

Table of Contents

Page#

Message from the Publisher &H00

Who's Who at Crescent Software &H02

Using Random Files in BASIC &H04

Challenges for the Future &H15

BASIC Tools From Crescent Software &HlF

QuickPak . &H22
QuickPak Professional &H23
QBase &H25
QBase Report . &H29
GraphPak . &H2B
GraphPak Professional &H2C
LaserPak &H2D
LaserPak Professional . &H2D
QuickHelp . &H2E
QuickPak Scientific . &H2F
QuickMenu . &H32

Microsoft Bugs

Which Code is Faster

Shipping Information

&H34

&H35

&H46

Order Form . Last Page

Tips, Tricks and Cartoons Everywhere

QuickTALK is published whenever we get around to it by Crescent Software.
Volume 2, Number 1 Entire contents copyright (c) 1988 by Crescent Software

Written by Ethan Winer
Contributing Writers: Sureta Escobar, Jay Munro, Greg Lobdell
Design, photography, cartoons and whatever: Jay Munro

Crescent Software
11 Grandview Ave.
Stamford, CT 06905
203-846-2500

QuickTALK

A message from the publisher

Welcome to the second issue of QuickTALK-Crescent
Software's magazine for BASIC programmers.

QuickTALK is more than just a catalog of our products-it
includes feature articles, tips, and useful programming
techniques. We hope that QuickTALK will also serve as an
entertaining way to get to know us.

In only two short years, Crescent Software has become the
undisputed leader in programming tools for QuickBASIC and
Turbo Basic. We attribute this success to quality products
and a genuine concern for our customers and their needs.
They have come to depend on us for sound technical advice
that extends far beyond merely supporting our products. We
gladly provide assistance to hundreds of BASIC programmers
each week, and are proud to have the "best attitude" and
level of support in the business.

One example of that attutide is this magazine-it is free to
anyone who inquires about our products. Another is our
willingness to share our knowledge and expertise. Where
other companies refuse to provide source code at any cost,
we include it free with all our products. Further, the
QuickPak Professional manual contains tutorials on BASIC
and assembler programming-beyond what is needed to use
the package.

IN THIS ISSUE

The past two years have seen a tremendous increase in the
popularity of the BASIC language. With the release of
QuickBASIC 4 and BASCOM 6, there is no disputing that
BASIC is now the most powerful language available for
personal computers. Microsoft has also made clear their
intention to continue improving and enhancing BASIC.

Page &I-100

QuickTALK

In this issue Microsoft's Greg Lobdell discusses the future of
BASIC, and as you will see, many exciting additions to the
language are just around the corner. This issue of
QuickTALK also includes two tutorials that you're sure to
find useful and enlightening.

The first discusses techniques for reading and writing data
files, and is intended for beginning to intermediate level
programmers. It begins with an overview of file basics, and
progresses to a complete discussion of sequential and random
access file handling.

For advanced programmers (or those who would like to be),
the article "Which Code is Faster?" will really open your
eyes! Besides showing you how to write programs that are
smaller and run faster, many details of QuickBASIC's
internal workings are revealed. You will also see first hand
how to use Microsoft's excellent CodeView debugger.

All of us at Crescent Software are excited and pleased to be
such an integral part of the growth and popularity of BASIC.

-Ethan Winer

"Sector not found"

Page &H01

QuickTALK

Who's Who ...
ETHAN WINER founded Crescent
Software in 1986 after serving as a
consultant to several major corporations.
He is a self-taught expert in BASIC,
assembly language, and DOS. When not
writing programs or conducting business,
Ethan writes feature articles for PC
Magazine, Programmer's Journal,
Borland's Turbo Technix, and several
other publications.

Prior to a programming career, he performed professionally
as a musician (guitar and electric bass). Ethan is also
credited with designing and building one of Connecticut's
major recording studios.

SURETA ESCOBAR joined the Crescent team
in 1987. Regardless of what Ethan might
like to think, it is Sureta who really runs
the show. An indispensable part of the
business, she maintains the daily work flow,
coordinates dealer sales and edits and
co-writes the Crescent advertising and
promotional literature.

When not assisting customers or playing with a computer,
her talents take a different turn. Sureta teaches classes in
both Astrology and Parapsychology, and does readings
professionally.

DON MALIN is the brains behind Crescent's
QBase relational database, and is responsible
for the "look and feel" of all our products.
Don came to us one day with an idea and a
demo, and the rest is history.

Besides being the best BASIC programmer
we know, he is also a Lotus 1-2-3 expert.

Don has written and markets a collection of templates and
BASIC programs for owners of offshore racing yachts. He
was also part of the team that built the racing boat
Freedom, which won the America's Cup competition.

Page &H02

QuickTALK
JAY MUNRO wrote QuickMenu, and serves
as Crescent's resident photographer and
cartoonist. (Doesn't every company need a
resident cartoonist?) He's also our favorite
person. Also a self taught BASIC and
assembly programmer, Jay came to us from
Ashton Tate, and has a degree in
cinematography.

PAUL PASSARELLI is the head of Tech
Support, and provides stability and balance to
what would otherwise be total havoc. He
posesses a true knack for anything
mathematical, and has contributed extens
ively to QuickPak Professional. Paul is an
expert in both BASIC and assembly language,
and actually ljkes writing recursive programs.

BRIAN GIEDT is the creator of GraphPak
and GraphPak Professional, and he's one of
the most amazing guys around. You'll need
exponential notation to count the number of
languages he knows. Brian has extensive Al
experience, he's taught college level courses
in programming, and has also developed a
powerful hypertext word processor.

RON HOLCOMBE is the author of LaserPak
and LaserPak Professional, and comes to us
with some very interesting credentials.
Programming since 1965, Ron has a B.S.

:,t from the U.S. Naval Academy, a BCE and an
#I" ,,,. MT SChE indCivil Edn~nVe~rting fr?mthGeoSrgiab

ec , an serve 1n 1e nam 1n e ea ees.
A mild mannered kind of guy (with a black

belt in TaeKwon-do!), he is an award winning amateur
musician and songwriter living in Colorado.

Page &H03

Quick TALK

Using Random Files in BASIC
by Ethan Winer

If you were to ask most BASIC programmers which area of
programming was the most difficult for them to master, the
answer would undoubtedly be creating and accessing random
data files. While BASIC has always enjoyed a reputation for
being the easiest of the high-level languages to learn, there
is no disputing that the commands for manipulating database
files are often less than obvious. Indeed, this is one of the
topics we are most frequently asked to explain. Our focus
here will therefore be on the variety of techniques that are
used to create, read, and write disk files with fixed length
records. Unlike simple sequential files that are accessed
with INPUT and PRINT statements, the fixed-length files
used in most databases require additional preparation.

FILE BASICS

Before you can read or write any disk file in BASIC, you
must first use the OPEN command. There are actually two
different forms of OPEN-one being an abbreviated
version-but we will use the more formal syntax here
because it is clearer. A valid DOS file name must be given,
as well as a number which will be used for all subsequent
references to the file. You may choose any number you'd
like, so long as only one file with that number is open at
once.

OPEN "Test.Oat" FOR OUTPUT AS #1 'open the file
FOR X = 1 TO 25

PR I NT #1, 11 Th is is message number 11 X I print the messages
NEXT
CLOSE #1 'close the file

Figure 1
Sequential files are written using the familiar PRINT command.

Page &H04

QuickTALK

The example shown in Figure 1 opens a file named
"TEST.DAT" for sequential output, assigns it the number 1,
and writes a twenty-five line test message. Notice that once
the name and number have been originally specified, only
the number is needed when printing to the file.

Because this file is being written to with PRINT statements,
a carriage return and line feed will be added at the end of
each line automatically by BASIC. This corresponds exactly
to the way the PRINT command works when writing to the
screen. As you might imagine, sequential files are read
using a disk form of the INPUT statement, and the carriage
return/line feed pair that was originally added by PRINT
tells BASIC when the end of each line has been reached.

OPEN "Test.Oat" FOR INPUT AS #1
FOR X = 1 TO 25
LINE INPUT #1, Test$
PRINT Test$
NEXT
CLOSE #1

Figure 2.

·.

'open the file

'read each line
"show it on screen

•close the file

As you can see, I recommend using LINE INPUT rather
than INPUT, because INPUT cannot digest quotes, commas,
or colons. In this example, we know that twenty-five lines
are in the file, so a simple FOR/NEXT loop can be used to
read each line. But what should we do if the number of
lines to be read is unknown? Attempting to read beyond the
end of a sequential file produces an error, and the best way
around this problem is to use the BASIC EOF (End Of File)
statement just prior to reading each line, as shown below.

OPEN "Test .Dat" FOR INPUT AS #1
WHILE NOT EOF(1)

WEND

LINE INPUT #1, Test$
PRINT Test$

CLOSE #1

Page &H05

•open the file
•until the end
•get a line
•print it on screen

'close the file

QuickTALK

This is the preferred approach for reading sequential files,
since it can accommodate any number of lines without ever
causing an error. But there are two fundamental problems
with sequential files-BASIC is relatively slow in reading
them, and the only practical way to get to the last line is by
grinding through all of the lines before it. True,
QuickBASIC 4.0 and Turbo Basic offer a binary mode to read
any portion of a file, but binary access is not really intended
for getting individual lines of text. Further, how would you
know where in the file the last line begins?

ENTER RANDOM ACCESS

When a sequential file is being read with INPUT or LINE
INPUT, BASIC must examine every single byte as it comes
from the disk looking for either a carriage return which
marks the end of the line, or a CHR$(26) which marks the
end of the file. This takes a considerable amount of time
when many lines are to be read. Worse, for each string that
is being read, additional time is needed to locate a suitable
place in memory to store it. Then, the string data must be
placed there, and finally that portion of memory must be
marked as being in use.

TIP

There may be times when you want to disable the PrtSc key
in a BASIC program. One approach would be to write a
TSR that intercepts Interrupt 5. A much easier way is to set
the Print Screen busy flag:

DEF SEG = 0
POKE &HSOO, 1

Then to re-enable it again later:

DEF SEG = 0
POKE &H500, 0

Page &H06

QuickTALK

Random access files are instead read (and written) in pieces,
which can quickly be placed into an area of memory that has
previously been set aside just for this purpose. Instead of
checking each byte as it is being read, BASIC simply grabs a
portion of the file in one operation. And because random
access files are ·comprised of fixed length records, it is easy
to determine where in the file a given record begins.

Of course, you don't have to calculate the location of the
bytes to be read or written-BASIC does this automatically.
By specifying the length of each record when the file is first
opened, any record can be accessed by simply using its
number. This is where the term "random" comes from, since
any record can be accessed in the file, without having to
start at the very beginning. Another feature of random files
is that once they have been opened, they can be both read
and written at will.

The example below opens a file named "Junk.Dat" for
random access, and specifies that each record will have a
length of fifty-six bytes.

OPEN "Junk.Oat" FOR RANDOM AS #1 LEN = 56

When this statement is executed in a running program, a 56
byte area of memory will be set aside as a storage buffer to
hold the records to be read or written. As a matter of
interest, file buffers are always located in BASIC's string
data area. Again, the file buffer is simply a temporary
holding area for data on its way to or from a disk file.

Page &H07

QuickTALK

Besides telling BASIC the name of the file and the length of
each record, you must also define the variables that will be
assigned to the file buffer. This is done with the FIELD
statement, as shown below.

