N
=

CRESCENT

SOFTWARE, INC.

QUICKSCREEN
The Most Sophisticated Screen
Management Software Ever Developed

Version 4.00

Software Copyright © 1987-1991 by Don Malin and Crescent Software.

This manual was written and typeset by Jonathan Waldman with portions excerpted from Don Malin’s
specifications and from the QuickPak Professional documentation by Ethan Winer,

All rights reserved.

No portion of this software or manual may be duplicated in any manner without the written permission of
Crescent Software.

QuickBASIC is a trademark of Microsoft Corp.

CRESCENT SOFTWARE

32 SEVENTY ACRES

WEST REDDING, CT 06836

(203) 438-5300

Crescent's Support BBS: (203) 426-5958

LICENSE AGREEMENT

Crescent Software grants a license to use the enclosed software and
printed documentation to the original purchaser. Copies may be
made for back-up purposes only. Copies made for any other
purpose are expressly prohibited, and adherence to this requirement
is the sole responsibility of the purchaser. However, the purchaser
does retain the right to sell or distribute programs that contain
QuickScreen routines, so long as the primary purpose of the
included routines is to augment the software being sold or
distributed. Source code and libraries for any component of the
QuickScreen program may not be distributed under any
circumstances. This license may be transferred to a third party
only if all existing copies of the software and documentation are
also transferred.

WARRANTY INFORMATION

Crescent Software warrants that this product will perform as
advertised. In the event that it does not meet the terms of this
warranty, and only in that event, Crescent Software will replace the
product or refund the amount paid, if notified within 30 days of
purchase. Proof of purchase must be returned with the product, as
well as a brief description of how it fails to meet the advertised
claims.

CRESCENT SOFTWARE’S LIABILITY IS LIMITED TO THE
PURCHASE PRICE. Under no circumstances shall Crescent
Software or the authors of this product be liable for any incidental

or consequential damages, nor for any damages in excess of the
original purchase price.

TABLE OF CONTENTS

QuickScreen TABLE OF CONTENTS

INTRODUCTIONttt ittt i i eiiennnn 1
Thanks 3
Registration And Upgrades 3
QuickScreen Overview 4

Text Mode Screen Designer 5
BASICModules 6
Displaying Screens 6
DataEntry 6
Additional Utilities 7
Compatibility 8
System 3
Compiler Versions 8
Using ThisManual 8
Intended Audience 3
Notational Conventions 9
Technical Support 11

INSTALLATION i i, .. 13
Installation Instructions 15
Setting The DOS Path 18
The READMEFile 20
Major Files Of QuickScreen 20
Copying And BackingUp 22

QUICK START ...ttt ittt et eeeann 25
Running The Demos 27
Running The Slide Show 30

THE SCREENDESIGNER 33
The Pulldown Menu System 35

Menu System Contents 36
Using The Menu System 36
DialogBoxes 40
Menu Item Information 43
FileMenu 43
Library Menu 47
EditMenu 49

CRESCENT SOFTWARE, INC. B jij

TABLE OF CONTENTS QuickScreen

ViewMenu 52
Settings Menu 54
Compose-Fields Menu 57
Fields 58
Field Types 59
Field Settings 63
Numeric Formulas 69
CREATING TITLE SCREENSccviuu... 75
The Environment Settings 77
Line & Box Draw Characters 77
PaintColor 78
Blinking 78
ScreenSize 78
ErrorBeep 78
General Editing 79
RulerLine 79
Block Operations 80
BoxDrawing 82
Line Drawing 82
Painting, 83
Character Editing 83
Deleting 34
Inserting, 84
ASCII Character Chart 84
Repeating The Last Character 84
LimeEditing 85
Deleting 85
Inserting 85
Centering 85
Viewing Monochrome Screens 86
Monochrome Via “‘DisplaySern™ 87
Monochrome - Standard Mono Card 88
Monochrome - CGA+Mono Monitor 89
Saving Screens 90
QuickScreen Files 90
ObjectFiles 91

LY CRESCENT SOFTWARE, INC.

QuickScreen TABLE OF CONTENTS

Text EXpOTt e 91
QuickScreen Library Files 92
Retrieving Screens 92
QuickScreen Files 94
Object Files 94
TextImport 94
QuickScreen Library Files 94
Using QuickScreen Library Files 95
Loading And Creating Library Files 95
Displaying And Deleting Screens 95
Saving A Library 95
Adding And Replacing Screens 96
CREATING DATA ENTRY FORMS 99
Defining Fields 101
Rearranging Fields 102
Printing Field Definitions 104
Saving AForm 105
QUICKSCREEN ROUTINEScivunu.. 107
Procedure Reference Section 109
Integers 109
Parameters And Arguments 110
Parameters 110
ATEUMENtS 110
Action 111
Attribute 111
ErrorCode 112
Form$Q Array 113
MonoCode 114

Screen Arrays, 115

Type Variables And Constants 115
DEFCNFBI 116
SETCNF.BI 117
FIELDINFBI 118
FORMEDITBI 120
QuickScreen Routines 125
CRESCENT SOFTWARE, INC. Hy

TABLE OF CONTENTS QuickScreen

BCODY . .. 130
Box0 133
ButtonPress 135
CalcField 136
ChgColor 138
ClearSer0 139
Date2ZNum 140
DisplaySern L. 143
EditForm 145
EndOfForms 148
Evaluate 149
Exist 152
FixDate 156
FGet, 154
FldNum 157
Format 159
FOpen 158
FSeek 161
GetFldDef 163
GetRec 164
LibFile2Sern 165
LibGetFldDef 167
LibLoadDisplayForm 169
LibNo 170
LibNumberOfFields 171
Lib2Sermn 173
LoadScreen 175
LoadScernLib 176
MakeMono 177
Message 178
Monitor 179
MPaintBox, 181
MQPrint 182
MScrnSave and MScrnRest 183
NumberOfFields 186
Num2Date 187
OpenFiles 188

B yvj

CRESCENT SOFTWARE, INC.

QuickScreen TABLE OF CONTENTS

PrintArray 189
QEdit 190
SaveField 197
SaveRec, 198
SernLibSize 199
Tokenize 200
UnPackBuffer 201
Value 203
VertMenu 204
WholeWordIn 207
Developing in the QB/QBX Environment 208
Displaying Screens From Your Program 211
QuickScreen Screens 211
Library File Screens 212
Displaying Screens Directly From Disk 212
Loading ALibrary 212
Displaying Screens From Memory 212
Object Screens 213
Direct-To-Screen Wipes 216
Other Wipes 216
Displaying Screens With Originally-Saved Wipe . 216
Displaying Screens With A New Wipe 218
Displaying Screens Without A Wipe 218
PERFORMING DATAENTRY 221
General Conmcepts 223
DataEntry 223
General Procedures, ... 224
DemoAny.BAS, 224
Detailed Procedures 227
SettingUp AForm 227
Specify Include Files 228
Dimension Mandatory Arrays 228
Load TheForm 229
Initialize Field And Form Elements 229
Setting The Insert Status 230
CRESCENT SOFTWARE, INC. B vii

TABLE OF CONTENTS QuickScreen

Setting Up Multiple-Choice Fields 230
Creating Default Field Values 231

Using EditForm 232
Form$(O 233
FIdO TYPE Array 233
Frm TYPR Variable 233
Random-Access FileI/O 235
SettingUp 235
Retrieving Records 236
SavingRecords 237
Clearing AForm 237
NotesFields 238
UsingNotes 238
Saving And Recalling Notes Data 239
Relational Fields 239
Indexed Fields 240
Multi-Page Forms 240
Implementation 241
Programming Tips 245
Manually Manipulating Data On-The-Fly 245
Assigning Variables To Refer To Fields 246
Updating Form Data Using SaveField 247
Recalculating Fields Using CalcField 247
Converting Formatted Strings To Numbers 247
Redisplaying Form Colors Using ChangeClr 248
CREATING STANDALONE PROGRAMS 251
MakeFiles 253
Compiling Modules 253
Linking 254
QUICKSCREEN UTILITIES 257
Slide Show Display Program 259
Screen Capture Program 261
Quick Library Make Utility 263

B viii CRESCENT SOFTWARE, INC.

QuickScreen TABLE OF CONTENTS

APPENDICES ittt 267
Appendix A: Mouse Tips 269
Appendix B: QuickScreen Editing Keys 275
Appendix C: Color Chart 279
Appendix D: ASCIH Character Charts 283

GLOSSARY ...ttt ittt tiennnn 287

INDEX ...ttt ittt tiiieenenn 295

CRESCENT SOFTWARE, INC. B ix

INTRODUCTION

QuickScreen INTRODUCTION

INTRODUCTION

THANKS!

Thank you for purchasing QuickScreen from Crescent Software!

We have put every effort into making this the finest and most
powerful screen building module available. We sincerely hope that
you love it. If you have a comment, a complaint, or perhaps a
suggestion for another product you would like to see, please let us
know. We want to be your favorite software company.

REGISTRATION & UPGRADES

Please take a few moments to fill out the enclosed registration card.
Doing this entitles you to free technical support by phone, as well
as insuring that you are notified of possible upgrades and new
products. Many upgrades are offered at little or no cost, but we
cannot tell you about them unless we know who you are!

Also, please mark the product serial number on your disk labels.
License agreements and registration forms have an irritating way
of becoming lost. Writing the serial number on the diskette will
keep it handy.

You may also want to note the version number in a convenient
location, since it is stored directly on the distribution disk in the
volume label. If you ever have occasion to call us for assistance,
we will probably need to know the version number you are using.
To determine the version number for any Crescent Software
product simply display a directory of the original disk. The first
thing that appears is similar to:

Volume in drive A is QScreen 4.0

CRESCENT SOFTWARE, INC. |3

INTRODUCTION QuickScreen

We are constantly improving all of our products, so you may want
to call periodically to ask for the current version number. Major
upgrades are always announced, however minor fixes or additions
generally are not. If you are having any problems at all, even if
you are sure it is not with our software, please call us. As a
registered user of one of our products, we’ll offer support for all
versions of QuickBASIC and can often provide better assistance
than Microsoft.

QUICKSCREEN OVERVIEW

QuickScreen is both a text screen design tool and data entry form
package. The screen design component allows you to create your
own screens — called display-only screens — using a sophisticated
editor. These screens can be displayed from BASIC programs at
any time; they’re ideal for on-line help or information screens; and
they can be combined to create snazzy slide shows using the
included DISPLAY utility.

With QuickScreen, you can also create screens to be used as data
entry forms — often referred to as data entry screens or forms.
This powerful ability allows you to quickly design screens which
gather information on a prompt-by-prompt basis from a user. Of
course, your own BASIC program can control the form and read
the values it contains.

Forms are extremely flexible, and data from them can be saved to
disk using methods as simple as random access files or as advanced
as using data base management utilities available from other
vendors of programmer’s tools.

QuickScreen’s editor can manage screens using any available text
screen size, such as 25-, 43-, and 50-line mode, and its forms
support a mouse automatically.

B4 CRESCENT SOFTWARE, INC.

QuickScreen INTRODUCTION

Text Mode Screen Designer

To make the task of designing screens as effortless as possible,
QuickScreen’s interactive editor is mouse-driven and has a variety
of features:

e Block operations, such as Cut, Copy, Move, Paint, and Fill
are fully-supported.

° An on-screen ruler line is available so that text can be easily
measured and aligned.

® A full color chart and ASCII character chart are instantly

accessible.

Line and box drawing are fully-supported.

Any block of text can be centered.

Any area of the screen may be filled with any character.

Any area of the screen may be “‘painted’’ to any color.

Data entry screens are created with the help of 19 pre-defined field
types, such as a zip code or dollar value. Additionally, fields can
be further customized:

¢ Fields can be protected from being changed; they can also
be indexed and formatted in any way.

¢ Fields can support range checks and field calculations based
on supplied formulas.

¢ Unique help messages can be associated with each field in
a data entry screen.

® The QuickScreen editor allows you to test data entry at any
time, and can readily generate form definitions in a variety
of formats.

If you are creating such displays as title or help screens,
QuickScreen reduces necessary typing by being able to import
ASCII data from any DOS text file. On the other hand,

CRESCENT SOFTWARE, INC. a5

INTRODUCTION QuickScreen

information you provide on a screen can be saved in an ASCH
format, which makes it available another editor and to most word
processing software. :

BASIC Modules

QuickScreen’s BASIC modules allow you to manage both display-
only and data-entry screens.

DISPLAYING SCREENS

To display screens from BASIC you may use a variety of methods:

e Screens may be displayed directly from disk to video.

e Screens may be loaded from disk to RAM, then displayed
to video from RAM.

e Screen library files can be used to combine screens into a
single DOS file. Any screen in a library can be displayed
when needed.

® Screens saved as object files may be linked when creating
an .EXE file so that they are integrated into your
application program.

e Screens can be displayed using impressive screen wipe
effects.

DATA ENTRY

Managing data entry screens from BASIC is one of the more
appealing features of QuickScreen. The supplied BASIC modules
let you do the following:

L) CRESCENT SOFTWARE, INC.

QuickScreen INTRODUCTION

e Control data entry screens automatically based on a form
definition.

¢ Handle data entry and movement among fields automatic-
ally.

* Perform range checks and field calculations for applicable
fields.

e Generate custom help messages for each prompt.

¢ Support multiple-page forms.

e Support polling so that programmers can take special
actions based on the user’s activity without having to
modify QuickScreen’s data entry routines.

° [Enable programmers to preset and modify field values, as
well as change the cursor position within a form, on-the-fly.

® Support a mouse without additional programming.

ADDITIONAL UTILITIES

QuickScreen is shipped with two useful utilities. The first is a TSR
called SCRNCAP — a utility which is used to capture any text
screen. These captured screens can be saved and later loaded by
the QuickScreen editor or its BASIC modules.

The second is called DISPLAY — a BASIC module used for slide-
show presentations. It uses a custom text-file script which you
create, and is able to display screens using a variety of features
under complete script control.

QuickScreen supports db/LIB®, a third-party add-on product from
AJS Publishing. This library provides routines to read and write
dBase®-compatible data files, and, when combined with Quick-
Screen’s forms, you can create a powerful database system.

CRESCENT SOFTWARE, INC. |7

INTRODUCTION QuickScreen

COMPATIBILITY

System

QuickScreen will run on IBM XT, AT, PS/1- and PS/2-class
machines and compatibles. DOS 2.0 or above is needed.

Compiler Versions

QuickScreen is available for users of Microsoft BASIC only. This
includes QuickBASIC version 4.x; BASCOM, version 6.x; and the
BASIC Professional Development System, version 7.x. If you own
an earlier version of BASIC we suggest that you contact Microsoft
for an upgrade. We will be happy to assist you in making a
decision to upgrade.

USING THIS MANUAL

Intended Audience

This manual is designed for users familiar with QuickBASIC and
with the concepts of using libraries and compiling to create
standalone programs. We have not attempted to unnecessarily
duplicate information which is QuickBASIC-related and appears in
the QuickBASIC documentation. But we have explained necessary
steps for using this product effectively.

Eg CRESCENT SOFTWARE, INC.

QuickScreen INTRODUCTION

Notational Conventions

We have used some variations in type style mainly so that the
manual is more clear and more enjoyable to read. The purpose for
most type styles is clear (i.e., for topic headings, computer text,
etc.), however there are a few uses which may require further
explanation:

Examples of computer program code are printed in a fixed-
spaced font. For instance, consider the DO loop below:

‘pause for a key press
DO
LOOP UNTIL LEN(INKEYS)

Notice also the use of vertical ellipses to convey that more
program instructions may follow and the use of BASIC’s single-
quote REM symbol (°) to present comments.

Examples taken from screen displays are printed as graphic
images. A sample screen appears on the next page.

Pulldown commands are printed in boldface for clarity using
this syntax:

(Menu name) pulldown menu command
For example, ‘‘(File) New Screen...”” refers to the File menu

and the New Screen... pulldown command. When a menu is
discussed alone, the menu name, such as File, is in boldface.

CRESCENT SOFTWARE, INC. a9

INTRODUCTION QuickScreen

Open File

O o o ———————

[] invoice.scr
~B-1
£-c-1
-p-1
£-E-1
£~F~1

aboutcs.scr
alltypes.ser
enployee.scr

Figure 1: Sample Screen Shot I

DOS directories, file names, acronyms, and BASIC commands
are printed in uppercase letters. For example:

““The SCRNCAP.EXE program is a TSR.”

Instances when the computer input or output may vary
(depending on your hardware, software, etc.) are shown in
italics. For example, the QuickBASIC Quick Library support
module will have a slightly different name depending on its
version number. We therefore would refer to such a file as in
the example below:

LINK PROGNAME.OBJ,,BQLB45 /Q

Notice that not only is ““45”” italicized, but also the program
name, which is specified by the user, is italicized. Italics in the
main text usually represents terms which appear in the glossary.

®m 10 CRESCENT SOFTWARE, INC.

QuickScreen INTRODUCTION

* In some examples there may be optional features in a syntax.
These features will be shown in square brackets. For example,
the LET statement is optional in QuickBASIC:

[LET]A = 10

® Keys on the keyboard are represented as the key name enclosed
by angle brackets. Key names are taken from the standard
IBM® extended keyboard. For example, <F1> is the F1
function key; <Enter> is the Enter or Return key. Certain
keys are mentioned in terms of general function. For example,
the direction keys typically include the up-, down-, left-, and
right-arrow keys, and sometimes the <PgDn> and <PgUp>
keys as well. When the need arises to refer to all of these keys
as a group, we will refer to them as direction keys.

TECHNICAL SUPPORT

If you require technical support for QuickScreen, you will need
your serial number before calling us at (203) 438-5300, between
9:00 a.m. and 5:00 p.m. EST, Monday through Friday. Please
gather as much detail as possible about the problem before you
call. Be prepared to provide the QuickScreen version number as
well as the QuickBASIC version number. We can assist you best
when you are able to describe the precise nature of any difficulties.

CRESCENT SOFTWARE, INC. m 11

INSTALLATION

QuickScreen INSTALLATION

INSTALLATION INSTRUCTIONS

QuickScreen is now distributed using the popular and efficient .ZIP
compression format. To help simplify the process of extracting
specific files from the archive, we’ve created a front-end
installation program named INSTALL. Upon starting, this
program shows the number of bytes the extracted files will occupy,
and even allows you to select those files you wish to extract.

To begin installation, place the QuickScreen distribution diskette in
a disk drive. Then, log to that drive and type INSTALL (this
example assumes the floppy is in A:):

C:\]A:
A:\JINSTALL

If you have a color graphics card with a monochrome monitor, you
can use the /B command-line switch so that the installation program
generates monochrome colors:

A:\]INSTALL /B

If you start INSTALL from a drive and/or directory different from
the one containing the INSTALL.EXE program, the current drive
and directory is used as the installation destination.

After the program starts, it displays its main screen (see Figure 2),
and begins reading any .ZIP files in the same drive and directory
as the INSTALL.EXE program. The second line of the screen
displays the available function-key commands. Below this is a field
where the installation destination drive and path may be specified.
To the right of this is a display field where the amount of free disk
space is displayed for the specified drive. The bottom-left portion
of the screen contains a bar menu where the available .ZIP files are
displayed along with the disk space required for installation. The
bottom line of the menu displays the total disk space needed to

CRESCENT SOFTWARE, INC. 15

INSTALLATION QuickScreen

install all selected files in the menu. The bottom line of the screen
displays comments about the currently-highlighted file.

INSTALL Z.8
h? |- 2ip File Information &l - Begin Installation - ig]
Files vill de installed in the Drive and Directory listed below. If the
specified Directory does mot exist, it will be created automatically during
installation. Press Enter or Teb to move to the Filz menu below.

I—- Destination Drive/Path l Free Space -l

272,384

File ———————— Required Space
J PRGMS.ZIP 569,344
J SOURCE.ZIP 546,816 QUICK SCREEN

QSCRSRC.ZIP 272,384

Screen Designer and Utilities
Software Installation Program
Entire Contents

Copyright (c) 1967-1991
Crescent Software, Inc.

Total Required: 1.135.182 o o

Comnents: Screen design program and support files.

I Figure 2: The Installation Start-Up Screen |

Several function keys are operable from INSTALL. They are
summarized in Table 1.

The Destination Drive/Path field contains a default drive and path
where all selected files will be installed. We suggest that you use
\QSCR as the destination directory, if possible, however you can
choose any valid DOS path name. If you specify a path which
does not exist, it will be created during installation. If you change
the drive letter, the amount of free space on that drive is displayed
to the right after moving from this field.

B 16 CRESCENT SOFTWARE, INC.

QuickScreen INSTALLATION

KEY FUNCTION DESCRIPTION

<F2> Info On Zip File Displays the contents (i.e.,
file names and sizes) of the
currently-highlighted ZIP
file. After viewing or
selecting individual files, you
can press <Esc> to go
back to viewing the actual
ZIP files.

<F3> Begins Install Once you are satisfied with
the selected files, you can
start the installation
process.

<F4> Exit To return to DOS you can
exitthe installation program.

[Table I: Installation Function Keys |

The <Tab> or <Shift> <Tab> keys move the cursor between
the Destination Drive/Path field and the File Display box. Within
the File display, the <Space Bar> or <Enter> key will toggle
a check mark () on or off. You can check entire .ZIP files or
you can press <F2> to check individual files within ZIP files. If
you are checking individual files, simply press <Esc> to go back
to the .ZIP file list. When you are finished, all checked files are
installed when <F3> is pressed.

The number of bytes displayed to the right of each file name is the
space required on the destination drive to install that file. This
number is the uncompressed size of the file — rounded up to the
nearest cluster.

After the Destination Drive/Path has been specified and files have
been selected, you can press <F3> to begin installation. If the
total expanded size of all selected files exceeds the available disk

CRESCENT SOFTWARE, INC. m 17

INSTALLATION QuickScreen

space, you will be asked whether to continue. You can answer
“Y” for Yes if you are sure there is enough space on the target
drive.

If you are re-installing files then there may be more space
available than displayed since existing files will simply be
overwritten.

If you are installing to an existing directory you will be asked if
you wish to be prompted before existing files are overwritten. We

suggest answering Yes if you are not sure about overwriting certain
files.

After responding to the prompts mentioned above, the screen is
cleared and installation continues. As files are installed, messages
from the decompression utility, PKUNZIP.EXE, are displayed. If
another diskette is required, you will be prompted to change the
disk in the source drive. After doing this, you can select new files
and proceed as before.

Once all selected files have been installed, the program displays a
message indicating a successful installation.

Setting The DOS PATH

In order to make QuickBASIC and its support files available from
any directory, the PATH environment variable is set, usually from
the AUTOEXEC.BAT file read from your boot drive when your
system starts. Setting the PATH merely requires that the directory
names containing your compiler files are specified. If you are
working on a system where several drives are available, you will
want to specify the drive letter as well in your PATH statement.

B 13 CRESCENT SOFTWARE, INC.

QuickScreen INSTALLATION

If you install QuickScreen on C:\QSCR, but your QuickBASIC
files are on D:\QB, the PATH variable should be set as follows:

PATH = D:\QB

If your system uses multiple drive letters for several disk partitions
we suggest including the drive letter of each directory in your
PATH statement. Doing this ensures that the directory can be
properly located.

Some users will need to specify several paths so that QB and BC
are properly found. In the Microsoft BASIC Professional
Development System, the QBX executable and BC are in separate
subdirectories by default: \BC7\BIN and \BC7\BINB, respectively.
In this case, you would need to specify both paths:

PATH = D:\BC7\BIN;D:\BC7\BINB

Notice that multiple paths are separated by semicolons. This way,
many drive/directory combinations can be searched:

PATH = D:\QB;C:\DOS;C:\WINDOWS;E:\GAMES

The sequence in your PATH statement is significant, for it
indicates the order in which the paths are to be searched. And of
course, the more entries you have, the longer it may take DOS to
complete its search.

If you want to see what your PATH is currently set to, simply type
“PATH” at the DOS prompt.

CRESCENT SOFTWARE, INC. B 19

INSTALLATION QuickScreen

The README File

After installing this product, you may want to check for the
presence of a README file. Helpful information, as well as
additions or changes to this manual, appear in such a file.

After logging onto your QuickScreen directory, simply enter the
following DOS command to peruse it (< Ctrl-S > pauses the output
until a key is pressed):

TYPE README

MAJOR FILES OF QUICKSCREEN

The following files are on your distribution diskette; similar file
types are grouped together for clarity:

File Name Description

QSCR.EXE QuickScreen executable.
SCRNCAP.EXE TSR screen-capture program.

DBLIBMOD.BAS db/LIB® support module.

DEMDBLIB.BAS Demo of db/LIB® support routines.

DEMOANY.BAS Demo which loads a screen and form.

DEMOCUST.BAS Demo of random-access and form-editing
techniques.

DEMOINV.BAS Demo containing fields with multiple-choice
array, calculated fields, and multi-line text.

DEMOOBJ.BAS Demo which displays an object-file screen.

DEMOPAGE.BAS Demo illustrating the use of a two-page form.

DISPLAY.BAS Slide-show module.

EVALUATE.BAS Double-precision equation handler.

FORMEDIT.BAS Form data entry handler.

FORMFILE.BAS Loads information from form (.FRM) files.
FORMLIB.BAS Loads information for a particular form stored
in a form library (.QFL) file.

SCRNFILE.BAS Loads and displays a QuickScreen (.SCR) file.

B 20 CRESCENT SOFTWARE, INC.

QuickScreen

INSTALLATION

File Name Description (continued)

SCRNLIB.BAS Loads and displays screens stored in a screen
library (.QSL) file.

QSCALC.BAS Used for calculated fields in a form.

SCRNDISP.BAS

QuickScreen screen display module.

NOCALC.BAS Used to ““exciude’” support for calculated
fields.
NOMULT.BAS Used to “’exclude’’ support for multiple-choice

NONOTES.BAS

fields.
Used to ““exclude’” support for notes fields.

FORMS.LIB QuickScreen assembler library file for
QuickBASIC 4.x or BASIC 6.0.

FORMS?7.LIB QuickScreen assembler library file for BASIC
PDS 7.x.

FORMS.QLB QuickScreen quick library file for QuickBASIC
4.x or BASIC 6.0.

FORMS7.0LB QuickScreen quick library file for BASIC PDS
7 .x.

* Bl BASIC Include files.

*.CMD DISPLAY command script files.

* FRM QuickScreen Form files.

* MAK QuickBASIC Make files.

*.QSL QuickScreen Library files.

Files above which start with ‘‘NO”” are used to “‘exclude’ support
for certain features serve a similar function as Microsoft’s stub
files. Swub files allow the linking process to work properly when
entire modules are referenced but when these modules are either
not desired or unavailable. Using stub files has the practical
advantage of allowing you to make your .EXE programs smaller.

CRESCENT SOFTWARE, INC. |21

INSTALLATION QuickScreen

COPYING AND BACKING UP

Before you start to use the program you should first make a copy
of the original diskette and then work with the copy. We know we
don’t have to tell you this, but reminding you could prevent a very
frustrating situation should your distribution diskette become
damaged.

B 22 CRESCENT SOFTWARE, INC.

QUICK START

QuickScreen QUICK START

QUICK START

If you are familiar with QuickBASIC and add-on libraries, you can
get started quickly by running the QuickScreen demonstration
programs. Naturally, you’ll benefit most if you also examine the
commented BASIC source code.

RUNNING THE DEMOS

QuickScreen includes five demonstration programs. You are
encouraged to both experiment with these programs and copy
statements from the demos into your own programs.

Starting with the simplest among them, the programs are:
¢ DEMOANY.BAS

This is a basic example of how to load a form definition file,
display a screen, and allow the user to perform data entry.
We've called it DEMOANY since the program can work with
any standalone screen (.SCR) and form (.FRM) file.

e DEMOOBJ.BAS

This program shows how to display a screen saved as an object
file, and shows how to assign a wipe type for the screen image.
Further, this program illustrates how DATA statements
generated by QuickScreen can be used in lieu of a form
definition (.FRM) file.

This example is particularly useful because it shows a form
which contains each QuickScreen field type.

CRESCENT SOFTWARE, INC. 27

QUICK START QuickScreen

DEMOCUST.BAS

This example provides a customer information form, and shows
how to store and retrieve information using random file
techniques. This program accesses screens and forms which
are stored in screen library (.QSL) and field library (.QFL)
files, respectively. This program also provides a technique for
clearing all fields so that a fresh form can be presented to a
user.

DEMOINV.BAS

This demonstration shows an invoice form and the special
features which make QuickScreen so powerful, such as the use
of multiple-choice, calculated, and notes fields. Examples of
advanced polling are demonstrated which report the user’s
activity on the form and make certain fields change their
characteristics based on user-defined options. Additionally, this
demo shows how a to create a moving highlight bar, so that
fields change color as you enter them.

DEMOPAGE.BAS

Demonstrates using EditForm to allow data entry on a multi-
page form.

DEMDBLIB.BAS

This demonstration of an employee information form requires
db/LIB®, a product by AJS Publishing, which allows BASIC
programmers to read and write dBASE-compatible files.

B 28 CRESCENT SOFTWARE, INC.

QuickScreen QUICK START

To run a demonstration program, you can follow these steps:

1. Change to your QuickScreen directory:
CD \QSCR

2. Start QB or QBX, and make sure to specify an
appropriate quick library, such as FORMS.QLB:

QOB /L FORMS
For BASIC 7.x, use the following:
OBX /L FORMS7

Loading the proper Quick Library furnishes the
QuickBASIC environment with required external
routines, and allows the demos to run properly.

If you own Crescent Software’s QuickPak Professional do not
attempt to Joad PRO.QLB or PROZ7.QLB as your Quick Library
since these files are too large to be used in this manner. You can
create your own, smaller, Quick Library using QuickPak
Professional’s MAKEQLB utility. Please see page 263 for more
information.

3. Select the (File) Open menu command, then choose the
demonstration you wish to run from the dialog box
which appears.

4. Once the program has been loaded into the QuickBASIC
environment, you can press < Shift> <F5> to run it.

CRESCENT SOFTWARE, INC. B 29

QUICK START QuickScreen

RUNNING THE SLIDE SHOW

A slide show has been created which serves as a product overview
for QuickScreen. We encourage you to run this presentation by
compiling the DISPLAY.BAS program using the following
commands:

BC DISPLAY /O;
BC SCRNDISP /O;
LINK DISPLAY+SCRNDISP,,,FORMS /E;

BC and LINK are supplied with QuickBASIC. The syntax above
assumes that either all files are on the current directory or that a
““SET PATH =" command is in effect. If you encounter difficulty
in using these commands it may be helpful to consult your
QuickBASIC and DOS user’s manuals.

Once successfully compiled and linked, you should have a new file
called DISPLAY.EXE. At this point you may run the presentation
by typing the following command at the DOS prompt:

DISPLAY CommandFile [/B]

DISPLAY is the name of the slide show program, while
CommandFile is the full path and file name of the script (. CMD)
file you wish to run. For the demo you may omit the
CommandFile parameter since DISPLAY will read
DISPLAY.CMD by default. Therefore, typing the following
command will be sufficient for now:

DISPLAY [/B]

The optional /B command-line switch will adjust the demo for use
on monochrome systems.

For further information on the DISPLAY utility please see
page 2589.

® 30 CRESCENT SOFTWARE, INC.

THE SCREEN DESIGNER

QuickScreen THE SCREEN DESIGNER

QuickScreen’s editor, referred to as a Screen Designer, exists as a
compiled executable program called QSCR.EXE. It is possible to
start this program immediately from the DOS prompt simply by
typing ““QSCR™’.

Once the program begins you should be able to use QuickScreen’s
intuitive interface right away. If attached to the computer, a mouse
may be used. Also, help is available by pressing <F1>.

QuickScreen’s user-interface is based on a comprehensive pulldown
menu system and dialog boxes. The menu system organizes the
major command categories as menu titles and pulldown commands.
Dialog boxes query the user for additional information before
certain commands are performed.

THE PULLDOWN MENU SYSTEM

EICN Library Edit View Settings ' Compose-Ficlds

) to view the menu choices.
New Screen
1
Save as Screen File...

Inport Text File...

Export Screen as Text...

ioad: Ob ject File...

Save as Dbject File...
Screen Design Module

@s Shell

EZit

Uersion 3.10 —bg Donald R. Malin

Copyright (c) Crescent Software 1967-1991
Clears the current screen and displays a new blank screen for editing.

I Figure 3: The Pulldown Menu System I

CRESCENT SOFTWARE, INC. B 35

THE SCREEN DESIGNER QuickScreen

Figure 3 depicts QuickScreen’s introductory display with an active
menu system. The menu system is said to be active whenever the
menu bar is visible. On the first line of the screen appears the
menu bar, and under each menu bar option there is a unique
pulldown menu. Most major commands in QuickScreen are
available by accessing this menu system, or by using shortcut keys
which execute a command in one keystroke when the menu system
is not active. These shortcut keys will be discussed, but for now
it may be useful to know that they appear on Help screens and to
the right of certain commands in a pulldown menu.

Menu System Contents

Table II summarizes the pulldown menu features. These features
are fully-explored beginning on page 43.

Although it appears on the menu bar, Help has no corresponding
pulldown menu. Instead, help may be obtained by selecting the
Help menu and pressing < Enter> when the menu bar is active,
or by pressing <F1> when the menu bar is inactive.

Using The Menu System

The menu system reflects a user-interface with which you are most
likely already familiar. Very much like QuickBASIC’s own menu
system, QuickScreen’s menus may be used with the keyboard or
mouse. For this reason, and for the convenience of users not
owning a mouse, these discussions are presented separately below.

E 36 CRESCENT SOFTWARE, INC.

QuickScreen THE SCREEN DESIGNER

Menu Name Pulldown Menu Command Features

File Specifies load and save options in a
variety of formats, executes a DOS
shell, and exits QuickScreen.

