A

X

I

T

[

T

L

B

_1 ’.‘;'
||||l|1||\/||||\/l|11||

-4 16 36
X AXIS TITLE

Page 170



mysr v Vf QuickPak Scientific § Ax Y 48x/ay

Utility

Subroutine SCALE

Purpose:

The subroutine SCALE is a support routine for the subroutine
XYPLOT. This subroutine takes unscaled minimum and maximum
scale values for a graphics axis and returns new and easy to
read scale values.

Syntax:

CALL SCALE (XMIN, XMAX, N, XMINP, XMAXP)

Where:
XMIN = minimum unscaled axis value [input]
YMIN = maximum unscaled axis value [input]
N = number of axis subdivisions [input] (N >= 1)
XMINP = minimum scaled axis value [output]
XMAXP = maximum scaled axis value [output]
Comments:

This subroutine is based on ACM Algorithm # 463 which rescales
axes data into a more readable form. According to the
algorithm description, a readable linear scale is defined to
be a scale with an interval size which is a product of an
integer power of 1, 2, 5 or 10, and scale values which are
integer multiples of the interval size. The interval size is
directly related to the subroutine parameter N which specifies
the number of axis subdivisions.

This subroutine is called by XYPLOT to rescale both the X and
Y axes of the graphics plot.
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Utility

Function ROUND
Purpose:

The function ROUND rounds a real, double—precision number to a
user—specified number of decimal places.

Syntax:

Y = ROUND (X, N)

Where:
X = real number [input]
N = number of decimal places [input]

Y = X rounded to N decimal places [output]

Comments:
This QuickBASIC function will round a real, double—precision
number to an integer number of decimal places specified by the
user. The QuickBASIC source code for this calculation is:
A=10#" N
ROUND = INT(X / A + 5#) * A

where X is the real number and N is the number of decimal
places requested, respectively.
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Appendix A

ORDER REDUCTION OF DIFFERENTIAL EQUATIONS

In this appendix we demonstrate how to reduce one or more
differential equations of any order to first-order equations
which can be solved with the QuickPak Scientific algorithms.

Let’s define a single Nth—order differential equation as
xM= 7 [t, x x,x", ..., x(N_l)]

with the initial conditions given by

_ PN ot (N-1) _ J(N-D)
x(to) =X, X (to) =X, e X (to) =X,
To reduce this system to a first-order differential equation,
we introduce N state variables Yoo Yy such that
Yy =% = V=X =Y, yl(to) =%
y,=x = y,=x"=y, y,(t) = X
— Vid 7 V444 — - V4
Y, =X =y, =x7 =y, Y, (t) = x]
_ L(N=2) r_ J(N-1)_ _ J(N-1)
Iy T = Yy X =N yN-l(tO) %
_ _(N-1) ;N _ _ L(N-1)
Yy =X = Yy =X =Yy Yilty) = X,

Column one of this arrangement denotes the state variable
substitution, column two shows the equivalent system of
first-order  differential  equations, and column three
represents the new form of the initial conditions.
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To illustrate the use of this method, we will reduce the
system of second—order differential equations of unperturbed
orbital motion defined by:

d’x  -ux ody owy L &z -z

bl y A - = —
a? R a*> R > R?
where x, y, and z represent the position vector coordinates of

the spacecraft, and R is the scalar position magnitude. The
initial conditions are:

x(to) =X, y(to) =Yy z(to) =z, (position)
and
x(to) =X, y(to) =Y, Z(to) =2z, (velocity)
Since these are second—order differential equations, we expect
the reduced system to consist of two first—order equations for
each coordinate.
With the state variable substitutions
Y, =% Y,V ¥, 5% Y, =X Y FY. Y=L
we have the following system of first—order equations:
T I AR AT
R A AR
and the equivalent initial conditions:

y,(t) = x(t) y, () = y(t) ¥, (t) = z(t)

v, ) = X1) oy @)=y v = )
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Now let’s examine what the QuickBASIC code for this new system
of differential equations might look like. If we make the
following QuickBASIC array variable definitions:
X(1) = x component of the satellite’s position vector
X(2) = y component of the satellite’s position vector
X(3) = z component of the satellite’s position vector
X(4) = x component of the satellite’s velocity vector
X(5) = y component of the satellite’s velocity vector
X(6) = z component of the satellite’s velocity vector
and define the 6 component array Y() to be the integration
vector, we will have the following subroutine which is
compatible with the QuickPak Scientific Runge—Kutta—Fehlberg
algorithms.
SUB DERIVATIVE (T, X(), Y()) STATIC