FIELD #1, 25 AS CustName$,
14 AS Phone$,
5 AS ZipCodeS,
4 AS Amount$,
4 AS BalanceDueS, _
2 AS Account$,
2 AS Pri ceCodeS

Once these field assignments have been made, the original
buffer space will be divided into separate strings, like those
shown in Figure 4. The key point here is that the fifty-six
byte buffer memory is set aside when the file is opened, and
the positioning of the strings within the buffer is
determined by the FIELD statements.

Notice how the underscore character is used to represent a
single statement that extends over several program lines.
While this certainly increases readability, it is not allowed
under QuickBASIC 4. Also notice that even though some of
the variables being defined are in fact numeric amounts,
they must be represented here as strings.

Let's take a closer look.

!Slmliltlhl, I !Jloihlnl I I I I I IBl4l6l·l2ISIOIOI I I I I I
\ ____ CustNameS ____ /_Phone$_/_etc.

Figure 4

Page &I-108

QuickTALK

VARIABLE STORAGE

Whenever you assign a string variable, BASIC must locate a
free area of memory sufficiently large to hold all of the
characters. Of course, short strings occupy less memory
than long strings, and the real point is that the amount of
memory required varies, depending on the string's length.

Numeric variables are handled very differently, however, and
use a fixed number of bytes no matter what value the
variable happens to be holding. For example, all double
precision numeric variables occupy eight bytes of memory,
while a regular integer variable requires only two.

Whenever you enter a numeric variable in response to an
INPUT command, BASIC must convert the digits you typed
into the appropriate internal format, which takes time. This
is yet another contributor to the slowness of BASIC when
reading or writing sequential files, because numeric amounts
are stored on disk as ASCII digits.

But in a random file, the amounts are instead kept in
BASIC's internal format, which allows each record to be the
same length. This also means that numbers read in from a
random file can be processed very quickly, because the
conversion from ASCII digits to a binary value was
performed when the record was originally written.

We're not going to belabor the various methods used to
represent floating point numbers, because that really isn't
important here. What is important are the commands you
will use to convert numeric values to strings prior to storing
them.

TIP
Some EGA and VGA displays lose the cursor in 43 line mode. This will get it back
every time:

DEF SEG = 0
POKE &H487, PEEK(&H487) OR 1

Page &H09

QuickTALK

Four different commands are provided to convert each of the
numeric variable types to string form, and another four will
convert strings back to numbers. MKI$ (Make an Integer
into a String) takes the two bytes that represent an integer
variable and converts them into string form. For example,
the integer value 288 is stored internally as two bytes-32
and 1-which is illustrated below.

X% = 288
Address = VARPTR(X%)
DEF SEG = VARSEG(X%)
PRINT PEEK(Address), PEEK(Address + 1)
PRINT PEEK(Address) + 256 * PEEK(Address + 1)

This results in the numbers 32 and 1 being displayed,
followed by the total combined value 288. What MKI$ does
is to locate the variable as we have, and create a string from
the individual bytes. Both of the program fragments below
do exactly the same thing, though as you can see, MKI$ is
much simpler to use.

Values = MKIS(X%)
Values = CHR$(PEEK(Address)) + CHR$(PEEK(Address + 1))

The method used to store single and double precision
numbers is more complicated, and as I mentioned before we
won't bother with the exact formulas. To create a string
variable from a single precision number requires the MKS$
function, while MKD$ does the same thing for a double
precision amount. The last converting function is MKL$,
and it is used to convert BASIC's long integers to a string.
Once the values have been converted to string form, they
may then be assigned to the variables that were declared as
part of the field statement.

Page &H0A

QuickTALK

In the exa~ple above, Value$ was assigned directly using the
MKI$ funct10n. Unfortunately, normal string assignments
cannot be used when filling the variables in a field buffer,
because of the way BASIC allocates string memory. Each
time a string is assigned-even if it was already defined
earlier-a new area of memory is set aside to hold it. But
since the variables kept in a field buffer must stay in the
same place, we can't just use the normal assignment
statements. Remember, one of the reasons random files are
so fast is because their buffer memory location is fixed when
the file was first opened.

LSET, RSET, and MID$

BASIC provides three commands that will let you assign a
string that already exists without changing its
location-LSET, RSET, and the statement form of MID$. All
of these work by letting you replace characters within a
string, as opposed to creating an entirely new string. Let's
take a closer look at each of these statements in turn.

If you are designing a database program to keep track of,
say, the names and addresses of your customers, at some
point you must decide how many characters are to be
allowed for each field. I usually limit address fields to
thirty-two characters, because that's how many can
comfortably fit on a standard 3-1/2 inch wide mailing label.

Using that as an example, then, suppose an address happens
to occupy only twenty characters. What you'd really like is
to place the name into the first twenty character positions in
the string, and then pad the remaining twelve places with
blanks. This is precisely what LSET does. It is important to
understand that if the trailing positions in a field are not
blanked out, then any remnants left over from a prior read
or write will still be present. Again, the same area of
memory is used repeatedly for all file reads and writes.

Page &H0B

QuickTALK

RSET is similar to LSET, except it right justifies the new
string into the existing field variable. With either LSET or
RSET, attempting to insert a string that is too large assigns
only as many characters as will fit, without creating an error.
Notice that besides their intended use for assigning field
variables, LSET and RSET can also be used to advantage in
many other programming situations. Since new space isn't
established each time the string is assigned, these commands
can work very quickly, while minimizing the "clutter" that
normally occurs in the string data area. Most programmers
use MID$ to extract a portion of a string, but it can also be
used to to insert characters, much like LSET and RSET.
But where LSET and RSET fill any unused character
positions with blanks, MID$ instead leaves them undisturbed.

The syntax for using MID$ to assign characters is the same
as when it is used to extract characters-you specify the
starting position in the string, as well as the number of
characters to include. Like LSET and RSET, if you attempt
to replace too many characters in a string with MID$, those
that don't fit will be omitted without causing an error. By
the way, the MID$ length parameter is optional, and if it is
omitted, all of the characters through the end of the string
will be included.

PUTIING IT ALL TOGETHER

Now that we've seen the individual steps needed to prepare
a field buffer, let's put it all together into a single program.
The example in Figure 5 first opens the file and defines all
of the string variables that comprise the field buffer. Next,
each variable is assigned a value, and then the information is
written to a disk record. The last step reads the next record
from the file, and re-assigns its contents to the original
variables for display.

TIP
Some programmers like to make a file untypeable by embedding a CHR$(26) near
the beginning. Here's how you can view it:

Copy filename /b con:

Page &H0C

QuickTALK

CName$
Phon$
Zip$
Amt!
Bal Due!
Acct%
Precode%

= 11Passarel l i, Paul 11

= "(203)-646-2500"
= "12345"
= 102.45
= 398. 77
= 158
= 32

RecordNumber = 123

• make up some data

OPEN "Stuff .Oat" FOR RANDOM AS #1 LEN = 56
FIELD #1, 25 AS CustName$,

'open the file
'set up fields

14 AS Phone$,
5 AS ZipCodeS,
4 AS Amount$,
4 AS Balance0ue$,
2 AS Account$,
2 AS PriceCode$

LSET CustName$
LSET Phone$

= CName$ •assign field variables

LSET Z i peode$
LSET Amount$
LSET BalanceDue$
LSET Account$
LSET Pri ceCode$

= Phan$
= Zip$
= MKS$(Amt !)
= MKS$(BalDue!)
= MKI$(Acct%)
= MKI$(PrcCode%)

PUT #1 , RecordNumber
RecordNumber = RecordNumber +
GET #1, RecordNumber

PRINT CustName$
PRINT Phone$
PRINT ZipCode$
PRINT CVS(Amount$)
PRINT CVS(Balance0ue$)
PRINT CVI (Account$)
PRINT CVI(PriceCode$)

CLOSE #1

Figure 5

•write to record #123
'point to next record
'read it from disk

Two new commands have been introduced here-GET and
PUT. Unlike their graphics counterparts (which have no
relation to these file versions), GET and PUT are used to
read and write disk records.

Page &H0D

QuickTALK

TIP

One of the nice features of QuickBASIC has always been the
REDIM command. If the array hasn't already been dimensioned it
will be created at that point in the program. And if it already
exists, it will be erased and then dimensioned again without
causing an error. Unfortunately, Turbo Basic doesn't have
REDIM. The best approach we have found is to DIM every array
that may need to be REDIM'ed later to 1 element at the beginning
of the program. Then, always use ERASE immediately before any
subsequent DIM statements:

DIM DYNAMIC Array(1)

ERASE Array: DIM Array(size)

Besides indicating which file number is to be read or
written, you also specify which record number to operate on.
In truth, the record number is an optional parameter, and if
it is left out, BASIC will default to the next one in sequence.
Personally, I usually include an explicit record number, just
to eliminate any possibility of a mix-up. Two other new
commands being used here are CVI and CVS, which
complement MKI$ and MKS$ respectively. Where MKI$
obtains the two bytes that comprise an integer value and
creates a string from them, CVI does exactly the opposite.
That is, it takes a two-character string and creates an
integer value from the characters.

CVD and CVL also convert strings to numbers, with the first
intended for double precision values, and the second for long
integers. Like the MKI$ example shown earlier, the action
of CVI can also be imitated by normal BASIC commands. Of
course, I'm not recommending that you program this way,
but in the interest of completeness, here's what CVI really
does:

X% = CV! (Value$)
X% = ASC(Value$) + 256 * ASC(RIGHT$(Value$, 1))

Page &H0E

QuickTALK

RANDOM FILE TECHNIQUES

Now that we know the essential operations that are needed
to manipulate random access files, lets look at a few real life
situations. After a file has been created and data placed into
it, one of the first things you'll surely want to do is be able
to report on that data. For example, you may need to
identify all accounts that have had a balance due for more
than 30 days. Or perhaps you want the ability to delete
records from the file, or provide other reporting options.
We're not going to pursue a lengthy discussion of indexing
or sorting techniques here, however a few practical examples
come to mind.

One of the first things you'll need to know is how many
records are in the file. This is easy to determine by dividing
the file size by the record length:

OPEN "MyStuff .Oat" FOR RANDOM AS #1 LEN = 87
NumberOfRecords = LOF (1) / 87

Notice that LOF is a handy way to obtain the length of any
file, including .COM or .EXE programs. But be careful to
close the file as soon as you get its length, to avoid any
possibility of altering it:

OPEN "AnyFi le.Ext" FOR RANDOM AS #1 LEN = 1
Size= LOF(1)
CLOSE

Page &H0F

QuickTALK

Most of the data you'll be storing in a random access file
will consist of either strings or numeric values, however the
best way to store certain information is not always obvious.
For example, dates can be represented in a variety of ways.
At the minimum, you should omit any separating hyphens or
slashes, and only show them on the screen that way. That
is, 01/15/88 could be kept on disk in a six-byte field as
011588. But this method does not allow a direct comparison;
it is not obvious that 011588 is later than 123187 regardless
of whether you use a string or numeric comparison.

A much better approach would be to swap the digit pairs
around so that the year comes first, followed by the month
and day. Since one of the main objectives of a database
report is to process the information as quickly as possible,
using this technique will provide a dramatic improvement.

OPEN "Accounts. Dat" FOR RANDOM AS #1 LEN = 125
NunRecs" LOF(1) / 125

FI ELD #1, 32 AS Account Name$,
32 AS Address$,
25 AS City$,

2 AS State$,
5 AS Zip$,

14 AS Phone$,
6 AS OateDueS,
1 AS PaidYNS,
4 AS LastPaymentS,
4 AS BalDueS

TodayS " RIGHTS(OATES,2) + LEFTS(DATES,2) + MIDS_(DATES,4,2)

FOR X " 1 TO NumRecs
GET #1, X
IF DateDueS <: Today$ AND PaidYNS <> "Y" THEN

LPRINT AccountNameS, PhoneS, CVS(BalDueS)
END IF

NEXT
CLOSE #1

Figure 6

A database report that examines eve!Y record in the file.