Library Manages QuickScreen libraries by
providing display, open, and save
operations, as well as commands for
adding screens to or replacing screens
in a library.

Edit Controls color, draws boxes and lines,
fills regions of the screen, manipulates
blocks of text, centers text, and
repeats the last key pressed.

View Accesses an ASCII character chart or
ruler line, and allows screens to be
viewed as they would appear on a
monochrome monitor.

Settings Sets the default paint color, toggles
blinking, specifies line border char-
acters, selects the number of lines on
the display, and toggles the error beep.

Compose-Fields Defines, rearranges, and prints data
field definitions.

l Table ll: Summary of Menu Commands]

Keyboard

The keyboard interface to the menu system is very extensive. In
general, the direction keys are used to select a menu and a
pulldown command. Once a command is chosen, <Enter> is
pressed to execute it, or <Esc> is pressed to abandon the choice.
Although it is common to rapidly develop a ““feel’’ for the menu
system, the summary in Table IIl may assist you in learning even
faster. Please notice that some keys have more than one function.

CRESCENT SOFTWARE, INC. B 37

THE SCREEN DESIGNER QuickScreen

When QuickScreen begins it presents the File pulldown menu
depicted in Figure 3. At this point you may scan across the menu
bar by using the <Left> and <Right> direction keys. Once the
desired menu (such as File) is selected, you may press the <Up>
and <Down> keys until the desired command (such as New) is
highlighted. To execute the command simply press <Enter>, or
press <Alt> plus a highlighted letter corresponding to the
command of your choice.

Once the screen editor is in use, the menu system is deactivated
and the menu bar will no longer be visible at the top of the screen.
At this point you may activate it by pressing <Alt>, which will
show the menu bar, or by pressing <Esc>, which will show the
last pulldown menu used. Alternatively, you may access a
particular pulldown menu by pressing <Alt> plus the first letter
of the desired menu name. For example, to access the File
pulldown menu, press <Alt-F>.

B Mouse

When pressed, the right mouse button toggles the menu bar on and
off the screen. Once the menu bar is displayed, you may move the
mouse cursor over a menu item and press the left mouse button.
To choose a pulldown menu command, simply move the mouse
cursor over the desired option and click the left mouse button.

Some users may find that ‘‘dragging’’ the mouse produces better
results: you may move the mouse cursor over the desired menu
bar title and press and hold down the left mouse button. You may
then select different pulldown menu commands simply by moving
the mouse cursor along the pulldown menu. If the mouse button
is released while the mouse cursor is over a command, then the
command selected will be executed. You may also drag the mouse
cursor along the menu bar to view other pulldown menus before
making a selection.

E 38 CRESCENT SOFTWARE, INC.

QuickScreen THE SCREEN DESIGNER

Key(s) Action on Menu System

<Esc> Toggles the appearance of the menu bar;
cancels a command which has been
selected.

<Alt> Toggles the appearance of the menu bar;
highlights menu hotkeys.

<Alt-char> Generates the pulldown menu of the menu

bar option starting with the character
pressed; executes a command having the
hotkey of the character pressed.

char When a pulldown menu is displayed,
pressing a character accesses and executes
the pulldown menu command having the
same highlighted letter as the character
pressed.

<Right/Left> Selects menu options on the menu bar.

<Up/Down> Selects commands in a pulidown menu.

<Enter> Generates the pulldown menu of the menu
bar option selected; executes the pulldown
command selected.

l Table lll: Menu System Keyboard Interface Summary

If you do not wish to choose a command after you have activated
the menu system simply move the mouse cursor away from the
menu system and either click or release the left mouse button.

B General Comments

Some pulldown menu commands are black while others are gray.
The black commands are active; the gray commands are inactive
and will produce no effect if selected. Once a screen is loaded into
the QuickScreen editor many of the inactive choices will become
active. For example, in the (File) Save as Screen File command
will not be active until a screen has been created or loaded.

CRESCENT SOFTWARE, INC. B 39

THE SCREEN DESIGNER QuickScreen

DIALOG BOXES

A pulldown menu choice followed by ellipses usually generates a
dialog box. Dialog boxes provide an effective way to gather
information from the user by making it easy to enter information
or to select options.

Figure 4 depicts the Open File dialog box and highlights three
major dialog box input elements: the zext box, list box, and
command burtons. The text box accepts a string of characters from
the keyboard and allows the entry of a path and file name. The list
box presents items in a columnar list and above it shows available
files matching the wildcard specification shown in the text box.
List boxes may hold many items, and their contents may be
scrolled by using the direction keys. The command buttons carry
out the designated command when chosen. Thus, pressing
<Alt-C> using the example in Figure 4 cancels the dialog box.

What follows is a brief summary of the keyboard and mouse
interface to QuickScreen’s dialog box input elements.

B Keyboard

When a dialog box is first presented the cursor will rest on a
particular input element. This cursor, or inpur focus, may be
moved to the next input element by pressing <Tab>, or to the
previous input element by pressing < Shift> <Tab>. The input
focus may also be directed to a particular input element by pressing
<Alt> plus a first letter of a dialog input element label.

Aside from these general directions, there are more specific ways
of using each dialog box input element with the keyboard:

B 40 CRESCENT SOFTWARE, INC.

QuickScreen THE SCREEN DESIGNER

e Text box

The text box accepts text which is typed by the user and it asks
for specific information. When text is selected the entire string
shown will be cleared when you begin typing. If you wish to
edit the string without clearing it then use the direction keys
before typing.

Open File

File Mane: []s:\nscnx-.scn_l

-A-1 inupice.scr
[-B-1
[-C-1
[-D-1
[-E-1
[~-F-1

aboutcs.scr
alltypes.scr

enployee.scr

[Figure 4: The Open File Dialog Box

¢ List box

List box items are selected with the direction keys. When the
desired item is selected you may press < Enter> to accept it.

¢ Check box

The check box is toggled by pressing the space bar.

CRESCENT SOFTWARE, INC. B 4]

THE SCREEN DESIGNER QuickScreen

Command button

You may execute the highlighted command button at any time
by pressing <Enter>. You may also <Tab> to a particular
command button and press <Space> or <Enter>. Further,
pressing < Alt> plus the first character of a command button
will also execute it.

Mouse

If you have a mouse you may access dialog input elements by
clicking on the desired element. More detailed instructions are
summarized below.

Text box

The mouse is not useful for entering information into a text
box. You may, however, direct the input focus to a text box by
clicking on it.

List box

A list box item may be selected by double-clicking on it.
““Double-clicking’” refers to pressing the left mouse button
twice in rapid succession. If a list box has more information,
its contents may be scrolled by clicking the mouse on a border.
Check box

The check box is toggled by clicking it with the mouse.

Command button

You may execute a command button by clicking it with the
mouse.

B 42 CRESCENT SOFTWARE, INC.

QuickScreen THE SCREEN DESIGNER

MENU ITEM INFORMATION

The purpose of this section is to present an overview of the menu
system commands. Menu bar options are organized into
subsections; corresponding pulldown commands are listed next to
round bullets. The underlined letter in commands discussed below
represents the hotkey for the command; these hotkeys appear on-
screen as bright letters, and they allow immediate access to an item
merely by pressing the highlighted key. Finally, pulldown menu
choices followed by ellipses usually present a dialog box for further
input.

This section attempts to be exhaustive. Further explanation,
however, may be encountered when a particular command is
discussed later in the manual.

o
File Menu

The File menu allows you to load and save screens in a variety of
formats. These formats include a compressed QuickScreen file,
and an object file which may be linked to a QuickBASIC program
and combined in a final .EXE file. Screens may also be stored in
a QuickScreen Library. The File menu also allows you to execute
a DOS shell; and to exit QuickScreen. -

e New Screen

This option is used when you wish to design a new screen from
scratch. If a screen is currently being edited and has been
altered since last saved, then QuickScreen will prompt you to
save before continuing. Once the screen is successfully saved
a clear screen with a black background will appear.

CRESCENT SOFTWARE, INC. B 43

THE SCREEN DESIGNER QuickScreen

B4IDN Livrary Edit Viev Settings . Compose-Fields Fi=Help

~ue as Screen

port Text File...
Uxport Screen as Yext...

lond Object File...
Save as 03ject File...

Clears the current screen and displays a ncw blank screen for editing.

I Figure 5: The File Menu]

¢ Open Screen File...

This selection is used to retrieve a screen which has already
been designed and resides on disk. The default extension for
QuickScreen screens in the file selection dialog box is .SCR,
but this may be changed. Any screen which had been saved
using the QuickScreen (File) Save as Screen File... command,
BSAVE, or QBase, may be retrieved using this option.
Further, any special wipes which were specified when the
screen was saved will take effect when screen is displayed.

Crescent Software’s QBase screens and associated data fields,
as well as BSAVEd screens, are automatically converted as they
are retrieved into QuickScreen. When these screens are
subsequently saved by QuickScreen, they will be in a new format
and will not be readable without using QuickScreen-specific load
processes.

B 44 CRESCENT SOFTWARE, INC.

QuickScreen THE SCREEN DESIGNER

Save as Screen File...

This option saves the screen currently being edited, and creates
a QuickScreen file with the default extension .SCR. If you are
saving a form, two check boxes appear in the Save dialog box.
The first, Save TYPE Structure, creates a .BI file which stores
a single BASIC TYPE declaration which encompasses all fields
in the form. The second check box, Save Fields To DATA,
creates a .DTA file which has BASIC DATA statements
describing all attributes for each field.

When saving, you will also be given the opportunity to
specify how the screen is to be displayed using one of the
wipe types discussed on page 93.

Import Text File...

This option is active only when a screen is being used. You
may retrieve an ASCII text file from disk and incorporate it into
the current screen at the position of the cursor. The maximum
number of lines which may be imported in this manner is the
same number corresponding to the lines available in the current
screen mode. Thus, for a 43-line EGA display only the first 43
lines of the ASCII file will be retrieved. Therefore, this feature
is useful for single-screen text files only. Once the text is
retrieved it is treated like any other text in the editor.

Load Object File...

This selection allows QuickScreen object-saved screens to be
retrieved for editing. Any special wipes which were specified
when the screen was saved will take effect when screen is
displayed.

CRESCENT SOFTWARE, INC. B 45

THE SCREEN DESIGNER QuickScreen

Save as Object File...

This option saves a QuickScreen screen as a binary object file
which may later be linked to a QuickBASIC program and
combined in a final .EXE file. During the save process you
will be asked to specify the wipe type which should be used
when the screen is later displayed.

DOS Shell

This option executes a second copy of COMMAND.COM and
thus allows you to perform DOS functions while QuickScreen
remains fully in memory. In order for this feature to work
properly the file COMMAND.COM should reside on the root
directory of the C: drive, or on the A: drive for systems
without a fixed disk. You may specify where the
COMMAND.COM file resides by using the COMSPEC
command in your AUTOEXEC.BAT file. For example, if
COMMAND.COM is on C:\DOS you may place the following
command in the AUTOEXEC.BAT file:

COMSPEC=C : \DOS

As always, if you change AUTOEXEC.BAT you must either
run it or reboot your computer in order for the change to take
effect.

Exit

Exit will end your session with QuickScreen. If the editor
contains a screen which has been changed since the last save,
then QuickScreen will prompt you to save the screen before
exiting.

B 46 CRESCENT SOFTWARE, INC.

QuickScreen THE SCREEN DESIGNER

Library Menu

A library file is a single file which contains one or more screens.
Compression techniques are used so that many screens may be
stored using the least disk space. The Library menu allows a
library file to be managed by providing open, save, and display
options, as well as commands for adding screens to or replacing
screens in the library currently loaded.

e Display Screen... or <F2>
This option presents a dialog box of all screens in the currently-

loaded library. The dialog box allows you to select a screen to
be displayed or deleted from the library.

File IEDITNTE Edit View Settings ' Compose-Ficlds Fi=Help

Display Screen Y

Sreate Meu Library...
len Library...

Add Screen to Library
Replace Screen in Library...

Displays an-individual screen from the currently loaded screen library.

I Figure 6: The Library Menu |

CRESCENT SOFTWARE, INC. @ 47

THE SCREEN DESIGNER QuickScreen

e (Create New Library...

This option creates a new library as a filename with a .QSL
extension. The file created will then be used as the active li-
brary for subsequent library commands until a new library is
specified.

e Load Library...

Loads a previously-stored library and makes available to
QuickScreen all the screens it contains. If a library is currently
active and has changed since last saved, then you will be asked
to save it before continuing.

e Save Library...

This option stores the library file to disk. It creates a .QSL
screen library file, and, if forms are present, creates a .QFL
form library file as well.

e Add Screen to Library...

This command adds the screen currently being edited to the
library. If the screen already exists in the library you must use
the (Library) Replace Screen in Library... command,
explained next. If the screen is also a form, you will encounter
the Save TYPE Structure and Save Fields To DATA check box
options (see the (File) Save as Screen File... command for a
discussion).

B 43 CRESCENT SOFTWARE, INC.

QuickScreen THE SCREEN DESIGNER

® Replace Screen in Library...

This option allows the contents of an existing library screen to
be replaced with the screen currently being edited. The name
of the screen remains the same. If the screen is also a form,
you will encounter the Save TYPE Structure and Save Fields To
DATA check box options (see the (File) Save as Screen File...
command for further discussion).

Lo Y

Edit Menu

The Edit menu allows rectangular areas of text, also called blocks,
to be colored, moved, cleared, and copied. Some of these"
operations allow text to be transferred to and from a reserved area
of memory referred to as the clipboard. Further, options are
included for replacing existing screen attributes, drawing boxes and
lines, and for repeating the last key typed. Methods for setting the
painting colors, box- and line-drawing line types are discussed
under the Settings menu.

e Paint Block or < Ctrl-P>

Changes the color of all characters in the currently-selected
block of text to the current paint color (specified in the Settings
menu). If no block is highlighted then the screen is painted as
the cursor is moved.

¢ Replace Color...

This option displays two color charts. The first requires you to
select the color you wish to replace. The second requires that
you select the color to be used for replacement. QuickScreen
will then substitute the designated color with the new color on
either the currently-selected block or on the entire screen if no
block is defined.

CRESCENT SOFTWARE, INC. @ 49

THE SCREEN DESIGNER QuickScreen

File Library JI8LF Vievw Scttings Compose-Fields Fi=Help

Paint Block
ljeplace Color...

?:x Draving Ctrled

\kine Drawving Ctrled
i§ill Character Ctrlef

Cxt Block Shiftsdel

Copy Block Ctrl Ins
Paste Block ShiftsIns
Hove Block Ctrlef
Clear Del

Celter Line/Block FS
Repeat Last Jey CtrleR

Paints a selected block-using ‘the :current color, or paints as:the:cursor noves:

| Figure 7: The Edit Menu I

Box Drawing or <Ctrl-B>

This option toggles the operation of box drawing. When this
command is chosen the current cursor position becomes the
upper-left corner of a box. The arrow keys may then be used
to adjust the opposing corner. If a block of text is currently
selected, then choosing the Box Drawing command will draw
a box the same size as the selected block.

Line Drawing or <Ctrl-D>

This command toggles the operation of line drawing. Lines are
drawn by using the direction keys. Correct intersection
characters will be added by QuickScreen whenever lines overlap
one another.

B 50 CRESCENT SOFTWARE, INC.

QuickScreen THE SCREEN DESIGNER

Fill Character or < Ctrl-F>

A fill character is used to replace every character in a block
whenever this command is chosen. If a block already is defined
then characters will be filled within the borders of that block;
otherwise text is filled as the cursor is moved and until
<Enter > is pressed.

This option displays an ASCII character chart which allows you
to select a character to be used as the fill character.

Cut Block or < Shift> <Delete>

This command ““cuts’ the currently-selected block of text by
removing it from the screen and placing it into the clipboard.
This operation will properly “‘cut’ field information into the
clipboard, which makes it possible to quickly erase fields from
one location and transfer them to a new one using the (Edit)
Paste Block operation.

Copy Block or < Ctrl> <Insert>

This command copies the currently-selected block of text into
the clipboard without disturbing the screen. The clipboard
contents can then be “‘pasted’” anywhere on the screen using the
next command. Like the (Edit) Cut Block command, this
operation will handle fields which are in a selected block of
text.

Paste Block or < Shift> < Insert>

This command ‘‘pastes’ the information contained on the
clipboard at the current cursor position and places the editor in
block-move mode. Once the block has been properly positioned
using the direction keys you may press <Enter> to actually
make it a part of the screen. If <Esc> is pressed then the
pasted block will be removed without disturbing the contents of

CRESCENT SOFTWARE, INC. . @5]

THE SCREEN DESIGNER QuickScreen

the screen. All paste operations transfer the clipboard contents
(and any including field information) to the screen, and paste
operations may be performed repeatedly without needing to
refresh the clipboard contents.

e Move Block

This option allows a selected block of text to be moved using
the direction keys. The <Tab> and <Shift> <Tab> keys
are also active.

e (lear or <Delete>

This command clears the currently-selected block of text. This
option does not transfer any information to the clipboard and,
therefore, should be used with care.

e Repeat Last Key or <Ctrl-R>

This command repeats the last character entered. This is useful
for repeatedly entering non-keyboard characters, such as the
graphics characters available as part of the extended ASCII
character set. This command may also minimize repeated
access of the ASCII character chart (in the View menu).

View Menu

The View menu displays an ASCII character chart, ruler line, and
allows color screens to be viewed as they would appear on a
variety of monochrome scenarios. This lets you ensure that your
chosen color combinations will be visible on monochrome systems.

| 52 CRESCENT SOFTWARE, INC.

QuickScreen THE SCREEN DESIGNER

e ASCIH Chart or <Ctrl-A>

This command generates an ASCII character chart. A character
S is selected using the direction keys, and then chosen by pressing
<Enter>.

File' Library Edit [FTH Scttings Compose-Ficlds

Monochrone - Via “FisplayScen’
Monochrone - Ttandard Mono Card

Monochrone - E%ollono Monitor

o Displays an ASCIT chart from which any character can-be pasted to the screen.

—

Figure 8: The View Menu —l

e Ruler Line or <F4>
This option displays the current cursor position in terms of x-
and y-coordinates, and reports the decimal values of both the
color and character under the cursor.

® Monochrome - Via DisplayScrn

This option displays the screen as it would appear on a
monochrome screen using the DisplayScrn subprogram.

CRESCENT SOFTWARE, INC. | 53

THE SCREEN DESIGNER QuickScreen

Monochrome - Standard Mono Card

This option displays the screen as it would appear on a display
which uses a standard monochrome card.

Monochrome - CGA +Mono Monitor
This option displays the screen as it would appear on a

monochrome screen attached to a CGA (Color Graphics
Adapter).

Settings Menu

The Settings menu allows global settings to be changed. You may
specify the default painting color, whether painted characters are to
blink, drawing line types, the screen size, and whether the error
beep is audible.

Painting Color...

This command displays a color chart which lets you select the
color to be used for subsequent paint operations.

Blinking Off

This option is toggled whenever selected. When blinking is on,
painted text will flash on and off; when off, painted text will
not flash.

B 54 CRESCENT SOFTWARE, INC.

QuickScreen THE SCREEN DESIGNER

File Library Edit View EEXXILITH Compose-Fields FiczHelp

Painting Color... CtrlsC
0f
ing Surrent Color

4 ‘Beep on Srrors

Displays a color chart for selection of the current painting color.

Figure 9: The Settings Menu j

¢ Draw Using Current Color

A check mark appears next to this option when it is active,
where it causes all boxes, lines and text to be drawn using the
current painting color. If this option is not active, then the
colors already on the screen are used.

® Drawing Line Types...

This option specifies border characters for boxes, and the
character used for line draw. It is unique because it presents a
new menu bar which contains options for the left, right, top,
and bottom borders. You may then specify particular border
characters to be used, or you can set all four border characters
to the same character by using the All menu option.

CRESCENT SOFTWARE, INC. ' 55

THE SCREEN DESIGNER QuickScreen

e 25 Line Mode

This command switches the current screen mode to display 25
borizontal lines.

e 43 Line Mode (displayed only for compatible hardware)

Supported in EGA/VGA only, this option switches the current
screen mode to display 43 horizontal lines.

e 50 Line Mode (displayed only for compatible hardware)

Supported in VGA only, this option switches the current screen
mode to display 50 horizontal lines.

e Beep on Errors

This option toggles the operation of the error beep. When on,
this option will cause QuickScreen error messages to be
accompanied by an audible beep. A check mark will appear on
the left of this option when the error bell is enabled.

B 56 CRESCENT SOFTWARE, INC.

QuickScreen THE SCREEN DESIGNER

File 'Library Edit Uiew Settings [i) Fl=Help

Define Data Ficlds...

gaint when Defined...

Rearrange Data Fields...
Print Field Definitions

Iry Data Entry in Fors

Allows data entry ficlds to be:defined on the current screen.

I Figure 10: The Compose-Fields Menu I

Rl

Compose-Fields Menu

QuickScreen has the ability to manage a large group of pre-defined
fields. This feature allows data entry screens to be quickly and
easily developed. '

® Define Data Fields...

This command defines fields to be added to the current screen
thereby creating what ultimately is to be a form. Each field
may be defined to accept very specific information. For
example strings, numbers, or dates.

CRESCENT SOFTWARE, INC. @ 57

THE SCREEN DESIGNER QuickScreen

e Paint when Defined

When checked, this option uses the current color to paint each
entry fields as they are defined. If unchecked, fields become
the color of the screen area over which they are placed.

e Rearrange Data Fields...

This selection allows previously-defined data fields to be either
moved from their current tab-order or deleted from the form.

¢ Print Field Definitions...

This option creates a hardcopy of all field definitions for the
current form and thus serves as a handy documentation utility.
This printout information is sent to the device at LPT1:.

¢ Try Data Entry in Form

The QuickScreen editor allows you to test how a form will
operate when run from QuickBASIC. After choosing this
command, the QuickScreen environment will allow you to enter
data in any field of the form. When you have finished, simply
press <Esc> in order to return to the editing mode.

FIELDS

QuickScreen has the powerful ability to create fields which gather
user input when a screen is used from QuickBASIC. A screen with
field definitions is called a form. When using forms from
QuickBASIC, field information may be passed to and from a
calling program.

In order to understand the use of fields in QuickScreen we first
present to you the many field types available. Next, the Field

= 58 CRESCENT SOFTWARE, INC.

QuickScreen THE SCREEN DESIGNER

Settings dialog box is discussed, since each field may be
customized to a certain extent. The next section discusses the
power in using numeric formulas. And last, the entire process of
defining fields is considered.

Field Types

The field type describes the data which is to be entered at a
particular field. For example, there is a Social Security Number
field type which accepts numerical information only in the form
##E-#4-####. QuickScreen contains built-in logic for each field
type, making additional formatting or syntax-checking by the
calling program unnecessary.

Certain field types are fixed-length and generate mask characters.
These are simply characters, such as the dashes in a social security
number, that help to format a field on the screen. QuickScreen
inserts mask characters for you and skips over them when the field
is being used in a form.

What follows is a description for each field type available in
QuickScreen.

e String
Alphanumeric characters, both upper- and lower-case, are
accepted. This field is useful for collecting any general single-
line string information.

e Proper String
Alphanumeric characters are accepted, and the first letter in

each word is automatically capitalized during data entry. This
field is useful for names and addresses.

CRESCENT SOFTWARE, INC. B 59

THE SCREEN DESIGNER QuickScreen

e Upper Case String
Alphanumeric characters are accepted, and all characters are
automatically converted to upper-case during data entry. This
field is useful for abbreviations and part numbers.

e Numeric

Numeric characters are accepted, but are treated as a string.
This field is useful for telephone numbers and zip codes.

e Multi Line Text

Several lines of alphanumeric characters are accepted. This
field is ideal for notes.

e Logical
A pre-defined “‘true’” or ‘“false’’ character is accepted. This
field is therefore useful for ‘‘yes/no’ or ‘‘check/uncheck’
fields.

* Integer
An integer number in the default range -32768 to 32767 is
accepted. This field is useful for entering an integer value such
as the quantity of items in a sale.

e Long Integer
A long-integer number in the default range -2,147,483,648 to

2,147,483,647 is accepted. This field is useful for entering a
very large integer number.

B 60 CRESCENT SOFTWARE, INC.

QuickScreen THE SCREEN DESIGNER

Single Precision
A single-precision npumber in the default range

+3.402823 E+38 to +1.401298 E-45 is accepted. This
field is useful for general decimal numbers.

Double Precision

A double-precision number in the default range +1.7976931
D+308 to +4.940656 D-324 is accepted.

Currency

An amount of money in the double-precision range is accepted.
The currency symbol for the field may be defined so that
dollars, yen, or other currencies may be used.

Date MM-DD-YYYY

A date in the default range 01-01-1900 to 01-01-2065 and in the
American format (MM-DD-YYYY) is accepted. The dash
(“*-”") mask character is added automatically.

Date DD-MM-YYYY

A date in the default range 01-01-1900 to 01-01-2065 and in the
European format (DD-MM-YYYY) is accepted. The dash
(““-””) mask character is added automatically.

Phone Number

A phone number in the form (###) ###-#### is accepted. The
parentheses and dash mask characters are added automatically.

CRESCENT SOFTWARE, INC. B 61

THE SCREEN DESIGNER QuickScreen

e Zip Code

A zip code in the form #####-#### is accepted. The dash mask
character is added automatically.

e Social Security Number

A social security number in the form ###-##-#### is accepted.
The dash mask characters are added automatically.

e Relational

Allows you to specify what file and which field in that file is to
be used for the current field. Although QuickScreen does not
process these fields automatically, relational fields allow a
calling program to access data in other form files.

e Multiple-Choice Array

Presents a vertical menu of choices. This menu is defined in a
string array by the calling program and is generated whenever
this field is accessed.

e Command Button

Command buttons return a single user-defined key code
whenever they are selected in a form. Common example
command buttons are ““OK’ and “‘Cancel”’, which typically
return the key codes for <Enter> and <Esc>, respectively.
Although the button fields may show any words and return any
keycode you choose, they always return a single value.

A command button is activated by clicking on it with a
mouse, moving the text cursor to it and pressing < Enter >,
or pressing the key which has been assigned to it.

B 62 CRESCENT SOFTWARE, INC.

QuickScreen THE SCREEN DESIGNER

Command buttons are the only fields in QuickScreen which do
not have any data and thus do not occupy space in a data file.

Table IV presents a summary of QuickScreen’s nineteen field
types. The field type names appear in the Field Types dialog box,
and are encountered when defining fields using the steps outlined
on page 101.

i R R

Field Settings

Each field has a group of user-assigned attributes collectively called
Field Sertings. These attributes are set using dialog boxes, one of
which is depicted below.

Figure 11, page 66, shows an example Field Settings dialog box
which is generated for the String field type. It is important to
realize that certain fields will generate dialog boxes containing
slightly different options. For example, the Integer field type
dialog box queries for a range of numbers which are to be
accepted.

The following pages present an alphabetized list of input elements
which are encountered for the Field Sertings dialog box.

CRESCENT SOFTWARE, INC. = 63

THE SCREEN DESIGNER

QuickScreen

STRING
String
Proper String

Upper Case String

Numeric
Multi Line Text

NUMERIC
Integer
Long Integers
Single Precision
Double Precision
Currency
GENERAL

t Logic
t Date {American)

1t Date (European)

t Phone Number
1t Zip Code
t Social Security No.

Alphanumeric characters.
Alphanumeric characters; the first
letter in each word will be
Capitalized.

Alphanumeric characters; each
alphabetic character will be
unconditionally capitalized.
Numeric characters only.
Alphanumeric characters; several
lines of text may be entered and
edited.

-32768 t0 32767
-2,147,483,648 to
2,147,483,647
+3.402823 E+38 to
+1.401298 E-45
+1.7976931 D+308 to
+4.940656 D-324
+1.79763831 D+308 to
+4.940656 D-324

A ““true’’ or “‘false’” character.
MM-DD-YYYY

(MM: month; DD: day; YYYY:
year)

01-01-1900 to 01-01-2065
DD-MM-YYYY

01-01-1900 to 01-01-2065
(REH#H) #RER-FERH

HEREZH-HREH

REH-HH-HERH

Table IV: Available Field Types

Fields designated with a dagger ““t”" generate mask characters.

B 64

CRESCENT SOFTWARE, INC.

QuickScreen THE SCREEN DESIGNER

SPECIAL

Relational Relates current field to a field in
another file.

Multiple Choice Array Presents a vertical menu of
choices.

Command Button Returns a preassigned keycode in
Frm.Keycode.

[Table IV (continued): Available Field Types

e Currency Symbol

The symbol to be used when displaying currency values, such
as “‘$>” for dollars or ““¥” for Yen.

® Decimal Places
Number of digits to be displayed after the decimal point. The
value of the number presented will be rounded based on the
internal decimal representation.

e “‘False’ Character

The character to be accepted as ““false” in a logical field. The
space bar will toggle ““false” and “‘true’” characters.

¢ Field Name

A unique name, up to eight-characters in length, for the current
field. This name may be used as a variable or a string, and can
appear in field formula calculations.

CRESCENT SOFTWARE, INC. B 65

THE SCREEN DESIGNER QuickScreen

icld 8 1 Settings

Protected Field
Indexed Picld

Help Message: |
Type any alphanumeric characters. I

| ﬁl I I Cance I I

Figure 10: The Compose-Fields Menu

Realize that a constant, function, or operator name such as
“ARCSIN” represents a reserved word and should not be used as
a field name unless it will not be used in calculated fields.

e Formula

Formulas are considered to be string formulas if the example
presented atop the Formula text box is:

FRSTNAME + ™ " + LASTNAME

Formulas are considered to be numeric formulas and define
calculated fields, if the example presented atop the Formula text
box is:

QUANTITY * UNITCOST + 1.3

While string formulas are limited to string concatenation, numeric
formulas may use a variety of functions, constants, and
operators. Please see the next section called Numeric Formulas
for more detail.

B 66 CRESCENT SOFTWARE, INC.

QuickScreen THE SCREEN DESIGNER

Help Message

The text specified in the Help Message text box represents
field-sensitive help which is presented as a window on a form
when <F1> is pressed.

Indexed Field

This input element should be checked if the current field is to
be indexed.

Indexed fields are not processed by QuickScreen, however this
information can be used by the calling program to determine
which fields in a form are to be indexed.

No Formatting

This input element should be checked if a number is to be
displayed as it was entered by the user. If this option remains
unchecked, then numbers are right-justified.

Protected Field

This input element should be checked if the current field is to
be protected from being modified by the user. In effect, the
field will be a ““display-only” field.

Range

Specifies the upper and lower limits for numeric input, or the

date range for date input between which entered values must fall
before being accepted in a form.

CRESCENT SOFTWARE, INC. a 67

THE SCREEN DESIGNER QuickScreen

Relational Field

This option allows you to specify a file and field name for a
relational field. A calling program may use this information to
form a relational link to data in another file on disk.

Relational fields are not processed by QuickScreen, however the
related file name and the related field number are available to the
calling program. See the discussion of the Fieldinfo TYPE on
page 118 for further information.

““True’’ Character

The character to be accepted as ““true’ in a logical field. The
space bar will toggle between ‘‘true’” and ‘‘false’” characters
during operation.

User Data

This field holds eight characters, and can be used for any
purpose whatsoever. For example, you could store a flag here
which would later be accessed by your own programs. Such a
flag could tell whether the field has some type of security
feature installed — such as requiring a password. The field
could also hold the password itself! You could also use this
field to hold a number which points to information contained in
a secondary file. This would make comprehensive on-line help
possible by calculating the number as an offset into a large help
file.

B 68 CRESCENT SOFTWARE, INC.

QuickScreen THE SCREEN DESIGNER

%
Numeric Formulas

For a numeric formula you may use the same syntax you would
normally use in BASIC. For example, you may calculate the total
price for an item which costs PURCHASE dollars and is taxed at
6% as follows:

PURCHASE + (PURCHASE * .06)

Notice that parentheses may be used to group parts of a formula to
develop a mathematical hierarchy. Although this is a very simple
example, the formula can use a variety of constants, functions, and
special operators. These are summarized below:

¢ Constants
A few constants may be used in a formula expression. The
field constants available are summarized in Table VII.

e Functions
QuickScreen supports many functions available in BASIC as
well as several that are not. The available functions are
summarized below in Table VI.

e Math Operators

Table VIII presents the QuickScreen math operators which may
be used just like BASICs.

e Relational Operators
Relational operators, presented in Table IX, compare numerical

values. When true, the formula expression evaluates to -1;
when false the result is 0.

CRESCENT SOFTWARE, INC. B 69

THE SCREEN DESIGNER QuickScreen

Name

ARCSINH
ASCCOSH
ARCTANH
ARCSECH
ARCCSCH
ARCCOTH
ARCSIN
ARCCOS
ARCSEC
ARCCSC
ARCCOT
SiNH
TANH
SECH
CSCH
COTH
Csc
coT

SEC

SIN

Ccos
TAN
ATN

LOG

EXP

SOR

CLG

!

ABS

Value

Inverse Hyperbolic Sine
Inverse Hyperbolic Cosine
Inverse Hyperbolic Tangent
Inverse Hyperbolic Secant
Inverse Hyperbolic Cosecant
inverse Hyperbolic Cotangent
Inverse Sine

Inverse Caosine

Inverse Secant

Inverse Cosecant

Inverse Cotangent
Hyperbolic Sine

Hyperbolic Tangent
Hyperbolic Secant
Hyperbolic Cosecant
Hyperbolic Cotangent
Cosecant

Cotangent

Secant

Sine

Cosine

Tangent

Inverse Tangent

Natural Log

Exponent

Square Root

Common Log

Factorial

Absolute Value

Table VI: QuickScreen Field Functions j

2 70

CRESCENT SOFTWARE, INC.