> Equations of motion subroutine

Y1) = X(4)
Y(2) = X(5)
Y(3) = X(6)

R = SQRX(1) * X(@) + X(2) * X(2) + X(3) * X(3)
R3=R*¥R*R
Y(4) = - XMU * X(1) / R3
Y(5) = - XMU * X(2) / R3
Y(6) = - XMU * X(3) / R3
END SUB

XMU is the gravitational constant and might be passed to this
subroutine with a CONST statement, for example.
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Appendix B
PRACTICAL APPLICATIONS

This appendix is a discussion about three stand—alone computer
programs which use QuickPak Scientific algorithms to solve
practical and interesting problems from the field of Celestial
Mechanics.

Optimal Impulsive Orbital Transfer

The coplanar orbital transfer between two circular orbits was
first discovered by Walter Hohmann in 1925. The transfer
consists of a velocity impulse on an initial circular orbit,
in the direction of motion, which propels the space vehicle
into an elliptical transfer orbit. At a transfer angle of 180
degrees from the first impulse, a second velocity impulse or
delta-V, also in the direction of motion, places the vehicle
into a final circular orbit at the desired altitude.

The impulsive velocity assumption means that the velocity, but
not the position, of the vehicle is changed instantaneously.
This implies that there is a discontinuity in the speed of the
spacecraft.

With a QuickBASIC program called IOTA and the QuickPak
Scientific subroutine REALROOT, we will extend the classic
Hohmann transfer for the case of non-—coplanar orbital
transfer. The user can interactively specify a plane change
between the initial and final orbits, and this program will
compute the "best" way to partition this plane change between
the two impulses, and the total delta~V required for the orbit
transfer. Best in this case means the minimum total
delta~V for the orbit transfer.

The analysis presented here in also described in Chapter 3 of
the classic text, Methods of Astrodynamics by P. R. Escobal.
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For convenience, we will define three normalized radii which
are functions only of the size of the two circular orbits:

_ £
H1 - 2 ri+ r (1)
/ I
Hz = T @)
f
L
H3 = 2 T+, G)
where
r. = radius of the imnitial circular orbit

radius of the final circular orbit

-
I

The delta—velocity increment or impulse required for the first
impulse is given by:

— 2 )
AV =V, _ / 1+ H®-2H cos 6, @)

and the delta—velocity increment required for the second
impulse is given by:

AszVlc/H

where 61 and O are the plane change angles at the first and

2 12 2 -
+ H2 H3 - 2H2 Hacos 62 )

[ )

second impulses, respectively.
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The total delta—velocity required for the orbital transfer is:

AV = AV + AV, (6)
where

91 = plane change angle at the initial orbit

62 = plane change angle at the final orbit

9t = total plane change angle = 91 + 62

Vlc = !;L = local circular velocity

L = gravitational constant

The local circular velocity is simply the orbiting speed of a
spacecraft in the initial circular orbit.

We first need to derive the partial derivative of equation (6)
with respect to either the first or second plane change angle.

The partial derivative of the normalized total delta velocity,
AV = AVt / VIc with respect to 91 is given by:

AV Hlsin 91
a0
1

‘/1+H2-2Hcose‘
1 1 1

H2 H sin 6
/ H? + H® H>- 2H2 H cos 0
2 1 3 2 3 2
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If we use subroutine REALROOT to solve this equation for the
positive value of 91 which makes this expression equal 0, we

will have found the minimum AV required for the orbit
transfer. We also know that the root of this equation is
somewhere between O and 6t degrees.

Once the value for 91 has been determined, the second plane
change angle can be computed from:

6,=6 -0 ®

Finally, the magnitude of the two required velocity impulses
can be determined from equations (4) and (5), and the total
delta-V from equation (6).

The following example illustrates an orbit transfer from a
typical Space Shuttle orbit at 28.5 degrees inclination to an
equatorial geosynchronous orbit which has an inclination of
zero degrees and a period of 24 hours.