Page &H10

QuickTALK

The example in Figure 6 opens a hypothetical disk data file,
and then lists the name, phone number, and amount for all
accounts that are due but not yet paid. This example
assumes that the field PaidYN$ will contain either a ''Y'' if
the account has already been paid, or an "N" or a blank if it
has not. We'll also assume that the dates in the file were
swapped around into a YYMMDD format when each record
was written. If the date the account was due is today or
earlier and it has not already been settled, then the name
and other information will be printed. Since you'll
undoubtedly be coding these date fields many times, this is a
natural application for BASIC's multi-line user defined
functions. In fact, an even better approach is to pack all
dates into only three bytes to save disk space, using
CHR$(Year - 1900) + CHR$(Month) + CHR$(Day).

Of course, the QuickPak date conversion routines can
provide an even greater savings by packing a date into only
two bytes.

DELETING RECORDS

The last item we'll consider is a method for deleting records
from a database. Of course, there's no reasonable way to
physically remove a record from a disk file, so our only
recourse is to mark it in some way. Many commercial
database programs reserve an extra byte in each record for
exactly this purpose, however with some clever programming
we can eliminate that wasted byte.

D05-0-MANIA

Boot is not kicking your computer.
Byte is not what your dog does to the mailman.

Root is not the book Alex Haley wrote.
Reboot is not kicking your computer again.

Park is not what you do at lnspiraton Point, and
Drive is not how you got there.

Function keys do not open any doors.

Page &Hll

QuickTALK

Since text fields such as a name or address don't need to
accommodate the PC's extended graphics characters, the
simplest approach is to convert one of the letters in a name
to its corresponding graphic symbol. This is accomplished by
either adding 128 to the character's ASCII value, or by using
the BASIC OR function to do the same thing. The example
below retrieves the record to be deleted from the file, adds
128 to the ASCII value of the first character in the last
name field, and then writes the record back to disk.

GET #1, RecordNUl!ber
LSET LNameS = CHRS(ASC(LNameS) + 128) + MIDS(LNameS, 2)
PUT #1, RecordNumber

Then, when you are reporting on the file and need to tell if
a record was deleted and should not be included, all you
have to do is check the ASCII value of the field:

GET #1, RecordNUl!ber
IF ASC(LNameS) => 128 THEN • 'record is deleted

SUMMING UP

We have looked at a variety of techniques for reading and
writing random access disk files, as well as several tips and
techniques you can apply in your own programs. While
these examples are far from the final word on the subject, I
hope they will encourage you to experiment on your own,
and further explore one of BASIC's most powerful
capabilities.

This material first appeared in Borland's Turbo Technix
Magazine. Copyright (c) 1988 by Borland International, Inc.
All rights reserved. Used by permission.

Page &H12

QuickTALK

TIP

Most printers have a hidden feature that lets you underline or
emphasize text by issuing a carriage return, but without the
usual line feed. If you print a CHR$(13), BASIC stupidly steps
in and sends an unwanted CHR$(1 O) automatically. One way
around that is to instead use a CHR$(141). Many printers
ignore the high bit of each character and simply interpret a
141 as a 13.

LPRINT "This is underlined"; CHR$(141); STRING$(18, 95)

But this doesn't work with a LaserJet or other printers that
accept all 256 characters. The only sure way is to use the
QuickPak BLPrint routine that bypasses BASIC altogether:

CALL BLPrint(1, "This is underlined"+ CHR$(13) +
STRING$(18, 95), 0)

Just a few of our many satisfied customers .

American Suzuki
Anheiser Busch
Ashton Tate
Arco
Bendix
Boeing
Campbell Soup
Celanese
Cadbury USA
Chevron
Ciba-Geigy
Clorox
Coca Cola
Compaq
Delco
Dow Chemical
Dupont
Eastman Kodak
EG&G Ocean Product
Eli Lilly
Exxon
Ford Motor

Gillette
General Electric
Goodyear Tire and Rubber
GTE
Hanes
Hewlett-Packard
Hughes Aircraft
Ingersol Rand
International Paper Co.
Internal Revenue Service
Martin Marietta
Metropolitan Life
Monsanto
NASA
National CD Network
National Weather Service
Nynex
Olin Corp
Pacific Bell
Parke-Davis
Perdue Farms
Prentice Hall

Page &H13

Proctor & Gamble
Radio Shack
Rand McNally
Reynolds Metals
Shell Development
Stouffer Restaurants
Techna Vision
Tektronics
3M Corporation
Texaco
Touche-Ross
Uniroyal Goodrich
UPS
US Army
US Dept. of Agriculture
US Navy
Vicks
Wang Labs
Warner-Lambert
Westinghouse
Xerox Systems
Yamaha international

f

WHAT'S WRONG WITH THIS CODE?

GET Lost,, Baby
POKE Your, Eye
CALL Horne
CHAIN "Fence"
OPEN "Sesame"
STATIC Electricity
VAL(Gir1$)
EXP OSEI

WRITE-PROTECTED

QuickTALK

What good are write-protect tabs anyway? Well, for starters you can
use them to seal an opened can of Pepsi. Also, nerds will find them
indispensable for repairing their eye glasses. You could even scatter
them around your desk sticky side up-they make great ant traps!

Page &Hl4

QuickTALK

Challenges for the Future
by Gregory E. Lobdell
Microsoft Corporation

BASIC: THE ROOTS OF PERSONAL COMPUTER
LANGUAGES

BASIC, along with the rest of the personal computer
languages, has evolved dramatically since the MITS ALTAIR
was introduced in 1975. Languages in general are driven by
several factors, including market pressure and standards
committees. Formal languages must be defined, refined, and
enhanced to meet the needs of those using them. In
addition to formal languages, the environments built around
the languages has evolved as well. Integrated editors,
debuggers, and other tools have become commonplace.

As hardware prices have dropped well below $1,000 for entry
level systems, and powerful easy-to-use computer languages
are available for under $100, more and more enthusiasts
have entered the ranks of programmers. Programmers have
come to expect ease-of-use, integration, and a friendly user
interface, while not sacrificing a powerful language
implementation.

With the rise of the 80286 and 80386 microprocessors, the
availability of powerful operating systems such as Microsoft
OS/2, and low-priced entry-level systems, languages are
ready for another in a series of leaps forward-leaps that will
make the language marketplace one of the most fascinating,
competitive, and high growth areas of the personal computer
industry.

TIP
Wanna convert your compiled BASIC .EXE programs to .COM
files? Easy, just rename them. (No fooling, it really works!)

REN PROGRAM. EXE PROGRAM. COM

Page &HlS

QuickTALK

In the last year, we at Microsoft have talked about the major
areas where we expect the next leaps to occur. These are:

1) Delivery of traditional languages which will allow
previous non-programmers to master the power of
BASIC (and other languages).

2) Integration of BASIC and traditional applications.

3) Evolution of computer languages, in general, toward
an ideal language.

THE EVOLUTION OF BASIC-MEETING THE
NEEDS OF THE MARKET

When looking at the languages marketplace there are three
very interesting segments: the professionals, the enthusiasts,
and the non-programmers.

The professionals are perhaps the easiest segment to
quantify, they are those who earn their primary income
writing software; either for retail sale or for use within their
organization. Understanding what is important to this
segment is relatively easy-they are typically a very vocal
crowd, willing to let a vendor know how he can improve his
product. Usually, power and speed are their primary
concerns. That is, speed of development and execution, and
the power of the underlying language.

The enthusiasts are a more subtle segment. Coming from a
wide background, they use a language as a tool to perform
some specific mission or task, ranging from utilities to small
business applications. Productivity is key to these
individuals.

Finally, the "non-programmers" are perhaps the most
overlooked segment in the market today. This segment is
comprised of the millions of PC users who employ the PC as
a tool to better perform a series of tasks, whether at home
or on the job. They have never had the motivation to learn
a traditional programming language like BASIC, yet they

Page &Hl6

QuickTALK

often do pseudo programming with tools like the DOS batch
language, dBASE, Excel or Lotus 1-2-3 macros, and possibly
a little GW-BASIC or BASICA. While these people think of
themselves as non-programmers, they have typically
performed a number of programming-like tasks.

When looking at these segments, it is our belief that it is
impossible to provide a single product which meets the
needs of all segments. In the future you will see greater
differentiation in the Microsoft language family between the
products targetted at the professional programmers, and
those targetted at the enthusiasts and novice programmers.
Our challenge is to develop products which meet the needs
of the various segments.

The design philosophy for future entry-level languages will
be ease-of-mastery. That is, providing a tool which helps the
new programmer become productive as quickly as possible.
In addition, the technology should not hinder the growth of
the beginning programmer or the more advanced
programmer.

The underlying technology will be enhanced to improve the
learnability of the products. Inovative technology will be
added that will put more information at your fingertips, both
for learning and for reference purposes. The environment
will be enhanced to become a dynamic system that grows
with you as your programming skills grow.

For the professional products, you will see two primary areas
of change. First, the development environment will evolve
into a common development platform, offering the
integration found today in the "Quick" languages, without
the limitations. Although OS/2 will provide the long term
systems software platform, an integrated development
environment will be provided for the MS-DOS developer.
This platform will integrate all aspects of the development
process, from editing to debugging. A natural progression of
our common-tools strategy (CodeView and the Microsoft
Editor), new tools will be added and considerions such as
work-group development on LANs will be key components.

Page &H17

QuickTALK

In addition to the development environment, the core
technology of the products will continue to be a key area of
enhancement. Code generation and optimization technology
will continue to be evolve. There will also be some logical
next steps-pointers in BASIC for example. Object-oriented
extensions will enter both the BASIC and the C languages,
and specific support for graphical user interfaces (such as
Windows and Presentation Manager) will be added. These
all center around our goal of providing the professional
developer the tools necessary to develop outstanding
applications for MS-DOS, Windows, and OS/2 with
Presentation Manager.

INTEGRATION OF COMPUfER IANGUAGES TO
APPLICATIONS

There are really two categories of computer languages. The
first is the traditional languages such as BASIC, FORTRAN,
Pascal, C, COBOL, and many others. These languages are
designed to give the application developer the ability to tap
into the PC's resources, both the operating system and the
hardware itself. Each of these languages have particular
traits which make it more (or less) suitable for solving
particular programming problems.

An engineer uses FORTRAN for solving difficult
mathematical equations, while the business programmer uses
COBOL with its powerful file handling. The systems level
programmer uses C for reaching into the depths of the
system and tapping into the lowest level of system resources.

Although "cult" followings have emerged, most sophisticated
programmers will agree that each language is useful in
specific applications areas.

Page &1-118

QuickTALK

MACROS ARE A LANGUAGE TOO

The second category is one that is not typically thought of
as computer languages. These are the languages embedded
in the various application products. The macros in Microsoft
Excel for the PC and the command-language of Lotus 1-2-3
are prime examples of programming languages embedded
within applications. Actually, if you step back and look at
any computer application, virtually every application is a
language processing system. They take commands (the
language itself) and perform operations based on their
interpretation of the command.

Traditional computer languages are designed to tap into the
PC's system resources. In a similar fashion, the embedded
languages within applications are designed to tap into the
resources of the application they are embedded within.

However, these embedded languages have severe limitations,
particularly when you compare them to their counterparts in
traditional languages. Initially, these macro languages were
designed to merely playback a series of keystrokes. As they
have evolved, they have added some simple control
structures (for example, IF-THEN-ELSE) but they are still
not nearly as powerful as traditional computer languages.
Macros created in one application cannot be used by another.
In addition, there is no accepted method for macros from
one application to talk with macros in another application.