QuickScreen THE SCREEN DESIGNER

Name Value
PI 3.14159265358979323846
o E 2.718281828459045
[Table VII: QuickScreen Field Constants

® Boolean (Logical) Operators

You may use Boolean operators in a numerical formula to
evaluate expressions to true, which is -1, or false, which is 0.
Table X below summarizes QuickScreen’s Boolean operators.

Operator Purpose

- Power

* Muiltiplication

/ Division

\ Integer Division
MOD Modulo

+ Addition

- Subtraction

L Table VIll: QuickScreen Field Math Operators

CRESCENT SOFTWARE, INC. B 71

THE SCREEN DESIGNER QuickScreen

Operator Purpose

= Equal

> Greater than
< Less than

Table IX: QuickScreen Field Relational Operators

Boolean Operators

AND
NOT
OR

Table X: QuickScreen field Boolean Operators

B 72 CRESCENT SOFTWARE, INC.

CREATING TITLE SCREENS

QuickScreen CREATING TITLE SCREENS

QuickScreen’s editing features make it very easy to create screens
and embellish them with character graphics and color. There are
three main components to the QuickScreen editor: the environment
settings, editing tools, and form data entry fields.

The following sections will refer to pulldown menus in terms of
the commands available on them. It may be necessary to turn to
page 43 if more detail is needed about a specific command.

THE ENVIRONMENT SETTINGS

The QuickScreen environment settings refer to global features
which may be controlled. These options are:

Line & box draw characters
Paint color

Blinking

Screen size

Error beep

Line & Box Draw Characters

Whenever you draw lines or boxes in the QuickScreen editor you
will be accessing a defined set of border characters. These
characters may be modified by using the (Edit) Drawing Line
Types... command. When this command is executed you may
select a specific character to be used for the each side of the box.

Line drawing accesses only the character defined as the left
border character in the (Editj Drawing Line Types command.

CRESCENT SOFTWARE, INC. m 77

CREATING TITLE SCREENS QuickScreen

Paint Color

A default paint color is defined by using the (Settings) Painting
Color command.

Blinking

Blinking causes foreground text to flash on and off. Blinking is
toggled using the (Settings) Blinking On/Off command. When
blinking is on, any subsequent paint operations will cause the
selected foreground characters to blink. Similarly, when blinking
is off, any painted foreground characters will cease to blink.

Screen Size

The number of lines on the display may be changed, depending on
your video hardware, by accessing the (Settings) Line Mode
command.

Error Beep

When QuickScreen generates an error message it can also generate
an accompanying error beep. This error beep may be toggled on
or off using the (Settings) Beep on Errors command. If on, a
beep will be sounded with all error messages. If off, no beep will
be generated by QuickScreen.

| 78 CRESCENT SOFTWARE, INC.

QuickScreen CREATING TITLE SCREENS

GENERAL EDITING

Once the environment settings are considered you may begin to
design a screen. QuickScreen’s editor provides many useful editing
tools:

Ruler Line

Block Operations
Box Drawing
Line Drawing
Painting
Character Editing
Line Editing

i i
Ruler Line

If the (View) Ruler Line command is used, or <F4> is pressed,
then a ruler line will be toggled to and from the screen. The ruler
line is shown in Figure 12.

The ruler line displays the current cursor position in terms of x-
and y-coordinates. The offset shows the position of the cursor
relative to its location when the ruler was first displayed. Thus,
the Row and Col values show the absolute cursor coordinate; the
Offset shows the relative cursor coordinates.

CRESCENT SOFTWARE, INC. 2 79

CREATING TITLE SCREENS QuickScreen

File Library Edit [[JTTH Scttings Composc-Ficlds
TSCEI Chart Ctrl+f

Honochrome ~ Uia “TisplayScrn’
Monochrome - Standard #ono Card
Monochrone ~ E&olnno Monitor

L L L L L e L e O L L T O S D D L e I T e CLE LI

Row: 13, Col: 1, Dffset = 12: ©, Character: 32, Color: 7 [F4]:to renove

oggles display of the ruler ‘line on or off. -Rlso resets. :Dffset:’ to0:6,:0.

Figure 12: The Ruler Line I

In addition, the ruler line gives the decimal ASCII and color values
of the character above the cursor.

Block Operations

Function Pulildown Command Key Sequence

Marking N/A < Shift > < Direction Key >
Moving (Edit) Move Block < Ctri-M >

Centering (Edit) Center <F5>

Deleting (Edit) Clear < Delete >

Pasting (Edit) Paste Block < Shift> <insert>
Painting (Edit) Paint Block < Ctrl-P>

Table XI: Summary of Block Operations

B 30 CRESCENT SOFTWARE, INC.

QuickScreen CREATING TITLE SCREENS

Blocks are defined as rectangular areas, and are created when the
< Shift> key is depressed while the direction keys are being used.
In order to define a block the cursor is first positioned using the
direction keys. This initial cursor location is the “‘starting point™,
and will be one of the corners of the final block, depending on how
the block is created. For example, if <Shift> is pressed and the
cursor is moved to the right and down from its starting point, then
the starting point will be the upper-left corner. If, however,
< Shift> is pressed and the cursor is moved to the left and up, the
starting point will be the lower-right corner. Blocks may consist
of a single character or the entire screen.

Once a block is defined, the text and fields it encompasses is said
to be selected (selected text is always displayed in black and white).
Understand that because block operations take into consideration
the fields present in selected text, it’s easy to manipulate fields on
a form.

In order to move a block you may use the (Edit) Move Block
command, or you may press <Ctrl-M>. Blocks may then be
moved around the screen without disturbing unselected text by
using the direction keys. The entire block is centered horizontally
by pressing <F5>. When a final position is established, you may
press <Enter>. If you wish to cancel the block move operation
anytime before <Enter> is pressed, you may use <Esc>.

Blocks may be cut and assigned to the clipboard using
< Shift> <Delete>, or cleared without disturbing the clipboard
using only <Delete>. The contents of the clipboard are
transferred to the screen at the position of the cursor by pressing
< Shift> <Insert>, which immediately reveals the block and sets
the block-move mode. The block may then be moved around the
screen. When the block is positioned properly you may press
<Enter>. If you wish to remove the block simply press < Esc> .

An entire block may be painted the default paint color by using the
(Edit) Paint Block command or by pressing < Ctrl-P> .

CRESCENT SOFTWARE, INC. @ 31

CREATING TITLE SCREENS QuickScreen

The block operations discussed are summarized at the beginning of
this section in Table XI.

Box Drawing

Boxes are drawn in one of two ways. The first method works just
like defining a block. In other words, the cursor must be placed
somewhere on the screen. This will be the box’s starting point.
Box drawing is then enabled using the (Edit) Box Drawing
command or by pressing < Ctrl-B>. At this point the box may be
drawn by moving the cursor around the screen with the direction
keys. Press <Enter> to keep the box or <Esc> to remove it;
the cursor will be returned to the starting point in either situation.

The second method for drawing a box requires that a block first be
defined. If you wish to draw a box matching the size and position
of a currently-defined block press < Ctrl-B>.

Recall that the border style of a box may be changed by
accessing the (Settings) Drawing Line Types command.

Line Drawing

Lines are drawn using the direction keys after choosing the (Edit)
Line Drawing command, or by pressing <Ctrl-D>. If a line
overlaps an existing line, an appropriate cross-section character will
be added by QuickScreen. In order to accept the lines drawn press
<Enter>. Otherwise press <Esc> to cancel.

Recall that the line draw character may be changed by accessing
the (Settings) Drawing Line Type command.

= 82 CRESCENT SOFTWARE, INC.

QuickScreen CREATING TITLE SCREENS

Painting

QuickScreen fully supports color video adapters and contains sev-
eral features for manipulating color. The color of a character on
the screen may be altered using a technique called painting.
QuickScreen allows you to define a default paint color and to
globally replace one color with another. Further, single characters
and entire blocks may be painted using one keystroke.

e Replacing Color
A particular color may be altered by using the (Edit) Replace
Color command. You will first be asked for the color you
wish to change; then you will be asked for the new color.

e Painting Characters
The character above the cursor may be painted the default color
by using the <Ctrl> <Right> key combination. To unpaint
text you may use the <Ctrl > <Left> key combination.

e Painting Blocks
A block of text may be painted by first selecting it, then by

using the (Edit) Paint Block command. Alternatively, you can
simply press <Ctrl-P>.

e I

CHARACTER EDITING

The QuickScreen editor allows you to manipulate single characters
using a variety of commands.

CRESCENT SOFTWARE, INC. a 33

CREATING TITLE SCREENS QuickScreen

Deleting

The character above the cursor may be deleted by using
<Delete>. The character to the left of the cursor may be deleted
by using <Backspace>.

Inserting

The <Insert> key serves as an inmsert toggle. When Quick-
Screen’s cursor is a large rectangle, the editor is in insert mode and
characters entered will push existing characters to the right. If the
cursor is small and flat then the editor is in overwrite mode, and
any existing text under the cursor will be erased while typing.

ASCII Character Chart

A single character from the complete IBM® PC character set may
be chosen when the (View) ASCII Chart command is used, or
when <Ctrl-A> is pressed. Simply use the direction keys until
the desired character is blinking. To accept the character press
< Enter >, otherwise press <Esc>.

An extended ASCII character chart is provided for your
convenience in Appendix D.

Repeating The Last Character

The last character typed may be repeated by using the (Edit)
Repeat Last Key command, or by pressing <Ctrl-R>. This
feature is useful when the character you are trying to type is not a
keyboard character.

LI CRESCENT SOFTWARE, INC.

QuickScreen CREATING TITLE SCREENS

LINE EDITING

Just like characters may be managed, so can entire lines of text.
This section provides detail on commands which operate on full
lines rather than single characters.

Deleting

An entire line of text may be deleted from the screen and copied to
the clipboard by pressing < Ctrl-Y>. When text is deleted in this
manner, the remaining information on the screen is shifted up one
line. If <Ctrl-Y> is inadvertently used you may ‘‘undo’ its
effect by “‘pasting’ the contents of the clipboard in the usual
manner: press < Shift> <Insert>.

Inserting

A blank line may be inserted at the position of the cursor by
pressing <Ctrl-N>. This will cause remaining information on
the screen to be shifted down one line.

There is no way to recapture information that has scrolled beyond
the last line of the screen.

Centering

The current line may be centered by pressing <F5>. You may
center an entire selected block of text also by pressing <F5>.

CRESCENT SOFTWARE, INC. ' 85

CREATING TITLE SCREENS QuickScreen

O SEPEP O ER R)
VIEWING MONOCHROME SCREENS

When a screen is created you may want to see how it will appear
on a monochrome display adapter. QuickScreen offers the unusual
ability to design screens on a color monitor and view them on one
of several monochrome modes. It is a fact that certain color
combinations render characters invisible or unreadable on
monochrome systems, and this feature may assist you in creating
monochrome-compatible screens.

QuickScreen provides three different monochrome scenarios.
These are available in the View menu and are addressed below.

dile Jibrary iMit Tiew Jettings

w

JIIAAIINANIGEIRET

——————— 4.

Pt pa
]

N
)
RARLBRABBRIRRLEY

oo

I Figure 13: The Color Palette Chart I

Figure 13 shows the color palette which is displayed when using
the (Settings) Painting Color... menu command. It is shown for
your reference only, and, unfortunately is only in black and white.

B 86 CRESCENT SOFTWARE, INC.

QuickScreen CREATING TITLE SCREENS

However, in the discussions which follow, we’ll refer to numbers
in this grid to tell how colors are remapped in various monochrome
settings.

Monochrome - Via “DisplayScrn”

QuickScreen includes a subprogram called DisplayScrn which may
be used to convert a full-color screen to color combinations which
will appear readable when shown on a monochrome display. When
this option is chosen while in the QuickScreen environment you
will be able to see how the current screen would appear if it were
displayed using the DisplayScrn routine. This routine maps colors
as follows:

° A black foreground color on a non-black background displays
as inverse video (black on black will be invisible).

® A pormal foreground color displays a normal-intensity on a
black background.

° A high-intensity foreground color displays a high-intensity on
a black background.

* Blinking foreground colors will blink as expected.

When monochrome colors are shown using DisplayScrn, notice that
black on black (color 0) is invisible and that other colors on the top
row (values 16 through 112) appear as reverse-video attributes.
Colors in the bottom-half of the chart (starting with the row
containing values 8 through 120) appear as high-intensity (bright)
attributes.

CRESCENT SOFTWARE, INC. 2 87

CREATING TITLE SCREENS QuickScreen

Monochrome - Standard Mono Card

This option shows how the current screen would appear if
generated on a standard monochrome card, such as the original
IBM® Monochrome Display Adapter (MDA), or some cards which
use the Hercules® tradename and which attempt to emulate the
MDA.

This routine maps colors as follows:

e A black foreground color on a non-white background is
invisible.

® A black foreground color on a white background is in inverse
video.

e A normal foreground color displays a normal-intensity on a
black background.

e A high-intensity foreground color on a non-white background
displays a high-intensity on a black background.

e A high-intensity foreground color on a white background
displays as a high-intensity foreground in inverse video.

e Blinking foreground colors will blink as expected.

When monochrome colors are shown using a standard monochrome
card, notice that colors from 0 to 96 on the color chart are
displayed as black on black and are therefore invisible. Color 112
is displayed as black on white, and appears as inverse video. A
large portion of the color chart, from the row containing values 1
through 113 and ending with the row containing values 8 through
120 is displayed as normal-intensity foreground on a black
background. The bottom-left rectangle of the chart, starting with
the row containing values 9 through 105, is displayed as a high-

u 83 CRESCENT SOFTWARE, INC.

QuickScreen CREATING TITLE SCREENS

intensity foreground on a black background. Finally, the rightmost
column, containing values 121 through 127, is displayed as a high-
intensity foreground and in inverse video.

Monochror;;e - CGA+Mono Monitor

Some users have a monochrome (green or amber, usually) screen
attached to a Color Graphics Adapter (CGA). This option shows
how the current screen will appear on such hardware.

This routine maps colors as follows:
® A black foreground color on a black background is invisible.

° A black foreground color on a non-black background is in
inverse video.

® A foreground color on a black background color is normal-
intensity on a black background.

® A foreground color on a color background is both invisible and
in inverse video.

® A high-intensity foreground color on a black background is a
high-intensity foreground on a black background.

¢ A high-intensity foreground color on a non-black background
is a high-intensity foreground in inverse video.

When displaying screens using a CGA and a monochrome monitor,
notice that color 0 is displayed as black on black, which renders it
invisible, as expected. The row containing values 16 through 112
is displayed as black on white, and appears as inverse video. The
column containing values 1 through § is displayed as normal-
intensity on a black background. The rectagular area starting with
the row containing values 17 through 113 and ending with the row

CRESCENT SOFTWARE, INC. 2 g9

CREATING TITLE SCREENS QuickScreen

containing values 24 through 120 is completely invisible, and
appears as inverse video only (characters are actually the same
color as their background and therefore can’t be seen). Finally, the
bottom-right rectangular area starting with the row containing
values 25 through 121 and ending with the row containing values
31 through 127 appears as high-intensity foreground characters and
in inverse video.

SAVING SCREENS

QuickScreen can save screens in a variety of formats. These
include the QuickScreen format, object-file format, and as images
in a QuickScreen Library file. If a block is currently-highlighted
when you save, then only the highlighted portion of the screen is
saved. Otherwise, QuickScreen starts at the upper-left corner of
the screen and uses the first character which is not a space and
which has a color attribute other than 7 (white on black) to define
a block to be saved. This process helps to compress images which
do not occupy the entire display.

QuickScreen Files

The QuickScreen format uses a run-length encoding algorithm to
compress the screen size on disk. The current screen is saved in
this format using the (File) Save as Screen File... command. This
generates the dialog box shown in Figure 14.

When screens are saved using the QuickScreen and Object file
format, you may specify the way the screen is to appear when
displayed. This is called the screen’s wipe type (‘‘wipe’” is a term
used by video engineers). The variety of wipe type is summarized
in Table XII.

B 90 CRESCENT SOFTWARE, INC.

QuickScreen CREATING TITLE SCREENS

Mane screen as:

Display ‘in @ Line Mode. Display using -

If an area is high-lighted, only that area Exploding Box
will be saved. Dtheruise any block of the . Push Down

screen that starts or ends with anything | Push Left to Right
other than a space with a color of 7 (vhite | Push Right to Left
on black) will be saued. ! Up

l Figure 14: The Save Dialog Box

L

Object Files

Screens may be saved as object files using the (File) Save as
Object File... command. These screen files are linked with a main
program to create a standalone executable file. Unlike other screen
formats, object files need not be present on the disk once they are
linked to a program.

A wipe type may be selected when saving screens as object files.

Lo
Text Export

Screens may be saved as text using the (File) Export Screen as
Text... command. Text files consist of ASCII characters only and
therefore contain no color, special control codes, header

CRESCENT SOFTWARE, INC. @ 9]

CREATING TITLE SCREENS QuickScreen

information, wipe type, or screen mode information. One
advantage, however, is that ASCII screen can be read by nearly all
editors or wordprocessors.

QuickScreen Library Files

Screens may be saved to a QuickScreen library. Please see the last
section in this chapter entitled Using QuickScreen Library Files for
more information.

RETRIEVING SCREENS

Screens created in the QuickScreen environment, which include
QuickScreen screens, Object screens, and screens in Libraries, are
easily retrieved into the environment. Any file which is ASCII
may be imported to QuickScreen’s environment. In addition,
screens and forms designed using Crescent Software’s QBase may
be read and converted to a QuickScreen-compatible format. Once
saved, however, they will no longer be compatible with QBase.

QuickScreen has built-in error checking to ensure that screens are
indeed readable, and it will warn you when the current screen has
not yet been saved before it attempts to load a new image.

B 92 CRESCENT SOFTWARE, INC.

QuickScreen

CREATING TITLE SCREENS

10

11

Wipe Name

Overlay (or Direct to
Screen for .OBJ)
Clear Screen
Opening Curtain
Dissolve

Exploding Box

Push Down

Push Left to Right

Push Right to Left

Push Up

Roll Away

Vertical Blinds

Wipe Left to Right

Wipe Description

Places an image ““on top

of’ the existing text.
Restores a screen by first
clearing the screen to black.
Restores a screen by pushing
the existing screen outward
from the center.

Restores a screen by
‘‘dissolving’’ the current
screen.

Restores a screen by
“’exploding’’ it onto the
current screen.

Restores a screen by pushing
the existing screen down.
Restores a screen by pushing
the existing screen from left
to right.

Restores a screen by pushing
the existing screen from the
right to the left.

Restores a screen by pushing
the existing screen up.
Restores a screen by
appearing to roll the existing
screen away to the left.
Restores a screen by
appearing to open vertical
blinds.

Restores a screen by sliding
it from the left side of the
display over the existing
screen.

Table XlI: QuickScreen Wipe Types

CRESCENT SOFTWARE, INC.

= 93

CREATING TITLE SCREENS QuickScreen

QuickScreen Files

QuickScreen screens, usually having the file extension .SCR, are
retrieved using the (File) Open Screen File... menu command.
The wipe type used when the screen was saved will take effect, and
any field definitions will be available to the editor.

Object Files

Object screens, usually having the file extension .OBJ, are
retrieved using the (File) Load Object File... menu command.
Like QuickScreen screens, the wipe type used when the screen was
saved will take effect, and any field definitions will be available to
the editor.

Text Import

QuickScreen loads text files simply by reading the file contents one
line at a time until the screen is full. Thus, if the screen is in 25-
line mode then 25 lines will be read from the file; if the screen is
in VGA 50-line mode then as many as 50 lines will be read. Text
is retrieved at the row and column position of the cursor. The left
margin of the imported text will be the column at which the cursor
rests when text is retrieved.

QuickScreen Library Files

Screens may be loaded from a QuickScreen Library, which usually
has the .QSL file extension. Library files usually represent a
collection of screens and their use requires additional explanation,
presented below.

= 94 CRESCENT SOFTWARE, INC.

QuickScreen CREATING TITLE SCREENS

USING QUICKSCREEN LIBRARY FILES

QuickScreen Library files are able to store many screens in a single
DOS file. Library files are compressed and occupy the least
amount of space on the disk.

Loading And Creating Library Files

A QuickScreen Library is opened using the (Library) Open
Library... command. Alternatively, a Library may be created
using the (Library) Create New Library... command.

When a library is opened you may add to it the current screen
using the (Library) Add Screen to Library... command. This
command also gives you the opportunity to specify a wipe type.

L T

Displaying And Deleting Screens

Screens may be displayed from the Library by using the (Library)
Display Screen... command or by pressing <F2>. Either method
generates the dialog box shown in Figure 15.

The screens available in the library are shown in the list box. To
display a screen simply highlight and use the Display command
button. To delete the screen highlighted from the library, use the
Delete command button. And to cancel the operation, use Cancel.

Lo R

Saving A Libra

You may choose the (Library) Save Library... command when you
wish to update the Library to reflect the screens which have been
added to or deleted from it.

CRESCENT SOFTWARE, INC. B 95

CREATING TITLE SCREENS

QuickScreen

play

Select a Screen Mame to Edit:

eA BILLRAT3 BLKMDU4 DEFB

- BILLRA10 BLXM1

' BILLRAT1 BLEM2

' BILLRAT2 BLXM3
<t BILLRAT3 BLXM4

. BILLRAT4 BLKMEN1
| BILLRAIS BLKMENZ
' BILLRAT6 BLKMOUL
' BILLRAT? BLKMOU2
- BILLRAIB8 BLKMOU3

BLOCKOPS
CSDEMQ
DEF1
BEF18
DEF2
DEF3
DEF4
DEFE
DEF?

DEF9
DEFMENL
EMPLOYEE
ENDHELP

Iliaml I Belct I Ca.ncel

Figure 15: The Display Screen Dialog Box

Adding And Replacing Screens

Once a library is loaded, you can easily add the current screen to
it by accessing the (Library) Add Screen to Library command.
If the screen already exists in the library you cannot add it, but you
can replace it using the (Library) Replace Screen in Library
command. Naturally, you must save the library in order for these
changes to be written to the library file.

B 96

CRESCENT SOFTWARE, INC.

CREATING DATA ENTRY FORMS

QuickScreen CREATING DATA ENTRY FORMS

DEFINING FIELDS

Choose the Define Data Fields command
Position the cursor.

Choose a field type.

Adjust the field size.

Complete field settings.

ohwh =

The list above represents the sequence of steps needed to define
any data field. Before you get started you should decide whether
you want to paint the areas of the fields before defining them, or
if you want QuickScreen to paint the fields as you define them.
This latter option is chosen by ensuring that the (Compose-Fields)
Paint when Defined option is checked. This way, you can choose
a color which is different from the background so that fields can be
easily seen immediately after they are created.

To create a field, first choose the (Compose-Fields) Define Data
Fields menu option. Second, move the cursor to the starting
position of the field you are defining, then press < Enter> . Third,
choose a field type from those presented. Fourth, adjust the field
size, keeping in mind that you must allow enough space to hold the
field’s data. You should consider that dashes, commas, and other
“mask™ characters occupy space in the field and should be
considered when adjusting the size. If you are using a form and
notice that a numeric field is filled with ““%”’ symbols, then the
data in that field is exceeding the field’s size. This usually
indicates that the field must be made larger.

Finally, the fifth step is to complete the field settings by specifying
the field name, associated formula, help message, and other
available options.

The field-definition procedure outlined becomes cyclic: step 5 is
followed by step 2. This cycle persists until either <Esc> or
<F10> is pressed after step 5. The final step 5 presents a dialog

CRESCENT SOFTWARE, INC. 101

CREATING DATA ENTRY FORMS QuickScreen

box which is appropriate for the field being defined: this dialog
box, therefore, is not always the same.

Try to define the fields in the same order you wish them to be used
in the form. This reduces the liklihood that you will need to use
the field Rearrange features, discussed later in this section.

Often, you’ll notice ways that the form can be improved once you
create it. Editing fields already on the screen is easy. Simply
access the (Compose-Fields) Define Data Fields menu option.
You can use the <+ > and <-> keys to access the next and
previous fields, respectively, in the form. Pressing deletes
a field from the form, while pressing <Ins> inserts a field above
the current field.

COPYING FIELDS

When designing a form it may be useful to copy fields already
created. To do this, simply highlight the field by dragging the
mouse or by using the <Shift> <Direction Keys>, and press
< Ctrl> <Ins> to copy the field information to the clipboard.
Once on the clipboard, you can position the cursor anywhere on the
form and use < Shift> <Ins> to copy information from the
clipboard to the form. This method is suitable for copying single
fields at a time, or several fields at once.

Whenever you ‘‘paste’” field information from the clipboard,
QuickScreen attempts to ‘‘intelligently’” adjust the tab order for the
entire form so that the copied fields are incorporated in a logical
manner.

REARRANGING FIELDS

If you need to rearrange the order of fields on a form you may
access the (Compose-Fields) Rearrange Data Fields... command.

B 102 CRESCENT SOFTWARE, INC.

QuickScreen CREATING DATA ENTRY FORMS

This generates the dialog box similar to the one shown in
Figure 16.

Fields may be reordered in the Rearrange dialog box by first
selecting a field in the list box, and then executing the Move
command button. You will then be able to position the selected
field above or below another field in the list box. When < Enter >
is pressed the field will be inserted at the indicated position.

arrange
Select the ficld to moue.

BAIZFLD
EDAIEFLD
CALCDATE
PHONEFLD
2IPFLD
SOSECFLD
NOTES
OXBUTTION
CANBUTIN

I Figure 16: The Rearrange Fields Dialog Box 1

Alternatively, you can highlight the field on the screen and define
it as a block. This way, the (Edit) Move Block command can be
used to move the field anywhere on the screen. This method
automatically updates the field’s position and tab order. It is
important to understand that you must highlight the leftmost
character in the field before moving it this way.

CRESCENT SOFTWARE, INC. @ 103

CREATING DATA ENTRY FORMS QuickScreen

PRINTING FIELD DEFINITIONS

The field definitions for the current screen can be printed to the
device at LPT1: by using the (Compose-Fields) Print Field
Definitions command. If the device at LPT1: is ready then the
fields will be printed. The heading of the report will contain the
field file name, the record length, time, and date. Page numbers
will appear at the upper-right corner for your convenience.

The remainder of the report consists of a columnar table containing
the headings summarized in Table XIII.

Heading Name WMeaning

Fid The field number.

Offset An integer pointer representing a byte
offset in the entire field structure.

Name The field name up to eight characters.

Type The field type (see field type names
beginning on page ?).

FidLen The field length in bytes.

Reclen The record length in bytes.

Located The x- and y-coordinates of the field.

Related File The file name for relation.

Choice Field # The field number in the Related File for
relation.

Index Yes or No; tells whether the field is
indexed.

Prot Yes or No; tells whether the field is
protected.

Range The upper- and lower-range for allowable
input.

Formula The defined field formula.

l Table Xili: Field Report Headings

B 104 CRESCENT SOFTWARE, INC.

QuickScreen CREATING DATA ENTRY FORMS

L e

SAVING A FORM

Creating a data entry screen usually takes both care and time. You
will want to save often while designing or making changes to your
form by using the (File) Save menu command.

When the Save dialog box appears, you can choose to generate an
accompanying .BI or .DTA file. The .BI file contains the TYPE
declaration for the fields in the form, and makes it possible to refer
to fields by name rather than by number. The .DTA file contains
ASCII program code containing BASIC DATA statements
describing each field in the form. .DTA files can be used in lieu
of loading a form definition file.

It is important to understand that QuickScreen provides a safeguard
to protect you from destroying an existing form (FRM) file
inadvertently. If you load a form and make changes to it,
QuickScreen first checks to see if a data file exists which has the
same name as the form. For instance, if you are editing
MYFORM.FRM and the file MYFORM.DAT or MYFORM.DBF
exists, then QuickScreen will not overwrite the existing .FRM file
(doing so could make the existing data file unreadable). Instead,
a file with the extension of .NEW is created. In our example,
therefore, MYFORM.NEW would be created instead of
MYFORM.FRM.

CRESCENT SOFTWARE, INC. ' 105

QUICKSCREEN ROUTINES

QuickScreen QUICKSCREEN ROUTINES

Lo e e T]
PROCEDURE REFERENCE SECTION

QuickScreen allows the programmer to generate screens and
process forms from BASIC using a variety of options. This
flexibility necessarily brings some complexity. In order to make
this section most useful, we first present some terms and concepts
with which you should be familiar. Then, we introduce the
important Include files which you should use in your calling
programs. Next, we examine the variables which play a vital role
in using QuickScreen from QuickBASIC and which appear in the
demonstration programs. And last, we present documentation for
the more useful QuickScreen BASIC and assembler routines.

Lo]
Integers

Throughout the remainder of this manual we’ll make reference to
several important integer variables, such as WipeType, Action and
ErrorCode. As you may know, such variables are represented in
BASIC with a trailing ““%”. Thus, X% holds an integer variable.
You will notice, however, that many examples and discussions
which make use of integer variables omit the ‘%> symbol. The
reason is that our sample programs and program fragments assume
the presence of a ‘““DEFINT A-Z>” statement, which ensures that
variables lacking a type identifier are integers by default.

We’ve retained the type identifier when discussing the syntax for
the QuickScreen routines (beginning on page 130) to clearly show
which parameters are integers.

CRESCENT SOFTWARE, INC. & 109

QUICKSCREEN ROUTINES QuickScreen

Parameters And Arguments

PARAMETERS

A parameter is a variable which appears at the top of a subprogram
or function heading. For example,

SUB QPrint0(T$, C%)

has T$ and C% as the parameter list. There must always be a one-
two-one correspondence in both number and type among the
arguments and the parameters used when implementing a routine.
For instance, if there are five parameters then you must pass five
arguments to the routine. And if the first parameter expects an
integer, you will need to ensure that an integer is passed as the first
argument.

ARGUMENTS

An argument is a variable or value used in a CALL to a sub-
program or function. For example,

CALY. QPrint0 (Text$, Colrs)

has Text$ and Colr% as the argument list. The argument Text$
could be replaced by the literal ““Hi there!”” Similarly, the integer
argument Colr% could be set to the integer 113. Arguments are
passed to and used by the subroutine being called. When
arguments are variable names (rather than literals) the subroutine
being called may modify them and make their new values available
to the calling program.

There are several arguments which are used in QuickScreen by a
variety of routines. What follows is a discussion of each argument.

B 110 CRESCENT SOFTWARE, INC.

QuickScreen QUICKSCREEN ROUTINES

Action

Action is used by many of Crescent Software’s pollable routines.
The integer value contained in Action tells the called subprogram
what it should do. QuickScreen uses a pollable routine called
EditForm which has the responsibility of processing forms. When
using EditForm, Action may be set to 1 or 3. Table XIV
summarizes how these values affect EditForm.

Action Value Meaning to EditForm

1 Initializes the current form for editing. Pads
all Form$() elements to their proper lengths
and formats. Displays the contents of all
fields in the form. Resets Action to 3.

3 Keeps polling the current form while editing
continues.
[Table XIV: Action Values for EditForm |
Attribute

Attribute may be set on entry to -1 to force a screen mode change
when going from a large screen (i.e., greater than 25 lines) to a
smaller one. If screen mode changes are not forced, then a smaller
screen will occupy only a fraction of the video display. Attribute
may also be set to -2 to suppress drop shadows from being
displayed by the Lib2Scrn routine. You may both force a screen
mode change and suppress drop shadows by using -3. Attribute
entry and return values are summarized in Table XV and
Table XVI, respectively.

CRESCENT SOFTWARE, INC. m 111

QUICKSCREEN ROUTINES QuickScreen

Entry Value Meaning
0 Screen mode changes will not occur; drop
shadows will be displayed.
-1 Force screen mode change.
-2 Suppress drop shadows.
-3 Force screen mode change and suppress
drop shadows.
Table XV: Attribute Entry Values
Formula Value

Attribute MOD 256 Required screen lines for display
Attribute \ 256

Wipe type code

Table XVI: Attribute Return Values]

ErrorCode

ErrorCode is used to report errors which may occur when trying
to generate a screen. Its return values are summarized in

Table XVII.

B 112

CRESCENT SOFTWARE, INC.

QuickScreen QUICKSCREEN ROUTINES

ErrorCode Meaning
0] No error occurred.
1 Either a screen file was not found on disk

or, if using a library, a screen was not
found in the current library file.

2 A screen specified for display is too large
for the current monitor.
3 The screen specified is not a QuickScreen-

compatible screen.

l Table XVil: ErrorCode Values

Form$() Array

The Form$() array is a conventional (not fixed-length) two-
dimensional string array used to store information both about a
form and about the fields it contains. The first subscript must be
dimensioned to the total number of fields in the form; the second
subscript is always dimensioned to 2.

A special area of the Form$() array is called the form buffer, and
this occupies the array element of Form$(0, 0). The form buffer
collects information from all fields and formats them into a fixed-
length structure. This makes it possible to use random file I/O
techniques to quickly load and save form information. Each field
value is stored in the Form(0, 0) array element with one exception:
data from notes fields are stored in a .NOT notes file. When a
notes field is in the form buffer, 4 bytes are reserved and serve as
an offset into the .NOT notes file. The position in the .NOT file
pointed to contains a 2-byte (integer) value which gives the length
of the note. In this way a linked list is created between the form
buffer and the current notes file.

CRESCENT SOFTWARE, INC. ® 113

QUICKSCREEN ROUTINES QuickScreen

Form$(N, 0) contains the value of field N; Form$(N,1) contains
the help message for field N; and Form$(N,2) contains the formula
for field N. Note that some fields will not have a help message or
formula, and, in such cases, Form$(N,1) and Form$(N,2) would
be null.

The organization of the Form$() string array is summarized in
Table XVIII.

Form$() Element Description

Form$(0, O) Holds all data from fields as a
contiguous string with numbers
stored as IEEE formatted strings.