Program IOTA
< Impulsive Orbital Transfer Analysis >

Initial orbit altitude ( nm ) 150.000
Initial orbit radius ( nm ) 3593.920
Final orbit altitude ( nm ) 19323.000
Final orbit radius ( nm ) 22766.920
Initial orbit delta~V ( ft/sec ) 8056.707
Final orbit delta—V ( ft/sec ) 5851.348
Total delta—V ( ft/sec ) 13908.055
Initial orbit plane change ( degrees ) 2.193
Final orbit plane change  ( degrees ) 26.307
Total plane change ( degrees ) 28.500
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A Graphics Display of Three-Body Motion

This application is a computer program called G3BODY which can
graphically display orbital motion in the circular restricted
three-body problem (CRTBP). The software supports the CGA,
EGA, and Hercules graphics modes of the IBM-PC and true
compatible computers.

This algorithm and program examples are based on the methods
described in "Periodic Orbits in the Restricted Three-Body
Problem with Earth-Moon Masses", by R. A. Broucke, JPL TR
32-1168, 1968. Additional information can also be found in
the JPL Technical Report, "Periodic Orbits in the Elliptic
Restricted Three-Body Problem", by R. A. Broucke, JPL. TR
32-1360, 1969. This report contains a listing of a FORTRAN
computer program which calculates periodic orbits in the
elliptic restricted three—body problem.

Program G3BODY simulates the motion of a spacecraft in the
Earth-Moon system. In the discussion which follows, subscript
1 is the Earth and subscript 2 represents the Moon.

The system of second order vector differential equations of
motion of a point mass satellite in the CRTBP are

2 X - X X - X
X2l oL op—2 @)
dt dt T r
1 2
2
d_z._zézs_ S T, S AT A (1b)
dt dt r r
1 2
where
= x component of position
= y component of position
X =-HU
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and

X, 1-u

i = Earth-Moon mass ratio = mI/ m, = 1/81.27
r2=(x—x)2+y2

1 1

2 _ 2 2

r= x - xz) +y

The motion of the spacecraft is displayed in a coordinate
system which is rotating about the center—of-mass or
barycenter of the Earth-Moon system. The motion is confined
to the x—y plane.

For convenience the problem is formulated in canonical units.
The unit of length is taken to be the constant distance
between the Earth and Moon, and the unit of time is chosen
such that the Earth and Moon have an angular velocity ® about
their barycenter equal to 1. Kepler’s third law is then

0)2|m1 m2|3 =gm +m) =1 (2)

and the value for the universal gravitational constant g is 1.

The x and y coordinates of the Earth and Moon in this system
are as follows:

X, == M y1=O, x2=1—p., y2=0.

In his technical reports, Professor Broucke calls these
synodical coordinates.

Program G3BODY numerically integrates the first order form of
the vector differential equations given by Egs. (1a) and (1b)
using the QuickPak Scientific fourth-order, variable step size
Runge—Kutta—Fehlberg subroutine RKF45.
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In his prize memoir of 1772, Joseph—Louis Lagrange proved that
there are five equilibrium points in the restricted three—body
problem. If we place a satellite at one of these points with
zero initial velocity, it will stay there permanently. These
special positions are called libration points.

For the Earth-Moon mass ratio value of i = 0.012155099, the x
and y coordinates of these five equilibrium points Li are:

L, x = + 0.836892919  y =0
L, x = + 1.155699520 y =0
L, x = — 1.005064520 y =0
L, x = + 0487844901  y = + 0.866025404
L x = + 0487844901  y = — 0.866025404

Three of the libration points are on the x—axis and the other
two form equilateral triangles with the positions of the Earth
and Moon.