Page &Hl9

QuickTALK

One final limitation is that there is no way for the
embedded macro languages to tap into the system resources
of the operating system, or, in most cases, for traditional
languages to tap into the resources within applications. This
limitation has led to a huge amount of duplication of effort.
Hardly acceptable under MS-DOS, this will be intolerable
under OS/2 and the Presentation Manager. Because of the
multitasking nature of OS/2, users cannot be expected to
remember three completely different sets of macro
commands when running three applications at once. In
addition, why should resources within applications be
accessible only from within that application?

A COMMON MACRO LANGUAGE:
A NEW WAY TO PROGRAM

The barrier between what resources are inside an application
and what's outside are largely artificial, imposed upon us by
the way the application is packaged. Ideally, one would like
to see an environment in which all applications, once
installed into the system, become part of a common pool of
resources. With this architecture, the barrier described
above is demolished.

With this barrier gone, the way is paved for a common
macro language. This new architecture will allow
programmers to use a common language. This language,
probably built upon a well-known syntax like BASIC, will
allow programmers to access the powerful resources found
within applications. Coupled with an efficient and robust
common protocol for communication between applications, a
common macro language could open up possibilities never
before imagined.

Along with tapping into the resources within applications, a
common macr? language could be built into the operating
system, replacmg the old batch language and simple BASIC
programs often used for housekeeping tasks. Benefiting from
a common language, users could tap into the system or into
:the applications, something no current language can do.

Page &HlA

QuickTALK

It should be noted that a common macro language is not a
replacement for traditional languages or applications.
Applications, designed to perform a specific set of tasks, will
continue to be the cornerstone of the PC revolution. A
common macro language merely provides a mechanism to tie
these applications together more closely. ·

THE EVOLUTION OF AN IDEAL LANGUAGE

The second area is the evolution of today's computer
languages toward an "ideal" language. By "ideal" we do not
mean to imply that there will someday be a single language
that meets the needs of all programmers. Rather, there are
certain characteristics of various languages, that if
incorporated, could move us in the direction of an "ideal"
language.

For illustration, a simple definition of an "ideal" language is
a language that makes programming extremely easy for the
beginning user, while providing the power and flexibility
required for serious applications programming.

Using this simple definition as our basis, it makes sense that
this "ideal" language will evolve from an existing, very well
known, and easy-to-use language such as BASIC. BASIC is
an obvious choice because it is known by virtually everyone
who owns an MS-DOS computer. In addition, it is a great
example of a language in evolution. The past several years
have seen powerful control structures and modular
programming features added to the language. With the
release of Microsoft QuickBASIC 4.0, true user defined types
and record structures finally bring "structure" to the data as
well.

Page &HlB

QuickTALK

This "ideal" language should feature the "interactiveness" of
an interpreter, with the speed of a compiler. The current
generation of languages on PCs have dramatically increased
the compile speed, but have not provided the ease-of-use
associated with an interpreter. Microsoft QuickBASIC 4.0
represents the first major step in this direction. The
threaded p-code interpreter in QuickBASIC 4 provides all of
the "interactiveness" found in earlier BASIC interpreters, as
well as some capabilities beyond the older interpreters, while
providing performance close to a true compiler.

One final point about an "ideal" language. An "ideal"
language will evolve in a direction that both makes it more
4GL-like as well as more object oriented. We are already
seeing this in the C world with C+ + becoming an important
part of C compilers. Object oriented programming has not
caught on as fast as some thought it would because there
has not been a great requirement for it. However, in the
Presentation Manager environment, object-oriented
programming not only is a perfect fit, but makes some tasks
easier and more intuitive. When you think about a
graphical user interface, it is a collection of objects with
which the user interacts. The control of these objects is an
ideal application of object oriented programming.

Although QuickBASIC 4.0 has many of the features of an
"ideal" language, these capabilities can be designed into any
language. In fact, many of them will. Each language will
continue to have specific groups of followers, and each will
be enhanced to move in the direction of this "ideal"
language.

DOS-0-MANIA

CD is not what you spent megabucks on to replace your tape deck.
MD is not who asked you to "fill the little bottle please".

Batch processing is not done with cookie recipes.
User friendly isn't what you think it might be.

Commands are not what you yell at your dog.
You can't get a directory by dialing 411.

Chkdsk is not an Eastern European country.

Page &HlC

Quick TALK

CONCLUSION

We have looked at the challenges of providing products
which meet the needs of several categories of potential
users, the integration of languages and applications, and the
evolution of the languages themselves toward an "ideal"
language. The low-entry price of hardware and the power
provided in the new hardware and operating systems is
opening up some exciting doors for the application designer
and solution-oriented PC user. It is our challenge to step
through this door and provide outstanding development tools
and environments for the creation of the next generation of
applications; as well as tools that bring new meaning to
"ease-of-learning" to the millions of non-programmers who
can solve more problems, and be more productive with a
language like QuickBASIC. Fortunately, these advances are
no longer merely a vision, hut will soon be a reality.

MS-DOS MR-DOS

Page &HlD

QuickTALK

MORE USELESS WAYS TO CLEAR THE SCREEN

LOCATE 1, 1 : PR I NT SPACES(2000);

PRINT CHR$(12); <believe it or not 'C' progranmers use this.

LOCATE 25: PRINT STRING$(24, 13)

TIP

There are lots of handy shortcuts that even the experienced
programmers don't know. All those shown below will reduce
the number of keystrokes needed at the DOS command line.

DIR .BAS
DEL A:\
COPY A:\ C:
DIR ..
CD ••
CD •. \OVER
CD •. \ .•
DIR *.
DIR A*

(no leading asterisk necessary)
(A:\ is the same as A:*.*)
(copy all files in root directory on A: to C:)
(get a DIR of the directory above)
(change to the di rectory above)
(move to a di rectory one level over)
(move to a di rectory two levels up)
(show only files with no extension)
(show all files that begin with "A")

While you're at it, don't forget that the F3 key will retype
the last command you entered.

Page &HlE

QuickTALK

BASIC Tools from Crescent Software

WHY TOOLS?

Programming tools and utilities have traditionally been an
important addition to many programming languages.
Although languages such as C require external products to
do anything useful, BASIC has always enjoyed a rich
endowment of built-in commands.

So why should a BASIC programmer consider purchasing
add-on products? There are several good reasons. One
obvious advantage to purchasing tools is the enormous
savings in time and effort to achieve a completed program.
Though many BASIC programmers may be technically able
to develop a sophisticated pulldown menu with full mouse
support, many weeks of work are required. It simply makes
more sense for the professional programmer to purchase the
necessary routines.

Another reason is that many of the tools we offer are
written in assembly language. Thus, you can achieve results
in your programs that would not be possible using BASIC
alone. For example, QuickPak Professional comes with
routines for searching and sorting all of the QuickBASIC 4
data types. These are typically hundreds of times faster
than an equivalent program written in BASIC. Moreover,
assembler routines greatly simplify access to DOS and BIOS
services. A quick look at the QuickBASIC and Turbo Basic
manuals will confirm how difficult this would be without
expert assistance.

Yet another important advantage is code size. Most of the
assembler routines offered by Crescent Software add less
than fifty bytes to your programs. Any DOS service
performed with BASIC's limited CALL INTERRUPT would
require hundreds of bytes and of course be much slower.

Page &HlF

QuickTALK

Finally, there is the educational value-all of our products
include fully commented source code. We provide the
source not only so you can modify the programs to suit your
needs, but also because we want you to see how they
operate. Most programmers will readily acknowledge that
the best way to learn more about programming is to study
other people's work. All programs that we produce are
expertly written, and include extensive comments.

ADDING OUR ROUTINES TO YOUR PROGRAMS

Combining our routines and functions with programs of your
own is easy. Products such as QuickPak and QuickPak
Professional that include assembler routines come with two
library files, each containing all of the routines. One of
these is a Quick Library for use with QuickBASIC in the
editing environment, and the other is a linking library that
is used to create a final .EXE program.

To load a Quick Library into the QuickBASIC editor simply
start it with the /L option and the name of the library:

QB /L QuickPak

Once this is done, all of the routines are available to be
called by your program. For example, to set the current
default drive to Drive A you would add this statement to
your program:

CALL SetDrive("A")
or

Drive$ = "a"
CALL SetDrive(Drive$)

BASIC routines are just as easy to add. For QuickBASIC 2
and 3 simply add this line to your program:

'$INCLUDE: 'filename'

Page &H20

QuickTALK

QuickBASIC 4 lets you have multiple source files in memory
at once, so all you have to do is load the ones you want. It's
as easy as that!

Each of our products is described fully on the pages that
follow. If you have any questions or need further
information, please call us. We are constantly adding new
capabilities and features to all of our products. Also, because
of the sheer number of routines included with many of
these packages, it is impossible to list every one. If you
need a program or feature that is not mentioned here,
there's still a good chance that we have it. Again, we
encourage you to call for advice on any programming
problems you need help with.

All of our products are available for QuickBASIC, and most
of them for Turbo Basic as well. It is essential that you
specify not only which brand of BASIC you are using, but
also the version number. In many cases, we have separate
versions that have been optimized for each particular
compiler.

HOW'S THAT?

With many BASIC keywords and characters, it's not
always obvious how they should be pronounced. For
example, we've heard people say "X-Dollar'' for X$,
when "X-String" is so much easier to say. Another
gem is VARPTR. The folks at Microsoft say it
"Var-Put-er", but we greatly prefer "Var-Pointer''
because, after all, it's a pointer function.

Along the same lines, a lot of folks say "Lib" as in
"ad-lib" for the LIB.EXE program or when referring to
a file such as QUICKPAK.LIB. Because LIB is short
for LIBRARY, we prefer to pronounce it with a long
"i". Microsoft agrees, as do the authors of the db/LIB
database extensions for QuickBASIC.

But how would you pronounce CHR$(13)?
Simple-"Character String Thirteen" (or "Character
Thirteen"). To our ears, that's better than "Char
Dollar'' any day. Likewise, INSTR is "In-String", and
LEFT$ should be "Left-String".

Page &H21

QuickTALK

QuickPak ($79)

QuickPak is a collection of more than 65 "toolbox" routines
for both beginning and advanced BASIC programmers.
Approximately half are written in assembly language to
perform functions that BASIC either cannot do directly, or is
impossibly slow at. The BASIC routines provide a variety of
services that would be difficult or tedious for most
programmers to write themselves.

Included are programs for windowing, access to DOS and
BIOS services, searching and sorting string arrays, creating
pull-down and Lotus-style menus, accepting data input, and
much more.

QuickPak includes sample programs and full source code for
every routine, tutorial information, and The Assembly
Tutor-an introductory guide to learning assembly language
from a BASIC perspective.

All of the QuickPak routines are designed for easy use. The
number of parameters required is kept to the absolute
minimum, and complete instructions are included for each
program. Because there are so many different programs
included with QuickPak, there is room to list only some of
them here. These programs fall into five general
categories-DOS, String, Video, Input, and Menu.

The DOS services permit operations not possible using
BASIC alone. For example, you can obtain a list of file
names from disk, set and change the default drive,
determine the total and free space remaining, and read and
write sectors directly.

Many useful string routines are provided such as Sort, Find,
Encrypt, and PUsing. Sort will alphabetize all or part of a
string array very quickly. Find lets you search an entire
array without regard to capitalization and supports wild
cards. Encrypt lets you protect sensitive data by encoding a
string with a password you provide. PUsing mimics BASIC's
PRINT USING, except it returns the formatted value in a
string.