Form$(FieldNo, 0) Holds data (numbers are stored as

formatted strings).

Forms$(FieldNo, 1) Holds help message string.

Form$(FieldNo, 2} Holds formula for calculated fields.

Table XVIll: Form(} Layout

MonoCode

Monocode is a variable which controls whether a screen is
displayed using color. If MonoCode is O then the screen will be
displayed in color. If MonoCode is 3 then a screen will be
converted to colors which are readable on monochrome systems.
In most of the demonstration programs, MonoCode is set to 3 when
the /B command line switch is used when starting the program
from DOS.

MonoCode also accepts values T and 2 for generating different
types of conversion to monochrome. We have found that a value
of 3 produces the best results on most monochrome systems.

B 114 CRESCENT SOFTWARE, INC.

QuickScreen QUICKSCREEN ROUTINES

Screen Arrays

Many of the examples which follow will use integer screen array
variables. It is always the case that these arrays must first be
dimensioned, and that the number of elements in them must
correspond to the size of the screen being used. For example, a
full CGA text display must accommodate 80 columns multiplied by
25 lines, for a total of 2000 words, or 4000 bytes. An EGA 43-
line mode display will require 80%43, for a total of 3440 words, or
6880 bytes. Similarly, a VGA 50-line mode display will require
80*50, for a total of 4000 words, or 8000 bytes.

TYPE Variables And Constants

Recall that ““Include’ files are ASCII text files containing BASIC
source code. In general, they contain source code which is used by
many programs. Placing such code in external files makes it easy
to include them in a program without having to retype their
contents each time. Also, if changes are made to an Include file,
then programs which reference it will be updated the next time it
is compiled. The $INCLUDE metacommand may be inserted
anywhere in a program using this syntax:

’$INCLUDE: ‘MyFile.BI’

When this line is encountered by the compiler, the contents of the
path and file name enclosed in single quotes are read and compiled.
If the file cannot be found on the directory specified, then the path
stored in the INCLUDE environment variable is accessed. If the
file still cannot be located, then the command is ignored and the
compiler continues without generating an error.

CRESCENT SOFTWARE, INC. @ 115

QUICKSCREEN ROUTINES QuickScreen

There are four important QuickScreen-related Include files
presented next. They are:

e DEFCNF.BI
e SETCNF.BI
 FIELDINF.BI
* FORMEDIT.BI
DEFCNF.BI

This file contains a TYPE which is also used by many other
Crescent Software routines. The Config TYPE holds monitor and
color information, and must precede the Include file SETCNF.BI,
which DIMs the TYPE to a variable and sets values. The Config
TYPE is presented next.

TYPE Config

MonTyp AS INTEGER ‘Monitor type
PulBar AS INTEGER ‘Horizontal bar color
MenBox AS INTEGER ‘Pulldown box color
ActivCh AS INTEGER ‘Active choice color (pulldown)
InActCh AS INTEGER ‘Inactive choice color (pulldown)
HiLite AS INTEGER ‘Active choice color (menu)
InActHiLt AS INTEGER ‘Inact. choice color (menu)
NonMen AS INTEGER ‘Normal screen color
CursSize AS INTEGER ‘Cursor scan lines
Mouse AS INTEGER ‘Mouse in-residence flag

END TYPE

B 116 CRESCENT SOFTWARE, INC.

QuickScreen QUICKSCREEN ROUTINES

MonTyp Description

Monochrome adapter

Hercules card

CGA

EGA with monochrome monitor
EGA with color monitor

VGA with monochrome monitor
VGA with color monitor

MCGA with monochrome monitor
MCGA with color monitor

EGA with CGA monitor

IBM 8514A adapter

- S OO NOOOTA WN =

- O

I Table XIX: MonType Values for the Config User-Defined Type

All values for this type are set in SETCNF.BI.

SETCNEF.BI

SETCNEF.BI is the complementary Include file of DEFCNF.BI. It
creates a new variable, Cnf, which is DIMed to the Config TYPE
before its values are initialized. Mouse and MonTyp are set using
special routines designed to detect and identify computer hardware.
Mouse is set by calling InitMouse — an assembler function which
returns -1 if a mouse is installed. MonTyp identifies the currently-

active monitor type (it returns values which are summarized in
Table XIX).

PulBar, MenBox, ActivCh, InActCh, HiLite, InActHiLt, and
NonMen are all set to explicit integer color values, depending on
whether the monitor detected is color (a “/B’’ command-line
switch forces monochrome color assignments even if a color system

CRESCENT SOFTWARE, INC. 2 117

QUICKSCREEN ROUTINES QuickScreen

is detected). Color values are integers which appear in the color
chart in Appendix C. CurSize is 0 to 7 for the number of scan
lines in the cursor: O turns the cursor “‘off””, and 7 creates a full
block cursor.

The content of SETCNF.BI is shown below:

DIM Cnf AS Config
CALL InitMouse(Cnf.Mouse)
Cnf.MonTyp = Monitor
ClrDisp = Cnf.MonTyp = 3 OR (Cnf.MonTyp >= 5
AND <= 9) OR Cnf.MonTyp = 11 -
IF INSTR(COMMANDS$, "/B") THEN ClrDisp = 0
IF ClrDisp THEN
Cnf.PulBar = 48
Cnf.MenBox = 49
Cnf.ActivCh = 48
Ccnf.InActCh = 52
cnf.HiLite = 31
Cnf.InActHILt = 64
Cnf.NonMen = 30
ELSE
Ccnf.PulBar 112
Cnf.MenBox 112
cnf.ActivCh = 112
cnf.InActCh = 112
cnf.HiLite = 15
Cnf.InActHiLt = 80
Cnf.NonMen = 7
END IF
IF Cnf.MonTyp >= 3 AND Cnf.MonTyp <= 5 THEN
Cnf.Cursize = 7
ELSE
Cnf.Cursize = 12
END IF

FIELDINF.BI

FIELDINF.BI includes the FieldInfo TYPE array and several con-
stant assignments. This user-defined TYPE is required by a calling
program to obtain information about a field in the currently-active
form. The FieldInfo user-defined TYPE structure looks like this:

B 118 CRESCENT SOFTWARE, INC.

QuickScreen QUICKSCREEN ROUTINES

TYPE FieldInfo

Fields AS INTEGER
Row AS INTEGER
Lceol AS INTEGER
RCol AS INTEGER
StorLen AS INTEGER
FType AS INTEGER
RelFile AS STRING * 8
RelF1ld AS INTEGER
Indexed AS INTEGER
FldName AS STRING * 8
Decimals AS INTEGER
RelHandle AS INTEGER
Protected AS INTEGER
ScratchI AS INTEGER
LowRange AS DOUBLE
HiRange AS DOUBLE
Scratchs AS STRING * 8
END TYPE

As in the demonstration programs, you must create and dimension
the Fid) TYPE array as follows so that it is defined as the
FieldInfo TYPE:

REDIM Fld(0) AS FieldInfo

DIMing any array to zero elements simply defines the array without
committing a block of memory to it. FId() will need to be
redimensioned later to the number of fields in the current form
using the NumberOfFields function. This way the array will be
only as large as it needs to be.

When a form is loaded, the calling program may obtain specific
information about each field using the Fld() TYPE array. For
example, to find out whether the field number 3 is protected, the
calling program would use a statement like:

IF Fld(3).Protected THEN ...

The program can also access a field’s position on the screen and,

for applicable fields, its low and high ranges for acceptable data
entry.

In addition to examining the contents of the FId() TYPE array, a
calling program may change the values it creates. This means that

CRESCENT SOFTWARE, INC. a 119

QUICKSCREEN ROUTINES QuickScreen

a field suddenly can be protected as the form is being processed.
Or, based on values entered somewhere else on the form, low and
high ranges for certain fields can be adjusted.

The Fld() TYPE array reserves element O for special use. For
example, Fld(0).Row contains the record length, in bytes, of the
entire current form. However, Fld(1).Row contains the row
position for the field on the screen. Only Fld().Fields and
Fld().Row make use of the zero element, however.

Table XX summarizes the FieldInfo TYPE elements. When “N”’
is mentioned, it applies to the subscript in the Frm() array: for
Frm(0), N is equal to 0.

The constant assignments in the FIELDINF .BI file make it easy to
use the FTYPE element of the FieldInfo TYPE. For example, if
you need to know if the current field is a Proper String, you could
use a statement similar to:

IF Fld(CurField).FType = PropStrFld THEN ..

FieldInfo’s FType element constants are summarized in Table XXI.
As above, the values designated ‘“* Reserved *’” should never be
altered by your own programs.

FORMEDIT.BI

FORMEDIT.BI contains constant assignments and the user-defined
TYPE called FormInfo which is constructed like this:

E 120 CRESCENT SOFTWARE, INC.

QuickScreen QUICKSCREEN ROUTINES

’$INCLUDE: “FORMEDIT.BI"

TYPE FormInfo
StartEl AS INTEGER
FldNo AS INTEGER
PrevFld AS INTEGER
FldEdited AS INTEGER
KeyCode AS INTEGER
TxtPos AS INTEGER
InsStat AS INTEGER
Presses AS INTEGER
MRow AS INTEGER
MCol AS INTEGER
DoingMult AS INTEGER
Edited AS INTEGER

END TYPE

The FormInfo TYPE elements are explained in Table XXII. It is
suggested that you use the following statement to create the Frm
TYPE variable:

DIM Frm as FormInfo

The Frm TYPE variable is used by a calling program to set the
current field to be edited, to examine the last key pressed, to toggle
the insert status of the forms editor, and to determine when data in
a form has been altered. This last item is particularly useful if you
are updating a file with information from a form. For example,
each time you update a record in the file you should set Frm.Edited
to 0. If any field values are changed then Frm.Edited will be set
to -1, letting you know that it is necessary to write the form record
to the file again.

You may read or set any of the Frm TYPE elements in your own
program. However the elements Presses, MRow, and MCol
should only be read: altering them will have no affect on the form.

CRESCENT SOFTWARE, INC. m 121

QUICKSCREEN ROUTINES QuickScreen

Element Description

Fields When N=0, the number of fields in the
form is returned. When N>0, the field’s
integer offset into the Form$(0, O) array is
returned.

Row When N =0, the record length of the form
is returned. When N>0, the screen row
position for field N is returned.

LCol The screen left column position for field N.

RCol The screen right column position for field N.

StorLen The number of bytes required to store the
contents of field N.

FType The field type number (see Table XVI).
RelFile If a relational field, the base name of the
file for relation is returned.

ReiFld If a relational field, the field number of the
relational file is returned.

Indexed O when field is not indexed; -1 if field is
indexed.

FldName The name of the current field.

Decimals The number of decimal places used for

numeric fields. If -1 then numbers will not
be formatted.

RelHandle The file handle number for the related file.
This number may be used for GET # and
PRINT # BASIC statements.

Protected O if field is unprotected or -1 if protected.
Scratchl * Reserved *

LowRange Low range for numerical fields.

HiRange High range for numerical fields.

ScratchS Can be used to store any miscellaneous

information, such as flags, etc.

Table XX: Fieldinfo TYPE Elements

| 122 CRESCENT SOFTWARE, INC.

QuickScreen

QUICKSCREEN ROUTINES

Constant Declaration

CONST StrFld = 1
CONST UCaseStrFid = 2
CONST IntFld = 3
CONST SngFid = 4
CONST DbiFld = 5
CONST DateFld = 6
CONST PhoneFld = 7
CONST SoSecFIld = 8
CONST ZipFild = 9
CONST MoneyFid = 10
CONST Relational = 11
CONST VirtualFld = 12
CONST MultChFid = 13
CONST LogicalFid = 14
CONST SequFild = 15

CONST NumericStrFld = 16

CONST NotesFld = 17

CONST LongintFid = 18
CONST EuroDateFld = 1
CONST RecNoFid = 20
CONST TotRecsFId = 21
CONST MultChAFId = 22
CONST PropStrFid = 23

CONST Button = 24

9

Field Type

String

Upper case string
Integer

Single precision
Double precision
Date (American)
Phone number
Social security number
Zip code

Currency

Relational

* Reserved *

* Reserved *
Logical

* Reserved *
Numeric string
Notes (multi-line text)
Long integer

Date (European)

* Reserved *

* Reserved *
Multiple choice array
Proper string
Command button

Table XXI: Fieldinfo FType Constants

CRESCENT SOFTWARE, INC.

| 123

QUICKSCREEN ROUTINES QuickScreen

FormiInfo Element Description

StartEl Starting (base) element of the current
form

FldNo Current field number

PrevFId Previous field number (different from
FidNo only when first moving to a new
field)

FidEdited Returns -1 if a field has been changed

KeyCode ASCIl value of the last key pressed

Extended keys return a negative value
(i.e., <F1> = -59)

TxtPos Cursor position relative to current field

InsStat Current insertion mode status (-1 =
insert on)

Presses Number of mouse presses since last
press

MRow Mouse row number at last press

MCol Mouse column number at last press

DoingMult Returns -1 if handling a multiple-choice
field

Edited Returns -1 if anything on the form has
changed

Table XXII: Forminfo TYPE Elements l

To summarize, there are several important variables. The Cnf
TYPE variable contains system environment information. The
Fld() TYPE array provides information for each field in a form.
The Frm TYPE variable gives information about the form itself,
and about user-oriented events.

B 124 CRESCENT SOFTWARE, INC.

QuickScreen QUICKSCREEN ROUTINES

QuickScreen Routines

There are several BASIC modules which are supplied with Quick-
Screen in order to make its features accessible from within your
own programs. The listing which follows summarizes this
information (module names are uppercase; subprogram names are
mixed-case):

EVALUATE.BAS: Expression evaluation routine for calculated fields

Evaluate Returns the value of an expression.

FORMEDIT.BAS: For handling data entry on a form

EditForm The main routine for data entry.

EndOfForms Returns last field on a form/forms (For
multi-page).

FixDate Turns dates such as ** 2- 3-1991"" into
“02-03-1990"".

FldNum Returns a field number given a field name.

Format - Places a formatted version of a number into
the form.

Message Used to display/clear a message box.

PrintArray .Displays the contents of the Form$() array
on form.

SaveField Formats data and saves it to the Form$(0, 0)
buffer.

UnPackBuffer Copies data from Form$(0, 0) into individual
elements.

Value Returns value of a numeric string like

“$1,200.00"".

FORMFILE.BAS: For loading .FRM form definition files

GetFldDef Loads an .FRM file into the supplied arrays.
NumberOfFields Determines the number of fields contained in
a .FRM.

CRESCENT SOFTWARE, INC. | 125

QUICKSCREEN ROUTINES QuickScreen

FORMLIB.BAS: For loading form definitions from a .QFL forms library

LibGetAddresses Returns the starting and ending address of a
form’s data in the library.

LibGetFldDef Loads field definitions into the supplied
arrays.

LibNumberOfFields Returns the number of fields contained on a
form.

QEDITS.BAS: Multi-line edit routine
QEdit Multi-line edit routine used for Notes fields.

QSCALC.BAS: Support routines for doing field calculations

CalcFields Recalculates dependant fields based on a
given field.

Tokenize Resolves field name references in a formula
to their field numbers.

WholeWordin Searches a string for a Whole Word version

of a sub-string.

SCRNDISP.BAS: Support routines for displaying screens
ChangeCir Search and replace routine for color.
DisplayScrn Main routine for displaying screens with

special effects.

SCRNFILE.BAS: Support module to display QuickScreen files

LoadScreen Displays an .SCR screen file.

SCRNLIB.BAS: Support routines to manage screen libraries

Lib2Scrn Displays a screen from a library array in
memory.

LibFile2Scrn Displays a screen from a library file (from
disk).

LibNo Returns a screen’s number given its name.

LibScrName Returns a screen’s name given its number.

LoadScrnLib Loads a screen library file into an array.

ScrnLibSize Returns the memory size in words required

to hold a screen library file.

B 126 CRESCENT SOFTWARE, INC.

QuickScreen QUICKSCREEN ROUTINES

VERTMENU.BAS: Vertical menu routine

VertMenu Vertical menuing routine used for multiple
choice fields.

Not all modules or subprograms and functions will be useful to
you. However, a few, in particular, are required for certain tasks.
Table XXIII presents a quick way to determine which modules and
calls are required when working with certain types of QuickScreen
files.

There are a number of BASIC and assembler subroutines that you
may call from QuickBASIC. The following pages present an
alphabetic summary of these routines. Each routine is discussed
separately, and we have provided information about its program
type, purpose, and calling syntax. Following the calling syntax is
a brief explanation of the routine’s arguments. Then, a detailed
discussion of the routine and its arguments is presented. Finally,
we have concluded each routine with either an example program
segment or a reference to an example.

Some routines which are used by QuickScreen internally have been
documented here so that they may be called directly from your own
programs. These routines are not necessary in order to display or
manage QuickScreen-screens, but they may be useful to you in
some other capacity.

Many of the arguments used in this section have been discussed
already. You may find it necessary to refer to earlier sections if
more clarity is needed.

CRESCENT SOFTWARE, INC. | 127

QUICKSCREEN ROUTINES

QuickScreen

Method Module/s You call
Screen Files SCRNFILE.BAS LoadScreen
(.SCR) SCRNDISP.BAS
Screen libraries SCRNLIB.BAS ScrnLibSize
(.QSL) SCRNDISP.BAS LoadScrnLib
Lib2Scrn
or just
LibFile2Scrn
Screen Object files
(.OBJ)
with wipe: SCRNDISP.BAS DisplayScrn

without wipe: None

Form files
-(.FRM) FORMFILE.BAS NumberOfFields
GetFldDef
FORMEDIT.BAS EditForm
Form Library files
(.QFL)
FORMLIB.BAS LibNumberQOfFields
LibGetFldDef
FORMEDIT.BAS EditForm
Form DATA statements
(.DTA) FORMEDIT.BAS EditForm

The screen name

L Table XXIll: Ways To Display Screens And Handle Forms

| 128 CRESCENT SOFTWARE, INC.

QuickScreen QUICKSCREEN ROUTINES

Calculated Fields
QSCALC.BAS (For support)
NOCALC.BAS (To remove support)
Multiple Choice fields

VERTMENU.BAS (For support)
NOMULT.BAS (To remove support)

Multi-line Notes fields

QEDITS.BAS (For support)
NONOTES.BAS (To remove support)

l Table XXIV: QuickScreen’s Optional Modules

CRESCENT SOFTWARE, INC.

| 129

QUICKSCREEN ROUTINES QuickScreen

e O T YUY
BCopy
Assembler routine contained in FORMS.LIB

B Purpose

Copies a block of memory (up to 64K in size) to a new
location. It is used primarily to copy information from
Form$(0, 0) to a TYPE structure.

B Syntax
CALL BCopy(FromSeg%, FromAddr%, ToSegt, ToAddr%, NumBytess,
Direction$)
FromSeg % - segment of the source location of the block
FromAddr% - address of the source location of the block
ToSeg% - segment of the destination
ToAddr % - address of the destination
NumBytes% - number of bytes to be copied
Direction% - specifies direction of the copy (0 is forward; -

1 is reverse)

2 Comments

BCopy is useful in a variety of situations, such as if you need
to make a copy of an array or duplicate a range of elements.
When using the routine with forms, you will most likely find it
helpful when working with random file I/O. As you know, you
can create a TYPE structure for your form when saving forms
from the Screen Designer. For instance, in the supplied
CUSTOMER.FRM file, the Customer TYPE is saved to
CUSTOMER.BI, and looks like this:

® 130 CRESCENT SOFTWARE, INC.

QuickScreen QUICKSCREEN ROUTINES

TYPE CUSTCOMER

IDNO AS INTEGER
DATEIN AS INTEGER
NAME AS STRING * 32
COMPANY AS STRING * 32
ADDR1 AS STRING * 32
ADDR2 AS STRING * 32
CITY AS STRING * 20
STATE AS STRING * 2
ZIPCODE AS STRING * 10
WPHONE AS STRING * 14
HPHONE AS STRING * 14
NOTES AS LONG

END TYPE

Using TYPE structures like the one above makes it easier to
access a form’s fields, and generally makes a program more
readable. For instance, the GetRec routine retrieves a specific
random-file record into the Form$(0, 0) form buffer. Once
Form$(0, 0) is filled with data, you can use BCopy to duplicate
the information it contains into a TYPE variable. This way,
you can easily refer to field data using descriptive variable
names. Thus, the value of the NAME field would be in
CUSTOMER.NAME; the current ZIPCODE value would be in
CUSTOMER.ZIPCODE, etc.

Be certain the length of Form$(0, 0) and the TYPE variable are
the same — otherwise, a system crash may result.

The number of bytes may be up to 64K (i.e., 65535 bytes),
though you will have to use a long integer (or negative number)
to specify a value greater than 32767.

B Example

The use of BCopy to copy information from Form$(0, 0) to a
TYPE array is slightly different for BASIC 4.x and BASIC 7 x.

To copy information into the Customer TYPE variable from
Form$(0, 0), use this statement in BASIC 4.x:

CALL BCopy (VARSEG (Form$ (0, 0)), SADD(Form$(0, 0)), _
VARSEG (Customer), VARPTR(Customer), LEN(Customerj, 0)

CRESCENT SOFTWARE, INC. B 131

QUICKSCREEN ROUTINES QuickScreen

If you are using BASIC 7.x, you will need to use SSEG instead
of VARSEG:

CALL BCopy(SSEG(Form$(0, 0)), SADD(Form$(0, 0)), _
VARSEG (Customer), VARPTR(Customer), LEN(Customer), 0)

B 132 CRESCENT SOFTWARE, INC.

QuickScreen QUICKSCREEN ROUTINES

Box0
Assembler routine contained in FORMS.LIB

@ Purpose

Displays a box frame on text page zero.
B Syntax
CALL Box0(ULRow%, ULCol%, LRRow%, LRCol%, Chars, Colrs)

ULRow% - upper-left row (y-coordinate)
ULCol% - upper-left column (x-coordinate)
LRRow% - lower-right row (y-coordinate)

LRCol% - lower-right column (x-coordinate)

Char% - box style (see discussion below)

Colr% - frame color (-1 uses the colors already on the
screen)

2 Comments
The Box0 routine is a fast way to display a frame on text page
zero. All you need to do is furnish the upper-left and lower-
right coordinates, as well as the border style and color.

The Char value is set to an integer number from 1 to 4:

Char% value Border style
1 single line all around
2 double line all around
3 double line horizontally, single line vertically
4 single line horizontally, double line vertically

CRESCENT SOFTWARE, INC. @ 133

QUICKSCREEN ROUTINES QuickScreen

The color value should be assigned from the color chart shown
in Appendix C. If you want to draw a frame and use the colors
already on the screen, you can set Colr to -1.

B Example
This statement draws a border around the entire screen (in

25x80 text mode) using a double-line border and black-on-white
as a color.

CALL BoxO(l, 1, 25, 80, 2, 112)

® 134 CRESCENT SOFTWARE, INC.

QuickScreen QUICKSCREEN ROUTINES

T L R il
ButtonPress
Assembler routine contained in FORMS.LIB

® Purpose

ButtonPress reports how many times a specified mouse button
was pressed since the last time it was called. It also returns the
X/Y coordinate where the mouse cursor was located when that
button was last pressed.

B Syntax
CALL, ButtonPress(Button$%, Statuss$, Count%, X%, Yy)

Button% - button number (1, 2, or 3)Status% current button
status (-1 if pressed; O if not pressed)

Count% - number of times a button has been pressed since
ButtonPress was last called.

X% - x-coordinate of the mouse cursor when the button
was pressed

Y% - y-coordinate of the mouse cursor when the button
was pressed

B Comments

ButtonPress is the only reasonable way to determine when the
mouse buttons are active and need attention.

One important note is that ButtonPress resets the mouse-button
counter (returned in Count) each time it is called.

® Example

Please see VERTMENU.BAS for an example of implementing
ButtonPress in a program.

CRESCENT SOFTWARE, INC. B 135

QUICKSCREEN ROUTINES QuickScreen

CalcFields -
BASIC routine contained in QSCALC.BAS

B Purpose

To recalculate a field which is dependent on other input fields.
B Syntax

CALL CalcFields(StartOfForms, FldNo%, Form$(), _
Fld() AS FieldInfo)

StartOfForm% - start of the form, equal to 0 for single-page
forms; for multi-page forms, this number is
equal to the offset in the Fld() TYPE array
needed to point to first field of the desired

form
FldNo % - number of the field you wish to recalculate
Form$() - form string array (see page 113)
F1d(- field information TYPE array (see page 118)

B Comments

CalcFields should be used when information related to a
calculated field is changed. CalcFields looks at the value of the
specified field (contained in FIdNo) and recalculates all other
fields which depend on it.

This routine is useful only when you need to recalculate specific
fields in a form.

B 136 CRESCENT SOFTWARE, INC.

QuickScreen QUICKSCREEN ROUTINES

B Example

This example recalculates all fields that depend on the fifth field
in the current form:

CALL CalcFields(0, 5, Form$(), Fld AS FieldInfo)

CRESCENT SOFTWARE, INC. B 137

QUICKSCREEN ROUTINES QuickScreen

ChangeClr
BASIC routine contained in SCRNDISP.BAS

B Purpose

To change any portion of the screen from one color to another.
E Syntax
CALL ChangeClr (UlR%, UlC%, BrR%, BrC%, FromClr%, ToClr%)

ULRow% - upper-left row (y-coordinate)
ULCol% - upper-left column (x-coordinate)

BrR % - lower-right row (y-coordinate)
BrC% - lower-right column (x-coordinate)
FromClr% - original color to be changed
ToClr% - new color

B2 Comments

This routine is useful if you want to create moving highlight
bars or any other such effect which selectively colors a portion
of the screen. The colors change immediately after a call to
ChangeClr.

B Example

To change the color of, say, field number three, you can access
the F1d(3).Row, Fld(3).LCol and Fld(3).RCol array elements to
determine the field’s location on the screen. This example
changes a black-on-white field to red-on-black:

CALL ChangeClr(Fld(3).Row, Fld(3).LCol, F1ld(3).Row,
F1d(3).RCol, 112%, 4%)

= 138 CRESCENT SOFTWARE, INC.

QuickScreen QUICKSCREEN ROUTINES

oo S
ClearScr0
Assembler routine contained in FORMS.LIB

B Purpose

ClearScr0 clears all or a portion of the screen to a specified
color.

B Syntax
CALL ClearScr0 (ULRows, ULCols, LRRow%, LRCol%, Colr%)

ULRow% - upper-left row (y-coordinate)
ULCol% - upper-left column (x-coordinate)
LRRow% - lower-right row (y-coordinate)
LRCol% - lower-right column (x-coordinate)
Colr% - color of the cleared area

B Comments

ClearScr0 clears characters from an area of the screen you
select. If Colr is set to -1, then text on the screen is cleared
and colors remain as they are.

B Example

This example clears a rectangle in the middle of a 25x80 text
display page 0, and colors the area blue (color 7) before
finishing:

CALL Clearscr0 (7%, 20%, 17%, 60%, 7%)

CRESCENT SOFTWARE, INC. @ 139

QUICKSCREEN ROUTINES QuickScreen

Date2Num
Assembler function contained in FORMS.LIB

B Purpose

Converts a date in string form to an equivalent integer variable.
B Syntax
Days$ = Date2Num$ (D$)

Days% - the number of days before or after 12/31/79
D$ - adate in the form “MMDDYY”’ or “MM-DD-YY”’
or “MM/DD/YYYY”’, or any such combination

B Comments and Example

Because Date2Num has been defined as a function, it must be
declared before it may be used.

Date2Num is a very powerful routine with two important uses.
Besides allowing what would otherwise be an eight-character
string to be packed to only two bytes, it also provides an easy
way to perform date arithmetic.

Date2Num will operate on any date that is within the range 01-
01-1900 to 11-17-2065. Invalid dates that fall outside of that
range will return -32768 to indicate an error.

Once a date has been converted to the equivalent integer value,
you may add or subtract a number of days, and then use the
companion function Num2Date to convert the result. The
example below shows this in context.

B 140 CRESCENT SOFTWARE, INC.

QuickScreen . QUICKSCREEN ROUTINES

DEFINT A-Z
DECLARE FUNCTION Date2Num(X$)
DECLARE FUNCTION Num2Date(Dat)

D$ = "09-17-88"

Start = Date2Num(D$)

Later = Start + 30

After30 = Num2Date$(Later)

PRINT "Thirty days after "; D$; " is ~; After30

Because Date2Num and Num2Date are set up as functions they
may also be used within a print statement directly, along with
optional calculations:

PRINT "30 days after "; D$; " is "; Num2Date$(Start + 30)

Date2Num and Num2Date are also useful for verifying if a
given date is valid, which eliminates tedious calculations that
you would have to perform to take possible leap years into
consideration.

The only requirement for the date validation example below is
that the original date must be in the form ‘“MM-DD-YYYY”’,
because this is the format returned by Num2Date.

DEFINT A-2
DECLARE FUNCTION Date2Num(X$)
DECLARE FUNCTION Num2Date(Dat)

INPUT "Enter a date in the form MM-DD-YYYY: *; D$
Dat = Date2Num(DS$)
IF Num2Date$(Dat) = D$ THEN
PRINT D$; " is a good date!"
ELSE
PRINT "Please try again.”
END IF

What we are doing here is asking for an original date, and then
converting it to an equivalent number. If after converting it
back to a string again we have the same date that we started
with, then the date entered is valid.

Understand that while days before 12-31-1979 are returned by
Date2Num as negative values, adding and subtracting will still
be performed correctly.

CRESCENT SOFTWARE, INC. ® 141

QUICKSCREEN ROUTINES QuickScreen

Please see also the companion functions Num2Date and
FixDate.

B 142 CRESCENT SOFTWARE, INC.

QuiékScreen QUICKSCREEN ROUTINES

st R e R
DisplayScrn
BASIC routine contained in SCRNDISP.LIB

B Purpose

Displays a screen from an array using whatever special effect
wipe is specified in the WipeType variable. This routine is
called by Lib2Scrn and LoadScreen.

B Syntax
CALL DisplayScrn(Scrn%(), Element$%, MonoCodes, WipeTypet)

Sern% () - integer screen array (see page 115)

Element% - specifies the array element where the row
and column information for the desired
screen starts — usually the first element in
the array

MonoCode% - set to O for a color monitor, or to 3 for a
monochrome system (see page 114)

WipeType% - specifies which special effect wipe should be
used when the screen is displayed (see
Table XII)

B Comments

This routine is called by your programs in order to restore a
screen held in an integer array using a specific wipe. Scrn()
must contain row and column information for the screen as well
as the contents of the screen. It must be structured as follows:

CRESCENT SOFTWARE, INC. B 143

QUICKSCREEN ROUTINES QuickScreen

‘UlCol = upper-left column
‘UlRow = upper-left row
‘LrCol = lower-right column
‘LrRow = lower-right row

Scrn% (Element$) = UlCol * 256 + UlRow
Scrn®(Element® + 1) = LrCol * 256 + LrRow
Scrn% (Element% + 2)... = contains the screen data

The Scrn() array may contain many screens as long as the
Element offset is properly specified when the DisplayScrn
routine is used. WipeType values are summarized on page 93.

® Example

This example briefly shows how to store a screen in a screen
array called Scrn(), and later display its contents using
DisplayScrn, which can (if desired) wipe the image onto the
display as well as convert it to monochrome colors.

DEFINT A-2

REDIM Scrn((LrRow — UlRow + 1) * (LrCol - UlCol + 1) + 2)
Scrn(0) = UlCol * 256 + UlRow

Scrn(l) = LrCol * 256 + LrRow

CALL MScrnSave(UlRow, UlCol, LrRow, LrCol, SEG Scrn(2))

‘display the old screen

Element = 0 : MonoCode = 0 : WipeType = 0
CALL DisplayScrn(Scrn(), Element, MonoCode, WipeType)

B 144 CRESCENT SOFTWARE, INC.

QuickScreen QUICKSCREEN ROUTINES

i R i
EditForm
BASIC routine contained in FORMEDIT.LIB

® Purpose

To handle all user input, cursor, and mouse activity when
processing a form from QuickBASIC. This routine is pollable
so the calling routine can monitor user input as it occurs.

® Syntax

CALL EditForm(Form$(), Fld(), Frm, Cnf, Action%)

Form$() - form string array (see page 113)
Fld(- field information TYPE array (see page 118)
Frm - form information TYPE variable (see page 120)
Cnf - system environment TYPE variable (see

page 116)
Action% - a flag used to control how the form behaves

when called (see page 111)

2 Comments

The EditForm subprogram is a major routine in QuickScreen.
It will allow calling programs to process forms, making ad-
ditional programming virtually unnecessary.

When EditForm is called, it uses information in Form$(), F1d(),
and Frm. Form$() is a conventional (not fixed-length) two-
dimensional string array. The first subscript must be
dimensioned to the total number of fields in the form. The
second subscript must be dimensioned to 2. FId() is a TYPE
array which is DIMed to the FieldInfo user-defined TYPE
(please see page 118). Both Form$() and Fld() may be

CRESCENT SOFTWARE, INC. | 145

QUICKSCREEN ROUTINES QuickScreen

dimensioned using the NumberOfFields function as shown
below.

Size% = NumberOfFields$ (FormName$)
REDIM Form$(Sizes, 2)
REDIM Fld(sSize%) AS FieldInfo

Once form arrays are properly sized, they can be initialized and
loaded using the GetFldDef routine (see pages 163 and 226 for
further details):

CALL GetFldDef (FrmName$, StartEl%, Fld(), Form$())

To continue with the list, Frm is a TYPE variable which is
DIMed to the FormInfo user-defined TYPE (please see page
120).

Cnf is a TYPE variable which is DIMed to the Config user-
defined TYPE (please see page 116).
Action is either 1 or 3 was discussed earlier (please see

page 111).