Program G3BODY will begin by displaying the following types of
orbit options:

< 1 > periodic orbit about L1

< 2 > periodic orbit about L2

< 3 > periodic orbit about L3

< 4 > user input of initial conditions
The first three menu options will display typical periodic

orbits about the respective libration point.  The initial
conditions for each of these orbits are as follows:

(1) Periodic orbit about the L1 libration point

X0 = 0.300000161 YDOTO = -2.536145497
MU = 0.012155092 TF = 5.349501906
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(2) Periodic orbit about the L2 libration point

X0 = 2.840829343 YDOTO = -2.747640074
MU = 0.012155085 TF = 11.933318588

(3) Periodic orbit about the L3 libration point

X0 = -1.600000312 YDOTO = 2.066174572
MU = 0.012155092 TF = 6.303856312

Notice that each orbit is defined by an initial x~component of
position, X0, an initial y—component of velocity, XDOTO, a
value of Earth-Moon mass ratio MU, and an orbital period TF.
The initial y-component of position and x-component of
velocity for each these orbits is equal to zero. The software
will draw the location of the Earth, Moon and libration point
on the graphics screen. Note that the size of the Earth and
Moon are not drawn to scale, and the actual physical dimension
in the x and y directions will probably be distorted due to
the aspect ratio of your monitor screen.

If you would like to experiment with your own initial
conditions, select option < 4 > from the main menu. The
program will then prompt you for the initial x and
components of the position and velocity vector, and the value
of the gravitational constant U to use in the simulation. The
software will also ask for an initial and final time to run
the simulation, and an integration step size. The number .01
is a good value for step size.

The program will also ask for the graphics mode (CGA, EGA, or
Hercules) available on your computer. If you select Hercules
mode, be sure to run the program MSHERC.COM before trying to
execute G3BODY. You will also be asked to define the window
for drawing the graphics. This window is specified by x and y
coordinate pairs for the lower left hand corner and the upper
right hand comer of the screen.
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These values are best determined by trial and error, and will
depend on the actual orbit you are frying to plot. By
changing the dimensions of the window, you can zoom in or out
on the display screen. This allows you to see a better view
of the motion as the spacecraft approaches the Earth or Moon,
for example.

During the graphics display, the distance between successive
trajectory points and the program execution speed are
indications of the integration step size.  The step size
should decrease as the satellite approaches the Earth or Moon.
Can you explain why this happens?

Here is a short list of initial conditions for several other

periodic orbits which you may want to display with G3BODY.

(1) Retrograde periodic orbit about m,

X0 = -2.499999883 YDOTO = 2.100046263
MU = 0.012155092 TF = 11.99941766

(2) Direct periodic orbit about m,
X0 = 0.952281734 YDOTO = -.957747254
MU = 0.012155092 TF = 6.450768946

(3) Direct periodic orbit about m, and m,_
X0 = 3.147603117 YDOTO = -3.07676285
MU = 0.012155092 TF = 12.567475674

(4) Direct periodic orbit about m_

X0 = 1.399999991 YDOTO = -.9298385561
MU = 0.012155092 TF = 13.775148738
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Time of Apogee and Perigee of the Moon

Program APMOON demonstrates how to use several QuickPak
Scientific algorithms to solve for the approximate calendar
date and Universal Time of perigee and apogee of the Moon.
Specifically, we will use subroutines BMINIMA and MINIMAZ to
find the time of minimum geocentric distance of the Moon
(perigee), and the time of maximum geocentric distance of the
Moon (apogee).

The subroutine which computes the geocentric position of the
Moon is taken from the paper, "Low-precision Formulae for
Planetary Positions", by T.C. Van Flandern and K.F. Pulkkinen.
This paper appeared on pages 391-411 of the November 1979
issue of The Astrophysical Journal Supplement Series. The
algorithm for the Moon’s geocentric distance consists of a
trigonometric cosine series of 30 terms and is valid for the
years 1600 A.D. to 2200 A.D.

The independent argument used in this algorithm is the number
of days relative to the epoch January 1, 2000 at 12 hours
Universal Time. This can be calculated as a function of the
Julian date with the simple equation:

T = JDATE - 2451545

where JDATE is the Julian date and is calculated with the
QuickPak Scientific JDATE subroutine.

The algorithm then calculates several fundamental arguments
with the next four equations:

GM = 0.374897 + 0.03629164709T
FM = 0.259091 + 0.03674819520T
EM = 0.827362 + 0.03386319198T
GS = 0.993126 + 0.00273777850T
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where
GM = mean anomaly of the Moon
FM = argument of latitude of the Moon
EM = mean elongation of the Moon from the Sun
GS = nmean anomaly of the Sun

These arguments are in units of revolutions and are converted
to radians with a QuickBASIC user—defined function given by:

R2R (X) = PI2 * (X - FIX(X))
where PI2 is a global constant and is equal to 2m.