Page &H22

QuickTALK

Video routines include windowing, painting, and two very fast
display routines. One is intended for printing a single
string, and the other is meant for string arrays. The array
routine is particularly useful and greatly simplifies the
creation of a "browse" facility, where the entire array may be
scrolled up or down, left or right.

Several input routine are provided to allow entering and
editing strings, numbers, and dates. Besides letting you
control the length of a string to be entered, you may specify
that all letters be converted to upper case, or accept only
numbers.

Five separate menu routines are included with QuickPak.
The pulldown menu is similar to those in the QuickBASIC
and Turbo Basic editors-simply define a list of choices for
each menu, and the program-does the rest. Two menus use
the familiar scroll-bar method for selecting items, and two
others use the Lotus 1-2-3 approach for displaying choices
and prompts on a single line.

QuickPak Professional ($149)

QuickPak Professional is the most comprehensive set of tools
and utilities for BASIC programmers ever developed. It
includes all of the routines in QuickPak, plus many, many
more. More than three hundred separate routines are
included, not counting dozens of demonstration programs.

All of the QuickBASIC 4 data types are supported, including
fixed length and TYPE variables. Extensive documentation
is provided with tutorials on files, arrays, subprograms,
sorting and more. Of course, complete BASIC and assembler
source code is provided.

Because of the sheer number of programs included with
QuickPak Professional, it is impossible to list them all here.
However, many of the highlights are described below.

Page &H23

QuickTALK

A full set of file and printer routines are provided to
eliminate the need for ON ERROR. Many programmers
prefer to avoid BASIC's error handling, because the resulting
.EXE program will be smaller and run faster.

Other low level routines provide string and file encryption,
file and array searching, date and time calculations, access to
mouse services, and extensive string manipulation. A
sophisticated screen dump program is included that operates
in any graphics mode and works with any printer that
accepts the IBM/Epson or HP LaserJet control codes.

All of the assembler routines that process strings and string
arrays are provided in an alternate version that ignores
capitalization. All of the video routines operate on any
screen page, and support the 43 and 50 line EGA/VGA
modes automatically.

QuickPak Professional also includes many complete
applications that may be added to your programs. Dozens of
callable BASIC modules are provided including a complete
spreadsheet, and a full-screen editor with word wrap, block
operations, and mouse support. Also included are a pop-up
calculator, calendar, ASCII chart, and a browse program that
handles files of nearly any size.

QuickPak Professional contains a comprehensive set of
scientific and financial functions, including all those offered
in commercial spreadsheet programs. Other major utilities
are a complete pull-down menu system with mouse support,
vertical menus that accommodate any number of choices,
and a recursive TYPE array sort that can handle any
number of keys. The editor and menu programs can be
used either normally, or in a unique "multi-tasking" mode
that lets you display several menus at once, and poll them in
sequence.

Many programs are provided for sophisticated window
handling. The window manager accommodates ten levels of
window nesting, and may be easily expanded to handle any
number of screens. A special assembler routine also lets you
close just a portion of a larger window.

Page &H24

QuickTALK

A string manager is included to let you quickly copy an
entire string array out to far memory and back again, and a
unique pause routine allows you to create delays with
microsecond resolution. A full featured expression evaluator
is also included that accepts complex expressions with any
level of parentheses, and returns the resulting value.

QBase ($149) and Quick Screen ($79)

QBase is a revolutionary concept in BASIC screen and
database software, not only because it's so easy to use, but
also because it does so much. Where most screen builders
merely create a screen image to be displayed by your
program, QBase lets you define data entry fields, create
custom help screens, and even manage an entire relational
database.

This means you can keep a list of customers in one
database, and a series of transactions in another. Then,
whenever a sale is entered, the program will retrieve the
name and address from the customer file automatically.
Relations may be established between any files in the
database, based on a match between like fields.

QBase can do all this because it's really two separate
programs-a screen builder and a run-time application. If
you prefer to write your own routines to handle file I/O and
indexing, then simply purchase the screen builder and
data-entry module.

The QBase screen designer is available separately, and
includes all of the routines to display screens, and enter and
edit input fields. Unlike other screen builders, Quick Screen
(and QBase) do not require any memory resident modules to
display screens. Rather, we provide BASIC and assembler
routines that are added to your program directly.

Page &H25

QuickTALK

WHAT IT ISN'T

QBase is not a code generator. The main problem with code
generators is that they can never do exactly what you need.
Worse, you end up with a separate large .EXE program for
each screen. Once a code generator has created a program,
you'll undoubtedly have to make changes. But once you've
modified the code, it's difficult to go back and alter the
original screen, because you'll have to add the changes again.
Further, most BASIC code generators create programs that
are poorly organized and use line numbers.

THE QBASE APPROACH

QBase avoids that mess by saving screens and fields as form
definitions. These definitions are logically arranged and kept
in disk files, which are simple to access from any program.
Multiple screens are contained in a single library file that is
loaded once at the start of a data entry session. Then as
each screen is needed, it can be displayed very quickly.
Other libraries may be loaded as needed, allowing an
unlimited number of screens in a single program.

But the real advantage of QBase is the supplied database
program. Since a single program is used for all of the
databases, any modifications you make will be reflected in all
of the applications you create. For example, if you wanted
to re-assign the function keys, you only need to change the
program once. This means that you can even modify an
existing database, without having to go back to the original
screens. And if you ever need to add, delete, or change
fields, a "rebuild" facility is included that will convert an
existing data file to the new format automatically.

Page &H26

QuickTALK

HOW IT WORKS

The screen builder features pulldown menus, multiple help
screens, and function keys that are logically organized.
Separate menus are used to load and save screens, select
colors and line types, draw boxes, and cut or copy blocks.
Shortcut keys are also provided for most of the operations
if you prefer.

Defining fields is as simple as pushing a key, and answering
a few questions. You may specify string, numeric string,
integer, single or double precision field variables, as well as
date, currency, logical, and multiple choice.

The multiple choice fields are especially useful, because they
eliminate extra typing and spelling errors. For example, if
you're creating an accounting system that must keep track
of expenses by category, most databases would require you to
define the category field as text.

Now suppose the data entry clerk types "Payroll" one day,
but goofs the next time and enters "payrll". Good luck
trying to balance your books!

QBase instead lets you establish a list of acceptable choices,
which are displayed in a pop-up menu when the cursor is on
that field. Only the choices shown will be accepted, and
even better, the choice number is stored in the file as a
single integer word. This affords a tremendous reduction in
disk space compared with storing the full text of each
choice.

The QBase database is truly a full-featured program. It
allows stepping forward and backward through the file,
searching based on multiple criteria, and adding and
updating records. More than fifteen screens can be included
in a single database, and each screen may contain up to one
hundred fields and 32,766 records. A standard help screen
is always available, though it may be edited just like any
other QBase screen. You can also create custom help
windows for each entry screen.

Page &H27

QuickTALK

WHAT'S INCLUDED

QBase comes with a screen builder, database, and file rebuild
programs, a help window demonstration program, sample
screens and applications, and a slide show program which
displays a series of screens automatically. Quick Screen is
identical, except the database program is not included.

QBase includes fully commented BASIC source code to show
how it works, and where it may be customized. The
assembler source requires QuickPak Professional, which is
available separately.

As a special bonus, we've added The Hardware Tutor-a clear
and practical discussion of electronic concepts and circuits,
written from a programmer's perspective.

QBASE MAXIMUM LIMITS

Records per f i le
Fields per form
Indexes per form
F il es open at once
Relational fields

32,766
100

5
5

no limit

QBASE PERFORMANCE TEST

The following tests were performed on a stock IBM AT with
a 30MB hard disk, using a "real life" data file comprised of
21,000 records. All timings indicate how many seconds it
took to locate the last record in the file, based on the field
type. For smaller files, the times will be proportionately
less.

The actual search times will vary for string fields, depending
on the number of similar records. For example, locating the
last "Jones" will generally take longer then the last "Szabo",
because more records have to be examined. Notice that
when date or integer fields are used (part numbers, account
numbers, and so forth), the response time is nearly
instantaneous.

Page &H28

QuickTALK

Indexed Searches

Using an integer field 0.03
Using a date field 0.03
Using a string field 8.00

Non-Indexed Searches

Using any field type 77.00

QBase Report ($79)

QBase Report is meant for use with QBase data files, and
offers three kinds of reporting capabilities. The conventional
report type lets you summarize the contents of a file sorted
on two key fields, with the output directed to the screen, a
printer, or disk file. The Modify report type allows updating
selected records in a file, for example flagging accounts that
are more than thirty days overdue. The Add reporting
option can be used to copy all or selected records from one
data file to another. If needed, field type conversion will be
performed automatically during record adding or
modification.

A simple command language is used to indicate the primary
file for the report, as well as any related files to be included.
An Assist mode is provided to guide you through the
report's design. Reporting options include headers, footers,
margins, totals, and four-function math. Also supported are
string and numeric constants, and current date, time, and
page number fields.

QBase Report lets you chain multiple reports to perform
several functions in sequence without any user intervention.
A unique Browse mode features a clever multitasking
scheme, whereby selected and sorted data may be viewed
even while it's being processed!

Page &H29

QuickTALK

An on-screen report layout feature lets you quickly indicate
how the report is to appear, and where each field will be
positioned. You may also specify that the report is to pause
before running, allowing the user to specify either the
screen, printer, or disk file.

QBase Report includes three additional bonuses-a complete
time billing application designed for computer professionals,
a stand alone file sort utility, and an import facility for
QBase data files.

All BASIC source code is provided. The assembler source
requires QuickPak Professional, which is available separately.

Bug Fix# 132

Page &H2A

QuickTALK

GraphPak ($79)

GraphPak is a collection of subprograms for displaying
attractive 3-dimensional bar, pie, and line graphs from within
a BASIC program. All of the popular display adapters are
accommodated automatically, based on the type of monitor
that is detected when the program runs. GraphPak can also
be used to display text, titles, and legends in any size, color,
or style.

GraphPak is comprised of both high-level routines and a
number of low-level primitives. The high-level routines are
responsible for accepting the numeric data and text to be
displayed, which are then used to calculate the appropriate
scaling, angles, and colors automatically.

Individual low-level routines are also provided to create
textured backgrounds, draw graphs, position and print text,
and perform scrolling and windowing in the popular graphics
modes. By supplying both high-level and low-level functions,
the BASIC programmer is given with the ability to display
complex graphs very quickly, as well as complete control
when necessary.

GraphPak also includes a font and tile editor for creating
custom character sets and attractive backgrounds, and a
subprogram to send high-resolution EGA graphics to an HP
LaserJet printer. All BASIC and assembler source code is
included.

Page &H2B

QuickTALK

GraphPak Professional ($149)

GraphPak Professional improves on the original GraphPak by
adding many important features including business and
scientific graphs, surface plots, and the ability to display
multiple fonts simultaneously. Also added are text-based bar
charts which are displayed very quickly on any type of
monitor.

As a special bonus we have included a screen print routine
that works with any screen mode and any graphics printer
that supports either the LaserJet or the Epson/IBM control
sequences. All BASIC and assembler source code is included.

HALFLIFI:
511

A ... C
....... ~ I

, ·-- - . -- -- -- -- •
311

C

• ZII
>

• • • •
-- S•• ject: X ---- s-•1•ct: y
- S•• eci: z -- ••• ec-t A
--s·••ct • - B•• ec-t C

Page &H2C

QuickTALK

LaserPak ($79)

LaserPak is a complete set of BASIC subroutines for
controlling an HP LaserJet or compatible laser printer.
Modeled after the BASIC graphics commands, LaserPak
allows BASIC programs to quickly and easily draw lines,
boxes, circles, and fill and shading patterns. Other
capabilities include graph scales and grids, text labeling, and
complete control over all of the LaserJet control sequences.