® Example

The most effective way to poll EditForm is to wait for a
particular keypress, such as <Esc>, to occur. When this
happens, the form may be cleared from the screen and
processing may continue.

In the example below we present a DO loop showing how to
poll EditForm. The DO loop presented is terminated when
<Esc> is pressed.

B 146 CRESCENT SOFTWARE, INC.

QuickScreen QUICKSCREEN ROUTINES

ACTION = 1
DO
CALL EditForm(Form$(), Fld(), Frm, Cnf, Action)
LOOP UNTIL Frm.KeyCode = 27
‘Keep editing until user presses <Esc>

When the user finally presses < Esc>, the data entered into the
form may be accessed by examining the contents of the Form$()
string array.

CRESCENT SOFTWARE, INC. @ 147

QUICKSCREEN ROUTINES QuickScreen

EndOfForms |
BASIC function contained in FORMEDIT.BAS

B Purpose

Returns the number of the last field on any form.
B Syntax

LastFld% = EndOfForms$ (F1ld())

LastFld% - the value of the last field on the form
Fld(- field information TYPE array (see page 118)

B Comments

Because EndOfForms has been defined as a function, it must be
declared before it may be used.

This function can be used to determine the last field number on
a form, and is particularly useful for a multi-page forms.

B 148 CRESCENT SOFTWARE, INC.

QuickScreen QUICKSCREEN ROUTINES

i S R e e S
Evaluate
BASIC routine contained in EVALUATE.BAS

B Purpose

Returns the value of a mathematical expression. Evaluate is a
full-featured expression evaluator. It accepts a formula in an
incoming string, and returns a double-precision result.
Capitalization is ignored (in keywords such as LOG and SIN),
except for the ““E” used for scientific notation: to Evaluate, a
lowercase ‘‘e’” represents the constant, and an uppercase ““E’”’
is for the exponent.

B Syntax

Answer# = Evaluate(Expression$)

Expression$ - string containing a mathematical expression,
along with parentheses, operation keywords
(such as ABS or SIN), and numbers; if the
string expression is invalid, the string is
returned in Expression$ with a leading percent
sign (%) appended.

Answer# - receives the computed answer

8 Comments

Because Evaluate has been defined as a function, it must be
declared before it may be used.

Scientific notation is supported using ““E”* (but not “‘e’”). What
follows is a list of operations supported by Evaluate:

CRESCENT SOFTWARE, INC. B 149

QUICKSCREEN ROUTINES QuickScreen

ABS
AND
ARCCOS
ARCCOSH
ARCCOT
ARCCOTH
ARCCSC
ARCCSCH
ARCTANH
ARCSEC
ARCSIN
ARCSINH
ATN

CLG

COos

coT

CsC
CSCH
EXP

LOG

NOT

OR

SINH
SECH
SEC

SIN

SQR

TAN
TANH

Absolute Value

Logical AND

Arc Cosine

Arc Hyperbolic Cosine
Arc Cotangent

Arc Hyperbolic Cotangent
Arc Cosecant

Arc Hyperbolic Cosecant
Arc Hyperbolic Tangent
Arc Secant

Arc Sine

Arc Hyperbolic Sine

Arc Tangent

Common Log (base 10, what LOG really is)
Cosine

Cotangent

Cosecant

Hyperbolic Cosecant

Exp

Natual Log {base e, what BASIC calls LOG)
Logical NOT

Logical OR

Hyperbolic Sine
Hyperbolic Secant
Secant

Sine

Square Root

Tangent

Hyperbolic Tangent

The following list shows math operators supported by Evaluate:

! Factorial
Exponentiation
Muiltiplication
Division

Integer Division
Addition

-~

™

+

- Subraction {or unary minus, such as -15)

vV iIA

Less than
Equal to
Greater than

B 150

CRESCENT SOFTWARE, INC.

QuickScreen QUICKSCREEN ROUTINES

B Example

X = EVALUATE("10 * (12°3+(4E-13))/LOG(B)")

CRESCENT SOFTWARE, INC. & 151

QUICKSCREEN ROUTINES QuickScreen

Exist
Assembler function contained in FORMS.LIB

B Purpose

Exist will quickly determine the presence of a file.
B Syntax

Theret% = Exist%(FileName$)

FileName$ - file name or file specification
There% - assigned to -1 if FileName$ exists; 0 if
FileName$ does not exist

B2 Comments

Because Exist has been designed as a function, it must be
declared before it may be used.

The main purpose of Exist is to prevent the error cause by
attempting to open a file for input when it does not exist.
Rather than having to set up an ON ERROR trap just prior to
each attempt to open a file, Exist will directly tell if the file is
present.

In the past, programmers have tried to avoid an error by
opening a file for random access, which does not cause an
error. Then the BASIC LOF function would be used to see if
the file’s length is zero, meaning it wasn’t there. The problem
with that approach — besides being a lot of extra work — is
that an empty file could be created in the process. For this
reason, we recommend the use of the Exist function.

& 152 CRESCENT SOFTWARE, INC.

QuickScreen QUICKSCREEN ROUTINES

It’s important to know that the FileName$ may optionally
contain a drive letter, a directory path, and either of the DOS
wild card characters.

B Example

This example returns -1 if there are .BAS files on the \STUFF
directory of the B drive:

There% = Exist%("B:\STUFF*.BA2?")

CRESCENT SOFTWARE, INC. B 153

QUICKSCREEN ROUTINES QuickScreen

FGet
Assembler routine contained in FORMS.LIB

B Purpose

FGet reads data from a disk file in 2 manner similar to BASIC’s
binary GET command, but it returns an error code rather than
requiring the use of ON ERROR.

B Syntax
CALL FGet (Eandle%, Destination$)

Handle % - handle assigned when the file was opened

Destination$ - string that is to receive the data; the length
of Destination$ determines how many bytes
are to be read

B Comments

FGet reads data from the specified file at the location held in
the DOS file pointer. The current pointer location is
established by the most recent read or write operation, or by
using the supplied FSeek routine.

The length of Destination$ is used to tell FGet how many bytes
it is to read to ensure that sufficient room has been set aside.
If FGet had been written to expect a separate variable to specify
the number of bytes, it would be possible to corrupt string
memory by failing first to assign the string to a sufficient

length.

Only two errors are likely when using FGet — either the handle
number was invalid, or the destination string was null.

B 154 CRESCENT SOFTWARE, INC.

QuickScreen QUICKSCREEN ROUTINES

B Example

This example gets one byte of information from the current file,
at the location specified by the DOS file pointer.

X$ = SPACE$(1) ‘set one byte aside
‘read the byte value from the file

CALL FGet (Handle%, X$)

CRESCENT SOFTWARE, INC. B 155

QUICKSCREEN ROUTINES QuickScreen

FixDate
BASIC routine contained in FORMEDIT.BAS

B Purpose

Changes the format of a date string.
B Syntax
CALL FixDate(Dat$)

Dat$ - string containing the date in a variety of string
formats

B Comments

This subprogram is useful for ensuring the date format
corresponding to MM-DD-YYYY are correctly-formatted. For
instance, the routine ensures that all months and days have two
numerical digits (single-digit months or days will have a leading
zero). It also ensures that a century is appended to years
entered as two digits. Thus, *“ 3- 4-91° will become ““03-04-
19917 after calling FixDate.

B Example

NewDate$ = FixDate(Date$)

®m 156 CRESCENT SOFTWARE, INC.

QuickScreen QUICKSCREEN ROUTINES

FldNum
BASIC function contained in FORMEDIT.BAS

B Purpose

Returns the field number corresponding to a specified field
pame.

B Syntax

FldNumber$ = FldNum$ (FldName$, Fld())

FldNumber% - number of the field named by FldName$
FldName$ - string containing the field name
F1d(- field information TYPE array (see page 118)

B Comments

Because FldNum has been defined as a function, it must be
declared before it may be used.

FIdNum makes it easy to obtain the number of a field if all you
have available is its name. The routine is useful for creating
programs which do not have to be modified as your data entry
form changes. It also makes source code more intelligible by
allowing long variable names to refer to short field names.

B Example

This example finds which field number holds a *‘discount rate”’.
Then, the field number is used to access the form buffer so that
the field’s value is returned.

DiscountRateFld = FldNum("DISCRATE", F1d())
DiscountRate = VAL (Form$ (DiscountRateFld, 0))

CRESCENT SOFTWARE, INC. m 157

QUICKSCREEN ROUTINES QuickScreen

o]
FOpen
Assembler routine contained in FORMS.LIB

B Purpose

FOpen is used to open a disk file in preparation for reading or
writing using the FSeek or FGet routines.

B Syntax
CALL FOpen(FileName$, Handle$)

FileName$ - name of file to be opened

Handle% - handle assigned by DOS for all subsequent
access; if errors occur when trying to open
the file, Handle returns 0

B Comments

FOpen will open any file, and will also accept an optional drive
or directory as part of the file name. However, it will not
create a file. If you are not sure whether a file exists you
should first use the Exist function.

It is up to your program to store the handle number that DOS
assigns, and use that handle whenever you access the file again.

B Example

This example opens the file “MyForm.QSL*’ and assigns an
integer file handle number to it.

CALL FOpen("MyForm.QSL", Handle%)

B 158 CRESCENT SOFTWARE, INC.

QuickScreen QUICKSCREEN ROUTINES

L
Format
BASIC routine contained in FORMEDIT.BAS

B Purpose

Places a formatted version of a supplied number into a field of
the current form. Often used in conjunction with the Value
routine.

Syntax
CALL Format (Float$, Fld(FldNo), Form$(FldNo, 0))

Float# - number you wish to be formatted

F1d(FIldNo) - field information TYPE array (see
page 118) and the desired field number
(FIdNo) for which Float# is formatted

Form$(FldNo, 0) - form string array (see page 113) and the
desired field number

Comments

This routine makes it easy to place a number into a field which
has been designated as a formatted field. For example, a
currency field would format a number such as ““5000°° to
“$5,0007": the dollar-sign and comma are added after calling
Format.

Although you can use this routine directly, we recommend
using the SaveField routine (which itself calls Format) since it
validates a field before updating the form buffer.

CRESCENT SOFTWARE, INC. 7 159

QUICKSCREEN ROUTINES QuickScreen

B Example

This example converts ““10000”” to <“$10,000”" in field #5:

CALL Format(10000%#, F1d(5), Form$(5, 0))

@ 160 CRESCENT SOFTWARE, INC.

QuickScreen QUICKSCREEN ROUTINES

FSeek
Assembler routine contained in FORMS.LIB

E Purpose

FSeek will position the DOS file pointer for a file that has been
opened using the FOpen routine.

B Syntax
CALL FSeek(Handle%, Location&)

Handle % - handle assigned when the file was opened
Location& - byte location in the file to seek

Comments

Unlike QuickBASIC’s SEEK, FSeek considers the first byte in
the file to be byte 0, not 1. Therefore, to seek to the beginning
of a file you would call FSeek with a location value of 0.

The only error that is likely to occur when using FSeek is
giving it an invalid handle number.

One warning you should be aware of is seeking beyond the end
of a file, which will cause its length to be extended. This is not
a fault with FSeek, and in fact will happen with BASIC’s SEEK
command as well.

CRESCENT SOFTWARE, INC. | 161

QUICKSCREEN ROUTINES QuickScreen

B Example
This example seeks byte 8 in the header information to a

QuickScreen library file. This byte tells how many screens are
stored:

CALL FSeek("MyFile.QSL", 7&)

B 162 CRESCENT SOFTWARE, INC.

QuickScreen QUICKSCREEN ROUTINES

GetFldDef
BASIC routine contained in FORMFILE.BAS

B Purpose

Retrieves information from a form file and places it in a
structure for later reference by other routines. Also loads
formulas and help messages into the Form$() data array.

#@ Syntax

CALL GetFldDef (FrmName$, StartEl%, Fld(), Form$())

FrmName$ - name of the form (.FRM) definition file

StartEl % - starting element in the Fld() array below

which the form information is to be loaded
Fld(- field information TYPE array (see page 118)
Form$() - form string array (see page 113)

B Comments

This routine allows a calling program to load a .FRM file so
that it may be properly processed by EditForm. The
NumberOfFields function (discussed on page 186) should be
used before this routine in order to properly dimension the Fld()
and Form$() arrays.

B Example

An example of this routine is shown and discussed on page 226.

CRESCENT SOFTWARE, INC. 3163

QUICKSCREEN ROUTINES QuickScreen

GetRec
BASIC routine contained in RANDOMIO.BAS

B Purpose

To retrieve a specified record and any associated notes from a
database.

B Syntax

CALL GetRec(RecNok, Form$(), Fld())

RecNo& - record number to retrieve
Form$() - form string array (see page 113)
Fld(- field information TYPE array (see page 118)

B Comments

When called, this routine loads the specified record into the
form buffer, Form$(0, 0). Once this is done, it is necessary to
call the UnPackBuffer routine so that the remaining elements in
the Form$() array are properly filled.

The data which is read by this routine is expected to be in a
.DAT data file, while any associated notes fields are read from
a .NOT notes file.

Usually, the routine OpenFiles is called before using either
GetRec or SaveRec.

B Example

Please see page 236 for an example.

E 164 CRESCENT SOFTWARE, INC.

QuickScreen QUICKSCREEN ROUTINES

LibFile2Scrn

BASIC routine contained in SCRNLIB.BAS

B Purpose

Loads and displays an individual screen from a screen library

file.

B Syntax

CALL LibFile2Scrn(LibName$, ScrnName$, MonoCode%,

Attribute%, ErrorCode%)

LibName$ - the file name of the screen library (the
““.QSL”’ extension is optional)
ScrnName$ - the name of the screen to display (8

characters maximum)

MonoCode% - set to O for a color monitor, or to 3 for a

monochrome system (see page 114)
Attribute % - specifies drop shadow and screen mode

change options (please see Table XV and

Table XVI)

ErrorCode% - returns a non-zero number if an error
occurred (please see Table XVII)

B Comments

This routine is ideal for implementing a help system in which
help screens are only needed at certain times. In this system it
is usually not practical to keep the entire screen library in

memory.

CRESCENT SOFTWARE, INC.

@ 165

QUICKSCREEN ROUTINES QuickScreen

B Example
This routine requires no setup and can be used simply by B
specifying a screen library name and the name of the screen in
the library which is to be displayed. MonoCode, Attribute, and
ErrorCode have been discussed earlier.

The example below loads the ‘““INTRO’’ screen of the
““CUSTOMER.QSL’screen library file:

CALL LibFile2Scrn("CUSTOMER", "INTRO", 0, 0, ExrorCode)

If an error occurred, ErrorCode will be true, and will have a
value of -1.

B 166 CRESCENT SOFTWARE, INC.

QuickScreen QUICKSCREEN ROUTINES

LibGetFldDef
BASIC routine contained in FORMLIB.BAS

B Purpose

Fills the supplied arrays with data from a form stored in a form
library file.

® Syntax

CALL LibGetFldDef (LibName$, FrmName$, StartEl%, Fld() r_
Form$ (), ErrorCode$)

LibName$ - name of the form library file (the ‘‘.QFL”
extension is optional)
FrmName$ - name of the form in the library

StartEl % - specifies where in the Form$() and Fld() arrays
information will loaded; StartEl % is the starting
element

Fld) - field information TYPE array (see page 118)

Form$() - form string array (see page 113)

ErrorCode% - returns a non-zero number if an error occurred
(please see Table XVII)

B Comments

This routine accesses form information for a specific screen in
a form library and automatically parses information into the
Fld() and Form$() arrays. The StartEl value makes it easy to
preserve the lower portion of the supplied arrays and effectively
allows several form files to be added to a single array.

CRESCENT SOFTWARE, INC. B 167

QUICKSCREEN ROUTINES QuickScreen

B Example

This example opens the BACKORDR.FRM form in the
SALES.QFL form library file and fills the Fld() and Form$()
arrays starting at the fifteenth element. Doing this preserves the
form information already contained in the O through 14
elements of the Fld() and Form$() arrays:

CALL LibGetFldDef ("SALES™,"BACKORDR", 15, Fld(), Form$(),_
ErrorCode)

B 168 CRESCENT SOFTWARE, INC.

QuickScreen QUICKSCREEN ROUTINES

LibLoadDisplayForm
BASIC routine contained in DEMOCUST.BAS

B Purpose
Simplifies loading and displaying data entry forms.
B Syntax

CALL LibLoadDisplayForm(LibName$, FormName$, Form$ (), _
Fld() AS FieldInfo)

LibName$ - name of the screen/form (.QSL) library file
FormName$ - name of the form to load and display
Form$() - form string array (see page 113)

Fld(- field information TYPE array (see page 118)

B Comments

This routine appears as a subprogram in DEMOCUST.BAS.
In order to be used, it must be copied into your own program.

This routine automatically dimensions the Form$() and Fld()
arrays by examining how many fields are in the form you have
specified. These arrays are then filled with information from
the form library (.QFL) file, and the screen is displayed from
the screen library (.QSL) library file.

CRESCENT SOFTWARE, INC. 169

QUICKSCREEN ROUTINES QuickScreen

LibNo
BASIC function contained in SCRNLIB.BAS

B Purpose
To return the number of a library screen given its name.
B Syntax

ScrnNum% = LibNo$% (NameInLib$, ScrnLib%())

ScrnNum % - number of the screen in the library

NamelnLib$ - screen name in library (must be 8 characters
or less)

ScernlLib% () - integer screen library array

B Comments

Because LibNo has been defined as a function, it must be
declared before it may be used.

This function is useful when you need to a screen in a screen
library array by supplying its number rather than its name.
LoadScrnLib should be used in preparation for this function.

B Example

This example determines the number for the ““INTRO’’ screen
in the current screen library array:

ScrnNum% = LibNo% ("INTRO", ScrnLib%())

' 170 CRESCENT SOFTWARE, INC.

QuickScreen QUICKSCREEN ROUTINES

LibNumberOfFields

BASIC function contained in FORMLIB.BAS

Purpose

Returns the number of fields for a form in a form library.
Syntax

TotalFields% = LibNumberOfFields% (LibName$, FormName$)

TotalFields% - total number of fields in the form specified
LibName$ - name of the form library file
FormName$ - name of the form

Comments

Because LibNumberOfFields has been defined as a function, it
must be declared before it may be used.

This function is useful for determining how the Fld() and
Form$() arrays should be dimensioned before being used. It is
typically used before calling LibGetFldDef.

Example

This example returns the number of fields in the ACCOUNTS
form of the BUDGET form library:

TotalFields$% = LibNumberOfFields% ("BUDGET", "ACCOUNTS"®)

CRESCENT SOFTWARE, INC. & 171

QUICKSCREEN ROUTINES QuickScreen

LibScrName
BASIC function contained in SCRNLIB.BAS

B Purpose
To return a screen name from a library given its number.
® Syntax

ScrnName$ = LibScrName$(ScrnNo%, ScrnLib$())

ScrnName$ - Teturn screen name
ScrnNo % - number of the desired screen in the library
ScrnLib% () - integer screen library array

B Comments

Because LibScrName has been defined as a function, it must be
declared before it may be used.

This routine makes it easy to obtain the name of a screen given
its screen number. It is useful when controlling multi-page
forms, since it allows you to increment or decrement a screen
number counter in order to access particular screens in a

library.

B Example

This example shows how to fill an array with the screen names
contained in a ScrnLib() integer screen library array:

REDIM Array$(ScrnLib(0))
‘ScrnLib(0) gives the last screen #
FOR N = 1 TO ScrnLib(0)
Array$(N) = LibScrName$ (N, ScrnLib())
NEXT N

=172 CRESCENT SOFTWARE, INC.

QuickScreen QUICKSCREEN ROUTINES

Lib2Scrn
BASIC routine contained in SCRNLIB.BAS

® Purpose

Displays a screen from a screen library array using whatever
wipe type was specified when the screen was saved.

B Syntax

CALL Lib2Scrn(NameInLib$, ScrnLib%(), MonoCode$, _
Attribute$, ErrorCodes)

NamelnLib$ - name of the screen in the current library

SernLib%() - screen integer array used to hold the library
image

MonoCode% - set to O for a color monitor, or to 3 for a
monochrome system (see page 114)

Attribute % - specifies drop shadow and screen mode
change options (please see Table XV and
Table XVI)

ErrorCode% - returns a non-zero number if an error
occurred (please see Table XVII)

B Comments

This routine may be called from your programs to display
screens contained in QuickScreen Library files. The library
must have been previously loaded using the steps outlined on
page 212.

The NamelnLib$ string variable is the name of the screen in the
library you wish to display, and it must be 8 characters or less.
ScrnLib() is the screen integer array.

CRESCENT SOFTWARE, INC. @ 173

QUICKSCREEN ROUTINES QuickScreen

B Example

This example gets the size of the ““CUSTOMER.QSL”’ screen
library file using ScrnLibSize, before using LoadScrnLib to
load the library into an integer screen array. Then, the screen
called "INTRO" is generated from the screen array using the
Lib2Scrn routine.

DimSize = ScrnLibSize("CUSTOMER™)

REDIM ScrnArray(DimSize)

CALL Lib2Scrn("INTRO", ScrnArray(), MonoCode, Attribute,
ErrorCode) -

This routine is used by the DEMOCUST.BAS program.

B 174 CRESCENT SOFTWARE, INC.

QuickScreen QUICKSCREEN ROUTINES

i e
LoadScreen
BASIC routine contained in SCRNFILE.BAS

B Purpose

Loads and displays a QuickScreen screen file using whatever
wipe type was specified when the file was saved.

B Syntax
CALL LoadScreen(ScrName$, MonoCode%, Attribute%, ErrorCodet)
ScrName$ - full path and file name of the screen to be
displayed

MonoCode% - set to O for a color monitor, or to 3 for a
monochrome system (see page 114)

Attribute % - specifies drop shadow and screen mode
change options (please see Table XV and
Table XVI)

ErrorCode% - returns a non-zero number if an error
occurred (please see Table XVII)

B Comments

LoadScreen is able to load QuickScreen files from disk. If
used, this subprogram requires that SCRNDISP.BAS be linked
with your program.

B Example

ScrName$ = "CSDEMO.SCR"
MonoCode = 0 : Attribute = 0
CALL LoadScreen(ScrName$, MonoCode, Attribute, ErrorCode)

CRESCENT SOFTWARE, INC. m 175

QUICKSCREEN ROUTINES QuickScreen

LoadScrnLib
BASIC routine contained in SCRNLIB.BAS

B Purpose

Loads a screen library into an integer array so that screens can
be stored in and displayed from memory.

B Syntax
CALL LoadScrnLib(LibName$, ScrnLib%(), ErrorCodet)

LibName$ - name of the screen library to load

Scrolib%() - the array that will hold the library (this array
must havé been dimensioned to a size large
enough to hold the library — please see the
ScrnLibSize function to determine the correct
size for this array)

ErrorCode% - returns a non-zero number if an error occurred
(please see Table XVII)

B Comments

This routine can be used in the beginning of a program to load
an entire screen library into memory so that individual screens
can be displayed without having to access a disk. Use the
Lib2Scrn routine to display screens from memory.

E Example

See the example for the Lib2Scrn routine.

m 176 CRESCENT SOFTWARE, INC.

QuickScreen QUICKSCREEN ROUTINES

MakeMono
Assembler routine contained in FORMS.LIB

B Purpose

To convert the screen image contained in the integer array
Scrn() to colors suitable for monochrome systems.

E Syntax
CALL MakeMono(SEG Scrn%(0), ScreenSizet)

Scrn%(0) - screen integer array
ScreenSize% - size of the screen in words

B Comments

The assembler MakeMono routine allows conversion of color
screens for use on monochrome systems. The screen which is
to be converted must already be placed in the Scrn() integer
array.

ScreenSize specifies the size of the screen in words. Please see
the discussion under Screen Arrays on page 115.

CRESCENT SOFTWARE, INC. a 177

QUICKSCREEN ROUTINES QuickScreen

Message
BASIC routine contained in FORMEDIT.BAS

B Purpose

To display text information to the user in a box.
E Syntax

CALL Message(Msg$)

Msg$ - message string
B Comments

This routine quickly displays any text you supply in a
conventional (variable-length) string. When you call Message
with a non-null string, the message is displayed in a box which
is commonly known as a “‘window’. If you call Message
again with a null Msg$ (i.e., no text), then the window
previously displayed with be removed, and the screen image the
message covered will be properly restored.

Further, if your user starts his application with the ‘‘/B”’
command-line switch, then messages will be displayed in
monochrome.

B Example

CALL Message("This is a help message.")

B 178 CRESCENT SOFTWARE, INC.

QuickScreen QUICKSCREEN ROUTINES

—_
Monitor
Assembler function contained in FORMS.LIB

B Purpose

Monitor makes it easy to determine the type of display adapter
currently active.

B Syntax
MonType$ = Monitors

MonType% - integer value representing the detected
monitor type currently in use

B Comments

Because Monitor is designed as a function, it must be declared
before it may be used.

Monitor recognizes all of the popular display adapter types,
however, it does not report which screen mode is currently
active. In the context of this QuickScreen product, which
generates text-mode screens only, it’s best to ensure that text
mode is active before using Monitor.

The type of monitor detected will be returned as a number,
discussed on page 117.

Monitor is useful in determining appropriate colors for a
program. For example, using colored backgrounds may result
in unreadable text on a monochrome monitor. Be aware that
some computers, such as the original Compaq portable and the
AT&T 6300, have a CGA adapter connected to a monochrome
monitor. In those cases Monitor will report a CGA. You

CRESCENT SOFTWARE, INC. & 179

QUICKSCREEN ROUTINES QuickScreen

might consider recognizing a command line switch, such as
““/B”’, to allow a user to override the program’s defaults.

E Example

On an EGA system with a color monitor, Monitor returns the
value 5 in MonType.

MonType% = Monitor%

B 180 CRESCENT SOFTWARE, INC.

QuickScreen QUICKSCREEN ROUTINES

MPaintBox
Assembler routine contained in FORMS.LIB

B Purpose

MPaintBox changes the color of each character in a block of
text. If a mouse is being used, this routine turns off the mouse
cursor until all colors have been set.

B Syntax
CALL, MPaintBox(ULRow$, ULCol%, LRRow$%, LRCols, Colrs)

ULRow% - upper-left row (y-coordinate)
ULCol% - upper-left column (x-coordinate)
LRRow% - lower-right row (y-coordinate)
LRCol% - lower-right column (x-coordinate)
Colr% - color for the specified block

B Comments

MPaintBox is useful for quickly ‘‘painting”” an area of the
currently-active text screen.

B Example

This example paints the a 10x10 area at the upper-left portion
of the display to blue on white.

CALL MPaintBox(1, 1, 10, 10, 113)

CRESCENT SOFTWARE, INC. B 181

QUICKSCREEN ROUTINES QuickScreen

i
MQPrint
Assembler routine contained in FORMS.LIB

B Purpose

To display a string very quickly at the current cursor location.
The mouse cursor is turned off until printing is completed.

B Syntax
CALL MQPrint(X$, Colrs)

X$ - string to be printed
Colr% - color to be used

B Comments

MQPrint uses the currently-active text page for its operation.
If the Colr value is -1, then the existing screen colors will be
used.

MQPrint prints any character you send it. That is, unlike
BASIC’s PRINT statement, MQPrint does not interpret special
““control’” characters, such as CHR$(12).

B Example

This example prints ‘“Hello World!”* at the current cursor
location using the currently-displayed colors.

CALL MQPrint ("Hello World!", -1)

B 182 CRESCENT SOFTWARE, INC.

QuickScreen QUICKSCREEN ROUTINES

MScrnSave and MScrnRest
Assembler routines contained in FORMS.LIB

B Purpose

MScrnSave and MScrnRest save and restore portions of the
screen. Each routine also turns off the mouse cursor while
working.

B Syntax
CALL MScrnSave(ULRow%, ULCol%, LRRow$, LRCol$, SEG A%(0))
or
CALL MScrnRest (ULRow$, ULCol%, LRRow$, LRCol%, SEG A%(0))

ULRow% - upper-left row (y-coordinate)

ULCol% - upper-left column (x-coordinate)

LRRow% - lower-right row (y-coordinate)

LRCol% - lower-right column (x-coordinate)

A%(0) - integer array which holds a portion of the screen

Comments

MScmSave and MScroRest work with the currently active page.
MScrnSave saves an area of the screen to an integer array. The
screen image can then be overwritten. Later, the orginal image
stored in the integer array can be used when calling MScrnRest
so that the original area of the screen is properly restored.

QuickScreen uses these routines extensively. For example, the
screen image is first saved whenever a menu or message ‘‘pops
up’” over existing text. This way, the ‘“‘underlying’ screen

CRESCENT SOFTWARE, INC. B 183

QUICKSCREEN ROUTINES QuickScreen

image can be easily restored when the pop up is no longer
needed.

An integer screen array is used for several important reasons.
First, it is organized in a manner similar to the screen, so that
each character on the screen corresponds to the number of array
elements that are needed. Further, by using an array you may
reclaim memory when the saved screen is no longer needed —
simply erase the array. Finally, arrays allow you to save as
many screens as necessary — each screen occupies its own area
in the array.

B Example

The ScrnSave and ScrnRest routines make it possible to create
text “‘windows’’ — areas of the screen which appear to pop up
and pop down over existing text.

The trick in creating such an effect is to save a portion of the
screen over which your window will appear. You can then
write over the saved area of the screen since it can be easily
restored with its prior contents.

It would be wasteful to save the entire screen each time you
wished to create a window: doing this would be slow and would
require large screen arrays to hold the screen image. Instead,
we recommend calculating the precise area needed by the
window. This way, arrays can be properly sized and the
process will be as fast as possible.

To calculate the size of the screen array, you’ll need to
calculate the width (WDTH) and height (HGHT) of your
window. Your window is specified in terms of its upper-left

B 184 CRESCENT SOFTWARE, INC.

QuickScreen QUICKSCREEN ROUTINES

and lower-right coordinates, so figuring out the width and
height will require use of these coordinate values:

WDTH = LRCol - ULCol + 1
HGHT = LRRow - ULRow + 1

Where LRCol is the lower-right column; ULCol is the upper-
left column; LRRow is the lower-right row; and ULRow is the
upper-left row. The size of the array is then a simple
calculation:

Size% = WDTH * HGHT
REDIM ScrnArray$(Sizes)

The area of the screen is then saved like this:
CALL ScrnSave(ULRow, ULCol, LRRow, LRCol, ScrnArray% (0))

Now that the portion of the screen image you’ve specified is
preserved in ScrnArray(), you can write to the screen anywhere
in the specified rectangular area.

When it’s time to restore the original screen image, you can call
ScrnRest like this:

CALL ScrnRest (ULRow, ULCol, LRRow, LRCol, ScrnArray%(0))

It is important never to destroy the contents of ScronArray() (if
you intend to restore the screen image) since doing this can result
in “garbage” on the screen.

To create several ““layers™ of windows you will need to create
additional screen arrays and rectangular coordinates. This
would allow you to overwrite and restore other areas of the
screen as well, and can allow for very complex windowing
schemes.

CRESCENT SOFTWARE, INC. B 185

QUICKSCREEN ROUTINES QuickScreen

NumberOfFields
BASIC function contained in FORMFILE.BAS

B Purpose

Returns the number of fields in a form.
® Syntax

N% = NumberOfFields% (FormNames$)

N% - number of fields in FormName$
FormName$ - string containing the full path and file name
of the form

B Comments

Because NumberOfFields has been defined as a function, it
must be declared before it may be used.

This function is used to dimension the FId() TYPE array and
Form$ data array to the proper number of elements before
calling GetFldDef.

® Example

This example returns the number of fields in the MyForm.FRM
file:

NumFields$ = NumberOfFields% ("MyForm.FRM")

B 186 CRESCENT SOFTWARE, INC.

QuickScreen QUICKSCREEN ROUTINES

Num2Date
Assembler function contained in FORMS.LIB

B Purpose

Num2Date converts a previously-encoded integer date to an
equivalent date string.

B Syntax
D$ = Num2Date$ (Days%)

D$ - formatted date string
Days% - integer value from -29219 to 31368, and D$ receives
the date in the form ‘“MM-DD-YYYY™.

B Comments

Because Num2Date has been designed as a function, it must be
declared before it may be used.

Please see the Date2Num discussion and example for more
information.

CRESCENT SOFTWARE, INC. a 187

QUICKSCREEN ROUTINES QuickScreen

OpenfFiles
BASIC routine contained in RANDOMIO.BAS

® Purpose

To open a random access database (.DAT) file, and to field-
format it to the data buffer — Form$(0, 0). If there are multi-
line notes fields contained in the form, a Notes database file
(.NOT) is also opened.

B Syntax
CALL OpenFiles(FormName$, Form$(), Fld() AS FieldInfo)

FormName$ - name of the database file to open (without the
.DAT extension

Form$() - form string array (see page 113)

Fld() - field information TYPE array (see page 118)

B Comments

OpenFiles looks in the current directory for the form name you
provide. If you want to access files on a different
drive/directory, then you must append the path in front of the
FormNameS$.

If the form is found it and its associated notes file are opened;
if the form file is not found then it is created.

Once the random file is open, Form$(0, 0) is fielded to it.
F1d(0).RelHandle holds the handle for the .DAT file opened,
and Fld(0).Scratchl hold the handle for any Notes file which
was opened.

The routines GetRec and SaveRec can be used after OpenFiles
has successfully worked.

B 188 CRESCENT SOFTWARE, INC.

QuickScreen QUICKSCREEN ROUTINES

PrintArray
BASIC routine contained in FORMEDIT.BAS

Purpose

To refresh the screen by redisplaying the contents of fields in
the form.

B Syntax
CALL PrintArray(FirstFld%, LastFld$, Form$(), Fld())

FirstFld% - starting field to be redisplayed

LastFld% - ending field to be redisplayed

Form$() - form string array (see page 113)

Fld(- field information TYPE array (see page 118)

B Comments

Sometimes it is necessary to change a field from your own
program. Refreshing the screen ensures that the user is aware
of the exact content of each field on the form.