All angles are adjusted between O and 27 radians by another
QuickBASIC function called AMODULO.

Finally, the geocentric distance of the Moon, in the units of
earth radii, is calculated with a trigonometric cosine series
as follows:

RM = 60.36298 - 327746 COS(GM)

- 0.57994 COS(GM-2EM) - 046357 COS(2EM)

- 0.08904 COSQ2GM) + 0.03865 COS(2GM-2EM)

- 0.03237 COS(2EM-GS) - 0.02688 COS(GM+2EM)

- 0.02358 COS(GM-2EM+GS) - 0.02030 COS(GM-GS)

+ 0.01719 COS(EM) + 0.01671 COS(GM+GS)

+ 0.01247 COS(GM-2FM) + 0.00704 COS(GS)

+ 0.00529 COS(2EM+GS) - 0.00524 COS(GM-4EM)

+ 0.00398 COS(GM-2EM-GS) - 0.00366 COS(3GM)

- 0.00295 COS(2GM-4EM) - 0.00263 COSEM+GS)
0.00249 COS(3GM-2EM) - 0.00221 COS(GM+2EM-GS)
0.00185 COS(2FM-2EM) - 0.00161 COS(2*(EM-GS))

0.00147 COS(GM+2FM-2EM) 0.00142 COS(4EM)
0.00139 COS(2GM-2EM+GS) 0.00118 COS(GM-4EM+GS)
- 0.00116 COS(2GM+2EM) - 0.00110 COS2GM-GS)

+ o+ o+ 4+

The radius of the Earth is equal to 6378.14 kilometers.
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Program APMOON will ask you for an initial calendar date on
which to begin the search and a total search duration in days.
Be sure to include all four digits of the calendar year.

With this information, the BMINIMA subroutine searches forward
in time until it brackets the first lunar perigee.  Then
subroutine MINIMA?2 is called to actually calculate the Julian
date. The QuickPak Scientific subroutine CDATE is used to
calculate the calendar date from this Julian date. The event
time is incremented by one day, and this entire process is
repeated, this time looking for a lunar apogee. This is
controlled by a function multiplier which alternates between
the values 1 and -1, forcing the algorithm to look for a
maxima or minima, respectively.

Several bracketing and minimization control parameters such as
convergence tolerance, step size multiplier, and the number of
iterations are hardwired into the software.

The following is a typical display generated by this program.

Lunar Apogee

Calendar date March 9, 1991
Universal time 1 hours 9 minutes
Julian Date 2448324.548
Geocentric distance ( kilometers ) 404292211

Lunar Perigee

Calendar date March 22, 1991
Universal time 4 hours 12 minutes
Julian Date 2448337.675
Geocentric distance ( kilometers ) 369912.814
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WELCOME TO
CELESTIAL COMPUTING

The use of personal computers in celestial mechanics seems
only natural. @ The computer can help provide a wvivid
understanding of fundamental concepts of astronomy and
celestial mechanics. We can also use the power of computers
to predict unique celestial events and phenomena which we have
yet to witness. Although celestial mechanics is the world’s
oldest science, it attracts our attention today perhaps even
more than it did many, many centuries ago.

Celestial Computing is written for two types of computer
users. It provides techmical information for the programmer
who is interested in the math and physics required to solve
problems in celestial mechanics, and it will also be useful
for the person who simply wants reliable and accurate
astronomical software.

In Celestial Computing, we will focus on computer applications
in the following areas of celestial mechanics:

e Astronomy the observation, calculation and
interpretation of the characteristics of
celestial bodies and phenomena.

o Astrometry the study of positions and motions of
celestial bodies. ’

e Astrodynamics the study of the motion and behavior of
man-made spacecraft.

The purpose of Celestial Computing is to provide computer
methods which will allow everyone to pursue these areas of
celestial mechanics. Each computer application will include a
discussion of the mathematics and physics of the problem. We
will also examine books, technical publications, and other
computer programs about celestial mechanics, and try our best
to provide material which is easy to use and understand.