LaserPak also includes a sophisticated symbol editor that can
be used to design and manage logos, clip-art, and custom
fonts. A complete demonstration program is provided that
shows all of the LaserPak features in context. All BASIC
and assembler source code is included.

LaserPak Professional ($149)

LaserPak Professional enhances the original LaserPak by
providing support for dot matrix printers, as well as a
number of other new and important features.

Highlights include a unique "buffered printing" output
capability. Normally, the amount of data that can be sent to
a laser printer depends on how complex the images are, and
how much memory is installed in the printer. The buffered
printing feature instead calculates the complete image ahead
of time, and sends it in as few bytes as possible.

The pattern and symbol editor has also been enhanced to
provide full support for a mouse, and an improved resolution
of 150 by 150 dots per symbol. New subprograms include
open, filled and partial ellipses, pie portions, and three
dimensional bars. Bars and ellipses may be freely super
imposed, and LaserPak Professional will print the images in
the correct order. Thus, hidden lines are always
handled correctly.

Output for all of the subprograms may optionally be sent to
a file for printing at a later time.

Page &H2D

QuickTALK

QuickHelp ($69)

QuickHelp is a complete help message system that lets you
add instant pop-up help to any application. Unlike other
help products, QuickHELP requires only 22K of DOS
memory. This is less than one third the amount of memory
needed for the "other" popular on-line help package.

QuickHelp features indexed file access for fast retrieval, a
user-definable hot key, and customizable colors. It
accommodates the 25, 43, or 50 line display modes
automatically, and comes with a compiler for creating an
unlimited number of help screens.

Rather than require you to navigate through menus to find
the information, QuickHelp provides help for the word at
the current cursor location. This is ideal for use with our
QuickPak Professional product, which includes more than
three hundred separate routines.

The QuickHelp information is kept in a disk file in the
current directory. This lets you have multiple help files
available, no matter which application you are using at the
time. QuickHelp may be unloaded from memory if needed,
or disabled temporarily.

Page &H2E

1 @
Ef // •.

QuickTALK

Creating your own help messages is extremely easy, as the
example below illustrates.

@Keyword-1
This is the text that will appear when QuickHelp is activated
and the cursor is on the word "Keyword-1". The QuickHelp
text window will be sized automatically based on the length
of the longest line, and the number of lines in this block.
@Keyword-2
This is the help that will appear
for the word "Keyword-2". As you
can see, the width of the window
is controlled very easily.

Once the help text has been created (using any ASCII text
editor), simply run the supplied MakeHelp compiler to create
the completed help message file.

QuickHelp was developed by Harald Zoschke, Crescent
Software's European distributor. The Turbo C source code
is not available at this time.

QuickPak Scientific ($79)

QuickPak Scientific is a collection of expertly written BASIC
functions and subprograms for scientists and engineers.
These routines utilize state of the art algorithms, organized
into seven major categories. Numerous examples and
demonstrations are also included.

LINEAR ALGEBRAIC EQUATIONS

LSolvel -
LSolve2 -

!Solve -
DSolve -

Solution of a system of linear equations.
Solution of a system of linear equations
with iterative improvement.
Inverse of a matrix.
Determinant of a matrix.

Page &H2F

QuickTALK

ORDINARY DIFFERENTIAL EQUATIONS

DiflEQl -

DiflEQ2 -

Solution of a system of first order
differential equations using a fourth
order Runge-Kutta method.
Solution of a system of second order
differential equations using a fourth
order Nystrom method.

NUMERICAL INTEGRATION OF FUNCTIONS

Integral -

lntegra2 -

Romberg integration of a user-defined
function.
Integration of a function tabulated at
unequal intervals.

NUMERICAL DIFFERENTIATION OF FUNCTIONS

NumDiffl - Numerical calculation of first, second,
third, and fourth derivatives of a
user-defined function.

NumDiff2 - Numerical differentiation of tabulated
functions.

ROOT FINDING

FindRoot - Solves for a single real root of a
user-defined function. Does not require
derivatives.

PolyRoot - Solves for the real roots of a quartic,
cubic, or quadratic equation.

NSolve Solves for the real roots of an
unconstrained system of non-linear
equations.

MINIMIZATION AND MAXIMIZATION OF FUNCTIONS

MiniMaxl - Finds the minima or maxima of a scalar
function of one variable. Does not
require the calculation of
derivatives.

Page &H30

QuickTALK

MiniMax2 - Brent's method for calculating the
minima or maxima of a one-dimensional
scalar function.

MultiMin - Finds the minima or maxima of an
unconstrained scalar function of several
variables.

CURVE FI'ITING

TIP

LSquares - Least squares curve fit of tabulated data.

SplineFit - Cubic spline curve fit.

One of the truly great features introduced with QuickBASIC 4 is the
ability to watch a variable's value as your program works. But
watching strings can be misleading. For example, if QuickBASIC
shows something like:

YOURPROG.BAS A$:

The string might simply be null, but it may also consist of
blank spaces. Or it could even have characters that begin
past the right edge of the screen. One solution that always
works is to add leading and trailing delimiters. Instead of
watching only A$, instead use:

11cu + AS + 11)11

Then, if the string is full of blanks you'll see:

YOURPROG. BAS A$: { }

Also, because any legal BASIC expression may be watched, you
could ask to view the 40 characters that start 100 bytes into the
string:

MID$(A$, 100, 40)

Page &H31

///
/ /,/ //

QuickTALK

-=-=~~~~ "<'§£3 ~~
~--¥~~

QuickMenu ($59)

QuickMenu is a full-featured DOS menu system for novices
and experienced users alike. Simply define the menu titles,
the list of DOS commands for each choice, and they will be
executed automatically. QuickMenu is simple enough for a
beginner to set up and use, while providing the sophisticated
options needed for the power user. All input is fully
prompted, and the entire system is menu driven.

Unlike other DOS menu programs, QuickMenu does not
remain resident in memory while it executes a program.
Instead, a batch file is created and run when the choice has
been selected. QuickMenu always remembers which menu
level was in use, and returns there when the selected
program finishes.

A file import and export feature lets you bring in existing
batch files, or create new ones. QuickMenu may also be set
up to prompt for additional input when a choice is selected,
allowing the operator to specify a drive, file name, and so
forth. Once the menus have been built, QuickMenu's
runtime only module provides a fast, secure system that
cannot be altered by the user.

Page &H32

QuickTALK

Plllll 111111111111111

Paul Passarelli is Crescent's head of tech support, and a true
math-head. Paul was telling us about a book that claims to be the
"world's most boring book". Spanning 400 pages, it consists solely of
the first one million digits in Pl.
Here's a brief excerpt:

Pl = 3.14159 26535 89793 23846 26433 83279 50288 41971 69399 37510 58209
74944 59230 78164 06286 20899 86280 34825 34211 70679 82148 08651-

THERE WILL BE A SLIGHT DELAY

Most BASIC programmers use the TIMER function in a loop to create a
short delay. The only problem with TIMER is there's no way to get it to
less than 1/18th second. One solution is to use the PLAY command:

PLAY "MFT255P64"

Even better is OuickPak Professional' Pause2 command. Simply tell it the
number of microseconds you want to pause for.

BIG DEAL

QuickTALK reader Rem Outaline called the other day bragging
about his new sort algorithm that's even slower than a bubble
sort. Way to go, Rem.

THEN WHO NEEDS IT!

Crescent customer Tab Key wrote us to point out that BASIC's
THEN keyword is often unnecessary. For example:

IF X > 2 GOTO label name

Similarly, when a variable is being tested for non-zero, an
explicit comparison is optional:

IF X <> 0 THEN

is the same as

IF X THEN •

Page &H33

e
Q

QuickTALK

~

Bug Fix# 103

MICROSOFT BUGS

Microsoft is pretty good about fixing bugs and making new disks
available for free. The original release of QuickBASIC 4.00 has plenty of
'em, so be sure to call them and ask for QB version 4.00b. The phone
number for technical support at Microsoft is (206) 882-8089.

This isn't really a bug, but it could drive you up the wall if you don't
know about it. In the QB environment (any version), attempting to
assign an array element that is out of range will produce an error.
However, in a stand-alone program that was compiled without the /D
Debug option, array bounds checking is not performed. Therefore, if
you forget to dimension an array and then assign, say, element 400,
QuickBASIC will happily oblige, likely corrupting string memory in the
process. If you get strange errors or a program runs incorrectly, try
compiling with /D. Of course, once the program works, recompile
without /D to make your program as small and fast as possible.

MASM 5.1 has a few problems as well. There's some terrific new
features, but they made a major blunder-a// procedures are now public
by default. If you have a short procedure in an assembler program that
is used only in that file, you can no longer have another procedure with
the same name in another object module in the same .LIB or LINK
library. However, Microsoft has advised us that this will be fixed in
MASM version 6.

Page &H34

QuickTALK

WHICH CODE IS FASTER?
by Ethan Winer

No matter what language is being considered, we all strive to
create programs that execute in the least amount of time,
while using the fewest number of bytes. Unfortunately,
many programmers who use a high level language have no
way to determine which statements are the most efficient.

Therefore, the purpose of this article is twofold-first we will
discuss various BASIC statements to see which ones are
faster and smaller. Then we will examine the actual
machine instructions generated by QuickBASIC 4, and
compare them with the original BASIC source code.

Besides seeing first hand how a compiler operates, we'll also
learn about Microsoft's excellent CodeView debugger in the
process. CodeView is included with a number of Microsoft
languages including BASCOM 6 and current versions of the
macro assembler.

All of the code examples presented here will be shown for
stand-alone BASIC programs that do not require BRUN
run-time library support. Also, integer variables will be used
exclusively. Most programmers use integers whenever
possible, and this will prevent the examples from being
obscured by floating point math operations.

STRING OPERATIONS

String operations in a QuickBASIC program consist of many
calls to routines contained in the BCOMxx.LIB library file.
Unfortunately this makes them extremely convoluted and
thus difficult to trace through. However, manipulating
strings efficiently in BASIC is often more a matter of
common sense than anything else.

Page &H35

QuickTALK

Unlike most other high level languages, BASIC allows strings
to have a varying length. Where languages such as Pascal
and C require you to declare all strings and their lengths
ahead of time, BASIC is much more forgiving. Of course
nothing comes for free, and so it is with strings in BASIC.

Every time a string is assigned or re-assigned, a new
memory location is used to hold the contents. Even if the
new string is the same length or shorter than it had been
previously, BASIC abandons the memory it occupied and
allocates a new space in "near" memory. Near memory is
where all non-array variables are stored, and is limited to
64K.

Because finding a new place to store a string takes time, this
is one of the most inefficient operations BASIC does.
Therefore, for our first example we'll look at two very
different ways to build a string.

Let's say you intend to read a line of characters from the
display screen and store them into a string. One method
would be to append new characters in a loop like this:

ss·•:•·:· . IIH

FOR X = 1 TO 80
SS.=. SS f CHRS(SCREEN(1, X))

NEXT

'clear SS
're.ad the top Ii ne
•build the string

Besides being slow because new memory must be found for
each new version of S$, 3240 bytes of memory are left
abandoned by the preceding assignments. Of course, BASIC
will eventually reclaim this memory, but that takes even
more time. Because BASIC leaves old string data lying
around as it works, it must reorganize its string space from
time to time. This process is appropriately called garbage
collection.

Understand that variable length strings are not a bad thing.
Indeed, this is just one of the many advantages BASIC has
over less capable languages like C and Pascal.