B Example

This example refreshes only the third and fourth field of the
currently-displayed form:

CALL PrintArray(3, 4, Form$(), Fld())

CRESCENT SOFTWARE, INC. B 189

QUICKSCREEN ROUTINES QuickScreen

QEdit
BASIC routine contained in QEDITS.BAS

B Purpose

QEdit is a text editor subprogram that may be called as a “‘pop-
up’’ from within a BASIC program.

B Syntax
CALL QEdit(Array$(), Ky$, Action%, Ed)

Array$() - conventional (not fixed-length) string array that will
hold the text being entered or edited (the size to
which Array$() has been dimensioned determines
the maximum number of lines that may be entered)

Ky$ - holds the last key pressed

Action% - indicates how QEdit is being invoked (see com-
ments below)

Ed - TYPE variable that controls QEdit (see comments
below)

2 Comments

The QEdit editing window may be positioned anywhere on the
screen, and sized to nearly any number of rows and columns.
QEdit automatically saves the underlying screen; it may be used
in the 25-, 43-, or 50-line screen modes; and it supports word-
wrap, a mouse, and horizontal/vertical scrolling.

All of the standard editing keys are supported. For example,
<Home> and <End> move to the beginning and end of a
line; the <PgUp> and <PgDn> scroll the screen by pages;
and <Ctrl> <PgUp> and <Ctrl> <PgDn> move to the
first and last lines, respectively. The cursor may also be moved

® 190 CRESCENT SOFTWARE, INC.

QuickSereen QUICKSCREEN ROUTINES

to the top or bottom of the edit window with the
<Ctrl> <Home> and <Ctrl> <End> keys.

Similar to the QuickBASIC editor, QEdit uses the
<Ctrl> <Left> and <Ctrl> <Right> arrow keys to move
the cursor by words.

The call for QEdit is fairly simple to set up. Your program
will need to dimension a conventional (not fixed-length) string
array to hold the lines of text. The size to which the string
array is dimensioned dictates the maximum number of lines that
may be entered.

If you intend to present a blank screen to your user, then no
additional steps are needed to prepare the array. If you already
have text that is to be edited, it may be placed in the array
before QEdit is called.

The text may also be sent to QEdit as a single long line in the
lowest array element. In that case, it will be wrapped
automatically before being presented for editing. If you intend
to read files prepared by a wordprocessor that places each
paragraph on its own line (such as XyWrite), you will probably
want to read each line into every other element in the string
array. This will preserve the spacing between paragraphs, and
can be accomplished as shown below:

OPEN X$ FOR INPUT AS #1 ‘open the file
CurLine = 1 “set current line counter
WHILE NOT EOCF(1l) ‘read until the end

LINE INPUT Array$(CurLine) ‘get a line

CurLine = CurLine + 2 ‘skip over next line
WEND
CLOSE #1 ‘close the file

CRESCENT SOFTWARE, INC. a2 191

QUICKSCREEN ROUTINES QuickScreen

Like VertMenu, the current cursor location indicates where to
position the upper-left corner of the editing window.
Arguments passed to QEdit are then used to indicate the width
and height of the window, the margins, colors, and so forth.
Let’s take a close look at each of these in turn. Here’s the
QEdit calling syntax, once again:

CALL QEdit (Text$(), Ky$, Actiont, E4)

The Text$() array holds the text to be edited, as described
above.

Ky$ returns the key holding the last key pressed. For example,
it will hold CHR$(27) if the user pressed <Esc> to exit
QEdit.

The Action argument sets the operating mode for QEdit as
follows:

Action = O

Use the editor in a non-polled mode. QEdit will take control, and
return only when the user presses the <Esc> key. The
underlying screen will be saved upon entry, and restored when
QEdit is exited.

If you do not intend to add features to QEdit or take advantage
of its multitasking capability, you may set Action to O and simply
ignore the remaining Action parameters described below.

Action = 1

Initialize the editor for polled mode. The underlying screen is
saved, the edit window will be drawn, and the text is displayed.
Control will be returned to the caller immediately without QEdit
checking the keyboard. The Action flag is also set to 3
automatically (see below).

= 192 CRESCENT SOFTWARE, INC.

QuickScreen QUICKSCREEN ROUTINES

Action = 2

Redisplay the edit window and text, but without resaving the
underlying screen. Control is then returned to the caller
immediately without QEdit checking the keyboard. As above, the
Action parameter will be set to 3 automatically.

Calling QEdit with an Action of 2 would be useful when changing
the window size or location, to force QEdit to redisplay the text
at the new location.

Note that if word wrap is on, Actions 0, 1, and 2 will cause the
text to be re-wrapped to the value of Ed.Wrap (see below).

Action = 3

This is the idle state of the editor. Each time the editor is called
with this value, it will check the keyboard and perform tasks
dictated by a keypress. Control will then be returned to the
caller.

While the editor is being polied, the caller may examine the Ky$
parameter to determine which, if any, keys were pressed. The
members of the “/Ed”’ TYPE structure can also be examined and
changed. Note that if the caller does change these, the editor
should always be called again with an Action of 2 to redisplay the
edit window.

Action = 5

Restores the screen that was saved when QEdit was called with
Action set to 1.

The Ed parameter is a TYPE structure defined as EditInfo
in the file QEDITYPE.BI. All of the additional parameters
for QEdit are contained in this structure. Therefore, you
must include QEDITYPE.BI in your calling program, and
assign the elements needed to establish the window size,
colors, and so forth. Note that passing a pointer to a TYPE
variable this way is much faster and more concise than
passing all of these parameters as part of the call. The
following is a list of the elements in the EditInfo structure.

CRESCENT SOFTWARE, INC. 8 193

QUICKSCREEN ROUTINES QuickScreen

Ed.Rows

This sets the number of rows to be displayed in the window. It
can range up to 25 on a CGA. If an EGA or VGA is present, and
WIDTH is used to set more screen lines before QEdit is called,
then the window may occupy up to 43 (for EGA} or 50 (for VGA)
lines.

Ed.Wide

This sets the number of columns (up to 80) to be displayed in the
window.

Ed.Wrap

This sets the right margin for word wrapping. This is independent
of the rightmost visible column, and may be set to nearly any
value (up to 255). If the right margin extends beyond the right
edge of the window, QEdit will scroll the text to accommodate it.
Word wrap may also be disabled entirely by setting Ed.Wrap to
0.

Ed.HTab
This sets the number of columns to move when <Tab> or
< Shift> <Tab> is pressed. This parameter will default to 8 if
a value of zero is given.

Ed.AColor

This sets the color of the edit window, according to values
detailed in the color chart at the end of this manual.

Ed.Frame

Not supported.

The remainder of the parameters are intended to be read by
your program, and do not have to be set before QEdit is called.

Ed.LSCol

This holds the current left screen column of the editable window.

B 194 CRESCENT SOFTWARE, INC.

QuickScreen QUICKSCREEN ROUTINES

Ed.LC

This holds the leftmost column of text being displayed, which will
be greater than 1 if text is scrolled to the right.

Ed.CurCol

This holds the current text column number of the cursor, which
is not necessarily the current screen column.

Ed.TSRow
This holds the top screen row of the editable window.
Ed.TL

Holds the topmost row of the displayed text, which will be
greater than 1 if text has been scrolled down.

Ed.Curline

This holds the current text line number at the cursor, which is not
necessarily the current screen row.

Ed.UICRow
Ed.UICCol
Ed.BrCRow
Ed.BrCCol
Ed.CBlock

These are not supported.
Ed.Presses

This indicates whether a mouse button has been pressed, but not
handled by the editor. This information is for your program to use
if you intend to handie mouse presses that occurred outside of
QEdit. Since Ed.Presses is non-zero only in that situation, you
would then examine the Ed.MRow and Ed.MCol parameters (see
below) to know where the mouse cursor was when the button
was last pressed.

CRESCENT SOFTWARE, INC. |8 195

QUICKSCREEN ROUTINES QuickScreen

Ed.MRow

This holds the row where the mouse cursor was at the time the
button was last pressed, or if it is currently being pressed.

Ed.MCol

This holds the column where the mouse cursor was at the time
the button was last pressed, or if it is currently being pressed.

Ed.Insert

This is used to determine the current insert state mode. This will
be 1 if QEdit is currently in the overtype mode, or -1 if inserting
is active.

Ed.Changed

This can be used to see if the text has been changed. This
parameter will be set to -1 if any changes or additions have been
made to the text; otherwise it will be 0. This lets you know
whether the file needs to be saved or not, however you must
clear this variable once the text has been saved.

Ed.LCount

This holds the number of active lines in the text string array.

Ed.MEmr

This is an error flag to signal errors that occurred within the
editor. Ed.MErr will be 1 if there is insufficient memory. This
could be caused by running out of string space with a large
document, or not having enough far memory.

E 196 CRESCENT SOFTWARE, INC.

QuickScreen QUICKSCREEN ROUTINES

SaveField
BASIC routine contained in FORMEDIT.BAS

B Purpose

To validate and format a field before placing it in the Form$(0,
0) form buffer. This routine is often used before calling the
PrintArray routine.

B Syntax

CALL SaveField(FldNo%, Form$(), Fld(), BadFlds)

FidNo% - field to be examined

Form$() - form string array (see page 113)

FidQ - field information TYPE array (see page 118)
BadFld% - returns 0 when valid; -1 when invalid

B Comments

This routine first validates the data in the field by checking
high/low and acceptable ranges for the data. If the data in the
field is not valid (i.e., it is out of the allowable range for the
field, or it is an invalid date), then the BadFId flag will be set
to -1. If BadFld is returned as O, then the data is valid and
SaveField updates the contents of the Form$(0, 0) form buffer
with the current field’s data.

B Example

This example validates data in field three before updating the
field buffer:

CALL saveField(3, Form$(), Fld(), BadFlds)

CRESCENT SOFTWARE, INC. a 197

QUICKSCREEN ROUTINES QuickScreen

o
SaveRec
BASIC routine contained in RANDOMIO.BAS

B Purpose

To save information from a form to a specified record in a
.DAT data file. Multi-line notes fields are written to a .NOT
notes file.

B Syntax

CALL SaveRec(RecNo&, Form$(), Fld())

RecNo& - record number to save
Form$() - form string array (see page 113)
Fld) - field information TYPE array (see page 118)

2 Comments
The data currently in the form buffer, Form$(0, 0), is saved to
the random-access .DAT data file and any notes are saved to
the .NOT notes file.

Usually, the routine OpenFiles is called before using either
GetRec or SaveRec.

B Example

Please see page 237 for an example.

® 198 CRESCENT SOFTWARE, INC.

QuickScreen QUICKSCREEN ROUTINES

ScrnLibSize
BASIC function contained in SCRNLIB.BAS

® Purpose

Returns the size in words required to hold the screen library
specified.

B Syntax
Dimsize% = ScrnLibSizes(LibName$)
LibName$ - name of the screen library on which to report
DimSize% - size to use in a subsequent DIM or REDIM

statement

B Comments

Because ScrnLibSize has been defined as a function, it must be
declared before it may be used.

This function can be used to determine the size of an integer
array required to hold a screen library file, and is usually used
before the LoadScrnLib routine.

B Example

See the example for the Lib2Scrn routine.

CRESCENT SOFTWARE, INC. " 199

QUICKSCREEN ROUTINES QuickScreen

Tokenize
BASIC routine contained in QSCALC.BAS

® Purpose

To replace field names with a padded fixed-length (23-
character) field number.

® Syntax
CALL Tokenize(Calc$, F1ld())

Calc$ - formula string
Fld(Q) - field information TYPE array (see page 118)

E Comments
This routine is used internally so that field formula strings can

be properly read. By replacing field name strings with field
numbers, the routine can properly access data items in a form.

B 200 CRESCENT SOFTWARE, INC.

QuickScreen QUICKSCREEN ROUTINES

UnPackBuffer
BASIC routine contained in FORMEDIT.BAS

B Purpose

Copies and formats information contained in the form array
(Form$(0, 0)) and fills the Form$(F1dNo, 1) data array for each
field.

B Syntax
CALL UnPackBuffer (FirstFlds%, LastFld%, Form$(), Fld())

FirstFld% - starting field to be redisplayed

LastFld% - ending field to be redisplayed

Form$() - form string array (see page 113)

Fld(- field information TYPE array (see page 118)

Comments

This routine is useful when using random access files to store
and retrieve the contents of the Form Buffer, Form$(0, 0). If
you are not using random access files then this routine is not
needed.

One important note is that UnPackBuffer places information
into the Form$() array only, and does nothing with the screen.
To update the screen with the contents of each field, it is
necessary to use the PrintArray routine.

CRESCENT SOFTWARE, INC. @ 201

QUICKSCREEN ROUTINES QuickScreen

B Example

This example fills the Form$(FldNo, 1) array element for fields
five through ten with information contained in the form buffer:

CALL UnPackBuffer(5, 10, Form$(), Fld())

B 202 CRESCENT SOFTWARE, INC.

QuickScreen QUICKSCREEN ROUTINES

e e
Value
BASIC function contained in FORMEDIT.BAS

B Purpose
Returns the value of a numeric string.
B Syntax
StringValuet = Value# (NumString$, ErrorCodes)

NumString$ - numeric string
ErrorCode% - returns O if no overflow occurred; -1 if an
overflow occurred

B Comments

Because Value has been defined as a function, it must be
declared before it may be used.

This function is used to convert a numeric string to a double-
precision number. The numeric string can contain such
characters as dollar signs, commas, exponent signs, etc. If an
overflow occurred when the string was being converted to a
number, then the ErrorCode value will be -1; otherwise it will
be 0.

8 Example

This example converts $5,000 to 5000:

StringvValuei = valuet ("$5,000",ErrorCodes)

CRESCENT SOFTWARE, INC. B 203

QUICKSCREEN ROUTINES QuickScreen

VertMenu
BASIC routine contained in VERTMENU.BAS

B Purpose

VertMenu is a comprehensive menu subprogram with many
important capabilities including full support for a mouse. It
always saves the underlying screen, and draws an attractive
shadow automatically. It is used to support multiple-choice
fields in a form.

B Syntax

CALL VertMenu(Item$(), Choice%, MaxLen%, BoxBot%, Ky$, _
Action%, Cnf)

Item$ - conventional (not fixed-length) string array
containing the list of menu choices

Choice% - indicates which choice was selected, and may also
be pre-loaded to force a given choice to be
highlighted automatically

MaxLen% - maximum length of any menu choice, thus
establishing the menu width (choices longer than
MaxLen% will be displayed truncated)

BoxBot% - line on which the last line of the window is to
rest

Ky$ - holds the last key that was pressed by the user

Action% - tells how VertMenu should be used (see com-
ments below)

Cnf - system environment TYPE variable (see
page 116)

B 204 CRESCENT SOFTWARE, INC.

QuickScreen QUICKSCREEN ROUTINES

Comments

Displaying a list of items in a bordered window is only one of
the features of VertMenu. Its real power comes from the use
of the Action variable, and the routine’s ability to be polled.

The Action variable has six different possible settings, to tell
VertMenu how it is to behave. Each of the possible Action
values is described below. Mouse support is built in to the
vertical menus, but you may easily remove that code if you
don’t need it. The portion of the programs that process the
mouse are clearly marked showing what you should REM out
or delete. Search for ““Rodent’” from within the QuickBASIC
editor.

If Action is set to zero, then the menus will operate the way
you would expect a ““normal’’ menu to work. That is, the
underlying screen is first saved, then the menu is displayed, and
finally an INKEY$ loop repeatedly waits for the user to press
a key or a mouse button. Once a key or mouse button has been
pressed, the original screen is restored, and control is returned
to the calling program. The Choice variable may then be
examined to see what selection the user chose.

When Action is set to 1, VertMenu simply saves the screen and
displays the menu. Control is then returned to the calling
program immediately, however Action is set to 3 for subsequent
calls. Since Action 3 is how you will be polling the menu
subsequently, this saves you an extra step.

Setting Action to 2 lets you redisplay the menu, in those cases
where it may have been overwritten by another, possibly
overlapping, menu. Action 2 also resets itself to 3 for
subsequent calls. If the menus are called with Action equal to
3, the keyboard and mouse are merely polled to see if a key or
button has been pressed.

CRESCENT SOFTWARE, INC. B 205

QUICKSCREEN ROUTINES QuickScreen

If Action is still set to 3 when the menu returns, it means that
no keys or mouse buttons were pressed.

If Action is returned set to 4, the user either made a selection
or pressed Escape. In this case, the Choice, Menu, and Ky$
variables should be examined.

The last Action value is set to 5, and this simply tells VertMenu
to remove itself and restore the original screen.

If you intend to create stacked menus, you should be aware of
one important point. Because each menu saves its own
underlying screen, the screen that was saved first will be
destroyed when the menu is called again. This means that it is
up to you to save each screen in succession manually using
ScrnSave and ScrnRest.

If you are not using multiple-choice fields you should use the
“blank’> VertMenu subprogram which is part of
NOMULT.BAS. This resolves references to VertMenu without
needing to load the full VertMenu source code.

B 206 CRESCENT SOFTWARE, INC.

QuickScreen QUICKSCREEN ROUTINES

WholeWordIn
BASIC routine contained in QSCALC.BAS

E Purpose

To locate a substring within a string, using math operators as
delimiters.

B Syntax
CALL WholeWordIn(Text$, Word$)

Text$ - string to be searched
Word$ - word to be search for in Text$

B Comments

This routine is used internally so that field names and other
“‘words’’ can be found in formula strings.

CRESCENT SOFTWARE, INC. u 207

QUICKSCREEN ROUTINES QuickScreen

DEVELOPING IN THE QB/QBX ENVIRONMENT

Whether you are using QuickBASIC’s QB.EXE or the BASIC
Professional Development System’s QBX.EXE, you’ll need to
make certain environment variables and library routines available
to the compiler environment.

Steps needed to prepare the environment properly are summarized
below.

1. Switch to the QuickScreen directory so that BASIC source
(.BAS) and include (.BI) files are in the current directory (if
include files are elsewhere, be sure to set the INCLUDE
environment variable properly).

2. If you want to create .EXE files from within the environment,
you should place all .LIB files in the same directory. Then,
make sure that the LIB environment variable is set to the
correct directory path. If the linker cannot locate needed .LIB
files, it usually generates an ““Unresolved external reference’
error.

Environment variables are usually set from a batch file or
directly at the DOS prompt. The suggested method, however,
is to add such commands to your system’s AUTOEXEC.BAT
file. This way, environment information will be established
each time the computer is turn on.

If you prefer, you can create a batch file in your QuickScreen
directory which you can run before your QuickScreen sessions.
An example SET command is:

SET LIB = C:\QB\LIBS

3. In order to run QuickScreen programs in the environment it is
necessary to load a Quick Library which, at the very least,

m 208 CRESCENT SOFTWARE, INC.

QuickScreen QUICKSCREEN ROUTINES

contains the assembly language routines on which QuickScreen
depends.

Only one Quick Library can be used, and it must be loaded
when starting QuickBASIC from DOS. Furthermore, loading
Quick Libraries in either QB or QBX reduces the amount of
conventional RAM available, so it is important to keep such
libraries as small as possible. We suggest using Crescent
Software’s Quick Library Make Utility — included with this
package (please refer page 263 for instructions on its use).

. If you are using AJS Publishing’s db/LIB® product, you can

add it to a Quick Library by specifying its .LIB file when using
MAKEQLB.

- Upon starting QB or QBX, you can load a Quick Library by

using the /L command line switch. The following example
illustrate how a Quick Library called MYQLB is loaded for
QuickBASIC or QuickBASIC Extended, respectfully:

0B /L MYQLB
or

OBX /L MYQLBE

. Once QuickBASIC has started you should inspect the currently-

set path options. To do this, access the (Options) Set Paths...
menu command (not all version of QuickBASIC support this
feature). You should ensure that all shown paths are accurate.

. If you are using QuickBASIC version 4.x, you can free-up

memory in the environment by compiling modules such as
FORMEDIT.BAS and SCRNDISP.BAS and adding them to a
Quick Library. This way, the source code does not occupy
precious ‘‘base” RAM.

CRESCENT SOFTWARE, INC. a8 209

QUICKSCREEN ROUTINES QuickScreen

Users of QBX should not add compiled BASIC modules to their

Quick Libraries since Quick Libraries are stored in conventional

memory, whereas BASIC source modules are loaded into high ™
memory automatically.

To add to a Quick Library manually (i.e., without the aid of
MAKEQLB.EXE), you will first need to compile source
modules using the /O compiler switch. In general the following
modules should each be compiled:

BC FORMEDIT /O;
BC SCRNDISP /0O;
BC FORMFILE /0;
BC SCRNFILE /0O;
BC QSCALC /0;
BC EVALUATE /O;
BC QEDITS /0;
BC VERTMENU /O;

After each compilation an .OBJ file will be created. You will
never need to recompile any of these modules unless, of course,
you change their source code.

To create a Quick Library you’ll need to gather each .OBJ file
and any required .LIB files and link them together. It is in this
step that you can add any object-format screen files you want
to display from your program. These commands create and
append object files to the MYLIB.LIB file:

LIB MYLIB+FORMEDIT+SCRNDISP+FORMFILE+SCRNFILE;
LIB MYLIB+QSCALC+EVALUATE+QEDITS+VERTMENU;

Once the MYLIB.LIB file exists, you can combine it with the
supplied FORMS.LIB (for BASIC wversion 7.x, use
FORMS?7.LIB) library with this command:

LIB MYLIB+FORMS[7].LIB;

& 210 : CRESCENT SOFTWARE, INC.

QuickScreen QUICKSCREEN ROUTINES

A Quick Library is created using LINK and the /Q option.
Since our example requires several segments of memory, we’ll
use the /SEG:512 LINK option:

LINK /Q/NOE/SEG:512 MYLIB.LIB,,NUL,BQLB45;

A R ‘
DISPLAYING SCREENS FROM YOUR PROGRAM

Once you have designed a screen you may display it from
QuickBASIC using a variety of methods. The method which is
applicable will be based on the format in which the screen had been
saved. Since most screens will be saved using a preferred format,
our discussion presents three main sections: Object, QuickScreen,
and Library screens. Each section discusses how to manipulate
screens when they contain fields and when they do not.

QuickScreen Screens

Displaying QuickScreen screens requires the LoadScreen sub-
program which is in the BASIC module SCRNFILE.BAS. Any
QuickScreen screen is easily displayed using a call like the
following:

CALL LoadScreen (ScreenName$, MonoCodes, Attribute$, ErrorCodet)

ScreenName$ is the full path and file name of the screen you wish
to display (if no file extension is specified then .SCR is used by
default). MonoCode may be used to adjust the screen for use on
monochrome systems, and is fully discussed on page 114.
Attribute specifies drop shadow and screen mode change options,
and is fully discussed on page 111. ErrorCode returns a non-zero
number if an error occurred when in the LoadScrn routine, and is
fully discussed on page 112.

CRESCENT SOFTWARE, INC. 8211

QUICKSCREEN ROUTINES QuickScreen

Library File Screens

Screens can be conveniently stored in a single screen library file.
Later, any screen in the library file can be retrieved using a variety
of methods.

DISPLAYING SCREENS DIRECTLY FROM DISK

The LibFile2Scrn subprogram, stored in the BASIC module
SCRNLIB.BAS, (see page 165) displays a specified screen directly
from disk. While screens displayed in this manner require time
needed for disk access, no screen arrays are needed — which
spares memory.

LOADING A LIBRARY

Loading a library consists of three steps: using the ScrnLibSize
function, dimensioning an integer array, and calling LoadScrnLib.
When complete, the program segment will look like:

Size$% = ScrnlLibSize%(LibName$)
REDIM ScrnLib%(Size%)
CALL LoadScrnLib(LibName$, ScrnLib%(), ErrorCode%)

The file name specified in LibName$ should include the full path
and filename of the needed library.

DISPLAYING SCREENS FROM MEMORY

Displaying screens stored in a QuickScreen library file requires the
Lib2Scrn subprogram, present in the BASIC module
SCRNLIB.BAS. Before library screens may be used, however,
the library file must be loaded.

B 212 CRESCENT SOFTWARE, INC.

QuickScreen QUICKSCREEN ROUTINES

An example of displaying screens from library files is available in
the program DEMOCUST.BAS — included on the distribution
diskette.

CALL Lib2Scrn(ScreenName$, ScrnLib%(), MonoCodes, Attributes,
ErrorCodes)

The argument ScreenName$ is the name of the screen in the library
you wish to display, and it must be 8 characters or less. ScrnLib()
is an integer array which holds the screen to be displayed, and it
is dimensioned before calling the LoadScrnLib subroutine;
MonoCode, Attribute and ErrorCode are discussed beginning on
page 111.

L
Object Screens

Screens saved as object files are probably easiest to generate from
your programs, particularly if they do not contain field definitions.
Unlike the other screen formats, object screens are added to a
program during the linking process and therefore will be entirely
contained in the executable file. Although this makes it
unnecessary to have special screen files on disk, you should be
aware that if a large number of object screens are linked with your
program, the final .EXE size will increase and may possibly
require more memory to run.

If you are generating object screens which are also forms, you
should make use of the .DTA files which can be generated when
forms are saved. Doing so produces a true standalone .EXE file
(i.e., no other support files would be required by the program).
.DTA files generated by QuickScreen contain DATA statements
which can be used by your program.

Using .DTA files is quite simple. First, you’ll need to include the
.DTA file at the top of your program, with a statement like this:

‘$INCLUDE: ’‘formname.DTA’

CRESCENT SOFTWARE, INC. @213

QUICKSCREEN ROUTINES QuickScreen

This makes the DATA statements for the specified file available to
your program. The next step is to read these data elements with
BASIC’s READ statement. The first value of data tells how many
fields are in the form:

RESTORE formname.FieldInfo
READ NumFlds

Now that the number of fields is known, you can dimension the
form arrays:

REDIM Fld(NumFlds) AS FieldInfo
REDIM Field$ (NumFlds, 2)

Now you can fill the Fld() array with information. But before
doing this, you’ll need to reset the READ pointer to the beginning
of the FieldInfo DATA statements using the RESTORE command:

RESTORE formname.FieldInfo

FOR N = 0 TO NumFlds
READ F1ld(N).Fields
READ F1d(N).Row
READ F1d(N).LCol
READ Fld(N).RCol
READ F1ld(N).StorLen
READ Fld(N).FType
READ F1ld(N).RelFile
READ Fld(N).RelFld
READ F1d(N).Indexed
READ F1ld(N).FldName
READ F1ld(N).Decimals
READ F1ld(N).RelHandle
READ Fld(N).Protected
READ F1ld(N).ScratchI
READ F1ld(N).LowRange
READ Fld(N).HiRange
READ F1ld(N).Scratchs

NEXT N

What follows in each .DTA file is the help messages associated
with each field. As you know, this information is held in the
Form$(N, 1) array elements:

FOR N = 0 TO NumFlds

READ Form$(N, 1)

CALL ReplaceChar(Form$(N, 1), "‘", CHR$(34))
NEXT N

B 214 CRESCENT SOFTWARE, INC.

QuickScreen QUICKSCREEN ROUTINES

Although optional, it is useful to call ReplaceChar if you wish each
single quote character to be replaced by a double quote. Be aware
that possessives and contractions (such as Sue’s or Don’t in your
help messages) will be altered by ReplaceChar.

Once the help strings are loaded into the Form$() array, the next
step is to load the field formulas into the Form$(N, 2) array
elements. This is done as follows:

FOR N = 0 TO NumFlds
READ Form$(N, 2)
IF LEN(Form$(N, 2)) THEN
CALL ReplaceChar (Form$(N, 2), "’", CHR$(34))
CALL Tokenize(Form$ (N, 2), Fld())
END IF
NEXT N

Whenever there’s a formula present, all single quotes must be
converted to double quotes using ReplaceChar, and then Tokenize
is called to convert formula strings into a format readable by the
QSCalc routine.

The steps discussed above are shown in the demonstration program
DEMOOBI.BAS, and you are encouraged to cut and paste code
from this file to your own program.

Object-saved screens cannot be tested while in the QuickBASIC
environment unless they are added to the Quick Library used when
starting QuickBASIC. Object screens are added to Quick Libraries
in the same manner as other .OBJ files, and you may want to
consider adding screens to the FORMS.QLB or FORMS7.QLB
Quick Library we have provided.

There are two ways to display object screens, and the appropriate
method depends on the wipe type specified when the screen was
saved. The Direct-to-Screen wipe requires fewer programming
steps than other wipes.

CRESCENT SOFTWARE, INC. B 215

QUICKSCREEN ROUTINES QuickScreen

DIRECT-TO-SCREEN WIPES

Screens saved with the Direct-to-Screen wipe (available when
saving object screens only) may be generated using a single call.

If the name of the screen is MyScreen, the following syntax is
used:

CALL MyScreen (MonoCode$)

Notice that the name of the routine being called is the base name
(the object file name less the ‘“.OBJ’’ extension) of the screen.
MonoCode, which is fully discussed on page 114, may be used to
adjust the screen for use on monochrome systems.

OTHER WIPES

If a wipe type other than Direct-to-Screen had been specified when
the object file was saved in the QuickScreen editor, then there are
more steps needed to generate the screen. Three methods are
discussed below.

Displaying Screens With Originally-Saved Wipe

You can display object screens using the wipe originally specified
when the screen was saved in the QuickScreen editor. To do this,
you will need to create an array which can hold the screen data and
its 2-byte header. This array size will need to be adjusted for
various text-mode resolutions, and the following formula can be
applied:

ScreenBytes = (ScreenWidth * ScreenHeight) + 2

B 216 CRESCENT SOFTWARE, INC.

QuickScreen QUICKSCREEN ROUTINES

Thus, for a standard 25x80 display, the result is (25%80)+2, or
2002. This total bytes size is used when dimensioning the integer
Sern() array as such:

DIM Scrn(ScreenBytes)

Next, the MScrnSave routine is used to copy the contents of the
current screen image into the Scrn() array, starting at byte 2 — that
is, following the 2-byte header:

CALL MScrnSave(l, 1, 25, 80, SEG Scrn(2))

When the object screen file is called, the wipe type used when the
object file was saved will be returned. In addition, the object
screen is loaded into the Scrn() array as an overlay. Thus, if the
object screen does not occupy the entire display, then the Scrn()
array will contain portions of the old screen image as well as the
new:

CALL MyScreen(WipeType, SEG Scrn(2))

Having the WipeType allows you to use DisplayScrn to wipe the
image onto the display.

Next, the header bytes must be initialized. To calculate the value
of Scrn(0) and Scrn(1) you may apply this general formula:

Scrn(0) = upper-left column * 256 + upper-left row
Scrn(1l) = lower-right column * 256 + lower-right row

In our current 25x80-screen image example, the column numbers
should be 1 through 80; the row number should be 1 through the
total number of rows available in the current screen mode. The
DisplayScrn routine is then called. For a full 25x80 screen, this
calling program segment would appear like this:

CRESCENT SOFTWARE, INC. B 217

QUICKSCREEN ROUTINES QuickScreen

DIM Scrn(2002)

CALL MScrnSave(l, 1, 25, 80, SEG Scrn(2))

CALL MyScreen(WipeType, SEG Scrn(2))

Scrn(0) = 1 * 256 + 1

Scrn(l) = 80 * 256 + 25

CALL DisplayScrn(Scrn(), Element, MonoCode, WipeType)

Displaying Screens With A New Wipe

Changing the wipe type to something other than the one specified
when saving the object screen is a simple matter of furnishing a
new WipeType value when calling the DisplayScrn routine. For
instance, if you want to always use the ‘‘Opening Curtain’ wipe
type (number 2, in Table XII), you can hard-code this value in
your program:

DIM Scrn(2002)

CALL MScrnSave(l, 1, 25, 80, SEG Scrn(2))
CALL MyScreen(WipeType, SEG Scrn(2))

Scrn(0) = 1 * 256 + 1

Scrn(l) = 80 * 256 + 25

CALL DisplayScrn(Scrn(), Element, MonoCode, 2)

Displaying Screens Without A Wipe

To display an object screen and ignore its wipe, you will use a
technique whereby the screen image is first copied into the Scrn()
integer array. You then may optionally convert the screen to
colors suitable for a monochrome system using the MakeMono
routine realizing that the size of the screen is specified in
MakeMono’s second argument. Finally, the screen is placed on the
display from the integer array using MScrnRest.

The calling program segment discussed above is:

DIM Scrn(2000)

CALL MScrnSave(l, 1, 25, 80, SEG Scrn(0))

CALL MyScreen(WipeType, SEG Scrn(0))

IF MonoCode$ THEN CALL MakeMono (SEG Scrn(0), 2000)
CALL MScrnRest(l, 1, 25, 80, SEG Scrn(0))

B 218 CRESCENT SOFTWARE, INC.

PERFORMING DATA ENTRY

QuickScreen PERFORMING DATA ENTRY

Forms may be processed from QuickBASIC using various routines.
When you wish to use forms you will need to know how to access
and initialize field data, how to use multiple-choice fields, and how
to poll the EditForm routine. @ We suggest studying and
experimenting with the commented demonstration programs
included on the distribution diskette.

GENERAL CONCEPTS

In QuickScreen it is important to understand that the screen image
and a form with which it may be associated are separate files and
are therefore handled independently. We’ve discussed ways to load
and display screens, whether object screens, QuickScreen screens,
or QuickScreen library screens. Once a screen is displayed,
“forms’ are able to automatically direct data entry activity.

Form data can be stored in a variety: of ways. The first is a
standalone (.FRM) file which has the same name as the screen with
which it is associated. The second is a form library (.QFL) file,
in which several forms are stored. Here, special routines are used
to access form information so that it can be activated. And third,
DATA statements (stored in a .DTA Include file) may be used in
any program so that external routines and files are not required in
order to begin form processing.