Each issue contains a feature article, and regular columns in
the areas of fundamental astronomy, applied astrodynamics,
symbolic computing, and numerical methods. There is also a
recreational computing column which emphasizes computer
graphics to illustrate many fundamental concepts of celestial
mechanics and astronomy.

The following is a brief description of the regular columns
presented in each issue of Celestial Computing.

Feature Article

Each issue of Celestial Computing will present a feature
article of general interest. Some of the topics covered in
Volumes 1 and 2 are as follows:

e The prediction of lunar eclipses

e The prediction of solar eclipses

e Tracking and observing earth satellites

e Lunar occultations of stars and planets

e Calculating planetary positions and unique events

e Real-time orbit simulation of a space telescope

e Computer methods for orbit determination

Fundamental Astronomy

In this column of Celestial Computing, we will present
interactive QuickBASIC computer programs which can be used to
study and understand fundamental concepts of astronomy. The
following is a list of some of the topics we will address:

e Julian and calendar dates

e The accurate calculation of sidereal time

e Precession and nutation in astronomy

e Astronomical coordinate systems and transformations

e The calculation of classical orbital elements



Applied Astrodynamics

In this regular department of Celestial Computing, we will
present computer solutions to classic and unique problems in
the field of astrodynamics. This is an area where we can
apply our knowledge of celestial mechanics to solve problems
related to manned and unmanned spaceflight. In this column,
we will present computer applications in the following areas:

e Spacecraft trajectory analysis
e The prediction of orbital events

e Methods of orbit design
e Interplanetary spaceflight

Symbolic Computing

This is a regular column of Celestial Computing where we will
use different symbolic computing programs such as MathCAD,
Eureka: The Solver, and Derive to solve unique problems in
celestial mechanics. Typical topics which will be covered in
this column include the following:

e Symbolic computing solutions of Kepler’s equation

e Symbolic computing solutions for the geodetic latitude
and altitude of an earth—orbiting spacecraft

e Symbolic computing solutions for the closest approach
between a satellite and an observer on an oblate earth

e Symbolic computing solutions of lunar/planetary events

Recreational Computing

This column of Celestial Computing is dedicated to computer
applications which are both fun and entertaining. Many of
these programs emphasize graphics to help the user visualize
different types of astronomical concepts and celestial
motions.



Typical graphics applications which. have appeared in this
column include:

e A computer graphics display of the Galilean satellites
e A computer graphics display of the Three-Body problem
e Computer graphic displays of orbital events

e Computer graphic displays of orbital motion

Numerical Methods

In this regular column of Celestial Computing, we will present
numerical methods and procedures which can be used to solve a
variety of problems in celestial mechanics, astronomy and
astrodynamics. Many of these methods will be QuickBASIC
computer programs and subroutines which you can use as modules
in your own programs and computer applications. Each of these
modules also includes a short program which demonstrates how
to use the software correctly.

We will present computer methods in such areas as linear
algebra, numerical integration of differential equations, the
solution of non-linear equations and numerical optimization.

Celestial Book Review

In this quarterly column books, technical reports, and other
publications pertaining to celestial mechanics are reviewed.
The following is a short list of several of the publications
which have been reviewed:

e Fundamentals of Celestial Mechanics by J. M. A. Danby

e Astronomical Formulae for Calculators by Jean Meeus

e [ntroduction to BASIC Astronomy with a PC
by J. L. Lawrence

e Publications of the U.S. Naval Observatory



Celestial Software Review

In this regular column of Celestial Computing, we review both
public domain and commercial software which may be of interest
to readers. Among the software packages reviewed:

e Program XonVu

e DERIVE: A Mathematical Assistant Program
e Program GEOCLOCK

e The Interactive Computer Ephemeris (ICE)

e Program COLPACK

Subscription and Disk Information

Celestial Computing is published four times per year, around
the time of the solstices and equinoxes (March, June,
September and December). Both journal and floppy disk
subscriptions are available for the IBM-PC and true compatible
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Please submit payment in the form of a personal check or money
order (no credit cards please), in U.S. dollars and drawn on a
U.S. bank, payable to Science Software.  The costs to
countries other than the United States are shown in
parentheses. These prices include first class shipping within
the United States and air mail shipping elsewhere.
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