Page &H36

QuickTALK

LSET, RSET,ANDMID$

BASIC provides two other ways to assign characters to a
string-LSET and RSET, and the statement form of MID$.
Where the example above must constantly assign a new
string for each character that is appended, LSET, RSET, and
MID$ let you insert characters into an existing string. Thus,
a single string of the correct length may be assigned only
once, and the new characters will be placed into subsequent
locations.

Using MID$ makes the most sense for a screen reading
routine, and it would be coded like this:

SS = SPACE$(80) •set"aside SO characters in ss
fORX = 1 TO 80 •read the top line

MiD$(S$, X, 1) = CHRS(SCREEN(1, X)) 'insert each
NEXT ' character

In a test where 5000 characters were inserted, MID$ filled
the string in only 1.2 seconds, as opposed to 7 seconds for
the first example.

LSET and RSET also replace characters in an existing string,
however they also clear all of the characters that are not
being replaced.

XS= "Testing 1, 2, 3"
LSET X$ = i1Hi 11 'now XS =. "Hi
RSET XS = ''Lo" •now XS .= "

As you can see, LSET left justifies the string being inserted
and RSET right justifies it.

TIP
The best way to tell if a mono or color monitor is installed:

DEF SEG = 0
IF PEEK(&H463) = &HB4 THEN

•mono
ELSE

•color
END IF

Page &H37

QuickTALK

Another important way that string operations can be speeded
up is to use their ASCII values whenever possible. As an
example, suppose you need to search through a string array
for a particular item. One common method would be:

FOR X = 1 TO ArraySize

NEXT

IF Array$(X) = Search$ THEN
PRINT "Found at element"; X
EXIT FOR

END IF

A better approach would be to determine the ASCII value of
the string being searched for, and compare that to the value
in the array:

A = ASC(Search$)
FOR X = 1 TO ArraySi ze

IF ASC(Array$(X)) = A THEN
IF Array$(X) = Search$ THEN

PRINT "found at element"; X
EXIT FOR

END IF
END IF

Though this takes a bit more effort to code, the resultant
improvement can be substantial. Because BASIC operates on
integers much more quickly than it can on strings, a lot of
unnecessary testing at the string level will be avoided. Even
better would be to use the QuickPak Professional ASCII
function. ASCII does the same thing as BASIC's ASC, but
it's substantially faster.

There are certainly other similar ways that you can increase
the string performance of a program. As I said earlier, many
solutions present themselves once you understand how
BASIC operates. On that note, let's take a look inside
QuickBASIC to see some of the ways your source code is
translated into executable machine instructions.

Page &H38

QuickTALK

VARIABLE ASSIGNMENTS

Imagine you are writing a program, and that at some point
several variables must be assigned to the same value. One
way would be to assign the value repeatedly, as shown below:

A = 13
B = 13
C = 13
D = 13
E =. 13

Another possibility is to assign the first variable from a
constant, and the remaining variables from the first one:

A= 13
B = A
C = A
D = A
E = A

The second example is much more efficient, but let's see
why.

When QuickBASIC compiles your source program, it assigns
and remembers an address for each variable it encounters.
This lets it replace references to those variables with
addresses that the PC's processor can understand. Consider
the following assignment statement:

A = 13

This is compiled to the following machine and assembler
instructions:

C70636000D 00 MOV WORD PTR [0036] , 13

As you can see, QuickBASIC has placed the variable A at the
absolute address 36, and a six-byte assembler instruction is
required to assign it. (The bytes of machine language that
QuickBASIC generates are shown to the left of the
equivalent assembler mnemonics.) Two bytes are used for
the actual instruction, another two to specify the address
(0036), and two more for the value 13.

Page &H39

QuickTALK

Thus, QuickBASIC will code the first example like this:

A = 13
B = 13
C = 13
D = 13
E = 13

C70636000D00
C70638000D00
C7063AOOOD00
C7063COOOD00
C7063E000D00

MOV WORD PTR (00361 , 13
MOV WORD PTR [0038] , 13
MOV WORD PTR [003A] , 13
MOV WORD PTR [003CJ , 13
MOV WORD PTR [003EJ, 13

Notice that two-byte memory addresses and values are
always shown with the lower byte first. That is, the address
0036 is represented in memory as 3600, and the value 0013
is shown as 1300. This is not inconsistent once you think
about it, because the lower byte is always stored in the lower
memory location. Also notice that QuickBASIC is very
organized as it assigns variable addresses, and each one
occupies the next available memory location.

The second example is compiled to the following machine
code, and it is immediately obvious that fewer bytes are
needed. All but the first of these instructions use the value
held in a register (AX), which is much faster than a constant
value contained within the assembler code instructions.

A = 13
B = A

C = A
D = A
E = A

C70636000DOO
A13600
A33800
A33AOO
A33COO
A33EOO

MOV WORD PTR [00361 , 13
MOV AX, WORD PTR (0036]
MOV WORD PTR [0038] , AX
MOV WORD PTR [003AJ , AX
MDV WORD PTR [003CJ , AX
MDV WORD PTR [003EJ , AX

Because QuickBASIC is very smart, it creates code to
retrieve the value 13 from A only once, and then uses that
to assign all of the remaining variables. Therefore, the first
example comprises thirty bytes of code, while the second
needs only twenty one.

Another clever technique QuickBASIC performs is when
incrementing and decrementing variables. The simplest type
of compiler would take a statement such as X = X + 1 and
create code something like this:

MOV AX,{003{!] ;1"?\'~ ii,". vaJue of X (address 36) intciAX
ADD Ax,1 ··;add 1 to AX ·
MOV (0036] ,AX ;moye AX back .. into X

Page &H3A

QuickTALK

But QuickBASIC is much smarter than that, and generates
code to directly increment the variable X:

INC [0036] ; increment X

Both INC (increment) and DEC (decrement) are instructions
the PC's processor can execute directly, and they are much
faster than the ADD or SUB commands.

ARRAY ASSIGNMENTS

Array variables are often initialized in a FOR/NEXT loop, so
let's look at that next. The e-xamples below show how
QuickBASIC codes a simple FOR/NEXT loop, as well as how
variables within it are assigned. Unlike the earlier code
samples, we'll show the translation similar to the way
CodeView does. That is, each line of BASIC source code is
followed by the compiled machine instructions.

Notice that the DIM command does not generate any
assembler code because memory for a Static array is set
aside when the program is compiled.

· ..

DIM Array(10)
FOR X = 1 TO 10

B80100
E90B00

Array(X) = · 0

8BF0
D1E6
C78436000000

NEXT
40

A30001
306400
7EED

HOV AX,0001
JMP Label2

Label 1:
HOV SI,AX
SHL S!,1
MOV [SI +0036] , 0000

INC AX
Label 2:

HOV [0100],AX (100 is X's address)
CMP AX,OA (10 is OA Hex)
JLE Label1

In the example above, every element in the array is be~ng
assigned a value of zero. QuickBASIC uses the AX register

Page &H3B

QuickTALK

as a loop counter, and begins by initializing it to the starting
count of 1. This is immediately followed by a jump into the
NEXT portion of the code, where the value in AX is tested
to see if the ending value of 10 (0A Hex) has been reached.
If AX is Less than or Equal to 10, a Jump is made back into
the body of the FOR/NEXT loop.

To determine the address of the current array element being
assigned, the program moves the X count value held in AX
into SI, and then multiplies SI times 2 with the SHL (Shift
Left) instruction. Because each integer array element
comprises two bytes, any element can be found by adding
twice the current count to the address of Array(0). For
example, the memory location for Array(lO) is 20 bytes
beyond Array(0).

The actual assignment is made by adding the computed
offset held in SI to the constant 0036, which is the address
of Array(0). As you can see, QuickBASIC uses the less
efficient method of assigning each element from a constant
value. It would have been much more efficient to first clear
another register (perhaps BX) to zero, and then use the
register for all of the assignments that follow.

Bug Fix# 22

Page &H3C

QuickTALK

SIMPLE INTEGER MATH

Of course, we shouldn't expect QuickBASIC to be as efficient
as a human hand-coding in assembly language. The code
created by any compiler can always be improved. However,
as the short program below illustrates, when it comes to
simple integer math QuickBASIC is extremely efficient.

First, X (which is at address 0036) is assigned from the
constant value 4. Then, AX is loaded from X, where it stays
throughout the remaining assignments. To multiply X * X,
QuickBASIC generates an integer multiply instruction
(IMUL), and then places the result back into X.

Since QuickBASIC is smart enough to realize that AX still
holds the value of X, the remaining operations are all
performed on AX.

To multiply X times 2, a SHL instruction (Shift Left) is used
which is much more efficient than a conventional multiply.
Whenever the bits in an integer variable are shifted left one
position, the value is multiplied times 2. Likewise, when the
bits are shifted right, the value is divided by 2.

Page &H3D

QuickTALK

Multiplying times 3 cannot be done by shifting, so the CX
register is first loaded with the value 3, and IMUL is then
used to perform the multiplication. Once this is done, AX is
moved back into X. This continues through multiplying
times 4, which again is done by shifting.

Finally, the X + X assignment is handled elegantly by
simply adding AX to the variable's address. Again, this code
is extremely efficient because QuickBASIC is smart enough
to realize that AX still holds the value of X from the
previous computations.

Another important optimization that QuickBASIC performs is
to calculate identical expressions only once. In the example
below, A is multiplied times B only once for each pass
through the FOR/NEXT loop.

/
Bug Fix# 8

Page &H3E

QuickTALK

When examined under CodeView, the program looks like
this:

A = 9
C70662000900

B = 10
C70664006400

FOR X = 1 TO 10
880100
E91900

Array1 (X) = A * B

A16400
F72E6200
8B366600
D1E6
89843600

Array2(X) =A* B
89844C00

NEXT
A16600
40

A36600
3oOAOO
7EDF

MOV [00621 , 9

MOV [0064] ,OA

MOV AX, 1
JMP Label2

Label 1:
MOV AX, [0064 l
IMUL [00621
HOV SI, (0066]
SHL "SI, 1

(64 is B's address)
(62 is A's address)
(66 is X's address)

HOV [Sl+00361 ,AX (Array1CX) = AX)

HOV CSl+004Cl ,AX (Array2(X) = AX)

MOV AX, [00661 (66 is X's address)
INC AX (AX = AX + 1)

Label 2:
MOV [0066] ,AX (X = AX)
CMP AX,OA (10 is OA Hex)
JLE Label 1 (jump if less or equal)

Because neither A nor B are changed inside the loop, what
QuickBASIC should do is calculate the result only once
ahead of time. Even though many C compilers perform this
level of optimization, QuickBASIC is not that smart.
However, you could easily do this yourself to make the
program run faster:

A = 9
B = 10
Temp = A * B
FOR X = 1 TO 10

Array1 CX) = Temp
Array2(X) = Temp

NEXT

Page &H3F

QuickTALK

USING CODEVIEW

All of the examples shown thus far would have been
impossible to present without the invaluable aid of
Microsoft's Code View debugger. If you are familiar with the
QuickBASIC 4 editing environment, you should have little
trouble understanding and using CodeView.

Like QuickBASIC 4, CodeView features break points and
watch variables, and it lets you single step through a
program. Also like QB4, Code View can step over or into
subprograms and Code View is the only reasonable way to
debug a complex assembler routine that has gone berserk.
While DEBUG can be helpful for simple assembly language
.COM programs, it is all but useless for debugging an
assembler routine that has been added to a QuickBASIC
program.