Data Entry

EditForm is a BASIC subprogram which handles all aspects of data
entry in a form. It is used in a manner similar to INKEYS$. Thus,
EditForm continually polls for input while in a loop. While
looping, a program can perform other operations before and after
each call to EditForm. In this manner you can acheive multi-
tasking behavior.

CRESCENT SOFTWARE, INC. = 223

PERFORMING DATA ENTRY QuickScreen

EditForm always furnishes current information to the calling
program. Since you can read fields or even change them, you can
tailor the operation of any field in a form.

GENERAL PROCEDURES

DemoAny.BAS

This program is a good starting point for understanding how
QuickScreen forms are used from your own programs. Although
the source code is commented, we think it will be helpful to
provide more information here (some of the material is repeated in
the following section entitled Detailed Procedures, which begins on
page 227).

First, it is suggested that you set all numeric variables to integers
by default, and that you declare the required BASIC and assembler
routines — especially functions. These steps are accomplished as
follows:

DEFINT A-Z

———————— Declarations

DECLARE FUNCTION Monitors ()

DECLARE FUNCTION NumberOfFieldst% (FormName$)

DECLARE SUB EditForm (Form$(), Fld() AS ANY, Frm AS ANY,
Cnf AS ANY, Action) -

DECLARE SUB GetFldDef (FormName$, StartEl, Fld() As ANY,
Form$())

DECLARE SUB LoadScreen (ScreenName$, MonoCode$%, Attributes,
ErrorCodes) -

Next, we suggest that certain Include files are specified at the top
of your programs. These files supply constant definitions and
often-used TYPE variables to your programs (see the discussion
which begins on page 115).

The Include files required for this example are FIELDINF.BI
(contains the FieldInfo TYPE and associated constants),

B 224 CRESCENT SOFTWARE, INC.

QuickScreen PERFORMING DATA ENTRY

FORMEDIT.BI (contains the FormInfo TYPE and associated
constants), DEFCNF.BI (contains the Config TYPE) and
SETCNF.BI (initializes the Config TYPE variables). BASIC
source code which Includes these files looks like:

‘$INCLUDE: ‘FIELDINF.BI’
’$INCLUDE: ‘FORMEDIT.BI’
*$INCLUDE: ‘DEFCNF.BI‘
$INCLUDE: ‘SETCNF.BI’

Since the DEMOANY.BAS module uses forms, you will need to
dimension the Frm variable to the FormInfo TYPE. This makes
available to your program and to the supporting QuickScreen
routines information about the current form:

DIM Frm AS FormInfo ‘FormInfo TYPE variable

In general you will want to design programs which run as easily on
systems with a color display as on those with a monochrome
display. For this reason, you should determine whether the
monitor being used is color or black-and-white. To both determine
the monitor type and make use of the returned information, we
suggest using the value for the video adapter card, which is stored
in low memory at location 463H (monochrome systems usually use
location B4H). You can also make use of BASIC’s COMMANDS$
variable to check whether a ““/B”’switch was specified by the user
when your program was started from DOS. If present, the /B’
option tells your program to force monochrome colors on all
screens.

This logic is presented in BASIC below:
MonoCode¥ = ABS(PEEK(&H463) = &HB4 OR INSTR(COMMANDS, "/B"))

Before allocating memory to the arrays which are used to control
the form, it is useful to determine the number of fields present.
When using standalone .FRM files (as in this example) you will
need to use the NumberOfFields function. If the form is in a
library .QFL file, then you will need to use LibNumberOfFields.

CRESCENT SOFTWARE, INC. ' 225

PERFORMING DATA ENTRY QuickScreen

In the next excerpt, we determine the number of fields in the form
using the former method:

NumFlds% = NumberOfFields$ (FormNames$)

The integer value returned in NumFlds is used to dimension the
F1d() and Form$() arrays.

Another array which can be dimensioned at this time is Choice$().
This array’s first subscript provides the maximum number of
choices you will need for any multiple-choice field, while the
second subscript is one less than the total number of multiple-
choice fields in the form. If your form has no multiple-choice
fields, the Choice$() array must be dimensioned, and using zero as
each subscript is 2 minimum requirement:

REDIM Fld(NumFlds) AS FieldInfo
REDIM Form$ (NumFlds, 2)
REDIM Choice$(0, 0)

The next step is to load the form definition file. Once again the
routine you’ll need to use will depend on how the form was stored.
For standalone (.FRM) files, you will need to use the GetFldDef
routine; for form library (.QFL) files, use LibGetFldDef:

CALL GetFldDef (FormName$, Zero%, Fld(), Form$())

Next you can display the screen image with LoadScreen:
CALL LoadScreen (FormName$, MonoCode%, Attributes, ErrorCode%)

At this point both the form and its image are on the screen. In
order to allow input, the form has to be activated. This is done by
calling EditForm with an Action of 1, which sets up internal
pointers and displays initial field values from the Form$(N, 0)
array elements.

After the first call to EditForm, Action will be automatically set
to 3, so that polling can continue. It is up to you to examine

B 226 CRESCENT SOFTWARE, INC.

QuickScreen PERFORMING DATA ENTRY

Frm.KeyCode so that certain keypresses can be recognized. In this
example, both <Esc> (which has a keycode value of 27) and
<F2> (which has a keycode of -60) are used to terminate the
form:

Action = 1
DO

CALL EditForm(Form$(), Fld(), Frm, Cnf, Action)
LOOP UNTIL Frm.KeyCode = 27 OR Frm.KeyCode = -60
END

DETAILED PROCEDURES

The prior section covered the fundamentals of the DemoAny
program. The following sections provide slightly more detailed
discussions for using forms.

R
Setting Up a Form

Before a form can be processed from QuickBASIC, there are some
suggested as well as required steps which must be taken. The
optional steps involve such things as clearing the screen before
generating the form, initializing the mouse, printing explicit
instructions to the user, and setting the insert status or other
features in the Frm TYPE variable. It is beyond the scope of this
user’s guide to cover all such optional aspects of programming.
Instead, we’ll provide the basics below, and encourage you to
experiment on your own, using portions of the included demonstra-
tion programs as building blocks for your own programs.

CRESCENT SOFTWARE, INC. 8 227

PERFORMING DATA ENTRY QuickScreen

The best way to process forms in QuickBASIC is to follow the
steps outlined below and discussed next.

Specify Include files

Dimension mandatory arrays
Load and display the form
Initialize field and form elements

SPECIFY INCLUDE FILES

As discussed earlier on page 224, you must make available certain
TYPE declarations and constant assignments to the calling
program. In addition, if you have generated .BI Include or .DTA
data files for your forms, you may want to specify them at the top
of your program.

The BASIC statements for required include files are summarized
below:

’$INCLUDE: "DEFCNF.BI™
’$INCLUDE: "FIELDINF.BI"
‘SINCLUDE: "FORMEDIT.BI"
’$INCLUDE: "SETCNF.BI"

‘$INCLUDE: myform.BI ‘this Includes the TYPE
‘ structure for your form
‘$INCLUDE: myform.DTA ‘this Includes DATA

statements for your form

DIMENSION MANDATORY ARRAYS

The arrays which must be dimensioned are among those discussed
in the section called Arguments (see page 110). Although these
arrays are dimensioned to zero elements at the start, you should
realize that all are REDIMed later when needed.

The required dimension statements are shown below, and they rely
on the Include files mentioned in the previous section:

B 228 CRESCENT SOFTWARE, INC.

QuickScreen PERFORMING DATA ENTRY

DIM Frm AS FormInfo

REDIM F1ld(0) AS FieldInfo
REDIM Form$(0, 0)

REDIM Choice$(0, 0)

LOAD THE FORM

Form information is loaded into the form arrays using GetFldDef.
This routine uses the Fld and Form$ array variables and requires
that each be dimensioned before the call. These arrays are
dimensioned using information from the NumberOfFields function.

Once the form is loaded, its screen image is displayed using any of
the screen-display methods discussed earlier.

These program instructions are summarized below.

StartEls = 0

Size% = NumberOfFields$ (FormNameS$)

REDIM Fld(Size%) AS FieldInfo

REDIM Form$ (Size%, 2)

CALL GetFldDef(FormName$, StartEl%, Fld(), Form$())
‘now display the screen

INITIALIZE FIELD AND FORM ELEMENTS

Before and while a form is being used you may set certain field
and form values. For example, you could use the Form$() array
to assign default values to particular fields. Or you could use the
Frm TYPE variable to set the form’s insert status. These form
variables were presented in the section entitled Arguments (please
see page 110). We have chosen to illustrate here how to optionally
set the insert status of the form, how to set a multiple-choice array,
and how to create a few default field values.

CRESCENT SOFTWARE, INC. a 229

PERFORMING DATA ENTRY QuickScreen

Setting The Insert Status

If you wish to set the insert status, you will need to use the Frm
TYPE variable. The following statement initially sets a form’s
insert status to ‘‘off™’:

Frm.Insert = 0 ‘set insert off

Setting Up Multiple-Choice Fields

If you are using multiple-choice fields in your form there are
certain measures which you must take for them to work properly.

First, you will want to include the module VERTMENU.BAS
instead of NOMULT.BAS. This way, the full VertMenu
subprogram will be available to your program.

Multiple-choice fields require initializing the COMMON string
array Choice$() (the COMMON attribute is assigned in the
FORMEDIT.BI file). This is a two-dimension array which is
dimensioned as follows:

DIM Choice$(MaxChoices%, NumChoiceFields$)

MaxChoices is the maximum number of choices which any vertical
menu would need to hold. The zeroeth first subscript element
(i.e., Choice$(0,N)) is always reserved for the field number(s) to
which the multiple-choice array is to be linked.

The second subscript, NumChoiceFields, tells how many unique
multiple-choice menus are needed, and it begins at 0 (some fields
share the same multiple-choice information, so there could be more
multiple-choice fields than this subscript indicates).

For example, suppose a form has only 2 multiple-choice fields and
that the first, field number 2, is for soft drink selections while the

B 230 CRESCENT SOFTWARE, INC.

QuickScreen PERFORMING DATA ENTRY

second, field number 6, is for T-Shirt sizes. Let’s also suppose
that there are 5 soft drinks and 3 T-shirt sizes available.

One way to redimension and initialize the Choice$() array for this
example would be:

REDIM Choice$(0 to 5, 0 to 1)

Choice$(0, 0) = =2~ ‘field number 2
Choice$(1, 0) = "Pepsi”

Choice$(2, 0) = "Coke"

Choice$(3, 0) = "Dr. Pepper™

Choice$(4, 0) = "7-Up~

Choice$ (5, 0) "Canada Dry"
‘field number 6, 15 and 16 use this
‘multiple-choice array

Choice$(0, 1) = "6, 15, 16"

Choice$(l, 1) = "Small"
Choice$(2, 1) = "Medium”
Choice$(3, 1) = "Large"

Notice that the element corresponding to a O first-subscript is the
field number of a multiple-choice field in the form, and that this
field number need not be in any particular order. Furthermore,
this zeroeth element can specify that several fields share a single
multiple-choice list of items (these are specified in a comma-
delimited list of field numbers). This allows the Choice$() array
to be as small as possible.

Creating Default Field Values

The way to place default values into fields on a form is to assign
elements in the Form$() array (see page 113 for more information).
When using Form$() you will generally modify only the field’s
data, however you may want change the help text and formulas as
well.

CRESCENT SOFTWARE, INC. a@ 231

PERFORMING DATA ENTRY QuickScreen

For instance, suppose that field 1 holds the current date and field
4 holds a tax rate. The calling program could initialize these fields
like this:

DATES
"7.5%"

Form$(1l, 0)
Form$(4, 0)

(]

One last comment regarding Form$() is that for notes (or multi-line
text) fields it returns a single string. Blank lines in notes fields are
returned as a CHR$(20).

Using EditForm

Once a form is properly initialized, the EditForm is called to allow
data entry. EditForm works much like BASIC’s INKEYS, and, as
such, it is designed to be called repeatedly in a loop. When a
routine is called in this way it is said to be polled. Such routines
offer a tremendous level of flexibility and power since the calling
program becomes an extension of the processing logic. For
instance, polling offers the ability to modify a form on-the-fly, that
is, while the form is being used.

EditForm processes each keystroke or mouse event immediately,
and then returns to the calling program. Often, however,
EditForm receives no input whatsoever, and simply returns to the
calling program for its next iteration. What’s important is that
control is returned to the calling program between keystrokes and
mouse events, which makes it possible to monitor input as it
occurs.

Earlier, we discussed the form variables: the Form$() string array,
the field information Fld() TYPE array, and the form information
Frm TYPE variable. [Each variable contributes or provides
information about a form, and, together, these variables can be
both accessed and changed while a form is being used.

E 232 CRESCENT SOFTWARE, INC.

QuickScreen PERFORMING DATA ENTRY

These important form variables are reviewed below, in the context
of how they can be used with EditForm.

FORMS$()

In general, the Form$() string array (see page 113) is used to pre-
fill a form or to examine data provided by the user. If needed,
data in other fields can be changed based on information already
entered. For example, if one field on your form is for Gender, and
accepts ““F”’ for Female and ‘““M’” for Male, then a subsequent
field for a Salutation could be automatically pre-filled with ““Mrs.”’
or “Mr.”, respectively. Doing this with EditForm is easy, as
you’ll see later.

FLD() TYPE ARRAY

The FId() TYPE array (see page 118) determines field attributes.
Changing information in this array enables you to protect fields or
change valid data ranges for specific fields on-the-fly. For
instance, an invoice form might ask for a saleperson number. After
this field is complete, you could protect it so that once the order is
taken, the saleperson’s code cannot be changed.

FRM TYPE VARIABLE

The Frm TYPE (see page 120) variable provides more general
information about a form, such as whether any information on it
has changed; which field is currently-active; and which key was
last pressed. Often it is desirable to change where the cursor is on
a form, based on certain data. For example, if an order form
allows purchases with a credit card, it usually also has fields for
the credit card number and its expiration date. However, if the

CRESCENT SOFTWARE, INC. @ 233

PERFORMING DATA ENTRY QuickScreen

sale is paid for by check, you may want to automatically skip over
the credit card fields and jump to the Check Number field.

In the following program fragment, EditForm is initially called
with an Action of 1, which fills and initializes the form. Then,
after each polling cycle, the program checks to see if the user has
left the current field. This test is accomplished by comparing the
value of Frm.PrevFld (the previous field number) with Frm.FldNo
(the current field number). This test is true for one polling cycle
only — after this, Frm.PrevFld becomes Frm.FIdNo. If the test is
in fact true, the program starts a SELECT CASE statement which
examines the value of Frm.PrevField to see which field the user
just left.

In this example, the program checks whether “‘F”” or ““M”” has
been entered into the Gender field (field number 5). If the field is
null, then no action is taken. If it contains an ‘“F’’, then the
Salutation field (field number 8) is set to ““Mrs.””. It is likewise set
to ““Mr.” if the Gender field contains an ‘““M”’:

Action% = 1
DO

CALL EditForm(Form$(), Fld(), Frm, Cnf, Action$)

IF Frm.PrevField <> Frm.FldNo THEN

SELECT CASE Frm.PrevField
CASE 5
‘check whether field 5 has changed
IF Frm.FldEdited

IF Form$(5, 0) = "F" THEN
Form$(8, 0) = "Mrs."
ELSE
Form$(8, 0) = "Mr."
END IF
END IF
Action% = 1 ‘this forces the next call to
‘EditForm to refresh the form
CASE ELSE
REM
END SELECT

END IF
LOCOP Until Frm.KeyCode = 27

B 234 CRESCENT SOFTWARE, INC.

QuickScreen PERFORMING DATA ENTRY

There are many tricks you can perform by manipulating the
QuickScreen form variables which have been presented. One
common example is building shortcut keys into a form so that a
user can skip large portions over several fields at a time. For
complex forms this is useful. To illustrate, you could decide that
field 10 is to be associated with the <F2> key, while field 20 is
to be associated with the <F3> key. This way, you could
examine Frm.KeyCode each time EditForm is called. You could
then test for <F2> or <F3> and set Frm.F1dNo so that is points
to a new field. This would allow a user to move instantly between
fields 10 and 20 with a single keystroke!

Lo]
RANDOM-ACCESS FILE 1/O

One of the easiest ways to save and restore information from and
to a form is to use random-file access techniques. This method
relies on the fixed-length structure of the form buffer, Form$(0, 0).
Using random-file I/O allows you to create a single database file
and quickly access any record it contains.

QuickScreen provides a demonstration of the random-file access
method in the source module DEMOCUST.BAS.

Setting Up

To prepare for using a random file, you will need to open the data
(.DTA) file. This is achieved using the OpenFiles routine, which
also opens associated notes files and ensures that the form buffer
is properly sized to accommodate random-file data. This step is
summarized as:

CALL OpenFiles(FormName$, Form$(), Fld())

CRESCENT SOFTWARE, INC. @ 235

PERFORMING DATA ENTRY QuickScreen

Once the data files are open and the form arrays are initialized, you
can use the GetRec and SaveRec routines to load and save records,
respectively. Before retrieving records, you should know the upper
limit — that is, the total number of records currently stored. This
value is determined by dividing the Iength of the data file by the
record length of the form being used:

LastRecord& = LOF(F1ld(0).RelHandle) \ F1d(0).Row

Notice that the OpenFiles routine assigned to F1d(0).RelHandle the
handle for the .DTA data file. Although you probably won’t need
to access it, OpenFiles also assigns to Fld(0).Scratchl the handle
for the .NOT notes file.

Retrieving Records

To retrieve a record from the data file, simply call the GetRec
routine and furnish a valid record number in RecNo:

CALL GetRec(RecNo&, Form$(), Fld())

This loads only the form buffer, Form$(0, 0), with information.
You will need to use the UnPackBuffer routine to transfer form
buffer contents to the individual form data elements:

CALY, UnPackBuffer(FirstF1lds, LastFld%, Form$(), F1ld())

To fill the entire form with information from the form buffer,
FirstFld should be 1, and LastFld should be assigned to
F1d(0).Fields, which holds the number of fields in the form. If you
wish only to fill a portion of the form with information from the
form buffer, you can specify other values for FirstFld and LastFId,
realizing also that several ranges of fields can be filled by calling
UnPackBuffer several times with different values.

One entirely optional step, which serves only to simplify
programming and increase readability of your source code, is to

B 236 CRESCENT SOFTWARE, INC.

QuickScreen PERFORMING DATA ENTRY

copy information from the form buffer to a TYPE array
corresponding to the current form. This allows you to refer to
fields by the name in the TYPE structure, rather than by accessing
the Form$() elements. Although simple, this process is a bit
involved, and is fully-discussed in the example for the BCopy
routine (see page 130 for more information).

The next step is to transfer information from the form data
elements onto the screen. The easiest way to do this is to call
EditForm with an Action of 1 (see page 232 for details). This
ensures that all fields on the form are current. The alternative is
to call the PrintArray routine, which provides more flexibility by
allowing a specific range of fields to be updated.

Saving Records

Saving records is accomplished by calling the SaveRec routine. All
you need to do is furnish the record number in RecNo:

CALL sSaveRec(RecNo&, Form$(), Fld())

This statement writes information to the .DAT and .NOT data files
opened earlier by the OpenFiles routine.

A
Clearing A Form

The best way to clear a form is to set each Form$(N, 0) element
to null. You may then want to pre-set certain fields in the form
before allowing a new record to be entered. The code fragment
below clears the Form$() data elements, sets the date and time
information, and sets Action to 1 before EditForm is called again.

CRESCENT SOFTWARE, INC. B 237

PERFORMING DATA ENTRY QuickScreen

FOR N = 1 TO F1d(0).Fields ‘Clear all fields
Form$(N, 0) = "=
NEXT N
Form$ (12, 0) = DATES ‘Set date/time info.
Form$(15, 0) = TIMES
Action = 1 ‘Prepare to refresh with
EditForm

NOTES FIELDS

Using Notes

If you plan to use multi-line edit notes in your form, you will need
to replace the NONOTES.BAS stub-file module with
QEDITS.BAS.

Information from notes fields are stored in a separate file with a
.NOT extension. For each note field in a form, the Form$(0, 0)
array element contains a long-integer pointer into the notes ((NOT)
data file. This pointer accesses a two-byte integer in the notes file
which gives the length of the string stored in the following bytes.
The next note in the notes file immediately follows, and also begins
with a two-byte integer giving the length of the note text, and so
on. This arrangement makes a compact notes data file possible.

If you want to pre-fill a notes field with data, all you need to do is

to fill the Form$() array with text. Recall that text is stored as a

B 238 CRESCENT SOFTWARE, INC.

QuickScreen PERFORMING DATA ENTRY

single line of information, with CHR$(20) used whenever a blank
line is needed. Thus, to pre-fill field 6 in your form, you would
write to Form$(6,0):

Form$(6,0) = "This is line one of a note field and ":CHR$(20):_
“this is line two."

T e
Saving And Retrieving Notes Data

The best way to both save and recall information from notes fields
is to use the SaveRec and GetRec routines in the
RANDOMIO.BAS BASIC module. Please see pages 198 and 164
for more information.

RELATIONAL FIELDS

QuickScreen provides ways to store information which can be used
to create relational fields — fields which two or more forms have
in common. For instance, a customer number could be the record
key to a CUSTOMER file, and the same customer number may
also appear as a field in an INVOICE file. Related fields make it
easy to access information stored in different data files which is
linked together by a common field.

While QuickScreen does not provide support for related data files,
it does offer a means by which your own programs can store and
access information for related fields.

If you want to create a related field for field N in the current form,
you would need to store information in the FId(N).RelFile and
FId(N).RelFId field array elements. These two type elements
describe the related file and field names, respectively.

CRESCENT SOFTWARE, INC. ® 239

PERFORMING DATA ENTRY QuickScreen

If you want to access the related file by its handle rather than by its
name, you can OPEN the file and store its handle in the
Fld(N).RelHandle TYPE array element. Using the file handle
provides fast access, but this technique naturally requires a file
which is already open.

INDEXED FIELDS

Just like related fields, QuickScreen does not provide support for
managing indexed fields, however it does provide a way to flag
that certain fields are indexed.

For instance, if field N of the current form is indexed, you can
store a flag in the FId(N).Indexed field array element. Indexes are
used to accelerate record searches and sorts, and most books on
database design explain them in detail.

MULTI-PAGE FORMS

QuickScreen has the ability to manage multi-page forms. This
feature exploits the ability of the Frm() and Form$() arrays to hold
several forms at once. Each ‘“‘page’ of a multi-page form is a
standalone screen — created separately in the Screen Designer.
Screens are designed so that they appear to visually follow one
another — either from top to bottom (for tall forms) or from left to
right (for wide forms). Using various wipes, you can achieve the
illusion of moving ““‘up’” and ‘‘down’’ through a long form. Thus,
pressing <PgUp> could scroll a new page down from the top of
the screen using the ‘‘Push Down’’ wipe, while <PgDn> could
make use of the ““Push Up”” wipe. This is an effective illusion.
Even though each screen is entirely separate, each accesses a
unique range in the form arrays, making multi-page forms possible.

To illustrate the need for multi-page forms, suppose you want to
allow 60 lines for item-entry on an invoice form. In 25-line mode,

B 240 CRESCENT SOFTWARE, INC.

QuickScreen PERFORMING DATA ENTRY

you would need three different ‘‘pages™. The first page would
contain header information, such as customer information, and
would also begin the columnar section which forms the line-item
section of the invoice (this is where part numbers, descriptions, and
price information is entered). The second page would probably
consist entirely of the line-item section of the invoice. The last
page would complete the line-item section, and also have ‘“footer”’
information, such as price totals and special shipping instructions.

The DEMOPAGE.BAS demonstration program shows the basics of
multi-page form processing and includes commented source code.
It serves as an example, and, as written, is limited to a two-page
form stored at the beginning of a form library file. The discussion
which follows attempts to give a more generic approach to handling
multi-page forms which may exceed two pages, and which may not
be stored consecutively in the form and screen libraries.

Lo R
Implementation

In terms of programming, the concept behind multi-page forms is
simple. Every screen will be assigned a number. This way, your
program can increment and decrement a screen counter to access
the next or previous screen image, respectively. Typically, when
a user presses <PgDn>, or moves beyond the last field on the
current “‘page’’, you will increment the screen counter and display
the next “‘page” of the form. Likewise, pressing <PgUp>, or
moving beyond the first prompt, accesses the previous “‘page’’.

To illustrate this concept, recall the LibScrName function and
Lib2Scrn routine. If a screen counter is stored in the variable
ScrCounter, then consider the following code:

ScrName$ = LibScrName$ (ScrCounter$, ScrnLib())
CALL Lib2Scrn(ScrName$, ScrnLib(), MonoCode%, Attributes,
ErrorCodes) -

CRESCENT SOFTWARE, INC. | 241

PERFORMING DATA ENTRY QuickScreen

This program fragment takes the number stored in ScrCounter to
generate a screen name. The Lib2Scrn routine then uses the screen
name to access the library and place the image on the display.

The technique above works only if the screens stored in the screen
library are in the proper sequence. When you create a multi-page
form, you should store the screens in the library file so the page
one of a three-page form appears immediately before page two, and
that page two appears immediately before page three. To change
the order of screens in a screen library file, you can open the
library in the Screen Designer and save each screen it contains to
individual screen files. Then, you can clear the library and begin
to build it from scratch — paying careful attention to the screen
order.

Another way of handling multi-page forms is to create a numbered
series for your screen names. For example, the pages of a five-
page invoice form could be named INV1, INV2, INV3, INV4, and
INVS. This way, your program can use the LibNo function to
translate the screen name into a screen number. You’ll still be able
to use a screen counter variable since you can simply append its
value to the base name for the screen. Consider the following:

ScrName$ = "INV"+LTRIMS (STRS (ScrCounters))
CALL Lib2Scrn(ScrName$, ScrnLib(), MonoCode%, Attributes,
ErrorCode%)

This technique is much like the one presented earlier, but it uses
the LibNo function and relies on screens which have been
numbered sequentially. The screen counter is then concatenated
onto the base screen name to produce names such as INV1 or
INV2.

To dimension form arrays for multi-page forms, use the LibSize
function to calculate the size of a screen library array, and use the
LibNumberOfFields function to determine the size of the form
arrays. Since several screens are used, you will need to call

® 242 CRESCENT SOFTWARE, INC.

QuickScreen PERFORMING DATA ENTRY

LibNumberOfFields for each screen in your multi-page form. This
way, you can total the number of fields in each form.

To do this effectively, you should first determine the number of
screens in your screen library, which is obtained by examining
element zero of the screen library array (i.e., ScrnLib(0)):

‘Get reguired size for the array that

’ will hold the screen library
LibsSize = ScrnLibSize$ (LibName$)

‘Create the array
REDIM ScrnLib(LibSize$%)

‘Load the screen library into it
LoadsScrnLib LibName$, ScrnLib%(), ErrorCodes

NumFlds% = -1
NumFrms$% = ScrnLib%(0) ‘Get number of forms in library
FOR Scr% = 1 TO NumFrms$

‘Get form name from screen number
FormName$ = LibScrName$ (Scr%, ScrnLib%())
‘Add number of fields to total
NumFlds$ = NumFlds$% + LibNumberOfFields%(LibNameS,_
FormName$) + 1
NEXT Scr$ ‘DIM the field information array to
’ combined size of both forms
REDIM Fld(NumFlds%) AS FieldInfo
‘DIM the form data array
REDIM Form$ (NumFlds$, 2)

-

The next step is to fill the newly-dimensioned Fld() TYPE array
and the Form$() string array with the field data stored in the .QFL
file. The best way is to use the LibGetFldDef routine, which is
able to add form information, thereby building multi-page arrays.
It is also best to use the FId().Fields element of the Fld() array so
that the total number of fields in a given form is known.

CRESCENT SOFTWARE, INC. B 243

PERFORMING DATA ENTRY QuickScreen

StartElgs = 0 ‘Load first form to beginning of array
‘Get form name from screen number
FOR Scr% = 1 TO NumFlds$
FormName$ = LibScrName$(Scr%, ScrnLib())
‘Load field information @ "StartgEl"
CALL LibGetFldDef (LibName$, FormName$, StartEl%, F1d(),_
Form$ (), ErrorCode%)
'Bump "StartEl" to next available
StartEl% = StartEls + Fld(StartEls$).Fields + 1
NEXT Scr$

Now that the form arrays are loaded and properly initialized, you
can start to use the EditForm routine. While using EditForm, if
<PgUp> is pressed then Frm.StartEl is assigned to 1 less than the
starting field number for the current form. If <PgDn> is pressed
then Frm.StartEl is assigned to 1 more than the highest field
number on the current form. Thus, a calling program can check
Frm.StartEl to determine whether either <PgUp> or <PgDn>
has been struck.

Because a multi-page form creates an extra element in the form
arrays for each form “page”, we suggest using the Form$(0, 0}
form buffer (rather than the Form$(N, 0) data elements) when
putting or getting records to and from a data file.

Alternatively, you can also check Frm.Keypress for specific key-
strokes (such as <PgUp>, <PgDn>, or function keys you wish
to use) to determine whether the user is trying to access a prior or
next ‘‘page’’ in the form.

This former technique (making use of Frm.StartEl) is demonstrated
below:

.

Action% = 1
DO ‘Poll the editing procedure
CALL EditForm(Form$(), Fld(), Frm, Cnf, Actiont)

R If the user pressed PgUp or PgDn or moved off the top
R or bottom of the form, "StartEl"” will be updated by
fm———— "EditForm” so we need to check it. The last value is
fm——— saved in "LastStartEl" for use as a comparison.

E 244 CRESCENT SOFTWARE, INC.

QuickScreen PERFORMING DATA ENTRY

IF Frm.StartEl <> LastStartEl$ THEN
‘Previous page?
IF Frm.StartEl < LastStartEl% THEN
‘Yes set previous page number
Scr$ = Scrts - 1
‘Next page?
ELSEIF Frm.StartEl > LastStartEl% THEN
‘Yes set next page number
Scr¥ = Scrs + 1
END IF ‘Display the screen
CALL Lib2Scrn(LibScrName$(Scr$, ScrnLib()), Sernlib(),_
MonoCode%, -2, ErrorCode%)
‘Save the new "StartiEl*"
LastsStartEl% = Frm.StartEl
END IF ‘Keep editing until the user presses
‘ the Escape key.
LOOP UNTIL Frm.KeyCode = 27

Lo SRR

PROGRAMMING TIPS

The following sections provide additional programming tips which
you may find both interesting and useful.

Manually ManipuTating Data
On-The-Fly

Since EditForm is polled, the calling program has the opportunity
to carry out some task between polling iterations. The example
show how to update the time on the screen each second. The time
is printed on the first line near the right margin.

Do
CALL EditPorm(Form$(), Fld(), Frm, Cnf, Action)
IF CLNG(TIMER) <> T& THEN
‘Display the time
‘ each second to

T& = TIMER ‘ show how things

LOCATE 1, 70, 0 ‘ can be done while

PRINT TIMES; ’ a form is being
END IF 4 edited.

LOOP UNTIL Frm.KeyCode = 27 ‘Keep editing until
’ user presses <Esc>.

CRESCENT SOFTWARE, INC. | 245

PERFORMING DATA ENTRY QuickScreen

When this routine executes, the time is updated while the form
remains fully-capable of accepting user input. This example dem-
onstrates how two activities (processing a form and updating the
time) can seem to occur simultaneously.

Assigning Variables To Refer To Fields

QuickScreen has a function called FIdNum (see page 157) which
converts field names to numbers and makes it unnecessary to
change program code when your form is modified.

For instance, if Form$(9, 0) currently points to a customer phone
field, and you add two new fields to the form, the customer phone
field could become Form$(12, 0). If Form$() array subscripts are
used to access a field’s data, it would be necessary to change array
subscripts throughout your program. In the example provided, all
Form$(9, 0) references would need to be changed to Form$(12, 0)
so that they accurately point to the new location of the phone field.

Referring to fields using variable names is easy. Consider this
program fragment:

DateFld$ = FldNums ("INVDATE", FLD())

Form$ (DateFld%, 0) = DATES

This example shows how the variable DateFId is assigned to the
field number corresponding to the field called “INVDATE’". If
the form changes and the field position of INVDATE is altered,
this method ensures that the correct field receives the DATES$
information.

B 246 CRESCENT SOFTWARE, INC.

QuickScreen PERFORMING DATA ENTRY

TS

Updating Form Data Using SaveField

To update the Form$(0, 0) form buffer, the SaveField routine
should be called. Recall that this routine (discussed on page 197)
verifies data in the field specified before copying it to the form
buffer.

CALL saveField(DateFlds, Form$(), Fld(), BadFlds)

Lo R
Recalculating Fields Using CalcField

If you change a field by changing a Form$(N, 0) element which
affects a calculated value somewhere on the form, you will need to
call CalcFields so that the field is properly recalculated. (See page
136 for more information.)

L e SR
Converting Formatted Strings to Numbers

To quickly convert a formatted string to a double-precision
number, you can use the Value function. If you need to extract a
number from the IEEE string imbedded in the form buffer, you can
use the appropriate conversion scheme from the following:

Num$ = CVI(MID$(Form$(0, 0), Fld(FldNo).Fields, 2)
Num& = CVL(MID$(Form$(0, 0), Fld(FldNo).Fields, 4)
Num! = CVS(MID$(Form$(0, 0), F1ld(FldNo).Fields, 4)
Num# = CVD(MID$(Form$(0, 0), Fld(FldNo).Fields, 8)

In each line above, MIDS$ is used to access a specific number of
bytes from the form buffer. The starting character position, or
offset, into Form$(0, 0) is supplied by FId(FIdNo).Fields. Then,
the appropriate number of bytes are read, such as 2 for integer
values. Once the string is properly read, the CVx operation
converts the string to a number, and assigns the result to Num.