Preparing a BASIC or assembler program for debugging with
CodeView is very easy-simply add the /ZI switch to the BC
or MASM command:

BC basicprogram /21

or
MASH asmprog ram /Z I

Once the program has been compiled or assembled, it must
also be linked. This is done by adding the /CO switch when
LINK is started:

LINK basicprogram [asmprogramJ /CO

Though the logic escapes me, the LINK switch for a
Code View program is not the same as for BC and MASM.
Indeed, /CO is much more sensible, and it's anybody's guess
as to what /ZI is supposed to stand for.

Page &H40

QuickTALK

For the most part, CodeView is not necessary if your
program is written purely in BASIC. After all, the whole
point of a high level language is to avoid having to deal with
registers and instructions to the PC's processor. However, if
you are creating assembler extensions like those produced by
Crescent Software, it is invaluable. Of course, it is also the
only way to see how QuickBASIC works.

USING CODEVIEW WITH QUICKBASIC

To examine the code that QuickBASIC creates, lets walk
through one of the sample programs that we looked at
earlier. Because we already listed the assembler code
created by QuickBASIC, we'll just go over the necessary
steps here. We'll get to using CodeView on a mixed
program of QuickBASIC and assembler routines in a
moment.

First, create a BASIC source file, preferably using one of the
examples above, or a short program with just a few simple
instructions. When you save it to disk, be sure to use the
"Save As" option and select "Text". CodeView has no way to
decipher the special "fast load" format that QuickBASIC uses
as the default save method.

Next, compile the program from the DOS command line
using the BC compiler and the /ZI and /0 options:

BC basicprogram /ZI /0;

Once the program has been compiled, it must be linked:

LINK bas i cprogram /CO;

Finally, start CodeView like this:

CV bas i cprogram

Page &H41

QuickTALK

When CodeView begins you will see a screen similar to the
one used by QuickBASIC. CodeView starts up in the
"immediate" mode, so you should press F6 once. At this
point, you are viewing the original BASIC source instructions
for your program. Pressing the F3 key lets you view the
equivalent assembler instructions, but don't do that yet!

Every BASIC program begins with a large section of start-up
code, which we want to skip over first. Therefore, press the
FlO key to step to the first line of the BASIC source code.
When CodeView is showing your BASIC source file, FlO
steps to the next BASIC instruction.

Now you can press F3 to view the assembly language
statements intermixed with the BASIC source. Each time
FlO is pressed while you are in the assembly view mode, a
single assembler instruction will be executed. Debugging a
mix of BASIC and assembler source is only slightly more
complicated, as we about to see.

USING CODEVIEW WITH MIXED LANGUAGES

While using CodeView with a BASIC program can certainly
be an enlightening experience, it really shines when you
need to follow a call from BASIC to an assembler routine
and back again. As with the BASIC examples above, the
assembler source must be assembled with the /ZI switch,
and you must invoke LINK with the /CO option:

ii(b?~i?pr'~e,'ari{{Z{ /O;
.•. MA~ a~~ogr~mJZPr/··

~IN1C.p;isicprog~~111 ~S~f~9f!'"'Jcg;

When CodeView is started, the BASIC source will be
presented first, and again you should use FlO to step to the
first line in the BASIC program. When you get to a call to
an assembly (or other) language routine, press F8 rather
than FlO. Like the QuickBASIC editor, F8 steps into a
function or subroutine call, while FlO considers the call to
be a single instruction and steps over it.

Page &H42

QuickTALK

If the assembler source code is not in the current directory,
CodeView will ask you to enter the directory name. In order
to show both the source code and the machine instructions
at the same time, CodeView must be able to load the
original source files.

Watching assembler variables is similar to the same
operation in QuickBASIC. Pressing Alt-W brings up the
Watch menu, and you simply enter the variable's name. Any
time the value of a watch variable changes, it will be
reflected in the watch window at the top of the screen.

And that's really all their is to it! As long as you remember
to use the /ZI and /CO switches, you will have no trouble
tracing through either BASIC or assembly language source
code. Well, that's almost all there is to it. There are a few
bugs in Code View that you should be aware of.

First, it is worth mentioning that there are several versions
of CodeView in circulation. Second, the bugs (in the version
we have) are mentioned just so you'll know it isn't your
fault if you encounter them.

The first problem is that CodeView will not work if SideKick
is loaded. Mind you, your program won't crash, but
CodeView reports the following error:

run-time error R6002
- floating point not loaded

This error is not mentioned anywhere in the CodeView
manual, and it is in fact a C language error message!

The second bug is probably QuickBASIC's fault, because it
affects a TYPE variable that uses long integers. In a test
program we were writing, the following TYPE declaration
was placed early in the source code:

TYPE VLong
Lo AS LONG
H.i AS LONG

END TYPE

Page &H43

QuickTALK

CodeView crashed on this one so badly that we had to turn
the power off. However, the solution was simple:

TYPE VLong
Lo1 AS INTEGER
Lo2 AS INTEGER
Hi1 AS INTEGER
Hi2 AS INTEGER

END TYPE

Since we were interested in any block of data that was eight
bytes, having to split each LONG into two integers wasn't a
problem. Depending on what you're trying to do, a different
work-around may be needed.

LEARNING MORE

We have looked at only a few samples of QuickBASIC code
that have been compiled to machine instructions. Of course,
many BASIC statements are difficult to follow once they
have been compiled because of the complexity of
QuickBASIC's system of library calls. However, tracing
through some of the simpler functions can be very
enlightening.

We encourage you to experiment on your own-perhaps
looking at functions such as LEN and ASC-to see how these
work. Indeed, our own curiosity led us to develop more
efficient replacements for these commands in QuickPak
Professional.

Page &H44

QuickTALK

TIP

Passing a fixed-length string array or a TYPE array to a
BASIC subprogram is possible, even though all of the
examples in the QuickBASIC 4 manuals skirt the issue by
showing the various arrays as being SHARED. The short
program below illustrates the steps required to do this.

Notice that to pass an array of fixed-length strings it must
be declared as a TYPE array, even if the TYPE is comprised
solely of a single string member.

TYPE FLen
Stuff AS STRING * 11

END TYPE

'define the TYPE
• before you refer

• to it later

DECLARE SUB FLSub (Param() "AS Flen) 'declare t:1e sub
DIM A(100) AS FLen 'DIM the array

A(89) .Stuff = "Testing #8911

CALL FLSub(A())

SUB FL Sub (Array() AS FL en)
PRINT Array(89).Stuff

END SUB

•assign element 89
'call the subprogram

'refer to the TYPE
•print the element

Our favorite UPS driver Kevin
(actual unretouched photo).

Page &H45

SHIPPING, MAIL ETC ...

CORRESPONDENCE WITH
CRESCENT SOFTWARE

For first class please send to

Crescent Software
11 Grandview Avenue
Stamford, CT 06905

For UPS, Federal Express or
anything else please call first.

Our number (203) 846-2500
FAX number (203) 849-1868

QuickTALK

(I.

~
---=--

We accept MasterCard, Visa, Check, Money Orders or Cash.
We do not accept open Purchase Orders, or American
Express cards.

INTERNATIONAL ORDERS

Crescent Software will ship anywhere in the world (providing
there is a shipper that goes there), but we also have some
international dealers that might be more convenient.

In West Germany

lngenieur - Buro
Harald Zeschke
Berliner Sir. 3
D-2306 Schoenberg/Holstein
West Germany - Telefon
04344/6166

In Holland

LeMax Company B.V.
Robert Kockstraat 2
1171 BE Badhoevedorp
Holland • Telefoon 02968-
4210

Page &1-146

In Canada

Henri Reiher
Ordinaq - Div. De L.C. Inc.
55 Cote Ste-Catherine #1604
Montreal, Quebec
Canada H2V 2A5
514-279-0309

Name

Compan

Address

City

Daytime telephone

Payment

Credit Card #

Product

QuickPak

Check (

QuickPak Professional

QuickPak Scientific

QBase

QBase QuickScreen

QBase Report

Graph Pak

GraphPak Professional

LaserPak

LaserPak Professional

Quick Menu

Quick Help

Subtotal

Order Form

State

COD ()

Turbo 0B2/3 0B4/BC6

NA

NA *

* *

NA

Connecticut residents must add 7.5% sales tax

Shipping (see below)

Zip

Visa ()

Exp. Date

Price

79.00

149.00

79.00

149.00

79.00

79.00

79.00

149.00

79.00

149.00

59.00

59.00

MC ()

Total

Total
,.,,......,,..,.,,..""'""'"'"'·~-~~~-.:❖"1fflXt❖;.❖;.❖».~a::x~z..=x.<:.:-;::m.-««~11rv;.•:gJ$»W.«-ffl~:t-»;-;:::~';❖Y#.:~;:::?;:-~»;.~!❖';#i(.";m,-;'$11

Shipping (per order)

U.S.
Canada

Europe

Other

$5 2nd day UPS, $10 overnight, $15 overnight for QuickPak Professional
$5 1st Class, $10 QuickPak Professional (ground),
$30 QuickPak Professional (Air)/Express Mail
$1 0 per item, $25 overnight per item, $35 for two or more
$35 QuickPak Professional express mail, overnight will be market price
$20 per item, $40 QuickPak Professional

• Please call for more information
Crescent Software

11 Grandview Avenue, Stamford, CT 06905 (203) 846-2500

What the people are saying!
"QuickPak is a well-rounded collection of time saving routines"

PC MAGAZINE

"QuickPak is a valuable addition to any BASIC programmer's library''
PC RESOURCE

"The manuals are written in a clear, humorous manner - a welcome
change from the very serious Microsoft manuals"

TURBO TECHNIX

"QuickPak Professional includes enough features to satisfy users of all
levels of BASIC expertise ... most users will regard QuickPak as a first
among equals."

" ... Programs are FANTASTIC.
They have added much excitement
to my programming"

- Phoenix, AZ

" ... Makes my amateur
programs look professional..."

- Minneapolis, MN

" ... I've come to rely heavily
on Crescent Products. If I were
rich, I'd buy the company"

- Schenectady, NY

" ... The routines do things
I could never do on my own"

- Camanche, IA

" .. .I have found your
routines (especially
the source code)
invaluable ... "

-Avon, CT

"I wish the ASM tutor was
300 pages!"

- Lake Zurich, IL

"Great Stuff ... I may
put off learning 'C' for
awhile longer."

- Temperance, Ml

PC WEEK

"Found your QuickPak
utilities of immense
value ... "

- Acton, Ontario

" ... thank you for having
such a great customer
support and update
policy."

- Chico, CA

"QuickPak has been so
helpful to me, it is hard
to express my gratitude ... "

-Tucson, AZ

" ... TOTALLY satisfied.
Great work!"

- Waukegan,IL

"Your product is one of the
best I have ever used."

- Lacey, WA

"You have a great product
and a loyal following."

- Morristown, NJ

"Your code is beautiful
and clean ... your
documentation is
absolutely loveable!"

- Short Hills, NJ

	0003
	0004
	0005
	0006
	0007
	0008
	0009
	0010
	0011
	0012
	0013
	0014
	0015
	0016
	0017
	0018
	0019
	0020
	0021
	0022
	0023
	0024
	0025
	0026
	0027
	0028
	0029
	0030
	0031
	0032
	0033
	0034
	0035
	0036
	0037
	0038
	0039
	0040
	0041
	0042
	0043
	0044
	0045
	0046
	0047
	0048
	0049
	0050
	0051
	0052
	0053
	0054
	0055
	0056
	0057
	0058
	0059
	0060
	0061
	0062
	0063
	0064
	0065
	0066
	0067
	0068
	0069
	0070
	0071
	0072
	0073
	0074
	0075
	0076
	0077
	0078