CRESCENT SOFTWARE, INC. 8 247

PERFORMING DATA ENTRY QuickScreen

L]

Redisplaying Form Data Using PrintArray

After you have made the desired changes to the form data, you can
redisplay information in the form by calling the PrintArray routine
(see page 189).

B 248 CRESCENT SOFTWARE, INC.

CREATING STANDALONE PROGRAMS

QuickScreen CREATING STANDALONE PROGRAMS

Standalone programs are generated by linking compiled object files
using the LINK.EXE program supplied with your version of
BASIC. Compiling programs for standalone use is a relatively
easy task. However, you must first be aware of BASIC Make files
before using the compiler and linker.

MAKE FILES

Make files are created by the QuickBASIC environment whenever
a program requiring more than one module has been saved. They
are ASCII files, with a .MAK file extension, and simply list the
names of other modules which must be present in order for the
main module to run. For example, the DISPLAY.BAS program
also requires the SCRNDISP.BAS, SCRNFILE.BAS and
SCRNLIB.BAS modules. All these modules must be compiled to
object files and then linked together with the FORMS.LIB or
PRO.LIB libraries (for BASIC version 7.1, use FORM7.LIB or
PRO7.LIB).

COMPILING MODULES

BASIC source files are compiled using the BC.EXE command line
compiler as such:

BC MyProg.BAS /0/S;

This will create an .OB] file if the program compiled successfully.
You will need to compile each BASIC module separately.

CRESCENT SOFTWARE, INC. B 253

CREATING STANDALONE PROGRAMS

QuickScreen

BASIC Program Name Required BASIC Modules {.BAS files)

DISPLAY DISPLAY, SCRNDISP, SCRNFILE, SCRNLIB

DEMDBLIB DEMDBLIB, DBLIBMOD, FORMEDIT,
NOCALC, QEDITS, SCRNDISP,
VERTMENU, FORMFILE, SCRNFILE

DEMOCUST DEMOCUST, FORMEDIT, NOCALC,
NOMULT, SCRNDISP, QEDITS, FORMLIB,
SCRNLIB, RANDOMIO

DEMOINV DEMOINV, QSCALC, EVALUATE,
FORMEDIT, QEDITS, SCRNDISP,
VERTMENU, SCRNFILE, FORMFILE

DEMOPAGE DEMOPAGE, QSCALC, EVALUATE,
FORMEDIT, QEDITS, SCRNDISP,
VERTMENU, FORMLIB, SCRNLIB

Table XXV: QuickScreen Programs And Required Modules

LINKING

Once you have compiled all your programs to .OBJ files, you will
need to create a final standalone .EXE program. This is done by
linking object files with the provided FORMS.LIB library (for
BASIC version 7.x, use FORMS7.LIB).

If you are compiling and linking manually from DOS, then you
would specify all your BASIC-compiled object modules, along with
FORMS.LIB (or FORMS7.LIB), like this:

LINK PROG1.0OBJ+PROG2.0BJ, ,NUL,FORMS[7].LIB

m 254

CRESCENT SOFTWARE, INC.

QuickScreen CREATING STANDALONE PROGRAMS

If you prefer you can start LINK without any options, and wait for
it to prompt you for the information it needs. To do this just type:

LINK

You may also specify more than one library when linking. For
example, if you need assembler routines from both FORMS.LIB
and a library file called MYSTUFF.LIB, you may tell LINK to use
both of them:

LINK PROG1.OBJ+PROG2.0BJ, ,NUL,FORMS[7] MYSTUFF

You may also add single object modules when linking, even if they
are not present in a library at all:

LINK PROG1.0OBJ+PROG2.0OBJ+MYOBJECT.OBJ, ,NUL, FORMS[7] -
MYSTUFF

If you do wish to combine several libraries into a single .LIB file,
that is quite easy too. Though the LIB library manager is usually
employed to add or remove object modules, you may also add one
or more complete libraries like this:

LIB LIBRARY1.LIB+LIBRARY2.LIB+LIBRARY3.LIB

One useful link option you should be aware of is the /E command
line switch. When LINK is invoked with /E, it creates an .EXE
file in a special “‘packed’” format. Not unlike the various archive
programs, the code and data are compressed to take up less disk
space. When the program is run, the first code that actually
executes is an unpacking routine that puts everything back together
again. The /E switch is specified like this:

LINK PROG1.OBJ+PR0OG2.0BJ, ,NUL,FORMS[7] MYSTUFF /E

A packed program will require less disk space, however it of
course requires the same amount of memory when it is run.

CRESCENT SOFTWARE, INC. B 255

QUICKSCREEN UTILITIES

QuickScreen QUICKSCREEN UTILITIES

L e]
SLIDE SHOW DISPLAY PROGRAM

The purpose for the DISPLAY program is to allow the creation of
self-running slide show presentations. DISPLAY works by reading
a special ASCII command file which you create, and then executing
instructions that specify which images to display and how to display
them. Although DISPLAY has been provided to you as a BASIC
source module only, you may compile and link it so that it may be
used as a command-line utility.

To do this, all modules associated with DISPLY.BAS must first be
compiled to .OBJ files with BC. Inspecting the DISPLAY.MAK
make file reveals four modules which are compiled like this:

BC DISPLAY /O;
BC SCRNDISP /O;
BC SCRNFILE /0O;
BC SCRNLIB /O;

The next step is to link these modules together. Since DISPLAY
contains assembler routines as well, it will be necessary to specify
the FORMS.LIB library when linking (for BASIC version 7.x, use
FORMS7.LIB):

LINK DISPLAY.OBJ+SCRNDISP.OBJ+SCRNFILE .OBJ+SCRNLIB.OBJ s NUL,
FORMS[7].LIB

Linking as shown above creates DISPLAY.EXE, which you may
run from DOS using the following syntax:

DISPLAY script.CMD [/B]

where script. CMD is the name of the script command file you wish
for DISPLAY to use. If the *‘/B’” command-line switch is used
then DISPLAY will generate screens so that they are properly
displayed on monochrome systems.

CRESCENT SOFTWARE, INC. B 259

QUICKSCREEN UTILITIES QuickScreen

Command Description

CLS Clears the screen using the current
background color

COLOR fore, back Sets the foreground and

background color for subsequent
Message or CLS statements.

Goto labelname Execution of the Display command
file continues at the first command
after the labelname specified.

KeyPress Waits a for key press.

Labelname: A label may be placed on its own
line and must end with a colon.
The label can be any name other
than a Display command.

LOCATE v, x Positions the cursor at row y and
column x.

LoadLib filename.QSL Loads the library specified in
filename into memory.

Message "text"” Displays the literal string specified.

Pause n.n pauses for the number of seconds
specified. Notice that decimal
values are allowed.

Display scrnname n Displays the screen specified from
the library which was loaded using
the Loadlib command. The
number n may be -1 to suppress
mode changes, -2 to suppress
drop shadows, or -3 to suppress
both.

REM or * Signifies a comment line the same
way as in BASIC.

| Table XXVI: DISPLAY Utility Cornmands |

A DISPLAY command file is a text-only file, and may be created
using your favorite text editor. The commands available are
summarized in Table XXVI.

B 260 CRESCENT SOFTWARE, INC.

QuickScreen QUICKSCREEN UTILITIES

You should know that DISPLAY command names need not be
uppercase when used in the script file. Also, there are several
features which control DISPLAY while it is running. These
controls are summarized in Table XXVII.

Key Effect on Slide Show
+ Increases the speed of the slide show.
- Decreases the speed of the slide show.
<Enter> Sets speed to normal.
<Esc> Ends the slide show.
< Space> Freezes the slide show until a key is
pressed.
Table XXVIl: DISPLAY Runtime Keyboard Control

L e R

SCREEN CAPTURE PROGRAM

SCRNCAP.EXE is a ““Terminate and Stay Resident”” (TSR) utility
which is provided for you on the QuickScreen distribution diskette.
Written using Crescent Software’s P.D.Q. alternate QuickBASIC
library, this program occupies very little memory and allows you
to capture text screens from within other application programs.

In order for SCRNCAP to run properly, you must start it from
DOS. Before running SCRNCAP, you should consider the
following points which apply to all TSR programs:

¢ It should not be installed while a program has ‘‘shelled”” to
DOS.

e The last TSR installed must be the first to be uninstalled.

CRESCENT SOFTWARE, INC. 8 261

QUICKSCREEN UTILITIES QuickScreen

Using SCRNCAP consists of a few simple steps which are
summarized below.

Run SCRNCAP from DOS.

Start another program from which screens are to be captured.
When the desired screen appears, press < Ctrl-S>.

Specify a name for the screen, then press <Enter>.

If no file is specified when saving in the last step above, files are
written to the current path. You may specify a different drive or
directory before the file name if you wish.

All screens are saved in BASIC’s BSAVE format. This makes
them easy to load from the QuickScreen editor. Simply use the
(File) Open Screen File... command and specify the screen you
wish to edit.

One note of warning: SCRNCAP uses the screen name you specify
and does not caution you if you will overwrite an existing screen
with the same name. For this reason, be extremely careful when
naming SCRNCAP screens to be saved.

When SCRNCAP no longer is required, you may remove it from
memory by exiting any active applications to return to the DOS
prompt. Then, run SCRNCAP again and use the *‘/U”” command-
line switch at DOS like this:

SCRNCAP /U

This completely uninstalls the program from memory.

| 262 CRESCENT SOFTWARE, INC.

QuickScreen QUICKSCREEN UTILITIES

QUICK LIBRARY MAKE UTILITY

To simplify the creation of custom Quick Libraries, we’ve included
a utility called MAKEQLB.EXE. This utility examines a program
and all its dependent modules, and creates a new Quick Library
containing only those routines that are necessary. This is important
when the programs you develop are very large, because it
eliminates the wasted memory taken by routines that are not used.
MakeQLB also allows you to easily combine routines from multiple
library files, without having to extract each individual object
module.

MakeQLB knows which routines are to be included by examining
your main program for CALL statements, and by searching for
DECLARE statements when the CALL keyword is not used.
MakeQLB also searches include files to any level and the .MAK
file if one is present, to account for all of the modules in a
complete program.

MakeQLB will automatically report any subprograms or functions
that have been declared but are not being used. Of course, those
routines will not be added to the resultant Quick Library. It will
also report any subprograms and functions that are present but
never called. As an option, you may specify a file that contains a
list of all the routines that are to be included in the library, rather
than having MakeQLB examine your source files.

MakeQLB uses an interface similar to the LINK and LIB
programs, and you may either enter the parameters on a single line,
or wait for MakeQLB to prompt you for them. The command line
syntax is as follows:

MAKEQLB mainprog, glbname, listfile, 1ibl 1ib2, bglbname

CRESCENT SOFTWARE, INC. B 263

QUICKSCREEN UTILITIES QuickScreen

You may also specify more than one file name to be examined, by
separating each with a blank space:

MAREQLB mainprogl mainprog2, glbname, listfile, 1libl 1lib2,
bglbname -

Mainprog is the main BASIC program to examine, with a .BAS
extension assumed. If a file name with a .LST extension is given,
MakeQLB will instead use the procedure names contained in that
file when creating the Quick Library.

Qlbname is the name of the resultant Quick Library. If the name
is omitted, a library will be created with the same name as the
main program, but with a .QLB extension (if indeed you omit
glbname, be certain to retain the delimiting comma). If you
specify ‘““NUL’’ for the .QLB name, MakeQLB searches for
unnecessary DECLARE statements and dead code, but will not
create a Quick Library.

The listfile that is created contains a list of all the routines that are
being added to the Quick Library. This file defaults to a .LST
extension, and is in the correct format that MakeQLB requires to
create a library from a list of procedure names. This way, if you
need to add a routine or two to the Quick Library later on, you can
simply edit the generated .LST file. Creating a Quick Library
from a list file is of course much faster than examining an entire
BASIC program. If the listfile parameter is omitted, the same
name as the main program will be used, but with a .LST extension.
To tell MakeQLB not to create a list file, use the reserved name
NUL for that parameter.

The libl and lib2 parameters are .LIB library files that contain the
procedures being added to the Quick Library. One or more library
names may be specified, with a blank space used to delimit each
name. If no library name is given, the name PRO.LIB is assumed.

B 264 CRESCENT SOFTWARE, INC.

QuickScreen QUICKSCREEN UTILITIES

The last parameter tells MakeQLB which “‘bglb”” support library
is to be specified when linking. The default name is BQLB45.LIB,
which is the library that comes with QuickBASIC version 4.5. For
other versions of BASIC, please see Table XXVII.

MakeQLB works by creating an object file that contains the list of
procedure names. By establishing these procedures as External,
they will be included in the Quick Library automatically when
MakeQLB invokes LINK. The dirty work of extracting each
routine from the various .LIB files is thus handled entirely by
LINK.

BASIC Version BQLB .LIB File Name

4.0 BQLB40.LIB
4.0b BQOLB41.LIB
4.5 BQLB45.LIB
6.0 depends on QB version number
7.x QBXQLB.LIB

Table XXVII: BASIC BQLB .LIB File Names

CRESCENT SOFTWARE, INC. 3 265

APPENDICES

APPENDIX A:
MOUSE TIPS

QuickScreen MOUSE TIPS

fo e R

MOUSE TIPS

If you have a mouse you will find QuickScreen’s interface to be
quite intuitive. The section entitled Menu System and Dialog
Boxes clearly explains the mouse interface as it relates to the menu
system.

In addition, you may use a mouse for other aspects of
QuickScreen. Most mouse operations summarized below require
you to hit <Enter> to “‘keep’’ whatever has been done with the
mouse. If you wish to abandon the mouse function at any time,
press <Esc>.

Blocks and Box Drawing

To define a block or to draw a box, place the mouse cursor at a
starting point on the screen and press and hold down the left mouse
button. Then, drag the mouse until the desired block or box has
been drawn. When the left button is released, the block will
remain selected or the box will remain drawn. If a block has been
selected, you may unselect it by clicking the left mouse button or
by defining a new block. If a box has been drawn, a new box may
be drawn by repositioning the mouse cursor and by using the left
mouse button again.

ASCIl Chart & Color Chart

When either the ASCII Chart or Color Chart is presented, you may
select a value from the chart by placing the mouse cursor over the
desired choice and by pressing the left mouse button.

CRESCENT SOFTWARE, INC. a8 271

MOUSE TIPS QuickScreen

Drawing Lines

When in Line Draw mode, press and hold down the left mouse
button to draw lines as the mouse cursor is moved. This allows
free-hand drawing. The mouse cursor may be repositioned to a
new screen location by releasing the left button.

| 272 CRESCENT SOFTWARE, INC.

APPENDIX B:
QUICKSCREEN EDITING KEYS

QuickScreen

QUICKSCREEN EDITING KEYS

QuickScreen Editing Keys

Key Sequence

<Ctrl-A>
<Ctrl-B>
<Ctrl-D>
<Ctrl-F>
<Ctrl-M>
<Ctrl-N>
<Ctrl-P>
<Ctrl-R>
<Ctrl-Y >
<Ctrl> <Right>
<Ctrl> <Left>

<F1>
<F2>
<F4>
<F5>

<Delete>

<Insert>

<Backspace >

<Shift> < Delete>

< Shift> <Insert>

<Shift> <End>, <Delete>

Result

ASCII chart

Box drawing

Line drawing

Fill character

Move marked block
Insert line above

Paint block

Repeat last character
Delete line

Paint character to right
Unpaint character to left

Help

Display screen
Ruler line

Center line/block

Delete block

Delete character under cursor
Insert mode toggle

Delete character to left of cursor
Cut block

Paste block

Delete to end of line

CRESCENT SOFTWARE, INC.

B 277

APPENDIX C:
COLOR CHART

QuickScreen

COLOR CHART

DZcocom"amm"ROm

Color Chart

BACKGROUND

Black Blue Green Cyan Red Magenta Brown White

Black 0
Blue 1
Green 2
Cyan 3
Red 4
Magenta s
Brown 6
White 7
Br Black 8
Br Blue 9
Br Greemn 10
Br Cyan 11
Br Red 12
Br Magenta 13
Br Brown 14
Br White 15

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

32 48
33 49
34 50
35 51
36 52
37 53
38 54
39 55
40 56
41 57
42 58
43 59
44 60
45 61
46 62
47 63

64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79

80
81
82
83
34
85
86
87
88
89
90
91
92
93
94
95

96 112
97 113
98 114
99 115
100 116
101 117
102 118
103 119
104 120
105 121
106 122
107 123
108 124
109 125
110 126
111 127

CRESCENT SOFTWARE, INC.

B 281

APPENDIX D:
ASCIll CHARACTER CHARTS

QuickScreen

ASCII CHARACTER CHARTS

000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015

128
129
130
131
132
133
134
135
136
137
138
139
140
141

142
143

A
~B
~C
D
~E
~F
~G
R
1
~J
~K
AL
M
~N
~0

[« o]

o A O

oy

0 M O e

Po Iet st) o (D

(nul)
(soh)
(stx)
(etx)
(eot)
(enq)
(ack)
(bel)
(bs)
(tab)
(lf)
(vt)
(np)
(cr)
(so)
(si)

144
145
146
147
148
149
150
151
152
153
154
155
156
157

158
159

Conventional ASCIl Character Chart

016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031

O O M 8 m

or

SHhAU K M oe COi OO

*p
~Q
“R
~s
~7
~u
~v
W
~X
~Y
~Z
~L
"\
"1

AA

A

160
161
162
163
164
165
166
167
168
169
170
171
172
173

174
175

(dle)
(dc1)
(dc2)
(dc3)
(dcé)
(nak)
(syn)
(etb)
(can)
(em)
(eof)
(esc)
(fs)
(gs)
(rs)
(us)

-

O

1o W EtIN L

032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047

176
177
178
179
180
181
182
183

sp 048

!

"
#
$

/

i
B
|
1
{
1

h}

184 «

185
186
187
188
189

190
191

1
|

1
4

A
E]

1

049
050
051
052
053
054
055
056
057
058
059
060
061
062
063

AS 6 OO NOUMBEWN 2O

w Vv

064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079

Extended ASCH Chart (character

192 L
193 L
19
195 |
196 —
197 +
198 |
199 }
200
201 ¢
202 &
203 5
204 }
205 =

206
207

085

088
089
090
091
092
093
094
095

OZ X rXRoecr—mxTOTMMOO®>PE
(=
0
N

> A RN <X X ECCAHW ™ OO

-

096
097
098
099
100
101
102
103
104
105
106
107
108
109
110
M1

O 9 8 m A - - T@ 0 A0 OO

112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127

tW = A NN XX < C et 3070

>

codes 128 - 255)

208 L
209 ¢
210 ¢
211t
212 L
213 ¢
214
215 §
216 4+
217 4
218
219 |
220 g
221 |

222
223

224
225
226
227
228
229
230
231
232
233
234
235
236 @
237 ¢
238 €
239 n

S PO OWMIYR QMAH®®RK

240
241
242
243
244
245
246
247
248 °
249 -
250 -
251/
252 »
253 2
254 @
255

g —e—m A IV I

u

CRESCENT SOFTWARE, INC.

B 285

GLOSSARY

QuickScreen GLOSSARY

absolute cursor coordinate

The row and column positions of the cursor relative to the upper-
left corner of the screen.

background color

The color of the background on which text is displayed on the
screen.

blink

An attribute which makes a character flash on and off.

block

A rectangular area of text which has been selected using the
< Shift> direction keys or the mouse. A block may consist of as
little as a single character or as much as the entire display.

box draw characters

Any of the characters in the IBM® PC character set which are used
to draw borders.

calculated field
Any field in a form for which a formula has been defined.
clipboard

An area of memory to which text can be temporarily placed and
infinitely retrieved.

CRESCENT SOFTWARE, INC. @ 289

GLOSSARY QuickScreen

command line switch

Any parameter on the DOS command line which specifies an
option for the program to be executed. QuickScreen, for example,
uses the /B command line switch to adjust screens for a
monochrome display.

dialog box

An input screen which collects information needed for carrying out
a process. For example, QuickScreen’s (File) Open Screen File
pulldown command uses a dialog box.

direction keys

Keys which control the movement of the cursor. These keys
typically include the <Up>, <Down>, <Left>, and <Right>
keys, and sometimes include <PgUp> and <PgDn>.

fill character

The ASCII character that is to replace characters on the screen
when the fill option is chosen.

foreground color

The color of characters on the screen.

form

A screen which has at least one field defined.
JFRM files

A file containing field definitions for a form.

B 290 CRESCENT SOFTWARE, INC.

QuickScreen GLOSSARY

hotkeys

Keys which directly access an item on a menu bar or pulldown
menu. The characters corresponding to hotkeys are usually
highlighted.

insert mode

The edit mode in which each character to the right of the cursor is
moved to the right as new characters are entered.

menu bar

A component of the menu system which presents pulldown menu
names on the top line of the screen.

menu bar option

One of the menu names on the menu bar. A menu bar option
usually presents a pulldown menu.

overwrite mode

An edit mode in which new characters overwrite existing text on
the screen.

pollable routine

A routine which may be repeatedly called in a loop. Pollable
routines allow a calling program to carry out other tasks between
each polling cycle, effectively simulating multi-tasking.

pulldown menu

A pop-up list of commands available for a given menu bar option.

CRESCENT SOFTWARE, INC. 8 291

GLOSSARY QuickScreen

relative cursor coordinates

The row and column position of the cursor relative to its position
at the time the ruler line was displayed.

ruler line

A pop-up moveable window which presents information about the
position of the cursor and the character on which the cursor rests.

selected text

Text which has been highlighted using the <Shift> direction keys
or the mouse. A block is defined when text is selected.

shortcut keys

Single keys or key combinations which allow direct access to
specific pulldown menu commands.

wipe or wipe type

A special effects technique of displaying screens. For example,
one wipe makes a screen appear to “‘explode’ into view.

B 292 CRESCENT SOFTWARE, INC.

INDEX

QuickScreen INDEX

—— File Extensions & Switches —
.EXE 6, 21, 43, 46, 208, 213, 253-254
.FRM 105, 125, 163, 225, 292

.LST 264

.NEW 105

.QFL 48, 126, 167, 225, 243

.QLB 21, 29, 215, 264

.QSL 48, 94, 165, 243

.SCR 4445, 94, 126, 211

/B (command-line switch) 15, 30, 114, 117-118, 178, 180, 225,
259, 291

—_— A —

action 7, 109, 111, 136, 145-147, 190, 192-193, 204-206,
224, 226-227, 234, 237-238, 244-245

adapter cards 54, 83, 86, 88, 178, 225

arc 150

arccos 150

arccosh 150

arccot 150

arccoth 150

arcesc 150

arcesch 150

archive files 15, 254

arcsec 150

arcsin 66, 150

arcsinh 150

arctanh 150

arguments 110, 127, 192, 213, 218, 228-229

ASCII character charts 5, 51-53, 84, 284, 284

ASCII text files 45, 252

AUTOEXEC.BAT 18, 46, 208

—_— B —

background colors 88, 290

backing up 22

BASIC modules 6-7, 125, 210

BC 19, 30, 130-132, 210, 237, 252, 259
BCopy 130-132, 237

binary 46, 154

CRESCENT SOFTWARE, INC. a 297

INDEX

blink attribute 54, 77-78, 84, 87-88, 290
block operations 5, 79-82

boolean operators 71

borders 42, 51, 55, 77, 82, 133-134, 205, 290
box drawing 5, 50, 77, 79, 82, 272, 278, 290
Box0 133-134

BSave 44, 262

ButtonPress 135

———

CalcFields 126, 136-137, 246
centering 85

CGA 54, 88, 115, 179, 194
ChangeClr 126, 138

check box 41-42, 45, 48-49

clearing a form 237

ClearScr0 139

clipboard 49, 51-52, 81, 85, 102, 290
Cnf 117-118, 124, 145-147, 204, 224, 227, 234, 244-245
color palette 86

command button 40, 42, 62-63, 95, 103
command file 259-260

compatibility 8

compiling modules 209, 252
compose-fields menu 57

COMSPEC 46

constants 66, 69, 115, 120, 224-225
copy operations 5, 22, 27, 46, 102, 130-131, 216, 236, 252-253
copying fields 102

cos 150

cosecant 150

cosine 150

cot 150

cotangent 150

crashing the system 131

csc 150

csch 150

curline 191

currency symbol 61, 65

cursize 116, 118

m 298 CRESCENT SOFTWARE, INC.

QuickScreen

INDEX

cursor 7, 17, 38-40, 45, 49-51, 53, 62, 79-85, 94, 101-102,
116, 118, 135, 145, 181-183, 190-192, 195-196, 233,
272-273, 278, 290, 292-293

cut operations 5, 51, 81, 215, 278

CVD 246

CVI 246

CVL 246

CVS 246

— D ma—
data entry 4-7, 20, 27-28, 57-60, 77, 99, 105, 119, 125,
157, 169, 221, 223, 232
data range information 233
Date2Num 140-141, 187
db/lib 7, 20, 28, 209
dbase 7, 28
decimal places 65
DEFCNF.BI 116-117, 225, 228
define data fields 101-102
defining fields 59, 63, 101
DEFINT 109, 141, 144, 224
DEMDBLIB 20, 28
DEMOANY 20, 27, 224-225, 227
DEMOCUST 20, 28, 169, 174, 212, 235
DEMOINV 20, 28
DEMOOBIJ 20, 27, 215
DEMOPAGE 20, 28, 241
demos 27, 29
dialog box elements
check box 41-42, 45, 48-49
command button 40, 42, 62-63, 95, 103
list box 40-42, 95, 103
text box 4042, 66-67
dialog boxes 35, 40, 63, 272
dimensioning 212, 216
dimsize 174, 199
display utility 4, 30
displaying screens 6, 88, 126, 211-212, 216-218, 294
DisplayScrn 53, 87, 126, 143-144, 217-218

CRESCENT SOFTWARE, INC.

2 299

INDEX

distribution diskette 15, 20, 22, 212, 223, 260
dollar values 5, 61, 65, 69, 159, 203

DOS shell 43

dragging 38, 102

—— e

edit menu 49

EditForm 28, 111, 125, 136, 145-147, 163, 223-224, 226-227,
232-235, 237-238, 244-245

EditInfo 193

editing 20, 45, 58, 77, 79, 83, 85, 102, 105, 147, 190-192,
244-245, 276, 278

editing keys 276, 278

effects 6, 126, 294

EGA 45, 56, 115, 180, 194

EndOfForms 125, 148

environment settings 77, 79

environment variables 18, 114, 208

EOF 191

error beep 54, 56, 77-78

ErrorCode 109, 112, 165-168, 173-176, 203, 211-213, 224,
226, 241-245

errors 78, 112, 154, 158, 196

escape 206, 245

Evaluate 20, 69, 71, 124, 149-151, 210

Exist 16, 18, 35, 48-49, 82, 84, 96, 105, 152-153, 158,
182-184, 210, 262, 293

Exit 43, 46, 192, 262

exponentiation 150

expression evaluation 125

extended keys 11

— F e

factorial 150

FGet 154-155, 158, 243

field format 188

field formula 65, 200, 215

field name 65-66, 68, 101, 125-126, 157, 200, 207, 239, 245
field settings 58, 63, 101

field types 5, 58-59, 63

FIELDINF.BI 116, 118, 120, 224-225, 228

= 300 CRESCENT SOFTWARE, INC.

QuickScreen INDEX

FieldInfo TYPE 68, 118-120, 224

file menu 43

file pointer 154-155, 161

fill character 51, 278, 292

FixDate 125, 142, 156

Fld() TYPE array 119-120, 124, 136, 186, 232-233, 243

FildNum 125, 157, 245

focus 40, 42

FOpen 158, 161, 243

foreground color 87-88, 292

form buffer 113, 131, 157, 159, 164, 197-198, 201-202,
235-236, 245-246

form library 20, 48, 167-169, 172, 223, 226, 241

Form$() array 113, 125, 163-164, 167-168, 171, 201, 215,
226, 231, 238, 240, 245

FORMEDIT.BI 116, 120-121, 225, 228, 230

FORMFILE.BAS 20, 125, 163, 186

Forminfo TYPE 121, 225

FORMLIB.BAS 20, 126, 167, 171

FORMS.LIB/FORMS7.LIB 210, 253, 254, 255

formulas 5, 59, 65-66, 69, 71, 101, 114, 126, 149, 163, 200,
207, 215-217, 231, 290

Frm TYPE variable 121, 124, 227, 229-230, 232-233

FSeck 154, 156, 161-162, 243

FType 119-120

— G —

GetFldDef 125, 146, 163, 186, 224, 226, 229
GetRec 131, 164, 188, 198, 235-236, 239
glossary 288

graphics (adapter) cards 15

graphics characters (text mode) 52

— H —

help text 5, 7, 67, 101, 114, 163, 178, 214, 231
Hercules® adapter card 88

highlight bar 28, 138

hotkeys 43, 292

CRESCENT SOFTWARE, INC. @ 301

INDEX QuickScreen

—]

IEEE formatted fields 246
indexed fields 67, 240
InitMouse 117-118
INKEYS 205, 223, 232
insert status, setting the 121, 227, 229-230
installation instructions 15
installation program 15
integers 109, 118, 224
intensity 87-89

inverse video 87-89

— K
keycode 62, 121, 227

— L —
LastFld 148, 189, 201, 236
LastStartEl 244-245
Lib2Scrn 111, 126, 143, 173-174, 176, 199, 212, 241-242, 245
LibFile 125, 165-166, 212
LibFile2Scrmn 126, 165-166, 212
LibGetAddresses 126
LibGetFldDef 126, 167-168, 171, 226, 243-244
LibLoadDisplayForm 169
LibNo 126, 170, 242
LibNumberOfFields 126, 171, 225, 242-243
libraries
adding to 94-95
form libraries 20, 48, 167-169, 171, 223, 226, 241
screen libraries 6, 21, 28, 48, 92, 94-95, 126, 165-166,
169-170, 172-174, 176, 199, 211, 242243
replacing screens in 48, 96
saving 95
library menu 47
LibScrName 126, 172, 241-244
LibSize 242-243
lines
drawing 49-50, 77, 79, 82, 278
line types 49, 54-55, 77, 82
LINK 6, 10, 21, 30, 43, 46, 54, 68, 91, 113, 175, 208, 210,
213, 230, 239, 252-255, 259, 263, 265

B 302 CRESCENT SOFTWARE, INC.

QuickScreen INDEX

—_—Q —
QB/QBX 19, 29, 44, 92, 208-210

QBase 44, 92

QEdit 126, 190-196, 210, 238
QEDITYPE.BI 193

QPrint 110

QSCalc 21, 126, 136, 200, 207, 210, 215
QSCR.EXE 20, 35

quick start 25, 27

QuickPak Professional 29

QuickScreen files 89, 94, 126-127, 175
QuickScreen library files 21, 92, 94-95, 173
QuickScreen routines 107, 109, 125, 225

— R e

RAM 6, 209

random files 28, 113, 130-131, 188, 235
RANDOMIO 164, 188, 198, 239
README 20

rearranging fields 102
recalculating fields 246

recursion see recursion
redisplaying form data 247
refreshing 189

registration card 3

relational fields 62, 68, 239
relational operators 69

repeat last key 84

replace color 83

replace screen in library 48, 96
ReplaceChar 214-215

reports 28, 53, 104, 112, 135, 179, 199, 263
retrieving records 235-236
retrieving screens 92

routines 107, 109, 125, 225
ruler line 5, 52, 79-80, 278, 293
running the demos 27

running the slide show 30

CRESCENT SOFTWARE, INC. 8 305

INDEX QuickScreen

—— S .

SADD 131-132

save library 95

SaveField 125, 159, 197, 245-246

SaveRec 164, 188, 198, 235, 237, 239

saving a form 45, 105

saving records 237

saving screens 89-90

screen arrays 115, 177, 184-185, 212

screen capture 20, 260

screen designer 33, 35, 130, 240, 242

screen libraries 6, 21, 28, 48, 126, 165-166, 169-170,
172-174, 176, 199, 211, 242-243

SCRNCAP 7, 10, 20, 260, 262

SCRNDISP 21, 30, 126, 138, 143, 175, 209-210, 252, 259

SCRNFILE 20, 126, 175, 210-211, 259

SCRNLIB 21, 126, 165, 170, 172-174, 176, 199, 212-213,
241-245, 259

ScrnLibSize 126, 174, 176, 199, 212, 243

ScrnRest 184-185, 206

ScrnSave 184-185, 206

sec 150

secant 150

sech 150

SETCNF.BI 116-118, 225, 228

settings menu 49, 54

shadow attribute 111, 165, 173, 175, 204, 211

sine 150

sinh 150

slide show 30

social security number 59, 62

sqr 150

stacked 206

standalone .EXE 213, 253

StartOfForm 136

stub files 21

—_— T —
tangent 150

tanh 150

text box 40-42, 66-67
text export 90

8 306 CRESCENT SOFTWARE, INC.

QuickScreen INDEX

timer 245

Tokenize 126, 200, 215
TotalFields 171

TSR 7, 10, 20, 260

TYPE variables 115, 224-225

—_— U —

UnPackBuffer 125, 164, 201-202, 236
updating form data 245

upgrades 34

user interface 35-36

using EditForm 28, 111, 232, 244
utilities 4, 7, 257

validation 141 _ Gl
varptr 131-132 A A S
varseg 131-132 L2

version number 34, 10-11 L tElonk -
VertMenu 127, 135, 192, 204-206, 210, 230 "o
VGA 56, 94, 115, 194
view menu 52

— W oee— £
WholeWordIn 126, 207

wipes 44-45, 215-217, 240
wipetype 109, 143-144, 217

e Y e
year format 141, 156

— e
zip code format 5, 60, 62
zip file 17

CRESCENT SOFTWARE, INC. B 307

	qscr-1.pdf
	qscr-2.pdf

